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Abstract
Background: Simulation of DNA-microarray data serves at least three purposes: (i) optimizing
the design of an intended DNA microarray experiment, (ii) comparing existing pre-processing and
processing methods for best analysis of a given DNA microarray experiment, (iii) educating
students, lab-workers and other researchers by making them aware of the many factors influencing
DNA microarray experiments.

Results: Our model has multiple layers of factors influencing the experiment. The relative
influence of such factors can differ significantly between labs, experiments within labs, etc.
Therefore, we have added a module to roughly estimate their parameters from a given data set.
This guarantees that our simulated data mimics real data as closely as possible.

Conclusion: We introduce a model for the simulation of dual-dye cDNA-microarray data closely
resembling real data and coin the model and its software implementation "SIMAGE" which stands
for simulation of microarray gene expression data. The software is freely accessible at: http://
bioinformatics.biol.rug.nl/websoftware/simage.

Background
No two laboratories produce the same expression data
when performing seemingly identical DNA microarray
experiments. This is simply due to the fact that experimen-
tal conditions and factors such as growth media composi-
tion, RNA sampling methodology and scanner calibration
are never exactly identical [1]. Even within one and the
same laboratory differences in the outcome of experi-
ments executed by different laborants can be observed
[2,3]. These and many other factors lead to sometimes
unexpected gene expression variations that can occur at

several levels. Figure 1 shows a schematic and simplified
overview of those levels in dual-color DNA microarray
data (top) as well as the effect of some of these levels on
the composition of the expression signals (bottom).

It is obvious that knowledge about the properties that
gene expression signals hold as shown in Figure 1 is very
important to any researcher. This knowledge can be used
to design an optimal new DNA microarray experiment
and to carry out the best analysis of that generated data
set. To this end, real and simulated data has been used for
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Schematic overview of the SIMAGE model (A) and a few layers visualized (B and C)Figure 1
Schematic overview of the SIMAGE model (A) and a few layers visualized (B and C). The blue-marked boxes (A) 
indicate layers that are further visualized (B and C). A simulation of the entire 'non-biological' signal is shown in B and C. Top 
row, sum of the gradient effects and density effects; second row, spot pin effects; third row: Gaussian noise. The bottom row 
shows the sum of all the effects pictured in the top three rows. The signals are plotted three-dimensionally (left side view) and 
two-dimensionally (right side view).

A

B C
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a long time in data analysis workshops. And in case it is
not (yet) obvious for a novice in the field, the visualiza-
tion as shown in Figure 1 can be of educational value. In
all three cases – design, analysis and education – the avail-
ability of simulation software would be very helpful. It is
of eminent importance that the simulated data resembles
experimental data as much as possible [4] and, therefore,
there is a need for software that can (roughly) estimate
levels of variation.

Various software packages for simulating dual-color DNA
microarray data have been described in the literature
(Table 1). Some of these packages aim at validating image
analysis and spot quantification and simulate TIF-images
of the visualized spots. Other software focuses on gene
networks. In this paper, we present new software that fits
in between these two categories: we simulate the gene
expression data as it is tabulated after image analysis. In
addition, we provide software that can be used to roughly
estimate the levels of variation in real data. These compu-
ter programs, named SIMAGE, are freely available via a
web-resource.

Implementation
Software overview
The SIMAGE web site [5] consists of three parts: (i) a start
page where the user may upload parameters for a simula-
tion; (ii) a web-page where the user specifies a number of
parameters, after which (iii) the results, namely simulated
data (see below), are presented. Each run is assigned a
unique session, which allows the user to inspect the
results at any given time. SIMAGE provides the user with
three types of text files containing: (i) the parameters used
for the simulation. This file can, in turn, be provided to

SIMAGE for future simulations; (ii) the (differential) gene
expressions, which are obtained after applying only the
gene-layer; and (iii) the observed signals (including their
location on the slide and the corresponding genes) after
applying the layers explained in the following paragraphs.
The estimates from a provided dataset are determined by
a self-explanatory web site which is linked from the SIM-
AGE web site.

SIMAGE was written in Pascal and compiled by FreePascal
version 1.0.10 [6]. Estimates for parameters, based on real
data, are provided by a script developed in R [7]. The soft-
ware requires an Apache web-server and is integrated with
a PHP web-interface.

The general model
Figure 1 shows a schematic representation of the model
used in this study. Throughout this manuscript, and in the
software package, the base-2 logarithm is used, unless
stated otherwise. In this model the (log) expression sig-
nals are composed of the following components: (i) gene
expression, (ii) a raw background gradient signal, (iii) a
channel effect, (iv) a spot pin effect, (v) a nonlinear effect,
(vi) a quantization and saturation effect, and (vii) ran-
dom error due to unknown and/or unmodeled factors.
The model is explained in more detail in the following
text.

Dimensions and notation

A DNA-microarray slide consists of a number of spots
arranged in a two-dimensional matrix, which, in turn is
divided into nrow × ncol square (sub)grids (see supplemen-

tary Fig. S1). Each grid contains  spots (nspot in bothnspot
2

Table 1: Comparison of the properties of different DNA-microarray simulation models described in literature. '+' and '-' indicate 
availability of the indicated feature in the specified model. Note that the modeling of features in the specific models is usually not the 
same.

Method SIMAGE, 
this study

Lalush et al. 
[23]

Balagurunathan 
et al. [24]

Lonnstedt 
et al. [25]

Wierling 
et al. [26]

GE2

model implementation tabulated gene expression data + - - - - +
modeling of gene networks - - - - - +
TIFF output - + + + + -
software available + [5] + 1 - - - + [27]
adjustable model + + + + - +/-

model effects background surface pattern + - + - + -
spot pin / grid effects + + + - - -
channel effects + - + - - -
non-linearity effects + - + - - +
missing data + - + - - -
'fishtailing' + - + - - +
spot shape / size - + + - - -

1) C++ code available from author.
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the horizontal and vertical direction), amounting to a

total number of nrow × ncol ×  spots per slide. In total,

nslide slides are simulated with each spot providing a meas-

ure of the green (Cy3) and the red (Cy5) signal. The sim-
ulated log expression at spot (i, j) of array l and channel k
is denoted by yijkl.

Gene expressions

To distinguish between non-regulated and regulated
genes, the log ratio is considered. Assuming absence of
other systematic deviations, the log ratio of the Cy3 and
C5 channel signals log(Cy3/Cy5) = log(Cy3) - log(Cy5),
is zero for non-regulated genes (with deviances only due
to randomness), positive for up-regulated genes, and neg-
ative for down-regulated genes. The part of yjikl that is

affected in this gene expression layer will be called .

This  will be the same on all spots where the same

gene g is spotted (see also formula 3), hence we can use

the notation . We split  into two parts: Gg;k, which is

concerned with the 'true' expression of gene g on channel
k before any other layer is applied, and Dg;k, which is a

(possible) deviation due to up- or down-regulation of

gene g. The modeling of  is done via  = Gg;k + Dg;k.

To start with Gg;k, we assume that this latent (i.e. unob-

servable) variable is distributed as Gg;k ~ N(µ, ). Here,

µ is the average expression value, and  can be inter-

preted as the variation in gene expression. Hence, the
expressions of non-differentially expressed genes are dis-

tributed symmetrically around µ, according to a normal
distribution. For a comment on the normality assumption
of Gg;k, see the end of this paragraph. In most DNA-micro-

array data Gg;1 and Gg;2 are not statistically independent

[8], which can be observed by considering a plot of Cy3
versus Cy5 signals. Therefore the covariance cov(Gg;1,Gg;2)

= ρ  is introduced, where ρ is the correlation coefficient

between the signals from the two channels.

For each gene we model the probability of being up-,
down- and non-regulated π+, π-, and π0= 1 - π+ - π-, respec-
tively. For up-regulated genes the log ratio is increased by
2µD and for down-regulated genes the log ratio is
decreased by 2µD. The effect of regulation is modeled via
Dg;k:

Although µD is a fixed number, because of the sum  =

Gg;k + Dg;k that is 'measured' this layer behaves as if regu-

lated genes get a random sized shift up or down. Note that
Gg;k, as well as almost all other stochastic variables are

modeled in SIMAGE as outcomes of normal distributions.
Although this brings about some oversimplification, we
consider this not really an issue or, in the words of Wit
and McClure (2004) [8], 'the misspecification made by
using a normal approximation is typically negligible'. In
addition, the superposition of the various normally dis-
tributed layers does not imply that the generated expres-
sions levels themselves are normally distributed.

Furthermore, modeling of  as a combination of three

(normal) densities (non-, up- and down-regulated genes)
enables estimating the model parameters (see "gene
expressions" below). A more extensive modeling of the
gene expressions, although biologically somewhat more
correct, will result in a significantly more complex estima-
tion of parameters compared to the parameters described
in this study.

Replication variation

Spotting (spot pin effects), hybridization (non-uniform
distribution of the labeled probe over the slide surface),
and quantization (due to slide scanner properties) intro-
duce variation in yijkl in addition to the 'natural biological

variation'. This natural variation is modeled as follows.
When a simulated gene g is spotted on spot ijkl, random

errors εij1l and εij2l are drawn from N(0, ) and are added

to the two replicated measurements  and . Each

gene will be replicated nrep times.

Background surface variation
The signal distribution over the surface of the DNA-micro-
array glass-slide is affected by various factors, e.g. slide sur-
face chemistry and hybridization effects, leading to an
irregular distribution of the labeled probe on the slide [8-
10]. The most simplistic way to model such gradient sig-
nals is by using a tilted plane, such that the signals on one
side of the slide are higher than on the other. A more
sophisticated method is that of Balagurunathan and cow-
orkers (2002) [24] where a quadratic function is imple-
mented. Such a function, however, is limited in the sense
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that it has only one local extreme (and some extremes
located on the slide edges).

We use a method that allows for a number of local
extremes to exist. A number nbg of bivariate normal densi-
ties with random parameter settings identifying the loca-
tion and size on the slide are computed and subsequently
multiplied by a random amplitude I (between ±1). Each
density is computed by:

where the parameters are provided by the user. These den-
sities are summed, together with a linear gradient with a
random tilt lower than s, to constitute the background sur-
face signals (see Fig. 1B, top panel; see also the supple-
mentary document). An additive modeling of the
background effect is chosen over a multiplicative model.
As to the reasons why, see the supplementary document.

Channel deviations, gene-dye interactions and spot pin 
deviation
The rationale behind the modeling of these three layers is
the same: for each of the layer values a deviation, drawn
from a normal distribution, is added to (a subset of) the
Cy3 / Cy5 signals.

In some actual DNA-microarray experiments, the average
Cy3 signal is significantly different from the average Cy5
signal obtained for a spot; reasons are: gene-to-gene vari-
ation in dye incorporating efficiencies, global differences
in Cy3 and Cy5 abundance in the DNA preparations, and
bleaching of the dyes (Cy5 is inactivated faster than Cy3).
This effect is incorporated in the model by a random devi-

ation C1 for N(0, ) to all Cy3-measurements and

another random deviation C2 from this distribution to all

Cy5-measurements.

Differential incorporation of dyes in DNA occurs due to
(i) the preference of reverse transcriptase for the physically
smaller Cy3 label in case of direct labeling and (ii) differ-
ential hybridization because of the physically larger Cy5
label. The effects differ between genes as a consequence of
DNA size and the distribution of the labeled nucleotides
in the DNA molecule [11,12]. Gene-dye interactions are
embedded in the model similarly to the channel effect: for
all measurements belonging to gene g and dye d a random

deviation Xgk from N(0, ) is added to the signal.

Spot pins show systematic deviations in the amount of
probe delivered to the glass surface. The signals measured
of targets spotted with one spot pin might differ signifi-
cantly from those spotted with another spot pin. The npin

drawings Spin(ij) from N(0, ) are used to model these

effects. Spot pin effects are equal for both channels.

Non-linearity
(M, A) plots [13] from experimentally obtained DNA-
microarray data often look somewhat curved (e.g.
"banana shaped") and / or tilted, generally with higher
deviations for lower A values (see "quantization and satu-
ration" below). The SIMAGE model allows for non-linear-
ity using a transformation fnl based on two parameters: α1,
specifying the maximum amount of curvature to be
allowed, and α2, which specifies the maximum amount of
linear tilt. Although the transformation is relatively sim-
ple, the resulting data mimics experimental data closely
enough with respect to non-linearity. The exact definition
of the modeling of this layer and some examples of the
resulting curvature is presented in the supplementary doc-
ument.

Fishtails
A common artifact of DNA-microarray data is that genes
with a lower expression tend to be noisier. This is appar-
ent in the 'fishtail' appearance of (M, A) graphs. The main
reason for this artifact is mainly that spots with a lower
signal are quantified with larger errors than spots with
higher signals [14]. Another reason could be the 'over-
transformation' of data due to the log-transformation,
and that a less influential power transformation would be
more appropriate to obtain normally distributed gene
expressions. It would, however, be extremely complicated
to use another transformation, since the property of loga-
rithms that it turns multiplicative effects into additive
effects is used throughout the complete SIMAGE model.
We have to content ourselves with this approximation.

The fishtailing behavior is incorporated in SIMAGE by a

parameter δ that inflates the log ratio for spots with an

average expression Aijl below µ by a factor

. A higher value of δ will result in

a stronger effect and δ = 0 indicates no fishtail effect. The

parameter  will be introduced below ("gene expres-

sions"). Our model mimics biological replicates by rand-

omizing the effect of δ for non-regulated genes. For each
slide these genes have a probability of 1/2 of being influ-
enced by fishtailing. In this way, the expressions of non-
regulated genes are seldom distributed in such a way that

f i j
I

em
m

bgx bgy bg

i

bg

bg x

bg x

,

,

,

( ) =
−

−
−( )

−( )
−

2 12 2 2

1

2 1
2

2

2

2

πσ σ ρ

ρ

µ

σ
ρρ

µ µ

σ σ

µ

σ

i j jbg x bg y

bg x bg y

bg y

bg y

−( ) −( )
+

−( )
















, ,

, ,

,

,

2

2













 ( ), 2

σ channel
2

σ g d×
2

σ pin
2

1 2 2
+ −( )





−δσ µM ijlA

σ M
2



BMC Bioinformatics 2006, 7:205 http://www.biomedcentral.com/1471-2105/7/205

Page 6 of 14
(page number not for citation purposes)

they appear differentially regulated in a simulated experi-
ment with replicated slides.

Quantization and saturation

Slide scanning introduces another non-linearity artifact.
The scanning device uses 16 bits to describe signal
strength, i.e. signals are always between log(20) = 0 and
log(216) = 16. Furthermore, some DNA-microarray data
scanners tend to over-measure low values, and under-
measure high values [15]. When no over- or under-meas-
urement occurs, the signal transformation l0(y) =

min(max(0,y),16) on y will be used to incorporate the
cutoff at log(20) = 0 and log(216) = 16. A maximal over- or
under-measurement effect will result in the signal trans-

formation . This transforma-

tion inflates low signals, deflates high signals, and leaves
medium signals unchanged.

Via a parameter w (w between 0 and 1) the SIMAGE model
is instructed on the severity of the bias. The transforma-
tion gnl used is a weighted average of l0 and l1, namely gnl =
(1 - w)l0(y) + wl1(y). The supplementary document pro-
vides a visualization of the effect of different choices of w.

Missing data
In actual DNA-microarray data measurements may be
missing. Reasons are: slide surface imperfections, hybrid-
ization effects, no DNA delivered to the glass surface dur-
ing the spotting process or presence of fibers or dust
particles. Our simulation model implements three types
of missing data (with signals set to 0): (i) line-segments
mimic 'hairs', (ii) 'donuts' comprising multiple spots
mimic dirty areas and (iii) missing spots. The implemen-
tation of the model allows specifying the number of
occurrences of these types of missing data as well as their
maximum size and shape.

The SIMAGE model
In the SIMAGE model 29 parameters have to be specified
(Table 2), of which 6 are known constants (e.g. the
number of spots in a grid). The model, which results from
the components described above, is defined as follows:
the simulated log expression at spot (i, j) of array l and
channel k is denoted by yijkl as:

where

gene(ijl) the gene spotted at location (i, j,l) (see "dimen-
sions and notation" above);

pin(ij) the spot pin used to spot location (i, j);

gnl a transformation due to quantization and saturation;

tδ a transformation due to 'fishtailing';

fnl a transformation due to non-linearity in measurements;

mijkl equals 0 if the spot at location (i, j,l) is 'missing', and
1 otherwise (see "missing data" above);

bgijl the background gradient level (see "background vari-
ation" above);

Gg;k the expression level of gene g in channel k;

Dg;k the change in expression due to up-/down-regulation;

Ck the channel effect;

Spin(ij) the spot pin effect;

Xgene(ijl);k the gene × dye interaction;

εijkl the replication error.

Datasets used and estimation of the parameters
In order to estimate the parameters for a number of slides
hybridized at the Department of Molecular Genetics
(MolGen), DNA-microarray data from 47 Lactococcus lactis
IL1403 slides from MolGen [3,16-18] were used (supple-
mentary Table T1). These datasets specify, for each spot:
(i) the annotated gene names, (ii) the raw expression val-
ues for both channels, and (iii) an estimated background
signal. Parameters were determined from the net intensity
values of the slides (i.e. corrected for background signals).

Besides MolGen slides, several slides from the public
domain were analyzed. Datasets GDS69, GDS100, and
GDS273 were obtained from the Gene Expression Omni-
bus from NCBI [19]. The dataset MEXP-225 was obtained
from EBI's ArrayExpress [20]. In the supplementary web
site [5], the exact slides used for the parameter estimations
are listed.

The SIMAGE web site provides a tool for the estimation
steps described in the following sections. In order to
obtain robust estimates for the slides, some slides yielding

obviously outlying estimates, i.e. when  was

larger than µ, were discarded. Only those experiments
were used for which at least 3 slides with acceptable esti-

l y y
1 4
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mates were obtained. The estimates of the MolGen "exper-
iment" were determined by the median of the
"experiment" slides, while the MolGen "validation" esti-
mates were determined by the median of the estimates of
the validation slide data [3] (supplementary Table T1).
For each of the 5 experiments, DNA-microarray data
obtained from the same slide batch were used to estimate
the experiment-specific parameters (see Results). This was
done to minimize slide batch-specific bias in parameter
estimation. The median, rather than the mean, of the esti-
mates for each parameter is used as input in SIMAGE sim-
ulation interface because of the nonsymmetrical
distribution of the estimates.

Background gradient and densities
Spot background signals for the MolGen slides were deter-
mined as described [3]. Estimates for the number of back-
ground densities to be estimated, as well as their average
standard deviations, were obtained by visually inspecting
a number of experimentally obtained background densi-
ties. Furthermore, estimates for the average horizontal
and vertical linear tilt were obtained by fitting a regression
plane through the background signal distribution.

Non-linearity, quantization and saturation
A direct way to estimate the scanning device bias parame-
ter w is not feasible since this parameter is confounded
within the other variables in the SIMAGE model. One
could assume absence of scanning device bias (w = 0). We
used an alternative method to estimate this parameter (for

Table 2: Overview of parameters in the SIMAGE model. Some parameters are known (such as number of spots per grid), others should 
be set by the user (the flag indicates when the parameter can also be estimated from the data). Details concerning these parameters 
are discussed in the implementation section.

Parameter Description Can be estimated

nrow Number of grids per row
ncol Number of grids per column

Number of spots per grid

nslide Number of slides
nrep Number of technical replications
npin Number of spot pins
µ Mean expression signal v
µ-, µ+ Logratio-shift due to down- and upregulation v
π-, π+ Proportion of down-, up-regulated genes v

Variation in gene expression v

ρ Correlation between Cy3 and Cy5 expression v
Replication variation v

nbg Number of background 'densities'
σbg Mean standard deviation per background 

density
s Maximum slope of the linear tilt

Channel variation v

Spot pin variation v

Gene × dye variation

α1 Non-linearity parameter 'curvature' v
α2 Non-linearity parameter 'tilt' v
δ Fishtailing parameter v
w Scanning device bias v
nh, nd, ns Maximum number of hairs, donuts and missing 

spots
lh, ld Maximum length of hairs and radius of donuts

nspot
2

σG
2

σε
2

σ channel
2

σ pin
2

σ X
2
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more details see the supplementary document). The esti-
mation of the non-linearity parameters α1 and α2 is done
as follows: in the (M, A) plot for background-corrected
data (hence, the net signals), a Lowess curve [21] is fitted.
Then a second degree polynomial is fitted to this Lowess
curve, and the parameters α1 and α2 are directly derived
from the parameters of the polynomial (see the supple-
mentary document for details).

Spot pin effects, channel effects, fishtails and replication 
variation
After subtracting the estimates for the background signals
and the non-linearity effects from yijkl (the original signal)
we obtain zijkl, where zijkl = Ggene(ijl);k + Dgene(ijl);k + Ck + Spin(ij)
+ Xgene(ijl);k + εijkl. The estimation of the gene layer factors G
and D is discussed in the following paragraph. For all
other factors, the estimation of their parameters is a mat-
ter of calculating a variance components model.

The gene-dye interaction is strongest when direct labeling
of RNA is applied. An analysis by ANOVA of indirectly-
labeled RNA used in self hybridization slides [3] and dye-
swapped replicated slides (results not shown) performed
at MolGen showed that the gene-dye interaction effects
did not differ significantly. Note that the factor Xgene(ijl);k
can only reliably be estimated in case dye-swaps are per-
formed with the same RNA.

The fishtail parameter δ was estimated by fitting a quad-
ratic curve through the data points (Aijl,|Mijl|) with Aijl <µ
(for details see the supplementary document).

Gene expressions

After correcting zijkl for all factors except G and D, the

parameters for G and D are estimated as follows: define

 as the average value of the nrepreplications Yijkl with

gene(ijl) = g : . Given the distri-

butional assumptions outlined in "gene expressions"
above, standard statistical theory provides that both the

average log ratio ( ) of the gene and the

average intensity ( ) of the gene are

independently normally distributed, with variances 

and , respectively. The distribution  does not

depend on whether gene g is up-, down- or non-regulated,

and the parameters µ and  involved, as well as the var-

iance , are estimated in a straightforward way. The

mean of the distribution of  depends on whether the

gene is up-, down- or non-regulated. The parameters π-,

π+, µD and  are estimated using the EM-algorithm [22]

(Figure 2) with some restrictions (see the supplementary

document). Note that for self-self hybridizations π- = π+ =

0 and the estimation of  is straightforward (it is the

'ordinary' variance of the M-values). Furthermore, fishtail-
ing does not affect the spots with above-average intensi-

ties (Aijl > µ), nor the A-values. For all spots with average

intensities higher than the overall average intensity, the A-
and M-values are used to estimate parameters.

The estimates for  and ρ (see "gene expressions"

above), required for the SIMAGE model, are calculated

from the estimates for  and .

Results
To illustrate the use of SIMAGE in drawing meaningful
conclusions about the design and analysis of DNA micro-
array experiments we show a number of examples based
on DNA microarray data generated within the MolGen
department. SIMAGE is used as follows: (i) define param-
eters based on real DNA microarray data that are labora-
tory / experiment-specific, (ii) these parameters are
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The gene expression parametersFigure 2
The gene expression parameters. These parameters 
(Table 2) were estimated by using the EM-algorithm (see 
"gene expressions" in the implementation section). The verti-
cal lines constitute a stem-plot of the data. The red, green 
and blue curves indicate down-, not-, and up-regulated genes, 
respectively. The black curve is a combination of the three 
curves and, hence, the distribution of the logratios.
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roughly estimated by our estimation procedure, (iii) using
these estimated parameters DNA microarray data is simu-
lated mimicking real DNA microarray data as close as pos-
sible.

The parameter estimation
On the basis of a number of experiments that were per-
formed at the MolGen department, the "MolGen experi-
ment" parameters, 100 slides were simulated using
SIMAGE. For each simulated slide, the model parameters
were estimated using the estimation web-interface. Devia-
tions of the mean and median of the estimated parameters
from the original parameters are shown in Table 3 and
Figure 3.

The estimation of µ, σchannel and σε are good (Table 3).

Parameter σpin is somewhat systematically overestimated

(Fig. 3). The parameters  and ρ tend to be systemati-

cally mildly underestimated. This is likely because of the

nonsymmetric estimation of ρ (the true value of ρ is usu-

ally close to 1), which influences  which is calculated

from the estimate of ρ. The performance of the estima-

tions of δ, α1, α2 and w depends highly on the actual val-

ues of these parameters. For low values of these

parameters, they tend to be overestimated, while they are
for high values underestimated. However, the estimation
is rather good. As an indication, based on 100 slides with

δ, α1, α2, and w all zero, the maxima of the 100 estimates

for these parameters are 0.01, 0.004, 0.08, and 0.16
respectively.

The quality of the estimations of µ-, µ+, π-, π+ is highly
experiment-dependent. Table 3 and Figure 3 show results
for the choice of µ- = -1, µ+ = 1, π- = π+ = 10%, hence when
the proportions of regulated genes and their average shifts

σG
2

σG
2

Distribution of the deviations of several of the model parameters estimated from 100 simulated DNA-microarray slidesFigure 3
Distribution of the deviations of several of the model parameters estimated from 100 simulated DNA-micro-
array slides. The deviation is calculated as (estimate - true value) / (standard deviation of 100 estimates).
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µ σ channel σ pin σ2 gene ρ σ2 ε µ-, µ+ π-, π+
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>2

Table 3: Estimation of parameters from the simulation of 100 
DNA-microarray slides. The mentioned deviations are the 
number of estimated standard-deviations that the estimated 
mean, respectively median, lie away from the true value of the 
parameter.

Parameter Deviation (mean) Deviation (median)

µ 0.1 0.1
σchannel -0.3 -0.5
σpin 1.5 1.5
σ2

gene -1.6 -1.6
ρ -1.6 -1.6
σε -0.7 -0.6
|µ-|, µ+ -1.1 -1.0
π-, π+ 1.0 0.7
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in log ratio are considerable. The theory of Dempster and
coworkers (1977) [22] indicates that the estimates of µ-,
µ+, π-, π+ are unbiased: provided the correctness of our
underlying statistical assumptions, no other estimators
perform better. This is in concordance with the deviations
listed in Table 3. In some cases where the true values of µ-
, µ+, π-, and π+ are small their estimates are rather poor
(Fig. 3). The user of the web-interface is suggested to
'tweak' these gene-expression estimates somewhat, if nec-
essary.

Within-laboratory experiment-dependency of estimated 
parameters
In order to investigate whether parameter estimates for
different experiments from the same laboratory are signif-
icantly different, two profiles were generated: (i) "real"
experiments [16-18] and (ii) validation experiments [3]. A
Bonferonni-corrected Mann-Whitney test (α = 5%)
showed that only parameters µ and ρ differ between the
DNA-microarray data simulated using both profiles (sup-
plementary Fig. S2, upper panel). Within the various
"real" experiments, only the parameters describing regula-
tion (µ+, π+,µ-, and π-) differ significantly (supplementary
Fig. S2, lower panel). Parameters concerned with techni-
cal aspects of the DNA microarray spotter and scanner are,

as expected, not significantly different, since the same
equipment in one laboratory was used. Future studies on
datasets obtained in other laboratories may implicate
other parameters than those described above.

Between-laboratory experiment-dependency of estimated 
parameters
The model parameters were estimated from five different
datasets, obtained by different laboratories and querying
the mRNA levels of different organisms. The CVs of the
model parameters obtained for individual datasets are, in
general, lower than those obtained for the combined
experiments (Fig. 4). Parameters which differ strongly
between the datasets (combined CV values are higher
than the CVs of the individual experiment) are: average
expression (µ), tail behavior (δ), gene variance (σ2

gene),
and the general error (σε). For a few datasets the estima-
tion of the parameters is quite "noisy", e.g. the CV for the
non-linearity of scanner parameter (w) of the GDS69
dataset (Fig. 4). ANOVA shows that the estimated param-
eters, with the exception of the spot pin variation σpin and
the covariance ρ, are strongly experiment-dependent (Fig.
4). In particular the gene variance (σ2

gene) is strongly influ-
enced by the experiment (p-value of 10-21; Fig. 4).

Experiment-dependency of the parameters of the SIMAGE modelFigure 4
Experiment-dependency of the parameters of the SIMAGE model. The bar-graph shows the CVs ((standard deviation 
/ average) × 100%) of the parameters, estimated from the individual datasets. The resulting CV was determined from the aver-
age estimates for each of the parameters obtained from the experiments. The p-value obtained by ANOVA is displayed below 
the parameter symbols; p-values below 0.05 are considered to be significant.
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Graphical features of the simulated data
To ensure that the simulated data contains similar proper-
ties as experimentally obtained data, several aspects of the
simulated slides were inspected. In supplementary Figure
S3 three simulated and three "real" slides are visualized
via an (M, A)-plot and by grid-based box plots. Several
properties of the experimental slides are clearly present in
a similar way in the simulated slides. Figure 5 shows a
graphical representation of the net and background spot
signals of a simulated slide.

The modeled differentially expressed genes
SIMAGE allows modeling differentially expressed genes as
is demonstrated in an in silico simulated experiment (Fig.
6). In almost all cases the p-values and ratios of the 66
modeled differentially expressed genes (the blue dia-
monds in Fig. 6) are significantly lower than those of the
non-modeled genes (the red squares in Fig. 6). Relatively
few of the known differentially expressed genes had sig-
nals that were close to the background signals: these genes
get p-values close to 1. The inset in Figure 6 clearly dem-
onstrates the signal dependency of the p-values: differen-
tially expressed genes with higher expression levels are

Visualization of the signals of a simulated slideFigure 5
Visualization of the signals of a simulated slide. The upper picture shows a visualization of the measured expressions, 
while the lower picture is a visualization of the measured background signals. The areas designated as 'missing' are grey.
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assigned lower p-values. This is in concordance with the p-
value distributions in "real" DNA-microarray datasets.

Discussion
As various factors, of both technical and biological nature,
affect the quality of DNA-microarray data, it is essential to
use a proper experiment design and sophisticated statis-
tics and bioinformatics methods to deal with these varia-
bles. Since the factors involved, as well as their relative
influence on data quality, vary between DNA-microarray
laboratories and differ even between experiments exe-
cuted in the same laboratory, the question as to which
design and analysis method is best, cannot be answered in
general terms. SIMAGE, a model and web-implementa-
tion to simulate gene expressions, requires the specifica-
tion of up to 29 parameters. It allows simulating data that
resemble experimental DNA-microarray data. To deter-

mine the relative contribution of the various parameters
in DNA-microarray data is a knowledgeable task. A sec-
ond web-implementation is provided to easily provide
rough but reasonable estimates of most of these parame-
ters from experimental DNA-microarray datasets. There is
an important educational aspect about the simulation of
DNA-microarray data, which is clearly illustrated in Figure
1B: it provides clear insights in the contribution of each
background layer of the model to the measured signal.

Almost all parameters in the model are strongly depend-
ent on the experiment performed (Fig. 4 and supplemen-
tary Fig. S2). This holds both for biological parameters in
several different experiments from the same laboratory
and for technical and biological parameters in experi-
ments from different laboratories. The experiment-
dependency of the µ estimations (Fig. 4) is obvious from

Distribution of p-values of a DNA-microarray experiment simulated by SIMAGEFigure 6
Distribution of p-values of a DNA-microarray experiment simulated by SIMAGE. Data for 2200 genes, in 6 slides 
with technical duplicates hybridized in dye-swaps, was simulated using the MolGen experiment profile (supplementary Table 
T1) with some changes: π- = 1% and π+ = 2%, µ- = -2 and µ+ = 2), σbg = 700, and s = 30 % × µ. The main graph shows the result-
ing ratios after normalization plotted versus the p-value. The graph was simplified by removing genes with ratios between 2/3 
and 3/2. The 66 genes for which differential expressions were modeled are depicted by blue diamonds. The remaining genes 
are depicted in purple squares. The small graph on the right demonstrates the reversed p-value dependency on the average sig-
nal for the 66 differentially expressed genes modeled. The average signal was calculated for each of the 66 genes over the max-
imum of 12 normalized measurements. Normalization was performed using Lowess normalization and differential expression 
tests were performed with the non-Bayesian Cyber-T implementation of a variant of the t-test [3]. The Cyber-T test provides 
the p-values, which indicate the probability that a given ratio is not differential caused by chance. Genes with less than 8 meas-
urements were excluded from these tests and assigned a p-value of 1, in order to be able to present these genes in the graph.
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the fact that the average signals in the prokaryote datasets
are higher than those in the eukaryote datasets. This is due
to the fact that prokaryotes generally express a larger com-
plement of their genes. The experiment-dependency of
the gene variance (σ2

gene) might also be attributed to dif-
ferences in gene expression in the different organisms
interrogated in the DNA-microarray experiments dis-
cussed above. The latter is also clearly reflected by the high
significance of the σ2

gene parameter obtained by ANOVA.

Any method for simulation of DNA microarray data can
be questioned and criticized, mainly because there is nei-
ther established theory for the relation between expres-
sion (observed) and factors involved (some can be
observed, others are hidden), nor for the statistical distri-
bution of differential expression given by various causes
across genes. Choices about the statistical aspects of the
data need to be made when building a simulation model
such as SIMAGE. Different choices would lead to
(slightly) different models with other 'optimal parameter
estimation methods'. We have compared the distribution
of simulated data (under various circumstances) with that
of experimentally obtained data and adapted our model
to be able to mimic experimental data as much as possi-
ble.

Creating a SIMAGE-like model to simulate data from
other than dual-dye DNA microarray platforms might be
interesting for future work. Our approach, using layers to
model the factors involved, could be universally applied
to simulate such data. This is, however, quite a task, since
each type of DNA microarray platform has its own specific
properties. Affymetrix, for instance, employs single-dye
chips. The model of the synthesis of oligonucleotides on
the chip surface and the different signals obtained for
multiple probes would have to be quite sophisticated.
Another interesting approach would be to expand SIM-
AGE to incorporate gene-regulatory interactions or genes
involved in documented pathways. The use of simulated
gene-regulatory networks would provide a powerful tool
to estimate the efficiency of network reconstruction algo-
rithms.

Conclusion
A number of models for DNA microarray data simulation
have recently been developed (Table 1). The question
how to simulate DNA microarray data in the best way is
not easily and straight-forwardly answered. There are
many considerations that pose a researcher wanting to
simulate DNA microarray data for difficult choices. We
have developed SIMAGE: software that simulates dual-dye
DNA microarray data. The model that we employ,
although more advanced than existing models, is still a
simplification of reality. To ensure that the simulated

DNA microarray data mimics real data as close as possible
the model is "fitted" onto "real" DNA microarray data.

Availability and requirements
Project name: SIMAGE

Project home page: http://bioinformatics.biol.rug.nl/
websoftware/simage

Operating system(s): Runs on any JavaScript enabled
web-browser.

Programming languages: PHP, Pascal, R, and shell script-
ing.

Other requirements: Additional files and figures are con-
tained in the supplementary web site which is accessible
from the above-mentioned web site.

License: The web-resource is freely accessible. Details con-
cerning the conditions for using SIMAGE are available
from the above-mentioned web site.
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