Open Research Online

The Open University's repository of research publications and other research outputs

Synthesis and spectroscopic characterization of some chromanochalcones and their dihydro derivatives

Journal Item

How to cite:
Rao, M.S.; Kotesh, J.; Narukulla, R. and Duddeck, H. (2004). Synthesis and spectroscopic characterization of some chromanochalcones and their dihydro derivatives. Arkivoc(14) pp. 96-102.

For guidance on citations see FAQs
© 2004 ARKAT USA, Inc
Version: Version of Record
Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.3998/ark.5550190.0005.e10
http://www.arkat-usa.org/get-file/19344/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.

Synthesis and spectroscopic characterization of some chromanochalcones and their dihydro derivatives

M. Srinivasa Rao, ${ }^{a, b}$ J. Kotesh, ${ }^{a}$ R. Narukulla, ${ }^{c}$ and H. Duddeck ${ }^{d}$
${ }^{a}$ Department of Chemistry, Kakatiya University, Warangal, A. P., India
${ }^{b}$ Department of Biomedical Sciences, University of Rhode Island, Kingston, RI 02881, USA
${ }^{c}$ Department of Chemistry, The Open University, Walton Hall, Milton Keynes MK7 6AA, England, UK
${ }^{d}$ Hannover University, Institute of Organic Chemistry, Schneiderberg 1B, D-30167 Hannover, Germany
E-mail: srmeneni@mail.uri.edu

This paper is dedicated to Professor P. Srinivasa Rao on the occasion of $65^{\text {th }}$ birthday (received 14 Jan 04; accepted 18 Sept 04; published on the web 24 Sept 04)

Abstract

Synthesis of naturally occurring 6-(α, β-dihydrocinnamoyl)-3,4-dihydro- $2 H$-chromanes has been carried out by the reaction of 6 -acetyl-3,4-dihydro- 2 H -chromanes with methoxybenzaldehydes followed by hydrogenation of the resulting 6 -cinnamoyl-3,4-dihydro- 2 H -chromanes.

Keywords: Chromanochalcones, chromano dihydrochalcones, hydrogenation, NMR spectroscopy

Introduction

Flavonoids are phenol derivatives present in substantial amounts ($0.5-1.5 \%$) in plants ${ }^{1}$ in which they carry out important functions for their biochemistry and physiology. ${ }^{2}$ These compounds contribute to color, flavor and processing characteristics important in many foods (vegetables, fruits) and in drinks (tea, wine). Food from common plants contain from traces up to several grams per kg fresh weight of flavanoids. ${ }^{3}$ Biological properties of flavonoids and their pharmaceutical potencies have been widely investigated and extensively reviewed during the past 30 years. ${ }^{4}$ Dihydrochalcones comprise a small group of compounds chemically and biochemically very closely related to chalcones. The utilization of certain dihydrochalcone derivatives and related compounds as sweetening agents has been reported. ${ }^{5}$

Previously, we have isolated chalcones 5aa, 5ab, 5ba, and 5bb (Scheme 1) in our laboratory from the Indian medicinal plant species crotalaria. Here we have undertaken the synthesis of these dihydrochalcones. The aim of the current synthetic study was to provide clear and easy
access to prenylated dihydrochalcones with the saturation and unsaturation in α - and β - positions and also in the chromane part. Our strategy was the construction of 6-acetylchromanes 2a and $\mathbf{2 b}$ by condensation of 2,4-dihydroxyacetophenone (1) with isoprene in presence of Amberlyst 15, followed by the condensation with methoxybenzaldehydes $\mathbf{3 a , b}$ to afford the target chromanochalcones. ${ }^{6,7}$

Results and Discussion

2,4-Dihydroxyacetophenone (1) can be obtained from commercially available resorcinol by reaction with acetyl chloride and zinc chloride. It was reacted with 2-methylbuta-1,3-diene in the presence of sulfonic acid cation exchange resin Amberlyst 15 in THF to give two regioisomeric acetylchromanes, 1-(5-hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)ethanone (2a) and 1-(7-hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)ethanone (2b) (Scheme 1).

1
 THF, heptane

2a,b

3a,b; $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{EtOH}$
2a: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{2 b}: \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
3a: $R^{3}=R^{4}=\mathrm{H} ; \mathbf{3 b}: R^{3}=R^{4}=\mathrm{OCH}_{3}$

4aa,ab,ba,bb
5aa,ab,ba,bb

Scheme 1

Treatment of the 6-acetylchromanes 2a,b with methoxybenzaldehydes $\mathbf{3 a}\left(\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}\right)$ and 3b $\left(\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OMe}\right)$ in basic media $\left[\mathrm{Ba}(\mathrm{OH})_{2}\right.$ in EtOH] afforded the corresponding chromanochalcones $\mathbf{4 a a}, \mathbf{4 a b}$ and $\mathbf{4 b a}, \mathbf{4 b}$, respectively. Except $\mathbf{4 a b}$, all chalcones have been described before. ${ }^{8}$ Finally, the respective dihydrochalcones 5 were synthesized by reduction of chalcones $\mathbf{4}$ with sodium formate in Pd / C. Only $\mathbf{5 b a}$ has been reported in the literature. ${ }^{8}$

The structures of all compounds were determined by electron-impact mass spectrometry and by 1D and 2D NMR spectroscopy (DEPT, ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY, $\mathrm{HMBC}, \mathrm{HMQC}$). Thereby, all ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals could be assigned, and the atomic connectivities were established unambiguously (Tables 1 and 2). The easiest way to differentiate the regioisomers of products 4 and 5 was the
inspection of the two aromatic protons $7,8-\mathrm{H}(\mathbf{a a}, \mathbf{a b})$ and $5,8-\mathrm{H}(\mathbf{b a}, \mathbf{b b})$, respectively, which are either in ortho- or in para-position with respect to each other; accordingly, these signals appeared as doublets ($J=8-9 \mathrm{~Hz}$) or as singlets ($J<1 \mathrm{~Hz}$), respectively.

The ${ }^{1} \mathrm{H}$ NMR spectra of the chalcones show a signal for a chelated aromatic hydroxyl group in between $\delta 13.0$ and 14.0 , and in addition signals of aromatic methoxyl groups and aromatic protons. The two sharp doublets between $\delta 7.0-8.0$ with $J=15.3 \mathrm{~Hz}$ are characteristic of the trans double bond of chalcones 4. All NMR data are compiled in Tables 1and 2.

Table 1. ${ }^{1} \mathrm{H}$ Chemical shifts and ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ coupling constants $J[\mathrm{~Hz}]$ of compounds 2, 4, and 5; in CDCl_{3} at 400.1 MHz . For atom numbering see structure 4 in Scheme 1

Atom Pos.	2a	2b	4 aa	4ab	$5 \mathbf{a a}$	5ab	4ba	4bb	5ba	5bb
2,2-	1.34 s	1.35 s	1.36 s	1.37 s	1.34 s	1.34 s	1.37 s	1.36 s	1.34 s	1.34 s
$\left(\mathrm{CH}_{3}\right)_{2}$										
3	2.68 t	1.82 t	2.73 t	2.73 t	1.81 t	1.80 t	1.84 t	1.83 t	1.81 t	1.80 t
4	1.81 t	2.75 t	1.83 t	1.82 t	2.68 t	2.69 t	2.78 t	1.83 t	2.68 t	2.69 t
5	-	7.44 s	-	-	-	-	7.63 s	7.62 s	7.42 s	7.45 s
$5-\mathrm{OH}$	13.11 s	-	13.96 s	14.08 s	13.18s	13.18 s	-	-	-	-
$6-\mathrm{CH}_{3} \mathrm{CO}$	2.54 s	2.55 s	-	-	-	-	-	-	-	-
7	7.49 d	-	7.69 d	7.70 d	7.49 d	7.50 d	-	-	-	-
	$J_{7,8}=$		$J_{7,8}=9$	$J_{7,8}=9$	$J_{7,8}=$	$J_{7,8}=9$				
	8.9				8					
7-OH	-	12.34 s	-	-	-	-	13.10 s	13.23 s	12.38 s	12.49 s
8	6.33 d	6.31 s	6.38 d	6.38 d	6.31 d	6.31 d	6.37 s	6.36 s	6.31 s	6.31 s
α	-	-	7.48 d	7.54 d	3.18 d	3.12 dd	7.47 d	7.49 d	3.18 dd	3.12
			$J=15.3$	$J=15.4$			$J=15.4$			dd
β	-	-	7.86 d	8.17 d	2.98	2.95 dd	7.83d	8.16 d	2.98 dd	2.95
					dd					dd
2^{\prime}	-	-	7.60	-	7.16	-	7.63	-	7.16	-
3 '	-	-	6.93	6.53 s	6.83	6.51 s	6.94	6.52 s	6.84	6.51 s
5 ,	-	-	6.93	-	6.83	-	6.94	-	6.84	-
6 ,	-	-	7.60	7.12 s	7.16	6.75 s	7.63	7.13 s	7.16	6.75 s
2'- OCH_{3}	-	-	-	3.91 s	-	3.82 s	-	3.91 s	-	3.82 s
$4^{\prime}-\mathrm{OCH}_{3}$	-	-	3.86 s	3.96 s	3.78 s	3.88 s	3.81 s	3.95 s	3.79 s	3.88 s
5'- OCH_{3}	-	-	-	3.91 s	-	3.81 s	-	3.92 s	-	3.81 s

Table 2. ${ }^{13} \mathrm{C}$ Chemical shifts of compounds 2, 4, and 5; in CDCl_{3} at 100.6 MHz . For atom numbering see structure 4 in Scheme 1

Atom Pos.	2a	2b	4 aa	4ab	5 aa	5ab	4ba	4bb	5ba	5bb
2	75.8	75.8	75.7	75.7	75.7	76.1	75.9	75.8	75.8	76.1
2,2-($\left.\mathrm{CH}_{3}\right)_{2}$	26.7	26.9	26.7	26.7	26.7	27.4	27.6	26.9	26.9	27.4
3	31.8	32.7	31.8	31.9	31.8	33.2	32.8	32.7	21.7	33.2
4	16.2	21.7	16.3	16.4	16.3	22.2	21.8	21.8	32.7	22.2
4 a	109.0	112.7	109.3	109.3	109.1	109.1	112.6	112,4	112.6	114.9
5	162.6	132.2	164.0	164.0	162.8	162.8	131.0	131.0	131.4	132.2
6	112.6	113.9	112.8	113.0	112.1	112.1	114.2	114.3	113.5	113.3
7	129.5	162.8	128.4	128.4	128.7	128.7	164.1	164.0	163.0	162.0
8	109.1	104.6	109.0	108.9	109.1	109.1	104.9	104.8	104.7	105.0
8 a	160.7	161.3	160.7	160.5	160.6	160.6	161.3	161.0	161.2	161.0
6- $\underline{-1}^{-} \mathrm{H}_{3} \mathrm{CO}$	26.0	26.2	-	-	-	-	-	-	-	-
$6-\mathrm{C}=\mathrm{O}$	202.5	202.3	191.8	192.3	203.5	202.5	191.7	192.1	203.4	204.1
α	-	-	118.1	118.4	39.8	39.8	118.0	118.2	39.9	39.3
β	-	-	143.6	139.2	29.7	26.4	143.8	139.3	29.6	26.4
1 ,	-	-	127.6	115.6	133.0	121.0	127.7	115.5	133.1	121.0
2 '	-	-	130.2	154.8	129.3	151.8	130.3	154.7	129.3	151.8
3 '	-	-	114.4	96.9	114.0	98.0	114.4	96.8	114.0	98.0
4,	-	-	161.6	152.6	158.0	148.5	161.7	152.6	158.1	148.5
5 ,	-	-	114.4	143.3	114.0	143.3	114.4	143.2	114.0	143.3
6 ,	-	-	130.2	111.7	129.3	114.9	130.3	111.7	129.3	114.9
2 '- OCH_{3}	-	-	-	56.6	-	56.9	-	56.7	-	56.9
$4^{\prime}-\mathrm{OCH}_{3}$	-	-	55.4	56.1	55.3	56.9	55.4	56.0	55.3	56.9
5' $-\mathrm{OCH}_{3}$	-	-	-	56.3	-	56.9	-	56.3	-	56.9

Experimental Section

General Procedures. The NMR spectra of CDCl_{3} solutions were recorded using a Bruker DPX400 spectrometer ($\left.{ }^{1} \mathrm{H}: 400.1 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 100.6 \mathrm{MHz}\right)$. Standard Bruker software was employed for all one- and two-dimensional experiments. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data are compiled in Tables 1 and 2. Electron impact mass spectra (70 eV) were obtained from a Finnigan MAT312 instrument. All solvents were purified and distilled prior to use. Column chromatography was performed on silica gel (Merck 60, 70-230 mesh). Thin-layer chromatography was performed using pre-coated aluminum TLC plates of silica gel ($60 \mathrm{~F}_{254}$).

1-(5-Hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)ethanone (2a) and 1-(7-hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)ethanone (2b). To a stirred solution of Amberlyst$15(6.2 \mathrm{~g})$ and 1-(2,4-dihydroxyphenyl)ethanone $1(4.56 \mathrm{~g}, 30 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $65-$ $70^{\circ} \mathrm{C}$ isoprene ($3.2 \mathrm{~mL}, 47 \mathrm{mmol}$) in heptane $(10 \mathrm{~mL})$ was added dropwise over a period of 2 h . The reaction mixture was filtered and washed with hot acetone ($2 \times 50 \mathrm{~mL}$) and separated by column chromatography using as eluants hexane/ethyl acetate (8:2 and 6:4) thus affording 2a ($2.8 \mathrm{~g}, 43 \%$) and $\mathbf{2 b}$ ($0.95 \mathrm{~g}, 15 \%$).
2a: mp $70{ }^{\circ} \mathrm{C}$. EI-MS: $\mathrm{m} / \mathrm{z}(\%) 220$ (55) $\left[\mathrm{M}^{+}\right], 205$ (19), 177 (21), 165 (100), 147 (14). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 70.87; H, 7.31. Found: C, 70.82; H, 7.29.

2b: $118{ }^{\circ} \mathrm{C}$. EI-MS: $m / z(\%) 220$ (43) $\left[\mathrm{M}^{+}\right], 205$ (25), 177 (4), 165 (100), 147 (7). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 70.87; H, 7.31. Found: C, 70.93; H, 7.40 .
(2E)-1-(5-Hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (4aa), (2E)-1-(5-hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (4ab), (2E)-1-(7-hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (4ba), and (2E)-1-(7-hydroxy-2,2-di-methyl-3,4-dihydro-2H-chromen-6-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (4bb).
To a solution of chromanes $2(150 \mathrm{mg}, 0.69 \mathrm{mmol})$ was added $\mathrm{Ba}(\mathrm{OH})_{2}(150 \mathrm{mg}, 0.9 \mathrm{mmol})$ and a solution of $3 \mathbf{a}(204 \mathrm{mg}, 1.5 \mathrm{mmol})$ in ethanol $(5 \mathrm{~mL})$, and the mixture was stirred at $35-40^{\circ} \mathrm{C}$ for 6 h . After dilution with water (100 mL) and acidification with cold diluted hydrochloric acid $(25 \mathrm{~mL})$ the resulting solid was filtered off, washed with water and recrystallized from petroleum ether to give yellow needles 4aa ($168 \mathrm{mg}, 73 \%$); mp 82-83 ${ }^{\circ} \mathrm{C}$. EI-MS: $\mathrm{m} / \mathrm{z}(\%) 338(5)\left[\mathrm{M}^{+}\right]$, 314 (3), 246 (4), 220 (57), 205 (19), 177 (23), 165 (100), 149 (28), 135 (16), 107 (10), 94 (15), 77 (12). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 74.51$; H , 6.53. Found: C, 74.57; H, 6.58.

Treatment of $2 \mathbf{a}$ with $\mathbf{3 b}$ under the same conditions gave orange needles $\mathbf{4 a b}(172 \mathrm{mg}, 63 \%) ; \mathrm{mp}$ $104-106{ }^{\circ} \mathrm{C}$. EI-MS: m/z (\%) 398 (54) [$\left.\mathrm{M}^{+}\right], 367$ (100), 311 (14), 194 (45), 181 (51), 149 (28). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 69.35; H, 6.57 . Found: C, 69.41; H, 6.66.
Analogously, the reaction of compound $\mathbf{2 b}$ with methoxybenzaldehydes $\mathbf{3 a}$ and $\mathbf{3 b}$ afforded yellow needles 4ba ($160 \mathrm{mg}, 69 \%$) and $\mathbf{4 b b}(163 \mathrm{mg}, 60 \%)$, respectively.
4ba. mp 146-147 ${ }^{\circ} \mathrm{C}$. EI-MS: m/z (\%) 338 (100) [$\left.\mathrm{M}^{+}\right], 321$ (5), 284 (24), 231 (15), 204 (33), 189 (7), 161 (9), 149 (67), 134 (56), 121 (33). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4}$: C, $74.51 ; \mathrm{H}, 6.53$. Found: C, $74.53 ; \mathrm{H}, 6.55$.
4bb. mp 168-169 ${ }^{\circ} \mathrm{C}$. EI-MS: m / z (\%) 398 (36) $\left[\mathrm{M}^{+}\right], 367$ (100), 311 (7), 206 (10), 194 (25), 181 (37), 165 (13), 149 (16). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 69.35; H, 6.57. Found: C, 69.39; H, 6.61.

1-(5-Hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)-3-(4-methoxyphenyl)propan-1one (5aa), 1-(5-hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)-3-(2,4,5-trimethoxy-phenyl)propan-1-one (5ab); 1-(7-hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)-3-(4-methoxyphenyl)propan-1-one (5ba), and (2E)-1-(7-hydroxy-2,2-dimethyl-3,4-dihydro-2H-chromen-6-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (5bb). To a solution of chromanochalcone 4aa ($250 \mathrm{mg}, 0.74 \mathrm{mmol}$) and sodium formate ($1.0 \mathrm{~g}, 14.7 \mathrm{mmol}$) in methanol (25 mL) was added $\mathrm{Pd} / \mathrm{C}(10 \%, 250 \mathrm{mg}, 0.5 \mathrm{mmol})$, and the mixture was refluxed for $30-45 \mathrm{~min}$. After the catalyst was removed by filtration, the solvent was distilled off, the residue was treated with water, and the product was extracted with ether. The ether solution was washed with water, dried over sodium sulfate, and the solvent was removed by evaporation. The residue $5 \mathbf{5 a}(230 \mathrm{mg}$, 92%) was essentially pure to get spectral data; mp 102-104 ${ }^{\circ} \mathrm{C}$. EI-MS: m/z (\%) $341\left[\mathrm{M}^{+}+\mathrm{H}\right]$ (17), 323 (4), 205 (6), 178 (10), 149 (12), 134 (8), 121 (20), 49 (100). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 74.07; H, 7.09. Found: C, 74.11; H, 7.14.
5ab. The same treatment of compound $\mathbf{4 a b}$ afforded $\mathbf{5 a b}(210 \mathrm{mg}, 83 \%)$; mp $126-128{ }^{\circ} \mathrm{C}$. EIMS: m / z (\%) 400 (54) $\left[\mathrm{M}^{+}\right], 367$ (100), 311 (14), 194 (45), 181 (51), 149 (28). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6}$: C, 68.93; H, 7.04. Found: C, 68.98; H, 7.09.

5ba. Similarly, compound 4ba yielded 5ba (220 mg, 87\%); mp 117-118 ${ }^{\circ} \mathrm{C}$. EI-MS: $\mathrm{m} / \mathrm{z}(\%)=$ $340\left[\mathrm{M}^{+}\right]$(17), 323 (4), 205 (6), 178 (10), 149 (12), 134 (8), 121 (20), 49 (100). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 74.07; H, 7.09. Found: C, 74.15; H, 7.17.

5bb. Compound 4bb gave 5bb (200mg, 79\%); mp 138-139 ${ }^{\circ} \mathrm{C}$. EI-MS: m/z (\%) 400 (34) $\left[\mathrm{M}^{+}\right]$, 205 (24), 181 (100), 151 (12). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data see Tables 1 and 2. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6}$: C, 68.93; H, 7.04. Found: C, 68.10; H, 7.06.

Acknowledgements

M. S. Rao is grateful to the Institute of Organic Chemistry, University of Hannover, for support during his research visit. This work has been performed within the project "Biologically Active Natural Products, Synthetic Diversity" (Department of Chemistry, Hannover University).

References

1. Thompson, R. S.; Jacques, D.; Haslam, E.; Tanner, R. J. N. J. Chem. Soc., Perkin Trans. 1 1972, 1387.
2. (a) Harborne, J. B.; Mabry, T. J., Eds; The Flavonoids, Advances in Research; Chapman \& Hall: London, 1982. (b) Harborne, J. B., Ed.; The Flavonoids, Advances in Research since 1980; Chapman \& Hall: London, 1988.
3. Singleton, V. L.: Advances in Food Research, Academic Press: New York, 1981; Vol. 27, p 149.
4. Coll, M. D.; Coll, L.; Laencina, J.; Tomas-Barberan, F. A. Z. Lebensm.-Unters. Forsch. A. 1998, 206, 404.
5. Horowitz, R. M. Plant Flavonoids in Biology and Medicine 1986, 163.
6. Jain, A. C.; Lal, P., Seshadri, T. R. Tetrahedron 1970, 26, 2631.
7. Jain, A. C.; Lal, P., Seshadri, T. R. Ind. J. Chem. 1969, 7, 61.
8. Ahluwalia, V. K.; Nayal, L., Kalia, N.; Bala, S.; Tehim, A. K. Ind. J. Chem. 1987, 26B, 384.
