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Abstract. Based on SPH simulations, we quantify the geometrical distortion effect due to tidal and rotational
forces on polytropic secondaries in semi-detached binaries. The main effect is an expansion of the polytropic
star, with an effect on the radius of ∼5%–12%, depending on the polytropic index and the mass ratio. We apply
such distortion effects to the secular evolution of secondaries in cataclysmic variable systems. We focus on systems
below the 2–3 h period gap and that approach the minimum period. We find a significant increase of the predicted
minimum period (∼4% if changes in the secondary’s thermal relaxation are approximately taken into account).
Though an improvement, the effect is not big enough to solve the mismatch between predicted and observed
minimum period at 80 min.

Key words. stars: binaries: close – stars: low-mass, brown dwarfs – stars: evolution – stars: novae, cataclysmic
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1. Introduction

The description of close binary systems is usually based
on the Roche model which defines the shape of a binary
component distorted by tidal and rotational forces. In the
framework of the Roche model one assumes that the bi-
nary components (the primary and the secondary) either
are point masses, or are corotating and have a spherically
symmetric mass distribution irrespective of their proxim-
ity or mass ratio (Kopal 1959, 1978). In a semi–detached
system, one of the components fills its critical equipoten-
tial lobe defined by the potential of the inner Lagrangian
point, and which determines the maximum extent of a star
in a close binary. This is the so–called Roche lobe within
the Roche model. Cataclysmic variables (hereafter CVs),
composed of a white dwarf as the primary and a low–mass
star or a brown dwarf as the secondary, belong to this type
of system: the secondary fills its critical lobe and trans-
fers mass towards the primary. When applying the Roche
model to problems of binary evolution one makes implic-
itly the following assumptions (among others). First, the
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Roche potential is a good approximation of the true poten-
tial that one would obtain by solving the Poisson equation.
Second, the effects of tidal and rotational forces on the in-
ternal structure of the star are negligible, i.e. that they
result in only small corrections compared to stellar mod-
els assuming spherical geometry. Third, for the purpose
of evolutionary computations involving one–dimensional
stellar models the lobe–filling star may be replaced by a
spherical star of the same volume. This is tantamount to
assuming that though tidal and rotational forces change
the shape of a star they leave its volume invariant. The
radius of the lobe–filling star then only depends on the
geometry of the system, and can be calculated by means
of simple analytical fits (Paczyński 1971; Eggleton 1983).
The main purpose of the present paper is to examine in
some detail the third and to some extent also the second
of the above assumptions, both of which have so far not
been tested.

Recent 3D simulations (Rezzolla et al. 2001; Motl &
Frank, priv. comm.) confirm that, at least in the case of a
semi-detached system, the Roche potential is a good ap-
proximation if the lobe-filling star is sufficiently centrally
condensed, i.e. if the effective polytropic index is N >∼ 3/2.
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The analysis of Rezzolla et al. (2001) is based on numeri-
cal models of semi-detached binaries that account for the
finite size of the secondary star, thus relaxing the first as-
sumption inherent in the Roche model. With the validity
of this approximation for the determination of the poten-
tial, they also show that such effects hardly affect grav-
itational quadrupole radiation. Moreover, a comparison
between the angular momentum loss and mass-transfer
timescales predicted by the Roche model and their numer-
ical models shows small differences. They thus conclude
that finite size effects cannot account for the mismatch
between the observed minimum period Pmin at 80 min of
CV systems and the theoretical value Pturn. The latter is
indeed ∼15% shorter than the observed value, according
to recent calculations based on improved stellar physics
(see Kolb & Baraffe 1999). Since Rezzolla et al. (2001)
do not consider thermal relaxation effects in their calcu-
lations, they can only determine a differential correction
to Pturn when going from Roche model to self-consistent
potential. However, in doing so, the second and third as-
sumptions mentioned above remain untested. The main
purpose of our paper is thus to explore the consequences
of making these two assumptions.

Our main goal is to determine quantitatively the de-
parture from spherical symmetry of the secondary in semi-
detached binaries and to analyse the consequences on the
mass transfer rates and orbital period in CV systems. We
use smoothed particle hydrodynamics (SPH) techniques
to study equilibrium configurations of semi-detached bi-
naries and estimate for different mass ratios the geometri-
cal deformation of the secondary as it fills its critical lobe.
The numerical models and results are described in Sect. 2.
In Sect. 3, we analyse some of the consequences of the tidal
and rotational forces on the secular evolution of the low
mass donor on grounds of models constructed by Kolb &
Baraffe (1999) and Baraffe & Kolb (2000). We focus on
the problem of the minimum period and the discrepancy
between observations and models (see e.g. King 1988 and
Kolb 2001 for a review on the properties of CV systems).
A discussion and conclusions follow in Sect. 4.

2. Numerical models of semi-detached binary
systems

2.1. The method

We used a SPH code, originally developed and kindly pro-
vided by Willy Benz (see details in Benz et al. 1990) to
perform numerical simulations of a close binary system
composed of a point mass (primary) and a polytropic star
(secondary). The SPH method has been described exten-
sively in the literature (see Monaghan 1992 and references
therein) and is often applied to the study of close binary
systems (e.g. Benz et al. 1990; Lai et al. 1994; Rasio &
Shapiro 1995; Segrétain et al. 1997).

In all our simulations, the primary is a 1 M� point-like
mass. The secondary is described by a polytropic equation
of state p = Kρ1+1/N , where p is the pressure and ρ the

density. The polytropic constant K is fixed for a given
index N by the mass M and radius R of the spherical
secondary. We adopt two polytropic indices, i.e. N = 3/2,
which provides a good description of fully convective ob-
jects such as low mass stars, and N = 3 characteristic of
solar type stars with M ∼ 1 M�. For the particular case of
CVs, systems below the period gap are well described by
N = 3/2 polytropes, whereas N = 3 applies to systems
with periods >6 h and typical masses around ∼1 M�.
The two values of N thus represent limiting cases for the
description of CV secondaries. Assuming that K remains
constant in space applies well to fully convective objects
with a fully adiabatic structure, and implies a chemically
homogeneous structure (constant molecular weight) for
the standard models with N = 3. This is a reasonable
approximation for the present study.

The simulations use ∼15 000 particles. In order to
check the accuracy of our results, we ran a limited num-
ber of simulations with 57 000 particles. We find that
15 000 particles is a good compromise between computa-
tional demand and accuracy. The particles are initially
uniformly distributed on a hexagonal close-packed lat-
tice. The initial number density of particles is constant
throughout the volume of the sphere describing the ini-
tial configuration of the secondary. The particle masses
are proportional to the local mass density. This pro-
vides a good spatial resolution near the stellar surface,
which is crucial for our problem of critical lobe determi-
nation where surface effects are predominant. The simu-
lations are performed in a corotating reference frame with
the origin at the center of mass of the system. The ini-
tial separation Ainit of the two components is arbitrarily
fixed at four times the separation required for the sec-
ondary to fill its Roche-lobe ARoche, estimated from the
Eggleton (1983) fit. For such a separation, tidal and rota-
tional effects on the secondary are negligible. The orbital
separation is decreased with the arbitrary constant rate
(Ainit − ARoche)/τsimu, so that the total timescale of the
simulation τsimu is ∼1000 times the typical hydrodynam-

ical relaxation time τrelax '
(
R3

GM

)1/2

of the secondary.
The simulation is stopped when the secondary fills its crit-
ical lobe i.e. when the first particles from the secondary
reach the inner saddle point of the potential1. This marks
the onset of mass transfer. Once the critical separation is
reached, we check that the model has reached an equilib-
rium configuration, starting from such critical separation
and letting it relax in a non rotating reference frame.

Our goal is to estimate the deformation effects on the
secondary due to tidal and rotational forces as it fills its
critical lobe. The deformation can be measured in terms
of the ratio of the final to initial stellar radius D = Rf/Ri.
Ri is the radius of the unperturbed spherical polytrope.
Rf is an effective radius defined as the radius of the sphere
with the volume Vf of the secondary filling its critical
lobe. Vf is provided by our SPH simulation at the onset of

1 Defined as L1 in the Roche potential.
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Table 1. Deformation D = Rf/Ri as a function of mass ra-
tio q = Mdonor/Maccretor of the secondary in a semi-detached
binary for polytropic indices N = 3 (D3) and N = 3/2 (D3/2).

q D3 D3/2

0.06 - 1.06
0.07 - 1.06
0.1 - 1.05
0.2 1.12 1.05
0.3 1.12 1.05
0.4 1.12 1.04
0.5 1.12 1.04
0.6 1.11 1.04
0.7 1.11 1.04
0.8 1.11 1.04
0.9 1.11 1.04
1.0 1.10 1.04

mass transfer. The method to estimate Vf is described in
Appendix A.

2.2. Results

We ran a grid of simulations for various mass ratios
q = M2/M1 between the secondary and the primary.
Typically, CV systems with periods from ∼10 h down to
the minimum period cover a range of q between 1 and 0.06.
Figure 1 displays the final configuration of a N = 3 poly-
trope with mass ratio q = 0.8. This illustrates the case
of CV systems with periods >∼ 6 h (see Baraffe & Kolb
2000). Figure 2 shows the results for the case N = 3/2 and
q = 0.07, characteristic of secondaries approaching the pe-
riod bounce Pturn (Kolb & Baraffe 1999). We note that in
the case N = 3/2 (Fig. 2, lower panel), the surface value
of φ is not constant. We did not find any satisfactory ex-
planation for such behavior. This feature has already been
noted in some cases by Rasio & Shapiro (1995) and inter-
preted in terms of number density of SPH particles being
not exactly constant around the surface of a star with
large tidal deformation. Increasing the number of parti-
cles from 15 000 to 57 000 and double-checking that the
models have reached an equilibrium configuration do not
solve the problem. We do not expect that this affects the
accuracy of our final results, since our deformation calcu-
lations are in excellent agreement with similar calculations
by other authors (see below).

The resulting deformations D as a function of q are
summarized in Table 1 for N = 3 and N = 3/2. As ex-
pected, tidal and rotational distortion yields an expansion
of the secondary’s volume with respect to the unperturbed
spherical configuration. In terms of effective radius, the ex-
pansion is typically 11% for N = 3 and 5% for N = 3/2.
The dependence of D on N can be understood in terms
of the compressibility χ = ∂ log ρ/∂p = N/(1 + N)/p,
which is larger for N = 3 than for N = 3/2. The larger
the compressibility, the larger the deformation.

In order to visualize the deformation of the secondary
compared to the spherical case, Fig. 3 displays lines of
constant density for N = 3 and N = 3/2. An inspection

of Fig. 3 shows that the largest departure from spherical
symmetry is observed in the outermost layers of the poly-
tropic star, whereas the central regions are only slightly
affected. The results displayed in Table 1 are in excel-
lent agreement with the work of Uryu & Eriguchi (1999),
based on a different numerical method. Indeed, for N =
3/2 they found distortion effects of ∼4% for 0.1 ≤ q ≤ 1.
They however did not analyse the case N = 3. A compar-
ison of the numerical ratio Rf/A, where A is the orbital
separation, and the ratio given within the Roche model ac-
cording to Eggleton (1983), shows small differences (less
than 2%), in agreement with the results of Rezzolla et al.
(2001) and confirming indeed that the Roche potential is
a good approximation in the present case (the so-called
first assumption, see Sect. 1).

3. Application to cataclysmic variable evolutionary
models

In order to analyse the consequences of the distortion ef-
fects found in the previous section on period and mass
transfer rate in CV systems, we follow the secular evo-
lution of the secondary using the same models and in-
put physics as described in Kolb & Baraffe (1999) and
Baraffe & Kolb (2000). We focus on systems below the
2–3 h period gap and specifically on the minimum period
discrepancy between observations and models. Although
distortion effects seem to be more important for systems
above the period gap (P > 3 h) (see Table 1), their conse-
quences are difficult to quantify given the large uncertain-
ties of evolutionary models describing such systems, such
as the magnetic braking law and the resulting mass trans-
fer rate, the evolutionary stage of the secondary at onset
of mass transfer or the mixing length parameter. Below
the period gap, such uncertainties are fortunately consid-
erably reduced (see Baraffe & Kolb 2000; Kolb et al. 2001
for details).

3.1. Geometrical effects

In the following, we only consider the effects of distortion
on the geometry of the system. The orbital properties, e.g.
the orbital period and separation, and the mass transfer
rate will be indeed affected by the larger effective radius
of the donor, estimated in Sect. 2, compared to the undis-
torted case. However, for the moment, we ignore the ro-
tational and tidal effects on the thermal structure of the
star, assuming that its inner structure is unaffected and
determined by the unperturbed stellar structure equations
in spherical symmetry. A rough estimate of the thermal
effects on the secondary’s properties resulting from its ex-
pansion is derived in the next section (Sect. 3.2).

We analyse an evolutionary sequence with an initial
donor mass of 0.21 M�, a primary mass of 0.6 M�, and
gravitational radiation (GR) as angular momentum loss
mechanism (see Kolb & Baraffe 1999). From the radius R2

obtained from integration of the standard stellar struc-
ture equations, and the mass ratio q, which varies along
the sequence of evolution, the effective radius is derived
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Fig. 1. Configuration of a polytrope N = 3 and mass ratio q = 0.8 as it fills its critical lobe, i.e. at the onset of particle transfer
towards the primary. The upper panel is a projection of the SPH particles onto the orbital x − y plane, z being the rotation
axis. x is the coordinate along the binary axis. The primary is indicated on the left side of the plot by a thick dot. The lower
panel displays the projection onto the (x, Φ) plane, where Φ is the effective potential i.e. the sum of the gravitational and the
centrifugal potentials (rotating reference frame). The solid line indicates the variation of Φ(x, y = 0, z = 0) along the binary
axis. In both panels, the inner Lagrangian point is indicated by a symbol surrounded by an open circle. The simulation is done
with 15 000 particles.

according to Table 1. The mass transfer rate is then cal-
culated as a function of the difference between effective
donor radius and Roche radius, following Ritter (1988).

The comparison between sequences without distortion
(solid line) and with distortion (dashed line) is shown
in the orbital period – effective temperature diagram
(Fig. 4). Although reducing the discrepancy with the ob-
served Pmin, distortion effects provide an increase of the
minimum period Pturn of only ∼6% (or ∼4–5 min), com-
pared to the undistorted case. This is slightly less than
what is naively expected from the period – radius rela-
tion P ∝ (R3

2/M2)1/2. An increase of the radius by ∼6%,
as expected from distortion effects near the minimum pe-
riod (see Table 1), should indeed yield ∼9% increase of P .

The smaller effect found on P stems from the depen-
dence of angular momentum loss driven by GR on the
secondary radius J̇GR/J ∝ P−8/3 ∝ R−4

2 . Consequently,
the larger radius in the distorted sequence implies a de-
crease of J̇GR, and thus a smaller mass transfer rate −Ṁ2.
As shown below Pturn depends on the ratio τ = tKH/tM
of the secondary’s Kelvin–Helmholtz time tKH and the
mass transfer time tM = M2/(−Ṁ2). The decrease of
−Ṁ2 thus yields a decrease of τ , implying less depar-
ture from thermal equilibrium and thus a smaller Pturn.
Because J̇GR depends explicitly on the mass of the pri-
mary, Pturn does also depend on it, but only weakly, as
shown by Paczyński & Sienkiewicz (1983), who found that
∂ lnPturn/∂ lnM1 ≈ 0.09. In fact our computations show
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Fig. 2. Same as Fig. 1 for a N = 3/2 polytrope and mass ratio q = 0.07. The simulation is done with 57 000 particles.

that Pturn varies from 71 min for M1 = 0.6 M� to 74 min
for M1 = 1.2 M�, when distortion effects are included.

3.2. Thermal relaxation

In the numerical computations discussed in the previous
section, we have not taken into account changes in the
thermal reaction of the secondary which must result from
its inflation due to tidal and rotational forces. A fully
consistent treatment of the distortion effects would imply
solving the multi-dimensional stellar structure equations.
Rather than doing this we shall in the following derive a
rough estimate of the thermal relaxation effects and ex-
plore their consequences for the minimum period of CV
systems. We indeed expect that the changed surface area
of the more distended secondary, as a result of the distor-
sion effects, will affect its surface luminosity, and thus its
thermal properties.

We denote by R2,0, L2,0, Teff,0, . . . the quantities of the
donor star which result from assuming a pure 1/r poten-

tial, and by R2, L2, Teff , . . . the corresponding quantities
of the spherical equivalent of the critical lobe–filling star.
Obviously we have

R2 = R2,0DN , (1)

where DN is the deformation factor for a polytropic in-
dex N determined in Sect. 2.2 (see Table 1). We thus have
for the orbital separation A and the orbital period P

A = A0DN , (2)

and

P = P0 DN
3/2. (3)

Since mass transfer below the period gap is assumed to
be driven by loss of angular momentum via gravitational
radiation alone, the mass transfer rate can be written as
(see e.g. Ritter 1996)

−Ṁ2 =
M2

ζeff − ζCL

(
−2

J̇GR

J

)
· (4)
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Fig. 3. Lines of constant density (in log ρ) of the secondary
in the x − y plane: dotted lines correspond to the spherical
unperturbed secondary and solid lines to the distorted case.
Upper panel: N = 3 and q = 0.8. Lower panel: N = 3/2
and q = 0.07. The mass centers of the spherical and distorted
polytropes are located at (x, y) = (0, 0).

Here ζeff = d lnR2/d lnM2 is the effective mass radius
exponent of the donor star, and ζCL the mass radius
exponent of the volume–equivalent critical lobe radius2.
Because

J̇GR

J
∝ a−4 (5)

2 ζCL is equivalent to the mass radius exponent of the Roche
radius ζR in the Roche model (see e.g. Ritter 1996).

Fig. 4. Effective temperature versus orbital period for evo-
lutionary tracks with undistorted (solid line) and distorted
(dashed line) secondary. The dash-dotted line corresponds to
the case with distortion, including thermal relaxation effects
as estimated in Sect. 3.2. A test case with distortion effect
included and J̇ = 2.5 J̇GR is also shown (dotted line).

we have

−Ṁ2 = −Ṁ2,0DN
−4, (6)

assuming that ζeff is the same.
Because of the larger radius of the critical lobe–filling

star, its surface is larger, thereby affecting its luminosity,
effective temperature and Kelvin–Helmholtz time

tKH =
GM2

2

R2L2
=

GM2
2

4πσR2
3Teff

4 · (7)

Consequently, its thermal relaxation, i.e. its gravo–
thermal luminosity Lg will also be different.

In order to estimate the change of tKH, we need to
determine the change in Teff with radius R2. Since donor
stars below the period gap are fully convective, we can
apply the theory of the Hayashi–line, as described by
Kippenhahn & Weigert (1990). Accordingly we get

logTeff =
3a− 1

5a+ 2b+ 5
logR2

+
a+ 3

5a+ 2b+ 5
logM2 + const. (8)

Here a = (∂ logκ/∂ log p)T and b = (∂ logκ/∂ logT )p,
where κ is the photospheric opacity. Typically, for very
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low–mass stars with atmospheric opacities dominated by
molecular absorption, we have a ≈ 1 and b ≈ 0. Therefore(
∂ logTeff

∂ logR2

)
M

≈ 1
5
· (9)

We can now use (1) together with (9) in (7) and obtain

tKH = tKH,0DN
−2.8. (10)

We note that in deriving (10) we have applied in (7) the
factor DN only to the R–dependence coming from the lu-
minosity L2. Indeed, the R2 in the denominator of (7)
comes from the gravitational binding energy of the star
which is related via the Virial theorem to its thermal en-
ergy, i.e. essentially to its central temperature. Since the
central regions of the star are expected to be hardly af-
fected by the distortion of the outer layers (cf. Fig. 3), it
is not appropriate to also propagate the factor DN to the
remaining factor R2.

Let us now examine the conditions at the period Pturn.
For a polytope of index N losing mass the effective mass
radius exponent can be written as (e.g. Ritter 1996)

ζeff = ζad +
5−N
3−N

tM2

tKH

Lg

L
, (11)

where

ζad =
(
∂ logR
∂ logM

)
K

=
1−N
3−N (12)

is the adiabatic mass radius exponent and

tM2 = −M2

Ṁ2

(13)

is the mass loss time scale. Because at P = Pturn the
donor star is characterized by N = 3/2 and ζeff = +1/3 3

we obtain from (11) and (12)

tM2

tKH

Lg

L
=

2
7

(14)

at P = Pturn, or

Lg

L
=

2
7
tKH

tM2

≈
(

2
7
tKH

tM2

)
0

D3/2
−6.8. (15)

With D3/2 ≈ 1.06 (cf. Table 1) (15) yields

Lg

L
≈ 0.67

(
Lg

L

)
0

· (16)

Equation (16) means that the 3D–effects, i.e. the reduced
mass loss rate and the increased surface luminosity of the
more distended star, result in a smaller deviation from
thermal equilibrium at P = Pturn. Hence the star is sys-
tematically less inflated by the effects of thermal disequi-
librium, and this, in turn, compensates at least partially
for the systematic increase of the orbital period due to the
factor D3/2 > 1.

3 This follows directly from Kepler’s 3rd law, the fact that
(1 + 1/q)Vf/A

3 ≈ const. for q <∼ 0.8, and Ṗ = 0.

A quantitative estimate of the decrease of Pturn sug-
gested from (16) can be derived by recomputing the evo-
lutionary sequences including the effect of distortion, as
done in Sect. 3.1, and by artificially increasing the radi-
ating surface of the donor in the Stefan–Boltzmann law
by a factor D3/2

2.8, as suggested from (10). Note that
this is equivalent to increasing the radiating surface by a
factor D3/2

2, and to reducing the surface gravity in the
integration of the stellar atmosphere by the same factor.
The result of such a numerical experiment is displayed in
Fig. 4 (dash-dotted line) and shows a slight decrease of
Pturn by ∼2–3% compared to the case with pure geomet-
rical effects (dashed line). These results fully confirm the
expectation derived from (16), namely that the value of
Pturn is reduced by taking into account the effects of the
changed thermal relaxation.

4. Discussion and conclusions

Although reducing the discrepancy between observed and
predicted minimum period, distortion effects seem insuf-
ficient to provide a satisfactory solution of the mismatch
between calculated and observed minimum period. A com-
bination of distortion effects as estimated in Sect. 2 and
an angular momentum loss rate of 2–2.5 ×J̇GR can recon-
cile Pturn with the observed 80 min value (see dotted line
in Fig. 4). Note that without distortion effects, one would
need 4 ×J̇GR to reach ∼80 min, as estimated in Kolb &
Baraffe (1999). The more modest increase of J̇ required
according to our calculations is also in better agreement
with Patterson’s (1998) estimate based on space density
considerations. Additional physical processes can also re-
sult in an inflation of the secondary, e.g. irradiation from
the primary (Ritter et al. 2000) or star spots (Spruit &
Ritter 1983). A rough estimate of irradiation effects or
star spots can be derived by following Ritter et al. (2000),
i.e. by reducing the effective radiating surface of the star
by a factor (1 − seff). Adopting in our secular evolution
calculation a factor seff = 1/2 and J̇ = J̇GR yields a se-
quence very similar to the one obtained with deformation
(dashed line in Fig. 4). If seff = 2/3 the result resem-
bles the sequence with deformation and J̇ = 2.5 × J̇GR

(dotted line in Fig. 4). In order to know whether such val-
ues of seff , yielding effects comparable to the distortion
effects, are reasonable requires a sophisticated treatment
of star spots or irradiation. An investigation of irradia-
tion effects on non-gray stellar atmospheres is in progress
(Barman 2001). We stress however that even if distortion,
irradiation, star spots or additional sources of J̇ are possi-
ble solutions for removing the mismatch between observed
and predicted minimum period, the so-called period spike
problem still remains. A period spike which is a conse-
quence of the accumulation of systems near Pturn (where
Ṗ = 0) is indeed predicted by all models for which J̇ or
seff are assumed to be the same for all systems. Even if
they are not, it is very difficult to “smear out” the period
spike in a population of systems with different individual
bounce periods (Barker & Kolb, in preparation). Such a
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period spike is, however, not observed (see Kolb & Baraffe
1999).

Finally, we note that Kolb & Baraffe (1999) obtained
negligible effects on the secondary structure and evolution
when applying tidal and rotational corrections to the 1D
stellar structure equations, on the basis of the scheme by
Chan & Chau (1979). The effect on the total radius in
Kolb & Baraffe (1999) is much smaller (<2%) than that
found from the present SPH simulations. Since two differ-
ent numerical methods, on the one hand the work by Uryu
& Eriguchi (1999) and on the other hand the present work,
predict the same quantitative deformation effects, we are
confident that the results of our SPH simulation are ac-
curate. Although in the SPH simulations we do not take
into account the thermal reaction of the star to its infla-
tion and deal with polytropes, on the basis of our simple
estimate given in Sect. 3.2 we do not expect the thermal
effects to significantly reduce the radius of the deformed
star. A possible reason for the discrepancy between the
calculations by Chan & Chau (1979) and the present re-
sults could be the limitation of the former 1D scheme to
describe multi-dimensional effects. Figure 3 shows strong
effects in the outermost layers which may be difficult to
account for with such a scheme. In any case, both ap-
proaches have their shortcomings, but they both provide
the same conclusion regarding the mismatch of the ob-
served and predicted minimum period.

To conclude, our SPH simulations suggest that tidal
and rotational distortion effects on the secondary in semi-
detached binaries may not be negligible, and may reach
observable levels of ∼10% on the radius for specific cases
of polytropic index and mass ratio. Although this effect
yields an increase of the predicted minimum period for
CV systems, it remains too small to explain the observed
value of 80 min. Additional effects such as irradiation, star
spots or extra sources of angular momentum loss still seem
to be required, leaving the problem of the minimum period
of CV systems unsettled.
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Appendix A: Determination of the volume
in the SPH calculation

To estimate the final volume of the secondary at the onset
of mass transfer in our SPH simulations, we proceed as
follows. We first determine the smallest rectangular box
containing the secondary star. This box with volume Vbox

is then filled withNtot points following a Sobol sequence of
pseudo-random numbers. Such a sequence is self-avoiding,
i.e. the points are spread out randomly but in a uniform
way (see Press et al. 1992), allowing a more uniform filling
of a volume than a standard random method. Each point
within twice the smoothing length of a particle is counted,

otherwise it is discarded. The number of points Neffective

fulfilling such condition determines the volume Vstar of the
star:

Vstar =
Neffective

Ntot
× Vbox.

The radius of the star Rstar is then defined as the radius
of the sphere of same volume:

Vstar =
4
3
πR3

star.

This method has been tested on spherical and elliptical
structures of known volumes. According to these tests, it
provides the radius within the size of one particle Rpart.
Typically, for Npart = 15 000, we have

Rpart '
Rstar

N
1/3
part

' Rstar

24
·

Our method thus determines the radius of a star within
a systematic error of 4%. Although rough for a precise
determination of a stellar radius, the uncertainty is much
smaller on the ratio of the radius of the same star at two
different times of the simulation. This is the case for the
deformation D which is the main quantity of interest in
our analysis. If ε is the absolute error on the radius, R1

and R2 the stellar radii at respectively time t1 and t2, one
can write:

R2 + ε

R1 + ε
' R2

R1

(
1 + ε

(
1
R2
− 1
R1

)
+ o(ε)

)
·

For the specific case of distortion calculation, R1 is the
radius of the unperturbed polytrope and R2 the radius of
the polytrope filling its critical lobe. We find typical values
of R2/R1 ≤ 12% (see Table 1) with ε ∼ 4%. Thus the first-
order term in our last equation provides a correction of at
most 0.5%. Consequently, our method used for estimating
the volume is accurate enough for the present study. Note
that the test simulations done with 57 000 particles give
the same distortion factor (by less than 1%) than calcula-
tions with 15 000 particles.
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