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A Generic Library of Problem Solving Methods
for Scheduling Applications

Dnyanesh G. Rajpathak, Enrico Motta, Zdenek Zdrahal, and Rajkumar Roy

Abstract—In this paper, we propose a generic library of problem-solving methods for scheduling applications. Although some

attempts have been made in the past at developing the libraries of scheduling problem-solvers, these only provide limited coverage.

Many lack generality, as they subscribe to a particular scheduling domain. Others simply implement a particular problem-solving

technique, which may be applicable only to a subset of the space of scheduling problems. In addition, most of these libraries fail to

provide the required degree of depth and precision. In our approach, we subscribe to the Task-Method-Domain-Application knowledge

modeling framework which provides a structured organization for the different components of the library. At the task level, we construct

a generic scheduling task ontology to formalize the space of scheduling problems. At the method level, we construct a generic

problem-solving model of scheduling that generalizes from the variety of approaches to scheduling problem-solving, which can be

found in the literature. The generic nature of this model is demonstrated by constructing seven methods for scheduling as an

alternative specialization of the model. Finally, we validated our library on a number of applications to demonstrate its generic nature

and effective support for developing scheduling applications.

Index Terms—Knowledge modeling, knowledge engineering, knowledge-based systems, task-method-domain-application modeling,

ontologies, problem solving methods, scheduling.

�

1 INTRODUCTION

SCHEDULING [3] is the central theme of this paper. As a
first-level approximation, we can say that scheduling

deals with the assignment of jobs and activities to resources and
time ranges in accordance with relevant constraints and
requirements. Typical domains of scheduling include man-
ufacturing scheduling, project scheduling, resource alloca-
tion, transportation scheduling, mass transit scheduling,
scheduling nurse shifts in hospital, and air gate assignment.
Each scheduling domain imposes its unique constraints and
requirements, which need to be obeyed by a scheduler
while devising a schedule because they determine the space
of a valid solution. A process of constructing a valid
schedule becomes even more challenging due to the
uncertain, dynamic, and unpredictable circumstances [24] that
occur in an environment where the scheduling task has to
take place [8], [23]. For instance, rush orders arrive without
prior notice, the existing resources become unavailable and,
moreover, cost criteria also plays a crucial role when
multiple solutions can be admissible for a particular
problem, and some of them are “better” than others.

One of the earliest research initiatives in scheduling,
Operations Research (OR) [62], aimed at finding an optimal
solution, but optimization normally suffers from combina-
torial complexity that can be proven NP-hard [25], [26].
Generally speaking, the OR techniques [27] are restricted to

rigid and static models with limited expressive power and
when implemented to solve real-life scheduling problems,
their sophisticated mathematical algorithms result in intract-
ability, mainly because the problem space of the real-life
scheduling problems is normally ill-structured [28], [57]. In
order to overcome the limitations observed in OR techniques
[62], several knowledge-based techniques from artificial
intelligence (AI) have been used to solve the scheduling
problem and, consequently, various intelligent scheduling
systems [9], [13], [21], [22], [32], [45], [52], [63], [64], [65] have
been developed over the last 20-year period.1 Although these
systems have used various AI techniques successfully, they
were hardwired in nature and the domain specific nature of
these systems restricted their reusability within a single
domain. As pointed out by Kruger [37] and Neches et al. [49],
monolithic systems are difficult to maintain because these
systems need to be constructed from scratch every time the
nature of domain changes.

Reusability is the main concern of research in knowl-
edge modeling. Here, the construction of a knowledge-
based system (KBS) can be realized by applying libraries
of problem-solving methods (PSMs) [5], [6], [46], [73], [75].
An ontology [29] and a PSM [30] are the two central
components in library construction mainly because they
enhance knowledge sharing and reusability over wider
domains. An ontology [29] can be seen as an information
model that explicitly describes the various entities and
abstractions that exist in a universe of discourse, along
with their properties. Much work on reusable components
for knowledge-based systems [5], [6], [46], [73], [75] relies
on ontologies to specify formally generic classes of
knowledge-intensive tasks, e.g., design and planning, as
well as the ontological commitments associated with
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knowledge-intensive problem-solvers. In the former case,
we use the term task ontologies, in the latter method
ontologies. The task ontology [44], [46] is method, domain,
and application independent, while the method ontology
[12] provides a vocabulary necessary to characterize the
problem solving behavior of a generic task. A PSM is a
domain independent specification of the reasoning process
underlying a KBS. As discussed by van Heijst et al. [74], a
PSM can be used as a model-based template to guide the
knowledge acquisition process and it can also be used to
develop robust and maintainable applications by reuse,
e.g., [39], [46], [58]. A PSM can either be task specific or task
independent. Task specific PSMs are developed to tackle the
specific types of Generic Tasks [10], [11], such as planning
[73], parametric design [46], [75], and they consist of the
following components [5], [18]: 1) Functional specification is
a declarative description of input/output behavior stating
what can be achieved by a PSM, 2) requirements state the
domain knowledge required by a PSM to achieve its
functionality, and 3) operational specification is a reasoning
process consisting of inference structure, the knowledge,
and the control flow, and it ensures that if the correct
knowledge is provided, then the functional specification of
a PSM can be achieved successfully. Task independent
PSMs on the other hand provide high-level reasoning
steps in terms of a generic paradigm, e.g., search [50].

Some attempts have been made in the past at developing
libraries of scheduling PSMs [35], [38], [69], [72], but these
proposals provide limited results. In some cases [35], these
libraries subscribe to specific scheduling domains, which
limit their reusability to these domains. In other cases [38],
they subscribe to a specific “problem-solving technique,”
e.g., constraint satisfaction, which provides limited “con-
ceptual leverage” to tease out all the knowledge-intensive
activities that take place in scheduling and also provides
limited support for knowledge acquisition. Moreover, none
of the existing libraries provide comprehensive coverage of
the different knowledge-intensive PSMs, e.g., Propose &
Improve [46] and Propose & Exchange [53]. For instance,
the CommonKADS library [69] is only comprised of the
Propose & Revise method [40], [41]. The partial coverage
exhibited by these libraries fails to reason about the
different types of schedules, such as completion, constraint
and requirement violation, and optimization.

The primary aim of our work is to develop a task-
specific, but domain independent, library of scheduling
PSMs to overcome all the shortcomings observed in the
existing proposals. Our library is task-specific because it is
developed to solve the scheduling task, but it is domain
independent because it does not subscribe to any specific
application domain of scheduling. In our approach, we
subscribe to the Task-Method-Domain-Application
(TMDA) knowledge modeling framework [46], which
provides a structured way to organize the components of
our library. Our library is formalized by using the
Operational Conceptual Modelling Language (OCML)
[46], which provides support for producing sophisticated
specifications, as well as mechanisms for operationalizing
definitions to provide a concrete reusable resource to
support knowledge acquisition and system development.

Import/export mechanisms from OCML to standards, such
as OWL [43] and Ontolingua [17] ensure symbol-level
interoperability. The TMDA framework and the OCML
language are discussed in the next section.

The rest of the paper is organized as follows: In the
following section, we introduce the TMDA knowledge
modeling framework and also provide an overview of
OCML. In Section 3, we discuss a generic scheduling task
ontology. In Section 4, we describe the construction of
generic problem-solving model of scheduling (henceforth
Generic-Schedule). In Section 5, we describe the
engineering of the Propose & Revise method [41] to
demonstrate how alternative PSMs can be constructed
simply by reusing and specializing Generic-Schedule.
The evaluation of the library is discussed in Section 6. In
Section 7, we compare our work with other alternative
proposals in the field. Finally, in Section 8, we conclude the
paper by summarizing the main contributions of this work.

2 TASK-METHOD-DOMAIN-APPLICATION

KNOLWEDGE MODELING FRAMEWORK

AND OCML

2.1 Task-Method-Domain-Application Knowledge
Modeling Framework

Although various knowledge modeling frameworks, such
as Generic Tasks Structures [10], Role-Limiting Methods
[41], [42], Protégé-II [48], CommonKADS [61], MIKE [2],
Components of Expertise [67], EXPECT [70], and GDM [71],
have been proposed in the knowledge modeling commu-
nity to provide a structured organization for the library of
problem-solving components, our library subscribes to the
TMDA framework [46]. Some of the key reasons for
subscribing to the TMDA knowledge modeling framework
are as follows: 1) TMDA uses different kinds of formal
ontologies to specify the generic structure of a class of
problems (task ontology) and the knowledge requirements
of PSMs (method ontologies), 2) similarly with Common-
KADS and Components of Expertise, the TMDA framework
introduces a systematic separation between the task,
method, and domain components, but it extends this
partition by introducing an “application” component. The
application component clearly distinguishes between a
mapping knowledge and application-specific knowledge.
The mapping knowledge is used to interpret the task and
method components with multidimensional domain mod-
els and it is also associated with the domain independence
of PSMs, and 3) although Protégé-II [48] introduces a notion
of application ontology to formalize the application-specific
knowledge, in their approach, the construction of applica-
tion ontology is more of a creative process with very limited
support for explaining the actual content of application
ontology itself [31].

As shown in Fig. 1, in compliance with the TMDA
framework, our library organization can be seen as a four
tier hierarchy. At the task level, we formalize the scheduling
task by developing its generic task ontology. This scheduling
task ontology is mapped at the method level, where we first
develop Generic-Schedule that generalizes from the
variety of approaches to scheduling problem-solving, and
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then seven different PSMs are defined by reusing Generic-
Schedule. Finally, these PSMs are applied to solve the
scheduling application from different domains.

2.2 Operational Conceptual Modeling Language

The OCML knowledge modeling language was originally
developed to provide an operational modeling capability
for the VITAL workbench [16]. Although OCML can be
used to support different knowledge modeling approaches,
it is mainly developed to provide a modeling support for
the TMDA framework.

OCML supports knowledge-level modeling specification
by supporting the following primitives: classes, instances,
relations, functions, rules, procedures, and axioms. OCML
supports the specification of classes and instances and the
inheritance of slots and values in terms of an is-a hierarchy.
The classes and instances in OCML are represented by the
Lisp macro def-class and def-instance, respectively.
The instances are the members of a class, which takes as
arguments the name of the instance, the most specific class
to which the instance belongs, optional documentation,
and a number of slot-value pairs. In OCML, relations are
specified by the Lisp macro called def-relation. OCML
relations allow the users to define labeled n-ary relation-
ships between different entities and they take as arguments
the name of a relation, its argument schema, an optional
documentation, and a number of relation options. OCML
functions are specified by the Lisp macro def-function.
The functions take as arguments the name of a function, its
argument list, an optional variable indicating the output in
general, and a mapping between a list of input arguments
and its output argument. OCML also supports specifica-
tion of backward and forward rules. In OCML, the
functional terms are represented as a constant, a variable,
a string, or they can be constructed by special term
constructor, e.g., if, cond, the, setofall, findall, and
in-environment. The control terms are represented to

model the problem-solving actions and their sequence of
execution, e.g., repeat, loop, if, and cond. The logical
expressions are mechanisms to specify the logical expres-
sions, e.g., and, or, not, forall exists.

3 A GENERIC TASK ONTOLOGY OF THE

SCHEDULING TASK

Our scheduling task ontology formalizes the space of
scheduling tasks without subscribing to any specific
application domain of scheduling or the way a scheduling
task can be solved. This task ontology subscribes to the job
centric viewpoint [7] as opposed to the resource centric
viewpoint [7] and it relies on two underlying ontologies,
Base Ontology and Simple Time ontology. Base Ontology
provides the definitions for basic modeling concepts, such
as frames, classes, slots, relations, functions, roles, numbers,
list, and sets. The Simple Time ontology makes use of
Allen’s [1] representation of standard time and relations.
Earlier analyses of the scheduling task ontology can be
found in [47]. The OCML version of the ontology can be
browsed using the WebOnto environment at: http://
plainmoor.open.ac.uk:3000/webonto.

3.1 A Generic Specification of the Scheduling Task

In our framework, the scheduling task is formally repre-
sented as a mapping from a nine-dimensional space:
fJ;A;R;Tr;C;Req;Pr;Cf;Crg to a schedule, S. They are
described below:

. Job, J ¼ fj1; . . . ; jmg. A set of jobs to be assigned to a
set of resources for their execution.

. Activities, A. For each job, jm, there are Am

uniquely associated activities which are denoted
as Am ¼ fam1; . . . ; amng.

. Resources, R ¼ fr1; . . . ; rpg. A set of resources to
which the jobs and activities can be assigned for
their execution.

. Constraints, C ¼ fc1; . . . ; cng. A set of constraints that
must not be violated by a schedule.

. Requirements, Req ¼ freq1; . . . ; reqkg. A set of re-
quirements that describe the desired properties of a
solution schedule.

. Schedule time range, Tr. The time horizon in which
the schedule takes place. It is represented by a start
and an end time.

. Preferences, P ¼ fp1; . . . ; ptg. A set of criteria for
choosing among competing solution schedules. Each
preference defines a partial order over the set of
solution schedules.

. Cost function, Cf . A function, which computes the
cost of a solution schedule.

. Solution criterion, Cr. A mapping from a schedule
S to fTrue;Falseg, which determines whether a
candidate schedule is a solution, which requires S
to be correct, complete, consistent, and feasible—see
below for the definitions of these properties. More
restrictive criteria may specify an optimality con-
dition on a solution schedule, but, due to the
unique specification of the optimality criterion in
different scheduling domains, we do not specify
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the default optimization criterion, but specialize it
according to the specific application.

. Schedule, S ¼ fs1; . . . ; swg. A schedule is a set of
quadruples of the form, f< jm; amn; rk; jtrm;n;k >g,
where jm is a job, amn is an activity associated with
jm, rk is a resource, and jtrm;n;k is the job time range
associated with the assignment of jm and amn to
resource rk. The job time range is represented in
terms of the earliest and latest start and end times. It
is a subinterval of Tr.

Below, we define the schedule validation criterion used

to check the validity of a schedule:

. S is correct if, for every job jm and activity amn, the
pair jm amn appears no more than once in S. This
criterion makes sure that each job has a unique
association with only one schedule quadruple.

. S is complete if, for each activity amn in Am, there exists a
quadruple q in S such that q ¼< jm; amn; rk; jtrm;n;k > .

. S is consistent, if it does not violate any applicable
constraints in C.

. S is feasible if it satisfies all the requirements in Req.

. S is optimal if it is a solution schedule and no other
solution schedule has a lower cost than S.

3.2 Scheduling Task and Default Schedule Solution

Our task modeling framework characterizes a generic task

in terms of input and output roles, preconditions, and a

goal expression [18], [19], [20]. The nine-dimensional space

fJ;A;R;Tr;C;Req;Pr;Cf;Crg described in the previous

section provides the input roles to formalize the scheduling

task and the output role of the scheduling task is to generate

a schedule, S. The precondition imposed on the scheduling

task states that jobs and resources are required for a

meaningful specification of the scheduling task, while the

goal expression states that the schedule validation criterion

(see Section 3.1) must hold for the output schedule to

become a solution.

3.3 Modeling the Notion of Job and Resource

The class job represents an entity that has a list of activities

and can be assigned over available resources and time

ranges for its execution. The class job has the following

attributes (represented by the slots in OCML): Requires-

Resource specifies a number of resources on which a job

can be assigned for its completion. The minimum-cardin-

ality restriction imposed on this slot is 1, which states that at

least one resource must be assigned to a job for the

successful completion of a job. Requires-Resource-Type

specifies the particular type of resources that are needed to

carry out a job, e.g., a machine type. Has-Activities state

that every job can have a list of activities that need to be

performed to accomplish a job. Has-Time-Range represents

a time range within which a job must complete its

execution. This slot inherits the values of the class job-

time-range (see Section 3.5). Has-Load represents the

number of resources required by a job which are repre-

sented by the attribute requires-resource. Has-Due-Date

represents the calendar date by which a job must be

dispatched to a customer. Has-Duration represents the total

amount of time that has elapsed between the earliest and
the latest start and end time of a job time range.

The class resource is a finite supply entity on which
jobs can be assigned for their completion. The class
resource has the following attributes: Handles-Job
represents the specific jobs each resource can handle for
its execution, e.g., job1. Handles-Activity represents the
activities each resource is capable of handling. Has-
Availability represents the time interval during which a
resource is available to accomplish jobs and jobs must
maintain the resource availability period. The resource
availability period can take multiple time intervals, which
allows us to handle a situation when a particular resource
becomes unavailable after a certain period and becomes
available again. Has-Capacity represents the maximum
number of jobs each resource can handle at any given time
in a schedule. The resource capacity is represented as an
integer.

In scheduling, any two jobs that share the same unary
resource may generate a conflicting situation if the time
ranges of these two jobs overlap. To avoid such incon-
sistency, we define an axiom named resource-capa-

city, which states that, for a given unary capacitated
resource “ri” with capacity “n” in schedule “S,” there
should not exist two jobs, ji and jk, such that ji and jk require
ri and the time ranges of ji and jk overlap with each other.

3.4 Modeling Constraints and Requirements

In our task ontology, we distinguish between constraints
and requirements, even though existing approaches [34],
[44], [66] fail to make such a distinction. The class
constraint defines a property that must not be violated
by a consistent solution. For instance, the “resource capacity
constraint” in the weekly ship-maintenance application (see
Section 5.1) restricts the maximum number of ship-main-
tenance jobs each ship-maintenance resource can handle.
The class requirement specifies a property that a feasible
solution has to satisfy. For instance, the “job priority
requirement” in the weekly ship-maintenance application
(see Section 6) states that a ship-maintenance job with
higher duration gets a priority over other competing jobs
for its assignment. In our model, we do not differentiate
between hard and soft constraints mainly because soft
constraints are neither prescriptive nor proscriptive, but, in
reality, a solution schedule that satisfies a maximum
number of soft constraints is treated as a better solution
[15], [60]. In our model, we use the notion of cost and
preferences in order to determine the quality of a solution
schedule.

3.5 Representing the Time Ranges

The class job-time-range represents the period in which
a job or activity can be executed and it has the following
attributes: Has-Earliest-Start-Time represents the earliest
time a particular job can start its execution. Has-Latest-
Start-Time represents the latest time a particular job must
start. Has-Earliest-End-Time represents the earliest time a
particular job can finish. Has-Latest-End-Time represents
the latest time a particular job must finish. Has-unit-of-time
simply represents the unit used to specify the time, e.g.,
second, minute, and hour.
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The class time-range represents a schedule horizon
and a resource availability period and it has the following
attributes: Has-Start-Time is the time by which a task must
start. Has-End-Time is the time by which a task must end.
Has-Unit-of-Time is the unit in which the time is specified.

3.6 Representing Cost, Cost Function,
and Preference

The scheduling task not only deals with the satisfaction of
constraints or maintenance of requirements, but it can also
be seen as a combinatorial optimization problem [36],
where the evaluation function, e.g., minimization of cost
or maximization of resource utilization, needs to be
optimized. Our task ontology provides the two classes
that allow us to capture the knowledge needed to rank
solutions: preference and cost-function. The class
preference allows us to describe task knowledge
needed to assess whether a solution can be regarded as
better than another. Once the relevant preferences are
acquired, we use the class cost-function to develop an
optimization criterion for a given scheduling problem. As
preferences tend to be heterogeneous and have different
costs associated with them, it is crucial to take into
account these preferences while calculating the cost of a
schedule. Therefore, it is important to emphasize that a
cost function in our model may not necessarily be
numeric and often some non-Archimedean criterion [46]
may be applied as well. Our task ontology models
preferences as binary relations, which define a partial
order over schedules. The class cost-function is
defined as a mapping from schedules to costs. A cost is
modeled either as a real-number or as an n-dimensional
vector. The role of the class cost-function is to define
a single optimization criterion, which is both consistent
with and subsumes the various criteria expressed by the
various preferences. In our task ontology, these conditions
are specified by two axioms: 1) cost-subsumes-pre-

ferences and 2) cost-preference-consistency

http://plainmoor.open.ac.uk:3000/webonto. The first ax-
iom states that the cost-function should enforce the partial
order expressed by any relevant preference. The second
axiom states that the cost function should not violate any
preference. Both the axioms make use of the association
between a cost-function and a cost-order relation, which
expresses the partial order defined by the cost function.

3.7 Representing a Schedule

The class schedule represents the actual mapping of a job
and its activities to resources within a time range and it is
represented in terms of a set of job-assignment quad-
ruples. The class job-assignment models a quadruple of
the form <job activity resource job-time-range>.

4 A GENERIC MODEL OF SCHEDULING PROBLEM

SOLVING

Generic-Schedule takes as an input the scheduling task
ontology and it subscribes to search [50] as a problem-solving
technique. Generic-Schedule subscribes to a top-down
approach to schedule construction, whereby the top-level
scheduling task from the task ontology is decomposed into a

finite number of (sub)tasks and (sub)methods are proposed
to solve these subtasks. This decomposition allows us to
construct the new PSMs simply by reusing or specializing
the tasks and methods from Generic-Schedule. A more
detailed discussion of Generic-Schedule and other
components of the library can be found in [55], [56]. The
OCML version of Generic-Schedule can be browsed
using the WebOnto environment at: http://plainmoor.open.
ac.uk:3000/webonto.

4.1 A Generic Method Ontology

A generic method ontology [12], [46] provides a vocabulary
necessary to characterize the search-based problem solving
behavior of Generic-Schedule.

4.1.1 Schedule Space, Schedule State, and State

Transition

The space of scheduling problem-solving can be repre-
sented by means of a state-space and operators [56]. The class
schedule-space indicates a problem space associated
with the scheduling task and it is composed of a set of
schedule states. Each schedule state associated with a
schedule space is represented by the class schedule-

state and each schedule state has a unique association
with a schedule, say Ssch, from the task ontology. In an
initial or root state, a schedule is incomplete because all the
jobs are still unassigned, while, in the solution state, it
satisfies all the default solution criteria, defined in the
scheduling task ontology. The relation state-transi-

tion enables a scheduling agent to transit from an initial
state to the solution state.

4.1.2 Schedule Operators and Job Dependency

Network

Each schedule operator extends a partial schedule state by
assigning jobs to resources and time ranges. Theschedule-
extension-resource-operator is used to assign jobs to
the correct resources. The schedule-extension-time-

range-operator is used to assign jobs to their time ranges.
Both the operators have the attribute called applicable-

to-jobs, which is instantiated with the application specific
knowledge to model the jobs that can be assigned by
application of the relevant operators. Finally, the relation
schedule-operator-order determines the order in
which the resource and the time range operators can be
applied to achieve the job assignments.

The job dependency network [21] in the method
ontology makes the scheduling problem-solving process
more of a “tightly coupled” one because it reflects the job
assignment effect of a particular job on other unassigned
jobs. Following are the key relations and function from the
job dependency network: Job-Depends-On states that the
assignment of a job, j1, depends on another job, j2. Job-
Affects is the inverse of the Job-Depends-On relation. Job-

Assignable is a binary relation that holds for a job, j1, and a
schedule, S, and states that if j1 is an unassigned job in S,
and all other jobs on which the assignment of j1 depends are
already assigned, then j1 is an assignable job. The function
Relevant-Operators take as an input a job that needs to be
assigned and retrieve all the operators that are applicable to
the selected jobs.
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4.2 A Generic Problem Solving Model of Scheduling

Fig. 2 shows a breakdown of the method independent
control regime of Generic-Schedule, whereby the
scheduling task from the task ontology is decomposed into
a number of (sub)tasks and (sub)methods are defined to
achieve these tasks to construct a complete schedule.

The method independent control regime, Gen-Sche

dule-Control is a high-level control loop that takes as
input a list of schedule operators and the scheduling task
formalized in the scheduling task ontology (see Sections 3.1
and 3.2) and generates as output a complete schedule. The
body of Gen-Schedule-Control first invokes the task
Generate-Schedule-Space, which takes as input the
scheduling task and returns either a schedule space, which
consists of a number of schedule states or nothing. Then, the
task new-schedule-state is invoked to create a root
node. A root node is an initial schedule state which has an
empty schedule associated with it because no jobs are
assigned yet. Having generated a root node associated with
a schedule space, the task choose-schedule-state is
invoked to select an appropriate schedule state for expan-
sion. Tasks new-schedule-state and choose-sche

dule-state are discussed below. Finally, the sche-

dule-from-state is the last task invoked in the method
independent control regime that takes as input the schedule
state selected by choose-schedule-state and expands
a schedule state by applying the relevant schedule
operators. This task acts as a bridge between the method
independent and the method specific control regime
defined inside schedule-from-state.

4.2.1 Generation, Evaluation, and Selection of Schedule

States

Task new-schedule-state creates a root node associated
with a schedule space. In each newly created schedule state,
we first apply the downstream consistency enforcement
heuristic [59]. This heuristic propagates the earliest start
time of a selected job downstream to check whether any
other unassigned job has an earlier start time than the

selected job. The complexity of this heuristic is linear and, in
the absence of resource capacity conflict, it guarantees
backtrack free search. Each newly generated schedule state
is then evaluated by using the task evaluate-schedule-

state. The following five methods are used to evaluate a
schedule state (it is important to remember that these
methods are independent of each other, i.e., a PSM that
does not deal with cost issues will ignore a schedule state
evaluation criterion that analyses cost)—Evaluate-Com

pleteness checks whether a schedule associated with a
state is a complete one. Evaluate-Consistency checks
whether any of the constraints associated with a state are
violated. Evaluate-Feasibility checks whether the
requirements associated with a state are maintained.
Evaluate-Cost calculates the costs of a state by using
the cost function from the task ontology. Evaluate-

State-Consistency is the most difficult task in the
context of a state evaluation, which deals with checking
whether a correct and consist state lay on a solution path.
We used the full looking ahead and partial looking ahead
heuristics [33]. The former heuristic checks the compat-
ibility between any two unassigned jobs and the currently
selected job and other assigned and unassigned jobs to
ensure that the value requirements in terms of resources
and time ranges of these jobs do not conflict with each
other. The latter heuristic checks if the value requirements
of any two unassigned jobs do not conflict with each other.

Having evaluated a schedule state, a scheduling agent
has to select a correct schedule state which can be expanded
to reach a solution. It is crucial to avoid a schedule state
which is a nonsolution schedule state, i.e., a schedule state
that violates constraints or requirements or a schedule state
that already has a complete schedule associated with it. The
task choose-schedule-state achieves the schedule
state selection problem-solving action and the following
methods are proposed to achieve this task—Consistent-

Maximal-Cheapest-State-Selection selects a sche-
dule state that does not violate constraints, provides
maximal extension to a schedule, and has the least cost as
compared to any other schedule states. Consistent-

Feasible-Maximal-State-Selection selects a sche-
dule state that does not violate constraints, maintains all the
requirements, and provides maximal extension to a
schedule (i.e., a maximum number of jobs can be assigned
by selecting this schedule state). Consistent-Cheapest-
Maximal-State-Selection selects a schedule state that
does not violate any constraints, has the least cost, and
provides maximal extension to a schedule. Feasible-

State-Selection selects a schedule state that maintains
all the requirements.

The main difference between these methods can be
realized based on the order in which they consider the
schedule state selection properties such as completion,
constraint, or requirement violation. If no application specific
knowledge is provided, then the method Consistent-

Feasible-Maximal-State-Selection is used as a
default schedule state selection strategy.

4.2.2 Method Specific Control

Schedule-from-state is a goal specification task, which
takes as input a schedule state selected by the task choose-
schedule-state and a schedule space, and then expands
a selected schedule state iteratively until a solution schedule

820 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 6, JUNE 2006

Fig. 2. The breakdown of the method independent control regime.



is devised. This task is achieved by the default decomposi-
tion method expand-incomplete-state. This is one of
the most important methods in Generic-Schedule

because all the PSMs in our library are constructed by
specializing this method. If a schedule state expanded by
expand-incomplete-state is a complete one, then it is
returned as a solution state, but, when an inconsistent or
infeasible schedule state is encountered, then the search
procedure generates a message to other tasks stating that a
particular schedule state is a deadend-state and such a
schedule state is marked as a nonsolution schedule state.

Schedule construction in expand-incomplete-state

is achieved by using the notions of context and focus [46].
The notion of context specifies a problem-solving action that
a PSM must execute for constructing a valid solution, e.g.,
the context in Generic-Schedule is to expand an
incomplete schedule state to devise a complete schedule.
The notion of focus identifies those variables that must be
assigned to specific values to construct a solution, e.g., the
main focus in Generic-Schedule is on one of the
unassigned jobs that are assigned to resources and time
ranges to construct a complete schedule.

Generate-new-state-successor is the main task
invoked in the body of expand-incomplete-state. This
task is decomposed into the following three subtasks:
resume-state, collect-state-foci, and propose-

schedule-from-context.
The task resume-state is invoked in a situation where a

schedule state expansion cannot be finished due to say,
constraint or the requirement violations, and needs to be
resumed again once these violations are fixed. The task
collect-state-foci is invoked in a problem-solving
situation where a schedule state has not been extended yet.
This task first collects all the foci (i.e., unassigned jobs) that
can be assigned to resources and time ranges for constructing
a complete schedule. Then, the task propose-schedule-

from-context is invoked, which is a high-level control
regime that takes as an input all the foci and then invokes the
following tasks: select-schedule-focus, collect-

focus-operators, sort-focus-opera tors, gener-
ate-value-from-focus, and propose-schedule-

from-focus to assign all the jobs from the list of foci.

a. Correct Job Selection: Select-Schedule-Focus. The selec-
tion of a correct job is the most important task while
constructing a schedule because it improves the
efficiency of schedule construction by reducing
unnecessary backtracking. Task select-sche

dule-focus takes as input all the foci and selects
a correct focus (i.e., a candidate job). We have
defined the following eight different methods for
judiciously selecting a correct job:

1. Job-Selection-Based-On-Lowest-De

grees-Of-Freedom subscribes to the dynamic
search rearrangement (DSR) heuristic [14]. Ac-
cording to DSR, a job with the least number of
resources and time ranges left for the assign-
ment is selected as a candidate focus.

2. Job-Selection-Based-On-Due-Date se-
lects a job that has the earliest due date of
unassigned jobs. Panwalkar and Iskander [51]

list more than 100 job selection rules and one of
the rules from their list selects a job based on its
earliest due date. The main difference between
their rule and ours is that a job in our heuristic is
selected only when a selected job is competing
with other jobs for the same resource, which has
unary capacity and the time range of the
selected job is overlapping with other jobs.

3. Job-Selection-Based-On-Start-Time se-
lects a job which has the earliest start time of
unassigned jobs.

4. Job-Selection-Based-On-Precedence

sorts all the unassigned jobs based on the
precedence relation among them and the first
job from the sorted list is selected.

5. Job-Selection-Based-On-Minimal-Job-

Dependency subscribes to the minimal width
ordering heuristic [25] according to which a
highly constrained job is assigned first because it
is deemed to reduce future backtracking.

6. Job-Selection-Based-On-Bottleneck-

Resources always gives priority to a job that
consumes the bottleneck resources mainly be-
cause such a job is assumed to provide better
control in maintaining the global stability of a
schedule. The bottleneck resources are the ones
whose individual capacity determines the over-
all productive capacity of a schedule.

7. Job-Selection-Based-On-Number-Of-

Activities selects a job that has the highest
number of activities associated with it because
such a job is believed to have more chances of
conflicting with the resource and time range
requirements of the other jobs.

8. Job-Selection-Based-On-Least-Num

ber-Of-Activities selects a job that has the
least number of activities associated with it,
particularly when the resource availability per-
iod of the resources required by a job are highly
constrained.

The method Job-Selection-Based-On-Low

est-Degrees-Of-Freedom is used as a default

focus selection method if no application specific

knowledge is provided to select a candidate focus.
b. Resource and Time Range Assignment. Once a correct

focus is selected, then the tasks collect-focus-

operators and sort-focus-operators are in-
voked, first to collect and then to sort all the
schedule operators that are applicable to assign the
resources and time ranges to the selected focus.
Finally, the tasks generate-value-from-focus

and propose-schedule-from-focus are in-
voked. These two tasks take as an input the selected
focus and sorted operators. The sorted operators are
then applied to assign resources and a time range to
the selected focus.

Once the assignment of a currently selected focus

is completed then the task new-schedule-state

is invoked again which repeats the complete

problem-solving cycle until all the unassigned jobs

in the list of collected foci are assigned to construct a

complete schedule.
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5 ENGINEERING OF PROBLEM SOLVING METHOD

FROM OUR LIBRARY

Our library consists of seven PSMs: hill climbing, Propose &
Backtrack (P&B) [58], Propose & Improve (P&I) [46], Propose
& Revise (P&R) [40], [41], Propose & Restore-feasibility
(P&Rf), Propose & Exchange (P&E) [53], and Propose and
Genetical-Exchange. These PSMs cover and reason about all
the types of schedule validation issues, such as complete-
ness, constraint or requirement violation, and optimization.
These methods are categorized according to the schedule
validation issues handled by them—schedule completeness
(Generic-Schedule, P&B), schedule optimization (hill
climbing, P&I), schedule consistency and feasibility (P&R,
P&E, P and GE, and P&Rf). The selection of a correct PSM is
a key activity primarily when more than one PSM can be
used to solve the application. For instance, both the P&R
[40], [41] and P&E [53] methods can be used to fix constraint
violations. The propose phase of P&R and P&E constructs a
complete schedule and the main difference between these
methods can be realized based on how they fix the constraint
violations. The P&R method fixes the constraint violations
by proposing a completely new set of assignments for the
jobs involved in conflict, whereas the P&E method reorders
the assignment of the jobs involved in conflict. The
application specific knowledge requirements are taken into
account for selecting these methods, i.e., if the constraint
violation can be fixed only by proposing a completely new
set of assignments, then the P&R method is used; otherwise,
if the constraint violations can be fixed by reordering the
assignments of the jobs involved in conflict, then the P&E
method is used.

5.1 Schedule Modification Operators

The main aim of the operators (see Section 4.1.2) introduced
in Generic-Schedule is to assign jobs to resources and
time ranges, but they cannot deal with the constraint or
requirement violations or the optimization issues. As a
result, while engineering the PSMs in our library, we
introduced schedule-modification-resource-op

erator and schedule-modification-time-range-

operator. The former operator deals with the constraint or
requirement violations that occur due to inconsistent
resource assignments, while the latter operator deals with
the constraint or requirement violations that occur due to
conflicting time ranges assigned to jobs. Both the operators
also deal with the schedule optimization issues.

5.2 Engineering of the Propose & Revise Method

Here, we describe the engineering of the Propose & Revise
[41] method, which demonstrates how a new PSM in our
library can be constructed simply by reusing and specializ-
ing Generic-Schedule. The engineering of all the PSMs
in our library can be found in [56].

The P&R method [41] was originally developed to tackle
the VT system for elevator configuration [40] and it was
later extended to solve the production scheduling problem
[42], [68]. Several researchers [19], [46], [75] have studied the
P&R method; however, Motta [46] provides a much richer
analysis of the P&R method in comparison with [19] and
[75], where the P&R method is applied to solve parametric

design problem by relating this to different constraint
satisfaction techniques. Our aim here is also to provide a
uniform support for constructing the P&R method by
reusing Generic-Schedule and by teasing out the
characteristics that are unique to scheduling.

5.2.1 Overview of the Propose & Revise Method

The propose phase of the P&R method constructs a
complete schedule by assigning jobs to resources and time
ranges. If any of the constraints are violated while
constructing a schedule, then the revise phase of the
method is invoked to fix these violations. The constraint
violations are fixed by using the schedule modification
operators (see Section 5.1). The notion of context and focus
from Generic-Schedule is specialized according to the
two phases associated with P&R. The context in the propose
phase is to extend an incomplete schedule and the focus is
on one of the unassigned jobs. The context in the revise
phase is to revise an inconsistent schedule by fixing the
constraint violations and the focus is on one of the
constraint violations.

5.2.2 Method Specific Control Regime of P&R

The method independent control regime of the P&R
method is similar to Gen-Schedule-Control (see
Section 4.2) from Generic-Schedule.

The method specific control regime of P&R called,
propose-and-revise-control-structure is con-
structed by specializing the method specific control regime
of Generic-Schedule called, expand-incomplete-

state (see Section 4.2.2). Propose-and-revise-con

trol-structure first invokes the task generate-new-

state-successor in the extend context to construct a
complete schedule. If any of the constraints imposed on a
schedule are violated while constructing a schedule, then
they are fixed only when the complete schedule is
constructed. The new task called revise-schedule

associated with the method specific control regime of P&R
is used to fix the constraint violations. The OCML definition
of revise-schedule can be found in Fig. 3.

The task revise-schedule is achieved by using the
following two alternative methods: one-step-revi-

sion-for-constraint and fix-constraint-mono-

tonically.
The method one-step-revision-for-constraint

can be used where only a single constraint is violated. This
method takes as an input a schedule state violating a
constraint and then it invokes the task generate-new-

state-successor in the revise context. No special
knowledge is required to select a focus (i.e., constraint
violation) because only a single constraint violation can be
fixed by using this method.

More interesting is the construction of the method fix-

constraint-monotonically, which can be used to fix
more than one constraint violation. It takes as an input a
schedule state that has a number of constraint violations
and then it invokes the task generate-new-state-

successor in the revise context. The body of fix-

constraint-monotonically invokes the task col-

lect-state-foci in the revise context in order to collect
all the constraint violations. This task is achieved by
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defining the new method called collect-all-con-

straint-violations. Once the foci (i.e., constraint
violations) are collected, then the candidate focus is selected
according to the application-specific knowledge by invok-
ing the task select-schedule-focus in the revise
context and the new method, called select-candi

date-constraint-violation is defined to achieve this
task. The OCML definition of select-candidate-con

straint-violation can be found in Fig. 4.
Once a correct focus is selected then the task collect-

focus-operators is invoked to collect all the schedule
modification operators that can be applied to fix the
selected focus, and the new method called, collection-
of-applicable-fixes is defined to achieve this task.
The OCML definition of collection-of-applicable-
fixes can be found in Fig. 5.

The task sort-focus-operators is used to sort the
collected schedule modification operators. Finally, the first
operator from the sorted list is used to fix the focus. The
same problem-solving cycle is repeated until all the
constraint violations from the list of foci are fixed.

6 EVALUATION OF THE LIBRARY

Our library has been validated on five scheduling domains:
satellite-scheduling, the CIPHER project schedule applica-
tion, daily ship-maintenance, weekly ship-maintenance,
and a benchmark application used in the scheduling area.
For the sake of brevity, here, we will only discuss how the
weekly ship-maintenance application is solved by using the
PSMs in our library. A detailed discussion of the library
evaluation on other applications can be found in [56].

6.1 The Weekly Ship-Maintenance Application

The weekly ship-maintenance is a real-life scheduling
application. The primary aim of this application is to
construct a complete and a consistent weekly schedule to
perform different types of ship-maintenance activities. The
working hours for each day are from 9:00 a.m. to 18:00 p.m.

6.1.1 Formalizing the Task Model of the Weekly Whip-

Maintenance Application

This application consists of 21 ship-maintenance jobs which
have to be assigned on 19 ship-maintenance resources. Each
ship-maintenance job has a specific requirement for the
resources on which they can be assigned and it also has a
number of activities associated with it that must be
executed to complete the ship-maintenance job. Each ship-
maintenance job also has a time range within which all the
activities must be accomplished. In order to formalize the
ship-maintenance jobs, e.g., 12B3HTN, the new application
specific class 12B3HTN-job is defined. This class is defined
as a subclass of the class job from the scheduling task
ontology. As shown in the following box, the slots of the
class 12B3HTN-job are instantiated to represent the
application specific knowledge associated with 12B3HTN.
The formalization of the other ship-maintenance jobs and
the activities and the time ranges associated with the jobs
can be realized similarly. (See Fig. 6.)

Each ship-maintenance resource has a specific compe-
tence, which determines the specific types of ship-main-
tenance jobs it can handle for their execution. The ship-
maintenance resources also have a fixed capacity, which
determines the total number of ship-maintenance jobs they
can handle at any given time. Finally, each ship-maintenance
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resource is available only during a restricted period. In order
to formalize the application specific resources, e.g., ABF-BT-
EN2, the new application specific class, called ABF-BT-

EN2-resource, is defined as a subclass of the class
resource from the scheduling task ontology. Then, the
attributes of the class ABF-BT-EN2-resource is instan-
tiated to represent the knowledge associated with ABF-BT-
EN2. The formalization of the remaining resources can be
understood similarly to ABF-BT-EN2.

6.1.2 Modeling Constraints and Requirements

The class constraint and requirement from the task
ontology is instantiated to formalize the constraints and
requirement specific knowledge, respectively. The weekly
ship-maintenance application is formulated based on the
following constraints and requirements elicited from
application.

The resource capacity constraint is common to all the
ship-maintenance resources. It states that a fixed capacity of
the ship-maintenance resources, which determines the total
number of ship-maintenance jobs each ship-maintenance
resource can handle, must be maintained throughout
schedule construction. A set of 19 resource capacity
constraints are defined to impose this constraint on all the
19 ship-maintenance resources. The daily frequency of

ship maintenance job constraint is common to all 21 ship-
maintenance jobs. It states that all the ship-maintenance jobs
must finish exactly within their daily working hours,

9:00 a.m. to 18:00 p.m. The job working hour constraint

is again common to all the ship-maintenance jobs and states

that, in the worse-case scenario, a ship-maintenance job

may exceed its duration by not more than 10 minutes as

long as this does not violate the daily frequency of a

schedule. Finally, the job priority requirement states that if

any two ship-maintenance jobs share the same ship-

maintenance resource for their execution, then a weekly

ship-maintenance job with higher duration gets priority.
We did not encounter any particular problem while

formalizing the task model of the weekly ship-maintenance

application. Only a few application-specific relations and

functions were defined to model constraints and require-

ments. More importantly, the classes like job, resource,

activity, and job-time-range from the task ontology

have provided a necessary level of detail to capture the

application-specific knowledge precisely.

6.1.3 Construction of a Complete Schedule by

Configuring the Propose & Backtrack Method

To solve this application, we first applied the P&B method

[58] from our library mainly because as described in [58],

the main property of this method is to construct a complete

schedule by assigning jobs to resources and time ranges

until an inconsistency is detected and then it backtracks to

the last consistent schedule state, where different sets of

resources and time ranges are tried to generate a consistent

assignment. In other words, P&B always constructs a

complete schedule, which matched with one of the goals

of this application.
The P&B method was configured by defining the

following two application specific operators, which were

used to assign jobs to resources and time ranges—weekly-

ship-resource-operator and weekly-ship-time-

range-operator. These operators were defined uniformly

as the subclasses of schedule-extension-resource-

operator and schedule-extension-resource-op

erator (see Section 4.1.2), respectively. Finally, as shown

in Fig. 7, the relation schedule-operator-order from

Generic-Schedule was instantiated to determine the
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order in which the operators were applied to assign a
selected job, i.e., 12B3HTN.

According to the application specific knowledge, the
ship-maintenance job with the least number of activities
associated with it was selected as the candidate focus. The
job selection method job-selection-based-on-

least-number-of-activities (see Section 4.2.2,
item a) from Generic-Schedule was successfully used
to select the candidate focus.

The configuration of the P&B method was completed by
determining the focus selection knowledge and no addi-
tional knowledge was required. The complete schedule for
the weekly ship-maintenance application was constructed
successfully by generating 1,245 schedule states. However,
it was observed that the “daily frequency of ship-main-
tenance job” constraint imposed on the following four
weekly ship-maintenance jobs: 482YTTN, 628URAN,
51A1BNN, and 266TFEN was violated and, therefore, the
schedule was a complete, but it was not a consistent one. In
order to fix the constraint violations, we decided to use the
P&R method mainly because a completely new set of time
ranges needed to be assigned to fix the constraint violations,
and the reordering of their assignments failed to fix the
violations.

6.1.4 Construction of a Complete and Consistent

Schedule by Configuring the Propose & Revise

Method

No knowledge was required to configure the propose phase
of the P&R method. The revise phase was configured by
defining the schedule modification operator, called ship-

maintenance-time-range-fix, to fix the inconsistent
time range assignment and it was defined as the subclass of
schedule-modification-time-range-operator

(see Section 5.1). This operator was defined in such a way
that the weekly ship-maintenance jobs—482YTTN,
628URAN, 51A1BNN, and 266TFEN, shifted exactly by
the same time (i.e., 10 minutes) by which they violated the
“daily frequency of ship-maintenance job” constraint. In
scheduling, this type of shift policy is referred to as the left-
shift strategy [3], [4], [64]. The same aforementioned order
of the ship-maintenance jobs was maintained to select the
focus, i.e., constraint violation violated by them.

Once the configuration of the P&R method was
completed, we again ran the weekly ship-maintenance
application. After the completion of the revise phase, it was
observed that our operators successfully shifted all the
weekly ship-maintenance jobs by exactly the same time by
which they violated the “daily frequency of ship main-
tenance job” constraint. The complete and consistent
schedule for this application was constructed by generating
1,401 schedule states.

The evaluation study of our library shows that the PSMs
in our library have generated a high number of schedule

states while solving the applications. However, it is
important to notice that very limited configuration efforts
are required to solve these applications by using the PSMs
in our library. And, only the application specific knowledge
is used to configure these methods. Moreover, in compar-
ison with more traditional approaches to schedule con-
struction like constraint satisfaction, our library provides a
much richer epistemological framework to analyze the
various knowledge-intensive actions that occur in schedule
construction.

7 COMPARISON WITH THE RELATED WORK

Here, we compare our library with some of the existing
scheduling libraries—the production scheduling library [35],
the constraint-satisfaction approach [38], the CommonKADS
library [69], and, finally, the MULTIS-II library [72].

The major difference between our approach over that of
Hori and Yoshida’s [35] is that we subscribe to a top-down
approach of schedule construction. It starts with the generic
template (i.e., Generic-Schedule) whose components
can be reused and refined by a configuration process to
construct more specialized PSMs. As opposed to our
approach, their library follows a bottom-up approach
whereby all the problem-solvers are constructed by
identifying and subscribing to the knowledge requirements
of the production scheduling domain. Such a type of
domain specificity restricts the possible reusability of their
library to a single domain of scheduling. Another important
difference between these two approaches is that, while the
PSMs in their library can reason about only the completion
and constraint violation issues of scheduling, our library
provides a comprehensive repertoire of PSMs that tackles
all the validation areas of scheduling. Moreover, the
Generic-Schedule component of our library offers a
much richer and quicker way to construct a new PSM
simply by reusing its high-level tasks and by specializing
the notions of context, focus, state selection, and operator
construction knowledge. This uniformity allows us to
compare and contrast the knowledge requirements of these
PSMs. Because the Generic-Schedule component is
absent in their library architecture, it does not offer a
modularity for constructing a new PSM. From a scheduling
perspective, their library discusses only two job selection
criteria, i.e., earliest start time and down to the due-date, as
compared to the broad job-selection criteria proposed in our
library (see Section 4.2.2, item a).

The ILOG’s [38] library subscribes to the constraint
satisfaction (CS) approach as their problem-solving techni-
que in contrast with the knowledge-intensive approach of
our library. In spite of the uniform approach to modeling,
CS fails to provide a fine-grained epistemological frame-
work such as is required to analyze various knowledge-
intensive tasks involved in the schedule construction
process. It is essentially an implementation technique.
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Because their library subscribes to CS, it aims at construct-
ing sophisticated but domain-independent algorithms and
such domain independence fails to support the important
function of knowledge acquisition. Another primary differ-
ence between these two approaches is that ILOG focuses on
the resource allocation class of the scheduling task as
compared to the generic class of the scheduling task tackled
by our library.

CommonKADS [6] is a comprehensive methodology
which also tackles the assignment and scheduling tasks
[69]. In their library, the problem-solvers are directly
associated with the domain-specific knowledge which, in
our view, makes it difficult to abstract the generic
components associated with PSMs for their reuse. More
importantly, the CommonKADS library is comprised of
only one method, i.e., P&R. As a result, the CommonKADS
library tackles only the completion and constraint violation
issues of scheduling. In contrast with this, our library is
comprised of seven different PSMs that allow us to tackle all
the validation issues of scheduling. Moreover, the library
framework of CommonKADS is opaque in nature as it fails
to provide the required level of detail to construct a new
PSM. In contrast with CommonKADS, our library provides
a wide range of methods for selecting and evaluating a
schedule state by considering different scenarios. Also,
various job selection heuristics are provided that help to
improve the efficiency of a schedule construction. Finally,
our library offers a much richer framework to construct a
new PSM simply by reusing the generic tasks developed in
Generic-Schedule and by specializing the notions of
context, focus, and the state selection policy.

The MULTIS-II library [72] also tackles the scheduling
task at a generic level and, in this sense, is similar to our
approach. However, some significant differences exist
between the two approaches. Because a component like
Generic-Schedule is absent in the MULTIS-II frame-
work, this fails to abstract reusable tasks and methods from
specialized PSMs. Therefore, the construction of new PSMs
is very difficult in their framework. Generic-Schedule
overcomes this problem by providing a clean separation
between the method-specific and method independent
components. While the PSMs in our library allow us to
validate different types of schedules, a solution schedule in
the MULTIS-II library is validated only against completion
and constraint violation. From a scheduling perspective,
Generic-Schedule provides a wide range of job selection
methods to improve the efficiency of schedule construction.
In contrast with our library, job selection in MULTIS-II is
achieved entirely on the basis of domain specific requirements,
which is not a very effective way to execute such an
important problem-solving activity mainly because if
wrong or partial domain knowledge is used to select a
job, then the job selection component may end up selecting
the wrong job, which could cause excessive backtracking.

8 CONCLUSION

In this paper, we have proposed a generic library of PSMs
for the scheduling task. It is based on the TMDA knowledge
modeling framework and follows a top-down approach.
Because our library organization has drawn from the

various KBS technologies, like ontologies, PSMs, search,

and knowledge acquisition, it not only allows construction

of different PSMs quickly, but also provides a way to

compare and contrast their knowledge requirements. Our

work is important for scheduling research both from

theoretical and engineering perspectives. Theoretically, it

exhibits a nice integration of the various techniques that

have been developed in scheduling research and also

provides an insight into the various components which

can be used in scheduling. From the engineering perspec-

tive, our library offers support for the rapid construction of

scheduling applications from different domains. Moreover,

our library provides a comprehensive repertoire of seven

different PSMs, which allows us to reason about all the

schedule validation issues, such as completion, constraint

and requirement violation, and optimization. Finally, our

library now has hundreds of reusable definitions and it has

been validated on a number of real-life and benchmark

applications to confirm its generic nature.
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