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The properties of differential-algebraic
equations representing optimal control

problems

Roland England1

Susana Gómez2

René Lamour3

Abstract

A procedure is described for transforming a general optimal control problem to a sys-
tem of Differential-Algebraic Equations (DAEs). The Kuhn-Tucker conditions consist of
differential equations, complementarity conditions and corresponding inequalities. The
latter are converted to equalities by adding a new variable combining the slack variable
and the corresponding Lagrange multiplier.

We investigate the properties of the resulting DAEs. The index of a system of DAEs
determines the well-conditioning of the problem. The concept of the tractability index is
used to investigate the index in a systematic way, and during this process, it indicates
which components of the system of equations must be differentiated to reduce the index.
For an index-3 problem, the index is reduced without increasing the number of equations,
and a numerical procedure is used to determine the index.

In the examples used here, the DAEs can be solved analytically. The examples are tested
by the numerical determination of the index, and the results confirm the previously known
properties of these examples.

The reformulation proposed here, as well as the index determination, might be used in
the future, to develop a methodology to solve optimal control problems.

Keywords: Optimal control; Differential-algebraic equations; Tractability index; Differentia-
tion index; Kuhn-Tucker conditions

1 Introduction

The purpose of this paper is to express an optimal control problem in terms of a system of
Differential-Algebraic Equations (DAEs) and to investigate their properties. This system is
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obtained using calculus of variations to get the Kuhn-Tucker conditions. The inequalities asso-
ciated with the complementarity conditions are converted to equalities by the addition of a new
variable, combining the slack variable and the corresponding Lagrange multiplier. The sign of
this variable indicates whether the constraint is active or not.

The well-conditioning of the problem can be expressed in terms of the index of the resulting
system of DAEs, which is a measure of the difficulty involved in obtaining a numerical solution.
The concept of the tractability index is introduced as a general purpose way of determining the
index even when some components are not sufficiently differentiable. A projector related to
the tractability index makes it possible, in the case of higher index, to determine exactly which
components of the system of equations must be differentiated in order to reduce the index.
This is important in the formulation of boundary value problems (BVP) arising from optimal
control problems, because there is as yet no general purpose code to solve directly higher index
BVPs (index > 2) and for numerical reasons, it seems unlikely that a practical method will be
available in the near future.

Methods based on the concept of the differentiation index transform the DAE to a system of in-
dex 1 or index 0 (ODE) by the differentiation of the equations involving algebraic components.
However, it is not always clear which and how many equations should be differentiated. The
process that we are presenting here clearly indicates which components of the system of equa-
tions must be differentiated to reduce the index. Also, this is the first time that a methodology
is proved to deal with an index reduction of a nonlinear index-3 problem, without increasing
the number of equations as in the work done in [10].

As has been stressed before, the purpose of this paper is to study the properties of optimal con-
trol problems, through their transformation to DAEs. The tractability index concept is applied
to the class of DAEs thus obtained, and so provides a more complete analysis than that given in
our report [6], which contained a partial analysis of three specific examples. We hope that the
reformulation developed here, as well as our study of the tractability index, can be used in the
future as an approach for the numerical solution of optimal control problems and as an alterna-
tive to the usual constrained optimization formulation, such as in [1, 2, 4, 5, 9, 15, 19, 20, 21, 22].

The examples used here are the minimization of the time to travel a fixed distance, subject
to bounds on the acceleration and on the velocity, and the maximization of the yield of a
component on a packed bed reactor. These problems have index varying from 1 to 3 and
the theoretical investigation of the index shows the potential advantage of the concept of the
tractability index, but also the difficulties, which necessitate a robust numerical index monitor,
such as the one we present here.

In Section 2 we give an outline of the methodology to transform an optimal control problem
into a system of DAEs (for a detailed presentation see [6, 7]). In Section 3, the tractability
index is introduced and applied to the DAEs obtained before. Theorem 3.2 is a generalization
of a theorem given in [6].

In Section 4, we present three examples which are transformed to DAEs, and their properties
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as well as their indices are determined. In Section 5, we present a numerical method to obtain
the index, even in cases when it is not possible to do so analytically. We give some conclusions
in Section 6.

2 General transformation process

2.1 Formulation of an optimal control problem

Consider an optimal control problem, expressed as a dynamical system of ordinary differential
equations subject to a number of initial and terminal conditions, and to a number of inequalities
on the state and control variables, and with some unknown constant parameters. The objective
function has the form of an integral of some function of the same state and control variables
and parameters.

minimize J(u) =

∫ b

0

h(y,u, c) ds (1)

subject to : y′ = f(y,u, c), y
i
(0) = y

i0
(i ∈ I), y

j
(b) = y

j1
(j ∈ F), (2)

0 ≤ g(y,u, c). (3)

Here, I and F are subsets of the indices i of the state variables y
i
for which initial and terminal

values, respectively, are specified.

2.2 Calculus of variations

As we wish to transform this problem to a system of DAEs, we use the variational formulation
to obtain the first-order necessary conditions. Most of this derivation has been presented else-
where ([6, 7]), but the outline is given here for completeness.

Introducing small perturbations δy(s), δu(s), δc constant, and the Lagrange multipliers v(s)
for the differential equations (equality constraints), and w(s) for the inequality constraints,
then the perturbation of the objective function J(u) is given by

∫ b

0

(hT

y δy + hT

uδu + hT

c δc) ds =

∫ b

0

vT (δy′ − fyδy − fuδu− fcδc) ds

+

∫ b

0

wT (gyδy + guδu + gcδc) ds, (4)

the perturbations of y(s) must satisfy the zero boundary conditions:

δy
i
(0) = 0 (i ∈ I), δy

j
(b) = 0 (j ∈ F), (5)

and the Lagrange multipliers w(s) must satisfy the complementarity conditions:

wigi(y(s),u(s), c) = 0 (∀s, ∀i), 0 ≤ w(s). (6)
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To eliminate the term δy′ using integration by parts, under the assumption that both δy(s)
and v(s) are continuous and piecewise differentiable,∫ b

0

vTδy′ ds = −
∫ b

0

v′T δy ds,

where
v

i
(0) = 0 (i �∈ I), v

j
(b) = 0 (j �∈ F). (7)

The perturbations δy(s), δu(s), δc are independent, and apart from the continuity condition on
δy(s), they are also arbitrary, and so their coefficients must each match separately in equation
(4), giving

v′T = −vT fy + wTgy − hT

y , (8)

0T = −vT fu + wTgu − hT

u , (9)

0T =

∫ b

0

(−vT fc + wTgc − hT

c )ds. (10)

The original differential equations (and boundary conditions) (2), together with the adjoint
equations (8–10), boundary conditions (7), inequality constraints (3), and complementarity
conditions (6), form the Kuhn-Tucker necessary conditions for (y,u, c) to be a minimizer of
the functional J(u) in equation (1) subject to constraints (2) and (3).

In order to express the integral equation (10) as a differential equation, new variables r(s) may
be introduced, corresponding to the constants c, and satisfying

r′T = −vT fc + wTgc − hT

c , r(0) = 0, r(b) = 0. (11)

A Hamiltonian function may be introduced in the form

H(y,v, c,u,w) := −fT (y,u, c)v + gT (y,u, c)w − h(y,u, c)

enabling the right-hand sides of (8-11) to be expressed in terms of H .

2.3 Elimination of inequalities

In order to eliminate the inequalities on g and w in the complementarity conditions (3) and
(6), new variables p = g − w may be introduced, such that

g = max(0,p) := p+ (the positive part of p),
w = max(−p, 0) := p− (the negative part of p, with positive sign).

Then the Kuhn-Tucker necessary conditions (2),(3),(6–9) and (11) may be expressed in the
form of the following system of DAEs subject to initial and terminal conditions:

From (2) : y′ = f(y,u, c), y
i
(0) = y

i0
(i ∈ I), y

j
(b) = y

j1
(j ∈ F);

From (8), (7) : v′ = Hy(y,v, c,u,p−), v
i
(0) = 0 (i �∈ I), v

j
(b) = 0 (j �∈ F);

From (11) : r′ = Hc(y,v, c,u,p−), r(0) = 0, r(b) = 0;
From (9) : 0 = Hu(y,v, c,u,p−);
From (3), (6) : 0 = p+ − g(y,u, c).

(12)
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3 The tractability index Concept

3.1 Short Introduction

In the case of linear DAEs, the index indicates how often we have to differentiate parts of
the right-hand side of the DAE to obtain an expression for the solution. Therefore the index
describes the difficulty involved in solving a system numerically.

A way of determining the index of a DAE is given by the tractability index concept (see also
[16]). The motivation for the tractability index comes from an equivalent reformulation of a
DAE without differentiation. This is important e.g. if the data of the DAE have low smoothness
properties.

The definition of the tractability index is based on a matrix chain Gi, i ≥ 0 in the following
way. Consider a DAE in quasilinear form

F((D(t)x(t))′,x(t), t) := A(x, t)(D(t)x)′ + b(x, t) = 0, (13)

where F(z,x, t) : R
m ×R

n ×R → R
n, A(x, t) ∈ R

n×m, D(t) ∈ R
m×n and b(x, t) ∈ R

n. F and b
must be sufficiently smooth.

We prefer DAEs with properly stated leading term, because of their clearer description and
their better numerical properties (see [11], [12]). Properly stated leading term means that
ker A(x, t)⊕imD(t) = R

m and the projector realizing this splitting is continuously differentiable
(see [17]). With

B(z,x, t) := Fx(z,x, t)

(we will drop the arguments) a matrix chain is defined by

G0 := AD, B0 := B,

Gi+1 := Gi + BiQi, (14)

Bi+1 := (Bi − Gi+1D
−(DP0...Pi+1D

−)′DP0...Pi−1)Pi,

where Qi denotes a projector onto Ni := ker Gi, Pi := I − Qi and D− describes a reflexive
generalized inverse of D, i.e. D = DD−D, D− = D−DD− and additionally D−D = P0.

Definition 3.1 (See [17]) An equation (13) with properly stated leading term is said to be a
DAE with tractability index μ on the interval I, if there is a continuous matrix function sequence
(14) such that
(a) Gi has constant rank ri on I,
(b) N0 ⊕ N1 ⊕ · · · ⊕ Ni−1 ⊆ ker Qi,
(c) Qi ∈ C(I, Rn×n), DP0 · · ·PiD

− ∈ C1(I, Rm×m)

⎫⎬
⎭ 0 ≤ i ≤ μ,

(d) 0 ≤ r0 ≤ · · · ≤ rμ−1 < rμ = n.

To check the index of a DAE we have to check the ranks of the matrices Gi, 0 ≤ i ≤ μ.
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Remark: The ranks, and therefore the index, are independent of linear transformations of the
variables, the scaling of the equations, and the choice of projectors.

By means of the tractability index concept, it is also possible to get a cheap way to reduce the
index of a higher index system of DAEs.

If we consider a system of DAEs of semiexplicit structure (13)

A(x, t)(D(t)x)′ + b(x, t) = 0

of index k (i.e. Gk remains nonsingular) the system of DAEs

A(x, t)(D(t)x)′ + (I − Wk−1)b(x, t) + Wk−1
d

dt
(Wk−1b(x, t)) = 0 (15)

has, for a wide class of DAEs, index k − 1, where Wk−1 denotes a projector along im Gk−1.
This is proved for linear equations and for index-2 equations of structure (13) (see [8]).
A theorem has been proved for index-3 equations, under certain conditions, in [6]. An extension
of that theorem is given below.

Theorem 3.2 Let

A(Dx)′ + b(x, t) = 0 (16)

be a DAE with constant matrices A and D. Let W2 be a constant projector along im G2 and
(W2b)(x, t) = (W2b)(P0x, t).

1. Let (16) have index 3 and I + Q2G
−1
3 [(W2BD−z)x − (W2B)xD

−z]P0Q1Q2 be nonsingular
for arbitrary z. Then the system of DAEs

A(Dx)′ + (I − W2)b(x, t) + W2
d

dt
(W2b(x, t)) = 0 (17)

has index 2.

2. Let DAE (17) have index 2 and W2[(W2BD−z)x − (W2B)xD
−z]P0Q1Q2 = 0. Then (16)

has index 3.

Before we prove the theorem we collect together some useful properties of the projectors. Let
Wi+1 be a projector along im Gi+1. Using (14) we obtain

0 = Wi+1Gi+1 = Wi+1(Gi + BiQi). (18)

Multiplying (18) from the right by Pi gives 0 = Wi+1Gi and using the definition of Gi we derive
that

0 = Wi+1Gj for j = 0, . . . , i + 1, (19)

which means that Wi+1(I − Wj) = 0, j = 0, . . . , i + 1.
On the other hand multiplying (18) by Qi we obtain 0 = Wi+1BiQi and taking the structure

6
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of Bi into account (cf. (14)) we have Wi+1B0Qi = 0.
With Definition 3.1(b) we obtain QiQj = 0, 0 ≤ j < i and multiplying (18) by Qj from the
right

Wi+1B0Qj = 0, 0 ≤ j ≤ i. (20)

Proof of Theorem 3.2:

1. Using
d

dt
(W2b(x, t)) = (W2b)x(x, t)(P0x)′ + (W2b)t(x, t)

equation (17) can be written in greater detail as

A(Dx)′ + (I − W2)b(x, t) + W2(W2BD−(Dx)′ + (W2b)t(x, t)) = 0 (21)

where B = bx(x, t). The matrix chain of (17) with matrices linearized in (z,x) is given
by the following

Ã = A + W2BD−, D̃ = D,

G̃0 = ÃD̃ = G0 + W2BP0,

B̃0 = (I − W2)B + W2(W2BD−z + (W2b)t)xP0.

We have to look for a nullspace projector of G̃0.
We can write G̃0 = (I − W2)G0P0 + W2BP0, which shows that
ker G̃0 = ker(I − W2)G0P0 ∩ ker W2BP0, i.e. that we can choose the same nullspace
projector Q̃0 = Q0.
The next chain element is given by

G̃1 = G̃0 + B̃0Q̃0 = G0 + W2BD−D + (I − W2)BQ0

= G1 + W2BP0.

From (20) we derive W2BP0 = W2BP0P1, and with the same arguments as before G̃1 and
G1 have the same nullspace, i.e. we can choose Q̃1 = Q1. Then

B̃1 = B̃0P0 − G̃1D
−(DP1D

−)′D
= ((I − W2)B + W2(W2BD−z + (W2b)t)x)P0 − G̃1D

−(DP1D
−)′D.

The next step gives

G̃2 =G̃1 + B̃1Q̃1,

=G1 + W2BP0 + (I − W2)BP0Q1

+ W2(W2BD−z)xP0Q1 + W2(W2b)t)xP0Q1︸ ︷︷ ︸
=W2(W2B)tP0Q1

−G̃1D
−(DP1D

−)′DQ1,

=(G1 + BP0Q1)(I − P1D
−(DP1D

−)′DQ1) + W2BP0P1

+ W2(W2BD−z)xP0Q1 + W2(W2B)tP0Q1 − W2BD−(DP1D
−)′DQ1︸ ︷︷ ︸

W2[(W2BP0P1)′−(W2B)′P0P1]P0Q1

,

=G2 + W2BP0P1

+ W2(W2BD−z)xP0Q1 + W2(W2B)tP0Q1 − W2[(W2B)xD
−z + (W2B)t]P0Q1,

=G2 + W2B2 + W2[(W2BD−z)x − (W2B)xD
−z]P0Q1.

7
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Consider G̃2w = 0. Multiplying

(G2 + W2B2 + W2[(W2BD−z)x − (W2B)xD
−z]P0Q1)w = 0

by (I − W2) we get G2w = 0, which leads to w = Q2w. Using this we obtain

(W2(B2 + [(W2BD−z)x − (W2B)xD
−z]P0Q1)Q2w = 0. (22)

If we take into account that ker W2 = im G2 = ker Q2G
−1
3 then the left side of (22) is

Q2 G−1
3 (B2Q2︸ ︷︷ ︸

=Q2

+[(W2BD−z)x − (W2B)xD
−z]P0Q1Q2)w = 0. (23)

Equation (23) leads to

(I + Q2G
−1
3 [(W2BD−z)x − (W2B)xD

−z]P0Q1Q2)Q2w = 0

and hence Q2w = 0.
This means that G̃2 is nonsingular and (17) has index 2.

2. To prove the second part we assume that (17) has index 2. The related matrix chain
element is nonsingular. We obtain

G̃2 = G2 + W2B2 + W2 [(W2BD−z)x − (W2B)xD
−z]︸ ︷︷ ︸

=:�

P0Q1,

= (I + W2(B2 + �P0Q1)G
−
2 )(G2 + W2(B2 + �P0Q1)Q2),

= (I + W2(B2 + �P0Q1)G
−
2 )(G2 + (B2 + W2 � P0Q1)Q2)(I + G−

2 B2Q2),

= (I + W2(B2 + �P0Q1)G
−
2 )︸ ︷︷ ︸

nonsingular

(G2 + B2Q2︸ ︷︷ ︸
=G3

+ W2 � P0Q1Q2︸ ︷︷ ︸
=0

) (I + G−
2 B2Q2)︸ ︷︷ ︸

nonsingular

,

i.e. that if G̃2 is nonsingular then so is G3, and so (16) has index 3. �

Remarks:

1. The nonsingularity condition W2�P0Q1Q2 = 0 is also sufficient for the first statement of
Theorem 3.2. To check that condition is not trivial, because it requires the computation
of [(W2BD−z)x − (W2B)xD

−z]. But it can be seen immediately that the condition is
fulfilled for linear DAEs.

2. The second part of this theorem is new, and makes it possible to show that the original
syatem of DAEs had index 3. This will be used in Problem 3 of Section 4.

8
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3.2 The tractability index of the DAEs

We will investigate the index of the system of DAEs (12) in general form, applying the tractabil-
ity index concept. To get a system of DAEs, which has as many equations as unknowns, we
introduce an extra ODE for c. The system of DAEs is given by

y′ = f(y,u, c),
c′ = 0,
v′ = Hy(y,v, c,u,p−),
r′ = Hc(y,v, c,u,p−),
0 = Hu(y,v, c,u,p−),
0 = p+ − g(y,u, c).

(24)

We have to stress here that (24) is not Hessenberg. Therefore an extra investigation is necessary.
The matrices A, D and B are

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

I
I

I
I
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎝

I
I

I
I 0 0

⎞
⎟⎟⎠

and with the unknown vector x =
(
yT , cT ,vT , rT ,uT ,pT

)T
we obtain

B = b′
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

−fy −fc 0 0 −fu 0
0 0 0 0 0 0

−Hyy −Hyc −Hyv 0 −Hyu −Hyp

−Hcy −Hcc −Hcv 0 −Hcu −Hcp

Huy Huc Huv 0 Huu Hup

−gy −gc 0 0 −gu p+
p

⎞
⎟⎟⎟⎟⎟⎟⎠

=:

(
B11 B12

B21 B22

)
.

where p+
p := ∂p+

∂p
=

(
∂p+

i

∂pj

)
. The first matrix chain element is

G0 = AD =

⎛
⎜⎜⎜⎜⎜⎜⎝

I
I

I
I

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

and Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

0
0

I
I

⎞
⎟⎟⎟⎟⎟⎟⎠

is a nullspace projector of G0. The next chain element G1 will be calculated as
G1 = G0 + BQ0. We find

G1 =

(
I B12

B22

)
.

It is easy to see that G1 is nonsingular iff B22 remains nonsingular, i.e. we have an index-1
system of DAEs. If B22 is singular and we know a nullspace projector of B22, we can construct

9
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a nullspace projector Q1 of G1. For DAEs with tractability index we know that Nk∩Nk+1 = {0}
(see [17]).
In particular for k = 0, {0} = N0 ∩ N1 = ker G0 ∩ (ker G0 ∩ ker BQ0) = ker G0 ∩ ker BQ0.

Therefore

(
B12

B22

)
must have full rank.

Let Q̄1 be a nullspace projector of B22; then if R = Q̄1S
−1
B2

BT
12 and SB2 :=

(
BT

12 BT
22

)(
B12

B22

)
,

Q1 =

(
B12R 0
−R 0

)
(25)

represents a nullspace projector of G1 with Q1Q0 = 0. If we know Q1 we can calculate the next
matrix chain element

G2 = G1 + B1Q1 = (G1 + B0P0Q1︸ ︷︷ ︸
=:G2

)(I − P1D
−(DP1D

−)′DQ1). (26)

To investigate the singularity of G2 it is sufficient to investigate the singularity of G2, because
the second factor in the representation (26) of G2 remains nonsingular.

In order to construct a nullspace projector Q̄1 of B22 the structure of the given problem is
sometimes useful. Very often the objective function and the right hand sides f of the ODEs
and g of the inequalities depend only linearly on the control u. In that case Huu ≡ 0. If
additionally gu has full rank the following lemma is valid.

Lemma 3.3 1. The matrix M =

(
0 gT

u p−
p

−gu p+
p

)
with full rank gu is nonsingular iff

Z = (p+
p − gu(g

T
u gu)

−1gT
u ) is nonsingular and

2. if M is singular, a nullspace projector onto ker M is given by Q̄ =

(
0 (gT

u gu)
−1gT

u Q̃

0 Q̃

)
,

where Q̃ describes a nullspace projector onto ker Z.

Proof: 1. From p = p+ − p− we obtain I = p+
p − p−

p . Using p−
p = p+

p − I we obtain that
gT

u Z = gT
u p+

p − gT
u = gT

u p−
p . Multiplying M with a nonsingular matrix

M

(
I (gT

u gu)
−1gT

u

0 I

)
=

(
0 gT

u

−gu I

) (
I

Z

)
.

We obtain a factorization into two matrices. The first factor remains nonsingular for full rank
gu and it is shown that M is nonsingular iff Z is nonsingular.

2. Let Q̃ be a nullspace projector onto ker Z. From gT
u ZQ̃ = 0 we obtain, using I = p+

p −p−
p ,

that gT
u p−

p Q̃ = 0. Then it is easy to see that MQ̄ = 0. �

4 Examples

To illustrate the preceding theoretical developments, we apply them to three known examples.

10
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4.1 Problem 1 (see [5, 15])

A simple example of such a problem is that of Minimum time to cover a fixed distance.
A vehicle has to travel a fixed distance (300 units) in the shortest possible time, starting from
rest, finishing at rest, and subject to limits (1 and -2) on the acceleration and deceleration.

4.1.1 Problem statement

Let the time taken to cover the distance be tf > 0. Then the problem is to

minimize tf

subject to :
dx1

dt
= x

2
, x

1
(0) = 0, x

1
(tf) = 300,

dx2

dt
= a, x2(0) = 0, x2(tf) = 0,

−2 ≤ a ≤ 1,

where a is the acceleration.

4.1.2 Conversion to the general formulation

In order to express this problem in the form given in (1–3), we define variables and constants
as follows:

x1 = y1 , x2 = y2, t = tfs, a = u, tf = c > 0,

and so obtain

minimize tf =

∫ 1

0

c ds

subject to :
dy1

ds
= y2c, y1(0) = 0, y1(1) = 300,

dy
2

ds
= uc, y2(0) = 0, y2(1) = 0,

0 ≤ 2 + u,

0 ≤ 1 − u.

The exact solution of this problem is given in [6, 15]. However it can be checked that initially,
with maximum acceleration we have

u = 1,

y2 = cs, (27)

y1 = 1
2
c2s2;

11
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and finally, with greatest deceleration we obtain

u = −2,

y2 = 2c(1 − s), (28)

y1 = 300 − c2(1 − s)2;

and that these two solutions match when s = 2
3

and c = 30.
The Hamiltonian function is

H = −y2cv1 − ucv2 + (2 + u)p−1 + (1 − u)p−2 − c.

4.1.3 System of DAEs

Using the procedure outlined above, this gives rise to the following system of DAEs (12) without
inequalities:

dy1

ds
= y2c, y1(0) = 0, y1(1) = 300,

dy
2

ds
= uc, y2(0) = 0, y2(1) = 0,

dv1

ds
= 0,

dv2

ds
= −cv1 ,

dr

ds
= −y2v1 − uv2 − 1, r(0) = 0, r(1) = 0,

0 = −cv2 + p−
1
− p−

2
,

0 = p+
1
− 2 − u,

0 = p+
2
− 1 + u.

This system has 8 variables (y
1
, y

2
, v

1
, v

2
, r, u, p

1
, p

2
) and 1 unknown constant (c) which must

satisfy 5 equations with derivatives and 3 algebraic equations. It therefore requires 6 boundary
conditions corresponding to the 5 differential equations and the unknown constant. It appears
to have exactly the correct number of boundary conditions to determine a unique solution.

4.1.4 The matrix chain

The vector of dependent variables is given by x = (y1, y2, c, v1, v2, r, u, p1, p2).

G0 =

(
I6

03

)
, Q0 =

(
06

I3

)
.

12
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The matrix B is given by

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −c −y2 0 0 0 0 0 0
0 0 −u 0 0 0 −c 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 v1 c 0 0 0 0 0
0 v1 0 y2 u 0 v2 0 0
0 0 −v2 0 −c 0 0 p−1p1

−p−2p2

0 0 0 0 0 0 −1 p+
1p1

0

0 0 0 0 0 0 1 0 p+
2p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the next chain matrix is calculated as

G1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −c 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 v2 0 0
0 0 0 0 0 0 0 p−1p1

−p−2p2

0 0 0 0 0 0 −1 p+
1p1

0

0 0 0 0 0 0 1 0 p+
2p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The nonsingularity of G1 depends on the nonsingularity of

⎛
⎝ 0 p−1p1

−p−2p2−1 p+
1p1

0

1 0 p+
2p2

⎞
⎠. This matrix

has exactly the structure of matrix M of Lemma 3.3. The relevant matrix Z is given by

Z =

⎛
⎝p+

1p1
− 1

2
1
2

1
2

p+
2p2

− 1
2

⎞
⎠ .

Here two cases are possible: either p1 and p2 have the same sign or they do not.
For different signs of p1 and p2, det Z = −1

2
, which means that G1 is nonsingular and the

DAE has index 1. If both p1 and p2 are negative the last two equations create a contradiction,
because each of them gives a fixed value of z, but they are different (-2 and 1); in terms of
the original problem statement both constraints are active simultaneously. The DAE has no

tractability index in that case, because

(
B12

B22

)
does not have full rank.

If both p1 and p2 are positive the last two equations do not determine the control u. The
algebraic equation 0 = −cv2 implies that v2 = 0 and from the fourth equation v1 = 0. The
acceleration u appears in the second equation but, together with the first equation, that pro-
vides insufficient information to determine u. The DAE has no tractability index in that case
and this can be confirmed in the numerical results obtained in Section 5.

13
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4.2 Problem 2 (see [15])

A slightly more complicated problem is given by imposing a Speed limit.

4.2.1 Problem statement

Let the speed limit be k, where the other variables have the same meaning as before. The
problem is to

minimize tf

subject to :
dx1

dt
= x2 , x1(0) = 0, x1(tf) = 300,

dx2

dt
= a, x2(0) = 0, x2(tf) = 0,

−2 ≤ a ≤ 1, x2 ≤ k.

4.2.2 Conversion to the general formulation

We define variables and constants as before

x1 = y1 , x2 = y2, t = tfs, a = u, tf = c > 0,

and so obtain

minimize tf =

∫ 1

0

c ds

subject to :
dy1

ds
= y2c, y1(0) = 0, y1(1) = 300,

dy
2

ds
= uc, y2(0) = 0, y2(1) = 0,

0 ≤ 2 + u,

0 ≤ 1 − u,

0 ≤ k − y2.

Again, the exact solution of this problem is given in [6, 15].
If k ≥ 20 the solution is identical to that of Problem 1.
If k ≤ 20 the solution is:
for 0 ≤ s ≤ k

c

u = 1,

y2 = cs, (29)

y1 = 1
2
c2s2;

14
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for k
c
≤ s ≤ 1 − k

2c

u = 0,

y2 = k, (30)

y1 = kcs − 1
2
k2;

for 1 − k
2c

≤ s ≤ 1

u = −2,

y2 = 2c(1 − s), (31)

y1 = 300 − c2(1 − s)2;

and these match if c = 3
4k

(400 + k2).
The Hamiltonian function is

H = −y2cv1 − ucv2 + (2 + u)p−1 + (1 − u)p−2 + (k − y2)p
−
3 − c.

4.2.3 System of DAEs

This gives rise to the system of DAEs (12) without inequalities:

dy
1

ds
= y2c, y1(0) = 0, y1(1) = 300,

dy2

ds
= uc, y2(0) = 0, y2(1) = 0,

dv1

ds
= 0,

dv2

ds
= −cv1 − p−

3
,

dr

ds
= −y2v1 − uv2 − 1, r(0) = 0, r(1) = 0,

0 = −cv2 + p−
1
− p−

2
,

0 = p+
1
− 2 − u,

0 = p+
2
− 1 + u,

0 = p+
3
− k + y2.

This system has 9 variables (y1, y2, v1 , v2, r, u, p1, p2p3) and 1 unknown constant (c) which must
satisfy 5 equations with derivatives and 4 algebraic equations. It therefore requires 6 boundary
conditions corresponding to the 5 differential equations and the unknown constant. It appears
to have exactly the correct number of boundary conditions to determine a unique solution.

15
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4.2.4 The matrix chain

The vector of dependent variables is given by x = (y1, y2, c, v1, v2, r, u, p1, p2, p3).

G0 =

(
I6

04

)
, Q0 =

(
06

I4

)
.

The matrix B is given by

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −c −y2 0 0 0 0 0 0 0
0 0 −u 0 0 0 −c 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 v1 c 0 0 0 0 0 p−3p3

0 v1 0 y2 u 0 v2 0 0 0
0 0 −v2 0 −c 0 0 p−1p1

−p−2p2
0

0 0 0 0 0 0 −1 p+
1p1

0 0

0 0 0 0 0 0 1 0 p+
2p2

0

0 1 0 0 0 0 0 0 0 p+
3p3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the next chain matrix is calculated as

G1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −c 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 p−3p3

0 0 0 0 0 1 v2 0 0 0
0 0 0 0 0 0 0 p−1p1

−p−2p2
0

0 0 0 0 0 0 −1 p+
1p1

0 0

0 0 0 0 0 0 1 0 p+
2p2

0

0 0 0 0 0 0 0 0 0 p+
3p3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix in the lower right-hand corner, which determines the singularity of G1, has the
structure of M in Lemma 3.3 and the associated matrix Z has the structure

Z =

⎛
⎜⎜⎜⎝
−p+

1p1
− 1

2
1
2

0

1
2

p+
2p2

− 1
2

0

0 0 p+
3p3

⎞
⎟⎟⎟⎠ .

If p3 > 0 we discover the same cases as in Problem 1: if p1 and p2 have different signs then Z
and therefore M is nonsingular and the DAE has index 1; if p1 and p2 have the same sign no
index is defined.

If p3 < 0 and both p1 and p2 are negative,

(
B12

B22

)
does not have full rank (all three constraints

are active). If p3 < 0 and p1 and p2 have different signs, the DAE has no tractability index.
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If p3 < 0, p1 > 0 and p2 > 0, Z is given by Z =
1

2

⎛
⎝1 1 0

1 1 0
0 0 0

⎞
⎠ and a nullspace projector is

Q̃ =

⎛
⎝0 −1 0

0 1 0
0 0 1

⎞
⎠. Using the nullspace projector of M constructed in Lemma 3.3 we obtain a

nullspace projector of G1 by (25) as

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 c2μ 0 0 0 −cv2μ 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 −cv2μ 0 0 0 v2

2μ 0 0 0 0
0 cμ 0 0 0 −v2μ 0 0 0 0
0 cμ 0 0 0 −v2μ 0 0 0 0
0 −cμ 0 0 0 v2μ 0 0 0 0
0 0 0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with μ = 1
c2+v2

2
and we obtain G2 by (26) as

G2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −c3μ 0 0 0 c2v2μ 0 0 0 0
0 1 0 0 0 0 −c 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1
0 c2v1μ 0 0 u 1 − cv1v2μ v2 0 0 0
0 0 0 0 −c 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 0 1 0
0 c2μ 0 0 0 −cv2μ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix G2 remains nonsingular (det(G2) = c2) and we have an index-2 DAE. The projector

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

shows that we have to differentiate the seventh and the tenth equations to reduce the index.
This index-2 DAE corresponds to the solution (30).
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4.3 Problem 3 (see [15], [13])

A problem concerning Catalyst mixing for a packed bed reactor.
A chemical A is fed into one end of the reactor. One catalyst applies to a reversible reaction
which converts A to a chemical B. A second catalyst converts B to a product C. The aim is
to mix the catalysts, with a proportion F of the first and 1 − F of the second, in such a way
as to maximize the final concentration of C.

4.3.1 Problem statement

In [15], this problem is given as one of maximizing the concentration (1−za(xf)−zb(xf)). The
statement of the problem is as follows:

max
F

(1 − za(xf) − zb(xf ))

subject to :
dza

dx
= F (10zb − za), za(0) = 1,

dzb

dx
= F (za − 10zb) − (1 − F )zb, zb(0) = 0,

0 ≤ F ≤ 1.

4.3.2 Conversion to the general formulation

In order to express the problem in the form given in (1–3), we define variables and constants
as follows:

za = y
1
, zb = y

2
, x = s, F = u, xf = b,

rewrite the objective function as

min
F

(za(xf ) + zb(xf ) − 1) = min
u

∫ b

0

(u − 1)y2 ds

and the inequality constraints as 0 ≤ u, 0 ≤ 1 − u.

In [6], we produced the exact solution that had also been reported in [13].
If b ≤ 1

11
ln(1 +

√
12.1) + ln(1 +

√
0.1) =: bc ≈ 0.4111 and sc satisfies

esc(e11sc + 10) = 11eb,

the solution is:
for 0 ≤ s ≤ sc

u = 1,

y1 = 1
11

(10 + e−11s), (32)

y2 = 1
11

(1 − e−11s);

18
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for sc ≤ s ≤ b

u = 0,

y1 = 1
11

(10 + e−11sc), (33)

y2 = 1
11

(1 − e−11sc)e−(s−sc).

If b ≥ bc the solution consists of three parts.
Let s1 := 1

11
ln(1 +

√
12.1) ≈ 0.1363 and s2 := b − ln(1 +

√
0.1) ≈ b − 0.2748. Then

for 0 ≤ s ≤ s1

u = 1,

y1 = 1
11

(10 + e−11s), (34)

y2 = 1
11

(1 − e−11s);

for s1 ≤ s ≤ s2

u =
5
√

10 − 4

52
≈ 0.2271,

y
1

= 1
111

(100 +
√

10)e
1
52

(−6+
√

10)(s−s1), (35)

y2 = 1
111

(11 −√
10)e

1
52

(−6+
√

10)(s−s1);

for s2 ≤ s ≤ b

u = 0,

y
1

= 1
111

(100 +
√

10)e
1
52

(−6+
√

10)(s2−s1), (36)

y2 = 1
111

(11 −√
10)e

1
52

(−6+
√

10)(s2−s1)−(s−s2).

The Hamiltonian is

H = −u(10y2 − y1)(v1 − v2) + (1 − u)y2(v2 + 1) + up−1 + (1 − u)p−2 .

4.3.3 System of DAEs

The problem gives rise to the system of DAEs (12) without inequalities:

dy1

ds
= (10y2 − y1)u, y1(0) = 1,

dy2

ds
= (y1 − 10y2)u − (1 − u)y2, y2(0) = 0,

dv1

ds
= (v1 − v2)u, v1(b) = 0,

dv
2

ds
= 10(v2 − v1)u + (v2 + 1)(1 − u), v2(b) = 0,

0 = (y1 − 10y2)(v1 − v2) − y2(v2 + 1) + p−
1
− p−

2
,

0 = p+
1
− u,

0 = p+
2
− 1 + u.

19
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We now have a system with 7 variables (y
1
, y

2
, v

1
, v

2
, u, p

1
, p

2
) which must satisfy 4 equations

with derivatives and 3 algebraic equations. It therefore requires 4 boundary conditions cor-
responding to the 4 differential equations, and appears to have exactly the correct number of
boundary conditions to determine a unique solution.

4.3.4 The matrix chain

The vector of dependent variables is given by x = (y1, y2, v1, v2, u, p1, p2).

G0 =

(
I4

03

)
, Q0 =

(
04

I3

)
.

For the matrix B we have

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u −10u 0 0 y1 − 10y2 0 0
−u 1 + 9u 0 0 −y1 + 9y2 0 0
0 0 −u u −v1 + v2 0 0
0 0 10u −1 − 9u 1 + 10v1 − 9v2 0 0

v1 − v2 −(1 + 10v1 − 9v2) y1 − 10y2 −y1 + 9y2 0 p−1p1
p−2p2

0 0 0 0 −1 p+
1p1

0

0 0 0 0 1 0 p+
2p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the first chain element is given by

G1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 y1 − 10y2 0 0
0 1 0 0 −y1 + 9y2 0 0
0 0 1 0 −v1 + v2 0 0
0 0 0 1 1 + 10v1 − 9v2 0 0
0 0 0 0 0 p−1p1

p−2p2

0 0 0 0 −1 p+
1p1

0

0 0 0 0 1 0 p+
2p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=:

(
G1

11 G1
12

G1
21 G1

22

)
.

The submatrix G1
22 of G1, which determines the singularity is exactly the same as in Problem

1. We have a nonsingular matrix G1 if the signs of p1 and p2 are different. If p1 and p2 are
both negative we have a nonregular DAE (see Problem 1). Lastly we have to investigate the
case where both p1 and p2 are positive.

If p1 > 0 and p2 > 0 then Z =
1

2

(
1 1
1 1

)
and a nullspace projector Q̃ =

(
0 −1
0 1

)
.

The gradient of the constraint vector g is gu =

(
1
−1

)
and from Lemma 3.3 the projector

Q̄1 =

⎛
⎝0 0 −1

0 0 −1
0 0 1

⎞
⎠. From (26)

G2 = G1 + BP0Q1 =

(
I B12

0 B22

)
+

(
B11 B12

B21 B22

) (
I

0

) (
B12R 0
−R 0

)
=

(
I + B11B12R B12

B21B12R B22

)
.
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By examination of B, it may be seen that B21B12 ≡ 0 and B22 =

⎛
⎝ 0 0 0
−1 1 0
1 0 1

⎞
⎠ therefore G2 has

a zero row and is singular. The singularity of G2 leads to a singular matrix G2, which means
that the DAE has index at least 3 (if it exists). To investigate that theoretically, we apply
Theorem 3.2. To check the assumptions we have used a formula manipulation system.

The image of G2 is given by {y : y = G2z, z ∈ R
n}. Setting z =

⎛
⎝ (I − B12R)u

Ru + (I − Q̄1)

(
0
v

)⎞
⎠ with

arbitrary vectors u ∈ R
4 and v ∈ R

2 we get G2z =

⎛
⎝u

0
v

⎞
⎠. This shows that the projector along

im G2 = im G2 is given by

W2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have to differentiate the fifth equation. The resulting equation (17) which may be written

(A + W2BD−)(Dx)′ + (I − W2)b(x) = 0 (37)

has index 2.

We check this index-2 property by computing G̃2 = G̃1 + B̃1Q1 with G̃1 = G0 + W2BP0 and
B̃1 = (I − W2)BP0 using Q1 given by (25). We obtain |G̃2| = 2y1(1 + 10v1 − 9v2 + u(10 +
111v1 − 101v2)) − y2(9 + 90v1 − 81v2 + u(91 + 1010v1 − 919v2)). To check the assumption of
the second part of Theorem 3.2 that W2[(W2BD−z)x − (W2B)xD

−z]P0Q1Q2 = 0, we compute

W2B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

v1 − v2 −10v1 + 9v2 − 1 y1 − 10y2 −y1 + 9y2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which we can write with constant vectors ai, i = 1, . . . , 4 and x = (y1, y2, v1, v2, u, p1, p2) as

W2B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

aT
1 x aT

2 x − 1 aT
3 x aT

4 x 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Because of the symmetry of the matrix (a1, a2, a3, a4) both expressions (W2BD−z)x and
(W2B)xD

−z are equal for arbitrary z. From Theorem 3.2 we obtain that, for the case p1, p2 > 0
the index of the DAE is 3. The index-3 DAE for that case corresponds to the solution (35).

5 The numerical tests

The matrix chain (14) is calculated numerically (see [14]) by means of a Matlab code. We will
use it to test the problems numerically. Numerically means that we check the properties of
the DAEs which we have studied, pointwise for particular values of the variables (t(= t̄),x).
The tractability index works with linearizations of the DAE along a function, with appropriate
smoothness properties. Here in our experiments we linearize the DAE along a linear function
through x(t̄) with the derivative of every component equal to 1.
A hyphen (-) in the “index” column indicates that the code does not determine an index because
the matrix chain could not be constructed (tractability index not defined). Under ”remarks”
we put the result of the algorithm and the last calculated matrix chain element, or we indicate
to which part of the solution it corresponds.

Problem 1:
We use x(t̄) = (y1, y2, c, v1, v2, r, u, p1, p2)

T = (0, 0, 1, 1, 1, 0, 1,±1,±1)T .

p1 p2 index remarks
> 0 > 0 - index not defined - G4

> 0 < 0 1 refers to (27)
< 0 > 0 1 refers to (28)
< 0 < 0 - index not defined - G1

Problem 2:
We use x(t̄) = (y1, y2, c, v1, v2, r, u, p1, p2, p3)

T = (0, 0, 1, 1, 1, 0, 1,±1,±1,±1)T .

p1 p2 p3 index remarks
> 0 > 0 > 0 - index not defined - G4

> 0 < 0 > 0 1 refers to (29)
< 0 > 0 > 0 1 refers to (31)
< 0 < 0 > 0 - index not defined - G1

> 0 > 0 < 0 2 refers to (30)
> 0 < 0 < 0 - index not defined - G3

< 0 > 0 < 0 - index not defined - G3

< 0 < 0 < 0 - index not defined - G1

Problem 3:
We use x(t̄) = (za, zb, va, vb, u, p1, p2)

T = (0, 0, 1, 1, 1,±1,±1)T .

p1 p2 index remarks
> 0 > 0 3 refers to (35)
> 0 < 0 1 refers to (34)
< 0 > 0 1 refers to (36)
< 0 < 0 - index not defined - G0
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6 Conclusions

We have outlined here a procedure for transforming a general optimal control problem to a
system of DAEs.

The tractability index concept presented here, provides an automatic tool for determining the
index of a general system of DAEs theoretically and numerically. In this paper, the application
to DAEs obtained from optimal control problems shows its potentiality to determine the index,
and also the image projector Wμ−1 of an index-μ system of DAEs provides information on which
equations need to be differentiated in order to reduce the index.

Furthermore, this procedure is an improvement over existing methods [3], since it does not
increase the number of equations in the system.

The numerical algorithm used here to determine the index can be used for solving problems
without the knowledge of an analytic solution.

This opens the door for solving optimal control problems in an alternative way.

In more applications, with a large number of variables and higher nonlinearities, as in the sim-
ulation of electrical networks, an investigation of the properties of the problem, such as has
been done here in Section 4 is not yet practicable. However, the development of a numerical
index monitor, such as the one presented in Section 5, is a first step.

Acknowledgment: We thank both the unknown referees for their helpful comments.
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