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Abstract 

Titanium (Ti) and Ti alloys are widely used as dental and orthopaedic implants, but the effects of 

the surface characteristics of these materials on the response of cells and target tissues is not well 

understood.  The present study has therefore examined the effects of a rough Ti (RT) and a 

smooth Ti (ST) surface on human bone cells in vitro.  Scanning electron microscopy showed 

attachment and spreading of cells on both surfaces. Expression profiling using ATLAS™ gene 

arrays showed marked differences in gene responses after 3 hours of culture. A number of 

osteoblast genes were identified as ‘roughness response’ genes on the basis of changes in 

expression on the RT compared with the ST surfaces.  The surface roughness of Ti was thus 

found to have a profound effect on the profile of genes expressed by the bone cells, and suggests 

that improvements in the biological activity and possibly the clinical efficacy of these materials 

could be achieved by selective regulation of gene expression mediated by controlled 

modification of Ti surface.  
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1.  Introduction 

Titanium (Ti) and Ti alloys have been widely used as components of dental and orthopaedic 

implants for many years, although the precise effects of these materials on the function of target 

tissues are not yet known.  However, in vitro studies of bone-derived cells have shown that the 

roughness of Ti surfaces has an important influence on osteoblast morphology, proliferation, 

differentiation and production of soluble mediators [1-3].  In addition, certain intracellular 

signalling pathways have also been reported to be involved in the response of bone cells in vitro 

to surface roughness [4, 5].  Nevertheless, the range of gene events affected by different surface 

characteristics of implant materials, including Ti, has thus far not been examined and is 

fundamental to understanding the cellular effects of environmental stimuli.  These changes in 

gene expression undoubtedly involve a large number of both known and unknown genes whose 

identification has been hampered, until recently, by the technical difficulties associated with the 

simultaneous study of multiple gene products.  

Gene profiling allows for quantification and comparison of gene expression in different 

cell/tissue populations with nylon-based cDNA microarrays, which are both sensitive and 

affordable. In this procedure, specific nucleotide sequences corresponding to known genes are 

fixed on the nylon membrane, which is then used to hybridise the entire range of radiolabeled 

cDNA sequences that have been obtained by reverse-transcription of the mRNA extracted from 

biological samples. A radioactive signal is thus generated on the membrane at the sites at which 

the same gene was present in the sample.   The intensity of this signal thus corresponds to the 

level of gene expression in the extract and can be detected by x-ray film.  The hybridisation of 

two cDNA samples on identical microarrays can therefore be compared to evaluate the 
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differential gene expression of over 1000 genes simultaneously in the two samples, at mRNA 

expression levels as low as 1 in 10,000 total sequences [6].  In the present study we have utilised 

this gene profiling procedure to examine gene expression by human alveolar bone cells 

incubated on two Ti surfaces of different roughness. 

 

2.  Materials and methods 

2.1 Titanium 

Ti discs of 15 mm diameter (Straumann Institute, Switzerland), were used in all experiments.  

The two different surfaces consisted of a smooth Ti surface (ST), formed by mechanical 

polishing, and a rough titanium surface (RT), formed by sand-blasting and acid-etching.  These 

surfaces had Ra roughness values of 0.6 and 4.0 µm.  Discs were cleaned in 10% (v/v) nitric acid, 

rinsed with distilled water and sterilized with UV light for 1 h prior to use. 

 

2.2 Culture of alveolar bone (AB) cells 

 Fragments of AB were obtained from a male patient aged 26 undergoing routine molar 

extraction, following a protocol approved by the Joint Research and Ethics Committee of the 

Eastman Dental Institute and Hospital (London, UK). They were immediately placed into alpha-

minimal essential medium (α-MEM) supplemented with 100 U/ml penicillin, 100 µg/ml 

streptomycin, 2 mM L-glutamine, 10% foetal calf serum (FCS) and 25 µg/ml fungizone, (all 

Gibco Life Technologies, UK). After cutting into small pieces (1-2 mm3), they were washed with 

phosphate-buffered saline (PBS) (Gibco), placed into 6-well culture plates (Becton Dickinson, 

UK) in complete Dulbecco’s minimal essential medium (DMEM), without fungizone, and 

incubated at 37°C in a humidified atmosphere of 5% CO2 in air. Cells migrated from the 
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fragments after approximately 7 to 15 days and were grown to confluence before detaching with 

0.25% trypsin-1 mM EDTA (Gibco) for 5 min at 37°C. The resulting cell suspensions were 

centrifuged, washed with fresh medium and seeded into 25 cm2 culture flasks and maintained in 

supplemented DMEM.  The osteoblastic phenotype was confirmed by flow cytometry analysis of 

the expression of characteristic bone antigens (osteonectin, osteopontin, bone sialoprotein, 

alkaline phosphatase) and the formation of mineralised nodules in vitro by von Kossa staining, as 

previously described [7].  The cells were used between passages 2 and 5. 

 

2.3 Scanning electron microscopy (SEM) 

The AB cells were cultured for 3 h on each Ti surface, fixed in 3% glutaraldehyde in 0.14 M 

sodium cacodylate buffer (pH 7.3) (both Sigma, UK) at 4ºC overnight then dehydrated in a 

graded series of alcohols (50%, 70%, 90% and two changes of 100% ethanol), washed with 

hexamethyldisilazane (TAAB Laboratories, UK) for 5 min and placed in a desiccator overnight.  

After 24 h, the Ti discs were mounted onto stubs using Araldite (Devcon, UK) and Liquid Dag 

(Neubauer Chemikalen, Germany) and left to air-dry for 24 h.  Specimens were then sputter-

coated with gold/palladium using a Polaron E5100 coating device (Polaron CVT, UK) and 

observed using a Cambridge Stereoscan S90B (Cambridge Instruments, UK). The same 

treatment was carried out on Ti surfaces that had not been seeded with cells. 

The RT and ST discs were seeded with approximately 50,000 cells and incubated in 

DMEM for 3 h.  The cells were detached from the Ti surfaces with trypsin and total RNA 

isolated using the Quiagen RNeasy® mini kit (Qiagen Sciences, MD, USA), then stored at -

70ºC.  Samples were treated with 100 U DNase I (Gibco) at 37ºC for 5 min to remove DNA 

contamination and to reduce non-specific binding to the filters.   
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2.4 Gene Expression Profiling 
 
Expression profiling was performed using the Atlas™ Human Cancer 1.2 gene array (Clontech, 

CA, USA) containing 1176 genes, many of which regulate cell growth and differentiation and 

could thus have an important role in the resultant Ti-cell interaction.  5 µg of total cellular RNA 

was used for reverse transcribing to cDNA, using [32P]-dCTP (Amersham Biomedical, UK) to 

radioactively label the sequences.  Atlas™ gene array kit protocols and reagents were used 

according to the manufacturers instructions.  The labelled cDNA probes were then hybridised to 

the Atlas™ gene array filters at 68°C for 18 h, using a rotary incubator to ensure cDNA sample 

mixing across the microarray surface.  The membranes were washed and exposed to 

autoradiographic film for 72 h, at -70°C to enhance film sensitivity. The films were digitally 

scanned for image analysis using an Alpha Imager 1200 light cabinet (Alpha Innotech, USA) and 

intensity values obtained for each gene after subtraction of local background intensity. The 

AtlasImage™ 2.0 software used a global normalization function to allow comparison between 

the ST and RT arrays, which was inversely proportional to the sum of background-adjusted 

values for all genes on each microarray.  These background adjusted and normalized values for 

each gene were thereafter compared between the microarrays.  Genes were considered to show 

marked expression change when there was a greater than 3-fold change in the normalized 

background-adjusted normalized value, and in addition a 5000 numerical difference in such 

values.   
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3.  Results 

Fig. 1(a) shows SEM images of the ST and RT surfaces.  The former  was very flat and almost 

defect-free while the RT surface consisted of many concave pits of varying diameter and depth.  

Fig. 1(b) shows the morphology of the AB cells after 3 h of incubation on each surface, with the 

cells adherent to the ST surface beginning to spread and form visible cytoplasmic processes.  

Very few rounded cells were present.  In contrast, a number of rounded cells were visible on the 

RT surface, although the non-rounded cells appeared to exhibit comparable degrees of spreading 

and cytoplasmic processes.  At 24 h, cells on both the ST and RT surfaces had increased the 

extent of cell spreading to a comparable level, with few remaining rounded cells (results not 

shown).   

Gene profiling showed that there were a marked number of gene expression changes in 

AB cells incubated on the different Ti surfaces.  Of the total of 1176 genes detected on the 

Atlas™ arrays, a total of 10 genes were found to be up-regulated and 16 down-regulated, as 

determined by the strict expression change criteria described in the Materials and Methods.  

These results in Table 1. show that these genes comprise a diverse range of functions including 

cell signalling, DNA synthesis and cytoskeletal/structural filaments.  Fig. 2 shows digital images 

of the ST and RT filters with arrows indicating the position of the neurotrophin 4 gene, encoding 

a growth factor protein, which showed the greatest degree of up-regulation (nearly 13-fold) as a 

result of incubation on the RT surface.   
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4. Discussion and Conclusion 

  
Gene expression changes associated with cell-material interactions define the fundamental 

molecular mechanisms that mediate cell growth and function following exposure to the implant 

material.  The development of commercially available methods for simultaneously measuring 

changes in the expression of multiple genes has facilitated the identification of both known and 

unexpected genes that play a part in many biological functions [6].  However, few studies have 

used this technology for assessing cell responses to materials, and for identifying genes of key 

importance in these interactions. 

The present study has investigated the effects of two types of Ti, with markedly different 

surface features, on bone cell morphology and gene expression profile. The surface topography 

observed by SEM analysis (Fig. 1) confirmed the different degrees of roughness of the RT and 

ST surfaces, consistent with their respective Ra values as previously reported [8].   This study has 

also shown that the expression of a number of osteoblast genes was affected by these Ti surface 

features in vitro.  Of the total of 1176 genes on the Atlas™ Human Cancer 1.2 gene array, the 

expression of 10 was found to be up-regulated by more than 3-fold on the RT surface, compared 

to the ST surface at 3 h. In contrast, 16 genes were found to exhibit down-regulated expression 

profiles on the RT surface after 3 h. Analysis of the specific DNA sequences which most 

positively responded to the RT surface compared with the ST surface highlighted the gene  

neurotrophin 4, which has previously been implicated in the increased expression of the bone-

associated proteins alkaline phosphatase and osteopontin during fracture healing and periodontal 

tissue regeneration [9].  In addition, the results presented here have also highlighted a number of 

genes that have not previously been associated with the process of wound regeneration/healing 

or osseointegration. For example, certain genes involved in DNA synthesis/repair and heat shock 
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proteins were found to be up-regulated in cells incubated on the RT surface, whereas genes 

corresponding to intermediate filament, histocompatibility and apoptosis-associated proteins 

were down-regulated by the RT surface. 

Expression profiling has thus enabled candidate genes that are differentially expressed on 

different Ti implant materials of varying surface roughness to be identified, including a number 

of extracellular matrix proteins, metalloproteinases and adhesion possibly involved in normal 

wound healing events [10]. The different gene expression profiles of AB cells in response to 

these Ti surfaces in vitro may indicate possible differences in clinical efficacy in vivo and thus 

have important implications for bone repair and regeneration processes. 
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Genebank Expression Change
                     Protein / Gene          Accession No.       Function RT / ST

Up-regulation on RT compared to ST

neurotrophin 4 M86528 cell signal protein 12.8
60S ribosomal protein L32 X03342 ribosomal protein 10.6
glutathione-S-transferase-like protein U90313 DNA synthesis/repair protein  4.9
interferon-regulated resistance GTP-binding protein MXA M33882 endocytosis protein 4.7
ras-related associated with diabetes protein L24564 G protein 4.2
axl tyrosine-protein kinase receptor M76125 protein kinase receptor 4.1
death domain receptor 3 Y09392 death receptor 4.1
cell division protein kinase 6 X66365 cell cycle-regulating kinase 3.9
70-kDa heat shock protein 5 M19645 heat shock protein 3.1
caveolin 1 Z18951 GTP/GDP exchanger 3.0

Down-regulation on RT compared to ST

rho-GAP hematopoietic protein C1 X78817 GTP/GDP exchanger 0.29
translation initiation factor EIF-2B alpha subunit X95648 translation factor 0.26
cyclin-dependent kinase 4 inhibitor 2D U40343 kinase inhibitor 0.21
dishevelled homolog 1-like protein U46461 intraceelular modulator 0.19
ribosomal protein S6 kinase II alpha 1 L07597 ribosomal protein 0.19
matrix metalloproteinase 16 D50477 matrix metalloproteinase 0.18
type II cytoskeletal 8 keratin M34225 intermediate filament protein 0.17
fatty acid synthase S80437 lipid metabolism enzyme 0.17
signaling lymphocytic activation molecule U33017 receptor 0.14
glutathione S-transferase theta 2 L38503 apoptosis-associated protein 0.13
cyclic nucleotide phosphodiesterase 1B (CAM-PDE1B) U56976 adenylate cyclase 0.12
DNA recombination & repair protein HNGS1 AF022778 DNA synthesis/repair protein  0.10
HLA-DR antigen X00497 histocompatibility protein 0.04
CD82 antigen U20770 oncogene 0.03
cytokeratin 1 M98776 intermediate filament protein 0.02
protein phosphatase EF2 long form (PPEF2) AF023456 calcium binding protein 0.00

Table 1.   Gene expression by AB cells on the RT surface compared with the ST surface after 3 h 

of incubation.  The ten most up-regulated genes, i.e. showing greatest expression change, within 

the exclusion criteria defined in Materials and Methods, are presented, as are the sixteen most 

down-regulated genes within such criteria.  ST expression is defined as 1.00.   

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.   Harle et al. 
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Figure Legends 
 
 

Fig. 1.     

SEM images of the ST and RT surfaces.  The surfaces are shown before (a) and after (b) 3 h of 

incubation with AB cells (Magnification x750 and x200, respectively). 

 

 

Fig. 2.    

Autoradiograph images of the Atlas™ gene array filters showing the relative hybridisation levels 

of specific genes from AB cells on ST and RT surfaces, after 3 h incubation. 32P-labelled dCTP 

was used to radiolabel cDNA sequences for hybridisation.  The arrows show the relative up-

regulation of the signal on RT, compared to ST, for the neurotrophin 4 gene. 
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Fig. 1.   Harle et al. 
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Fig. 2.   Harle et al. 
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