
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Graph based architectural (re)configuration language

Conference or Workshop Item
How to cite:

Wermelinger, Michel; Lopes, Antónia and Fiadeiro, José Luiz (2001). A Graph based architectural (re)configuration
language. In: Proceedings of the 8th European Software Engineering Conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ACM, pp. 21–32.

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/503209.503213

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/82900418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1145/503209.503213
http://oro.open.ac.uk/policies.html

A Graph Based Architectural (Re)configuration Language ∗

Michel Wermelinger
Departamento de Informática
Fac. de Ciências e Tecnologia
Universidade Nova de Lisboa

2829-516 Caparica
Portugal

http://ctp.di.fct.unl.pt/˜mw

Antónia Lopes
Dep. de Informática

Faculdade de Ciências
Universidade de Lisboa

Campo Grande
1700 Lisboa, Portugal

http://www.di.fc.ul.pt/˜mal

José Luiz Fiadeiro
Dep. de Informática

Faculdade de Ciências
Universidade de Lisboa

Campo Grande
1700 Lisboa, Portugal

http://www.fiadeiro.org/jose

ABSTRACT
For several different reasons, such as changes in the business or
technological environment, the configuration of a system may need
to evolve during execution. Support for such evolution can be con-
ceived in terms of a language for specifying the dynamic reconfig-
uration of systems. In this paper, continuing our work on the de-
velopment of a formal platform for architectural design, we present
a high-level language to describe architectures and for operating
changes over a configuration (i.e., an architecture instance), such as
adding, removing or substituting components or interconnections.
The language follows an imperative style and builds on a semantic
domain established in previous work. Therein, we model archi-
tectures through categorical diagrams and dynamic reconfiguration
through algebraic graph rewriting.

1. INTRODUCTION
One of the topics that is raising increased interest in the Software
Architecture community is the ability to specify how an architec-
ture evolves over time, in particular at run-time, in order to adapt to
new requirements, new business rules or new environments, to fail-
ures, and to mobility. This topic raises several issues [26], among
which:

modification time and source Architectures may change before ex-
ecution, or at run-time (called dynamic reconfiguration). Run-
time changes may be triggered by the current state or topol-
ogy of the system (called programmed reconfiguration [7])
or may be requested unexpectedly by the user (called ad-hoc
reconfiguration [7]).

modification operations The four fundamental operations are ad-
dition and removal of components and connections. Although
their names vary, those operators are provided by most re-
configuration languages (like [7, 20, 1, 15]). In programmed

∗This research was partially supported by Fundação para a Cîencia
e Tecnologia through project POSI/32717/00 (FAST—Formal Ap-
proach to Software Architecture) and by ATX Software SA.

reconfiguration, the changes to perform are given with the
initial architecture, but they may be executed when the ar-
chitecture has already changed. Therefore it is necessary to
query at run-time the state of the components and the topol-
ogy of the architecture.

modification constraints Often changes must preserve several kinds
of properties: structural (e.g., the architecture has a ring struc-
ture), functional, and behavioural (e.g., real-time constraints).

system stateThe new system must be in a consistent state.

There is a growing body of work on architectural reconfiguration,
some of it related to specific Architecture Description Languages
(ADL) [4, 18, 25, 1], and some of a formal, ADL-independent na-
ture [13, 19, 22, 28]. As we argued in [29], most of the proposals
exhibit one of the following drawbacks.

• Arbitrary reconfigurations are not possible (e.g., only com-
ponent replication is allowed).

• The languages used for the representation of computations
are at a low level of abstraction (e.g., process calculi). They
do not capture some of the abstractions used by programmers
and often lead to cumbersome specifications.

• The combination of reconfiguration and computation, needed
for run-time change, leads to additional formal constructs.
This often results in a proposal that is not uniform, or has
complex semantics, or does not make the relationship be-
tween reconfiguration and computation clear enough.

To overcome these disadvantages, we have proposed in the last
ESEC/FSE an algebraic approach [29], using categorical diagrams
to represent architectures, the double-pushout graph transformation
approach [6] to specify reconfigurations, and a program design lan-
guage with explicit state to describe computations [17]. In [30] we
have further refined and extended the work, using typed graphs to
represent simple topological invariants for the reconfiguration pro-
cess. We have shown that our approach has several advantages over
previous work, avoiding the drawbacks mentioned above:

• Architectures, reconfigurations, and connectors are represented
and manipulated in a graphical yet mathematical rigorous
way at the same language-independent level of abstraction,
resulting in a uniform framework based simply on diagrams
and their colimits (a universal categorical construction).

http://ctp.di.fct.unl.pt/~mw
http://www.di.fc.ul.pt/~mal
http://www.fiadeiro.org/jose

• The chosen program design language is at a high level of
abstraction, allowing a more intuitive representation of pro-
gram state and computations.

• Computations and reconfigurations are kept separate but re-
lated in an explicit, simple, and direct way through the col-
imit construction.

• Typed graphs provide a simple and declarative notion of mod-
ification constraints.

• Several practical problems—maintaining the constraints dur-
ing reconfiguration, transferring the state during replacement,
removing components in a quiescent state [15], adding com-
ponents properly initialized—are easily handled.

However, the work presented was meant as an investigation into
solid formal foundations for dynamic reconfiguration. It was not
meant as an actual specification language. In fact, as argued in
[27], describing certain kinds of transformations using only graph
rewriting rules can be quite cumbersome, because it leads to heavy
use of dummy nodes and arcs to control the exact way in which
rewriting rules are to be applied. Unfortunately, ADLs either do
not handle reconfiguration (like [24]) or they provide only a few
basic reconfiguration constructs (like [25, 1, 4, 19, 20]) making
it hard or impossible to express moderately complex reconfigu-
rations. Therefore we turned to work in Distributed Systems, in
which the technological aspects of reconfiguration have been in-
vestigated for a long time.

Two of the most elegant and expressive approaches we found are
Gerel [7] and reconfiguration programming [23]. Both allow the
description of very complex reconfigurations in a relatively easy
way, combining the usual programming language constructs (like
selection and iteration) with specialised reconfiguration commands.
However, approaches like these lack a formal basis, and they do
not have an explicit notion of the system’s software architecture
in which the reconfiguration occurs. Taking a distributed systems
perspective, some approaches describe reconfigurations at a low
level of abstraction, usually (dis)connecting components on a port
by port basis.

In this paper we try to make a bridge between the rigour of formal
approaches, the abstractions of Software Architecture approaches,
and the pragmatics of Distributed Systems approaches, by present-
ing a language to describe architectures and complex reconfigura-
tions in a straightforward way, while keeping the algebraic founda-
tions laid out in our previous work. We are more interested in what
are the necessary constructions needed for an effective but formal
reconfiguration language, than in the actual language itself. There-
fore, this paper only presents a minimal language with one spe-
cialised construct for each task (iteration, removing components,
interconnecting components, querying the configuration, etc.).

The running example is taken from banking. We consider cus-
tomers and accounts, in a one-to-one relationship. Besides a nor-
mal kind of accounts, there may also exist salary accounts, in which
its owner gets her/his salary deposited every month. For normal ac-
counts, it is not possible to withdraw more than the current balance,
but a salary account may be overdrawn up to the salary amount. Of
course, such a benefit has a price, to be paid in terms of interest
calculated over the period and amount the account is below zero.
Therefore, when such an account is created, or when an existing

normal account becomes a salary account, the customer must ex-
plicitly state how much credit s/he wants. The credit must not ex-
ceed the salary, and in particular it may be zero, i.e., the customer
may wish not to take advantage of having credit. The bank is not
interested in accounts that have anaveragebalance below zero. In
those cases, the policy is to return those accounts automatically to
their normal status, to prevent the financial situation of the account,
and the debt of the customer towards the bank, of getting worse.

We start by summarising COMMUNITY , the program design lan-
guage used to describe computations. We then introduce the lan-
guage fragment to describe architectures and their constraints. Fi-
nally, in Section 4 we present the remaining of the language, in
order to describe reconfigurations.

2. COMMUNITY
COMMUNITY programs are in the style of UNITY programs [5],
but they also combine elements from IP [11]. However, COMMU-
NITY has a richer coordination model and, even more important, it
requires interaction between components to be made explicit. In
this way, the coordination aspects of a system can be separated
from the computational aspects and externalised, making explicit
the gross modularisation of the system in terms of its components
and its interactions.

In this section, we summarise the syntax of COMMUNITY pro-
grams and introduce a notation for describing system configura-
tions. Each configuration can be transformed into a single, semanti-
cally equivalent, program that represents the whole system. Finally,
we discuss refinement of COMMUNITY programs. The formal def-
initions and proofs were presented in [17, 16].

2.1 Designs
COMMUNITY is independent of the actual data types used and,
hence, we assume there are pre-defined sorts and functions given
by a fixed algebraic signature in the usual sense. For the purpose
of examples, we consider an algebraic signature containing sorts
bool (booleans),nat (natural numbers) andint (integers) with
the usual operations.

A COMMUNITY design consists of a set of typed variables and a
set of actions. There areinput, outputandprivatevariables. Input
variables are read-only. Output and private variables are calledlo-
cal variables and cannot be changed by the environment. A design
with input variables isopen in the sense that it needs to be con-
nected to other components of the system to read data, as explained
in Section 2.2.

There areprivate andsharedactions, but our example only uses
the latter. Each action has a name, two guards, and a set of non-
deterministic assignments. Thesafetyandprogressguards are propo-
sitions over the local variables and establish an interval in which
the enabling condition of the action must lie, the safety guard be-
ing the lower bound. When the guards are equivalent we write only
one of them. At each execution step, one of the actions whose
enabling condition holds of the current state is selected, and its as-
signments are executed atomically in parallel. A non-deterministic
assignmentl :∈ E assigns tol one of the elements of setE. We
abbreviatev :∈ {t} asv := t, and we writeskip to denote the
absence of assignments.

For our example, we need the following designs. The first simply
describes the basic functionality of an account: it lets money to be

deposited and withdrawn without any limits. There is also a vari-
able to store the account number. No action changes the variable
because its value remains fixed while the account exists. There is
an action to calculate the average balance of the account, but for
the moment it is irrelevant how and when the average is computed.

design NormalAccount
in amount : nat
out balance, avgbal, number : int
do deposit: true→ balance := balance + amount
[] withdraw: true→ balance := balance - amount
[] average: true, false→ avgbal:∈ int

The second design describes a salary account, which adds to ‘Nor-
malAccount’ a variable to store the credit given to this account, i.e.,
the salary deposited in it every month. The safety guard of action
‘withdraw’ is changed accordingly.

design SalaryAccount
in amount : nat
out balance, avgbal, number, salary : int
do deposit: true→ balance := balance + amount
[] withdraw: balance - amount≥ -salary

→ balance := balance - amount
[] average: true, false→ avgbal:∈ int

The next design models the behaviour of a customer. S/he chooses
some value and then invokes one of the two operations.

design Customer
out value : nat
prv ready : bool
do deposit: ready, false→ ready := false
[] withdraw: ready, false→ ready := false
[] choose:¬ready, false→ value:∈ nat‖ ready := true

2.2 Configurations
In COMMUNITY , the model of interaction between components is
based on action synchronisation and the interconnection of input
variables of a component with output variables of other compo-
nents. Although these are common forms of interaction, COMMU-
NITY , unlike other program design languages, requires interaction
between components (name bindings) to be made explicit.

Connecting a designD1 with a designD2 is done through achan-
nel: a set of bindingsi1,j-i2,j , where eachi1,j is a non-private vari-
able or a set of shared actions of designD1. In the first case,i2,j

must be a non-private variable ofD2, of the same sort asi1,j , and
the pairi1,1-i2,1 denotes that the two variables are to be shared. In
the second case,i2,j must be a set of shared actions ofD2. More-
over, every shared action of the involved designs can appear at most
once in the channel definition. Intuitively, a pair

{a1,1, . . . , a1,n}-{a2,1, . . . , a2,m}

states that any actiona1,i of D1 must occur simultaneously (i.e.,
synchronise) with some actiona2,j of D2 and vice versa.

For example, the channel

{value-amount, deposit-deposit, withdraw-withdraw}

to connect a customer directly to a normal account, allows the cus-

tomer to withdraw unlimited funds anytime, a highly undesirable
situation (for the bank, of course).

A configurationis given by an undirected labelled graph, where
each node is labelled by a design, and each arc by a channel, such
that: 1) no node is connected to itself; 2) no two output variables
are (directly or indirectly) shared.

Such a configuration has a very precise mathematical semantics,
given by a diagram in a category whose objects are designs and
whose morphisms capture a notion of program superposition [5].
An interconnection between two components is described by a de-
sign that just declares the common variables and actions of the
components, without introducing any additional behaviour, thus
corresponding to the recently proposed notion of duct [21]. This
semantics has been presented previously [17, 16] and it is trivial
to translate configurations into categorical diagrams. One of the
advantages of this categorical semantics is that any diagram cor-
responding to a configuration can be transformed, by a universal
categorical construction calledcolimit, into a single design that rep-
resents the whole system, as proven in [16].

A run-time configuration is a configuration in which each node,
besides being labelled with a designD, is also labelled with its
current state, i.e., with one pair〈l, value〉 for each local variable
l of D. Because local variables cannot be shared among designs,
it is not possible for two different nodes to have different values
for the same variable. Hence, the colimit of a run-time configu-
ration always exists and is given by the colimit of the underlying
configuration together with the disjoint union of all variable-value
pairs.

2.3 Refinement
A key factor for architectural description is a notion of refinement
that can be used to support abstraction. A designR refines design
P if each variable ofP is mapped to a variable ofR of the same
sort and kind (input, output or private), and each action ofP is
mapped to a set of actions ofR of the same kind (private or shared),
such that the functionality and interface (i.e., the “binding points”)
of P are preserved. The interface is preserved by requiring the
mapping of input and output variables to be injective and the image
of a shared action to be a non-empty set. To preserve functionality
safety guards may not be weakened, progress guards may not be
strengthened, and assignments may not be less deterministic.

The concrete syntax to define refinement morphisms is

refinement Name: D1 → D2

x1,1/x2,1 . . .
end refinement

such that eachx1,i is a variable of designD1—and in that case
x2,i is a variable ofD2—or an action ofD1—and in that casex2,i

is a set of actions ofD2. The identity and inclusion refinement
morphisms are implicitly defined (see Section 3.4). For our exam-
ple, we have the inclusion of ‘NormalAccount’ in ‘SalaryAccount’.
Another way of defining refinements is through composition:

refinement Name: D1 → Dn+1

Name1 ; Name2 ; . . . ;Namen

end refinement

with Namei: Di → Di+1 a previously defined refinement or the

reserved wordinclusion .

Channels can be composed with refinement morphisms. To be
more precise, given a channel between designsD1 and D2 and
a refinementD3 of D2, one can calculate a channel betweenD1

and D3 by composing every bindingi1,j-i2,j with the mapping
i2,j/i3,j . Moreover, the colimit of the obtained configuration is a
refinement of the colimit of the original configuration.

3. SOFTWARE ARCHITECTURE
An architecture is a class of configurations that exhibit some con-
ceptual unity. An architectural description must therefore include
the designs and interactions to be used in those configurations and
a set of restrictions on the possible configurations.

We start by describing a construct to specify complex interactions
between components, using the primitive mechanisms of action
synchronization and variable sharing given by channels. Next we
show how to describe conditions on the run-time configurations and
finally we present the concrete syntax for architectures.

3.1 Connectors
Although components have always been considered the fundamen-
tal building blocks of software systems, the way the components
of a system interact may be also determinant on the system proper-
ties. Component interactions were recognised also to be first-class
design entities and architectural connectors have emerged as a pow-
erful tool for supporting the description of these interactions.

According to [2], ann-ary connector consists ofn roles and one
glue stating the interaction between the roles. The use of a con-
nector in the construction of a particular system is realised by the
instantiation of its roles with specific components of the system.
Therefore the roles act as “formal parameters”, restricting which
components may be linked together through the connector.

In our framework, a connector is represented by a star-shaped con-
figuration, with the glue, in the center, linked to the roles, in the
points of the star [9]. Normally, different connectors may use the
same designs for roles, because there may exist different kinds of
interactions between the same kinds of components. Moreover, the
roles are the “interface” of a connector, i.e., they must be publicly
known in order to intantiate them with the actual components. For
these two reasons, we require the designs used for roles to be speci-
fied before and outside the specification of connectors. A connector
then just specifies the glue and the channels.

For our running example we need a connector with two roles, one
to be instantiated with a customer and the other to be instantiated
with any account. To make the example more compact, we use for
the first role the ‘Customer’ design itself. The second role is

design AnyAccount
in value : nat
out balance : int
do credit: true, false→ balance:∈ int
[] debit: true, false→ balance:∈ int

As for the connector, its glue contains a private variable to store
the amount of credit given to the customer. If the customer is not
allowed to overdraw the account, the credit will be zero. The credit
is a constant of that particular interaction between the customer and

the account that instantiate the roles. Hence, no action of the glue
modifies the ‘credit’ variable.

connector Movement(Customer, AnyAccount)
design Movement
in amount : nat; balance : int
prv credit : nat
do put: true→ skip
[] get: balance - amount≥ -credit→ skip
channel amount-value put-deposit get-withdraw
channel amount-value put-credit get-debit balance-balance

end connector

Notice that the name of a connector is the name of its glue, and that
the i-th channel describes the bindings between the glue and the
i-th role.

An n-ary connector is applied ton components by defining which
component refines which role in which way. Usually, general-
purpose connectors (e.g., for asynchronous communication or RPC)
have also very general roles (i.e., which impose very little restric-
tions on the components that intantiate them), because such con-
nectors are supposed to be applicable to a wide class of compo-
nents. This means that several different component designs may
refine the same role. Moreover, for a given role-component pair
there may be several different possible refinements. However, for a
particular architecture, several of these possibilities may not make
sense. Normally, each role is to be refined by only a few component
designs and each one of them has to refine the role in only one way.
Hence, we require the architect to specify just those refinements
that are possible. Identity and inclusion refinement morphisms are
always allowed.

For our example, ‘AnyAccount’ can be refined in two ways.

refinement AN: AnyAccount→ NormalAccount
value/amount, balance/balance, credit/deposit, debit/withdraw
end refinement

refinement AS: AnyAccount→ SalaryAccount
AN; inclusion
end refinement

Moreover, there is the identity between the ‘Customer’ role and the
component design.

3.2 Constraints
The components, connectors, and refinements specified by the ar-
chitecture only provide the vocabulary to write configurations. In
other words, they only impose minimal, syntactic restrictions on
the class of configurations for an intended software system.

To describe more complex constraints we use a first-order language
where variables are typed by designs or connectors. Such variables
range over the nodes of the current run-time configuration, in the
case of a connector the referred node being the glue. Theconnector
predicate

ConnectorVar([Re�nementName1 →] ComponentVar1, . . .)

is satisfied if the configuration contains a star-shaped subgraph with
the nodeConnectorVar connected to the given component nodes

ComponentVari through channels obtained by composing the chan-
nels from the glueConnectorVar to the roles with the given refine-
ments from the roles to the components. If it is not relevant how one
of the roles is intantiated, bothRe�nementName andComponent-

Var may be the anonymous variable, which we write as in Prolog,
using the underscore character. Moreover, we use the usual nota-
tion [X] to describe optional syntactic elements. In this case, the
name of the refinement is omitted if it is an identity or an inclusion.

Since uniqueness constraints are quite common (e.g., in a token-
ring topology, exactly one node has the token at any time), we also
use the unique existential quantifier (∃!).

For example, the following formula states that every customer must
be connected to exactly one account and vice versa.

(∀ c:Customer∃! m:Movement m(c,)) ∧
(∀ a:NormalAccount∃! m:Movement m(, AN → a))∧
(∀ a:SalaryAccount∃! m:Movement m(, AS→ a))

In dynamic reconfiguration, there is an interplay between the topol-
ogy of the run-time configuration and the state of the nodes. There-
fore, constraints may also refer to the local variables of the node
designs. Because names of design variables are not global, they
must be qualified by the name of the node, for which we use a dot
notation: NodeVar.VariableName. For our example, we need to
specify that if the customer has a normal account, the withdrawal
credit is zero; if s/he has a salary account, the withdrawal credit
cannot exceed the salary.

(∀ a:NormalAccount; m:Movement
m(, AN → a)⇒ m.credit = 0)∧

(∀ a:SalaryAccount; m:Movement
m(, AS→ a)⇒ m.credit≤ a.salary)

Constraints may also use (in)equality predicates over node vari-
ables. For our example, we require account numbers to be unique.

(∀ a1, a2 : NormalAccount a16= a2⇒ a1.number6= a2.number)∧
(∀ a1, a2 : SalaryAccount a16= a2⇒ a1.number6= a2.number)∧
(∀ n:NormalAccount; s:SalaryAccount n.number6= s.number)

3.3 Configuration Variables
In the same way that components have variables to describe their
current state, it is desirable to have variables to store information
about the current run-time configuration. Suchconfiguration vari-
ablesmay be typed over the available data sorts, component de-
signs, and connector (i.e., glue) designs. Configuration variables
can be used in constraints and are only updated by reconfiguration
commands. We achieve a clean separation between computation
and (re)configuration because design actions can only use the vari-
ables declared in the same design, and because no kind of binding
between configuration variables and design variables is allowed.

As an example, consider a token ring architecture, in which each
component ‘RingComp’ has a boolean local variable ‘hasToken’
that is true only while the component holds the token. The recon-
figuration commands to be presented in Section 4.1 allow one to
find the node that currently holds the token, but such an operation

is costly, being linear in the size of the ring. It is more efficient to
have a configuration variable ‘holder:RingComp’ that refers to that
node, and that is updated whenever the token is transferred to an-
other node. The semantics of the variable is given by the constraint

holder.hasToken∧ ∃! x:RingComp x.hasToken

which states that only the node referred by ‘holder’ has the token.

As for our running example, we use two counters: one for the num-
ber of accounts (which is the same as counting the customers), and
another for the number of salary accounts. Normally, a person has
her or his salary account in the bank s/he likes most. Therefore, the
ratio between the two counters is an indication of the percentage of
customers that have this bank as their prime choice.

3.4 Architectures
Putting all together, an architecture defines: the designs that may
be used as components (and roles) and the refinement relationships
between them; the designs that may be used only for roles, the con-
nectors, and the refinement morphisms for each role; the configu-
ration variables; and a constraint on the possible configurations.

The architecture for our example illustrates the concrete syntax:
architecture Bank
components

design Customer . . .
design NormalAccount . . .
design SalaryAccount . . .

connectors
design AnyAccount . . .
connector Movement(Customer, AnyAccount) . . .

variables allAccounts, salAccounts : nat
constraint C

end architecture
whereC is the conjuntion of the constraints given in Section 3.2.
Notice that this architecture has no refinements other than the im-
plicit identities and inclusions.

Within thecomponents andconnectors sections, the defini-
tions of designs, refinements, and connectors may appear in any
order, as long as a name is not used before it is defined.

A (run-time) configuration is said to be aninstanceof a given ar-
chitectureA if:

• all nodes are labelled either with a component or a glue ofA;

• each arc connects a component to the glue of a connector;

• each node labelled with the glue of a connectorC has exactly
as many arcs as the arity ofC defined inA, and thei-th
arc is labelled by a channel obtained from composing the
channel of the glue to thei-th roleRi with one of the possible
refinement morphisms betweenRi and the component on the
other end of the arc.

The second condition prevents two components from being directly
connected through a channel, i.e., interactions are only established
through connectors. The third condition ensures that each connec-
tor was properly applied to components. Notice that the roles only
serve to constrain how a connector can be applied; they do not ap-
pear in the configuration.

4. RECONFIGURATION
The only possible changes to a configuration are creation and re-
moval of nodes (whether they are components or glues). These
basic commands can be combined into more complex changes us-
ing sequencing, choice, and iteration operators. Changes can be
grouped into scripts, which correspond to procedures in Pascal-like
languages. Besides the global configuration variables declared at
the architectural level, scripts may declare local configuration vari-
ables, and may have configuration variables as parameters. These
variables are changed by the scripts and their values are used to
compute the new configuration. There is also a command to query
the current configuration, returning all tuples of nodes that match
some conditions. These nodes can then be processed by the recon-
figuration commands.

The semantics of basic reconfiguration commands is given by con-
ditional graph productions over the categorical diagram represent-
ing the current run-time configuration. The reconfiguration inter-
preter executes these productions in the order specified by the scripts
and composite commands.

4.1 Commands
As was the case with constraints on the architecture, the reconfig-
uration language to be presented next makes heavy use ofnode
references, which are variables that are typed by designs. A node
reference isundefinedif it does not refer to any node of the cur-
rent run-time configuration. In the following description of the lan-
guage,Node stands for such a variable. The state of any node can
be accessed using a dotted notation:Node.Var refers to the local
variableVar of nodeNode. This makes it possible to write arbi-
trary expressionsExp involving the operations of the data types
used by COMMUNITY and the values of the local variables of the
nodes of the current configuration. Of course,Exp is undefined if
at least one of the node references it uses is undefined.

The examples in this subsection assume the existence of the fol-
lowing declarations:

n : NormalAccount; s : SalaryAccount; c : Customer; number : nat

4.1.1 Component Creation
The command to create a component node is

[Node :=]
create Design with l1 := Exp1 ‖ l2 := Exp2 . . .

whereNode must be declared of typeDesign andli are the local
variables ofDesign. All local variables must be assigned to, in or-
der to correctly initialise the new component. This reconfiguration
command does nothing if some expressionExpi is undefined. The
reference to the created component is stored inNode, if given. The
names occurring inExpi are resolved in the context in which this
command occurs, not in the context ofDesign. This makes it pos-
sible to use script parameters that have the same names as the local
variables of designs, to improve readability of the script.

For example, consider the following command:

n := create NormalAccountwith
balance := n.balance‖ avgbal := 0‖ number := number

This creates a new account, transferring the money from an existing
account ‘n’. The number of the new account is given by the value
of the variable declared above. After the command, ‘n’ refers to the
new account. If ‘n’ is undefined, no component is created (because
it is impossible to initialise it), and hence ‘n’ remains undefined.

4.1.2 Component Refinement
A common reconfiguration is to update a component, e.g., to add
new functionality, eliminate bugs, or improve efficiency. In our
framework, this is achieved through replacement of a component
by a refinement (other than the identity) of it. The syntax is

[Node2 :=]
create Design2 as [Re�nement(]Node1[)]
with l1 := Exp1 ‖ . . .

whereNode2 is of typeDesign2 andNode1’s type is someDesign1.

This command removesNode1 and replaces it by a new nodeNode2.
For any glue to whichNode1 was connected, through some chan-
nel c, the new node becomes connected to the same glue through a
channel that is the composition ofc with Re�nement. Only the new
local variablesli—i.e., those ofDesign2 that do not correspond to
any variable ofDesign1—are assigned to; the rest of the state of
Node2 is transferred fromNode1.

The command does nothing ifNode1 or someExpi is undefined,
otherwiseNode1 becomes undefined after the execution of the com-
mand. If the parentheses and the refinement name are omitted, then
Design1 andDesign2 must be different and the refinement is an in-
clusion.

For example, the command

s :=create SalaryAccountas n with salary := 100000

replaces the normal account ‘n’ by a salary account with the same
balance, average balance, and account number as ‘n’. Since de-
sign ‘SalaryAccount’ only adds one variable to design ‘NormalAc-
count’, only that variable has to be explicitly initialised.

4.1.3 Connector Creation
The command to create a connector has a slightly different syntax:

[Node :=]
apply Connector ([Re�nement1→]Node1, . . .)
with l1 := Exp1 ‖ l2 := Exp2 . . .

whereli are the local variables of the glue of theConnector. This
command applies the connector to the given components, creating
a node typed by the glue, and linking it to the given components
Nodei through channels that are obtained by composition of the
channels declared in the connector definition with the refinements
given by the command. This composition can be calculated at com-
pile time since all information is available. If the refinement name
and arrow are absent, this indicates an identity or inclusion mor-
phism.

This command does nothing if someNodei or Expj is undefined,
or if the creation of the connector would make output variables to
be shared, which would violate the conditions on configurations.

For example, the command

apply Movement(c, AS→ s) with credit := s.salary

connects the salary account created above with a customer who has
chosen the maximum allowed credit, namely her/his salary. In this
example the reference to the new node is not stored in any variable.

4.1.4 Removal
The command to remove a node isremove Node. After this com-
mand,Node is undefined. As usual, the command does nothing
if Node was already undefined. IfNode refers to a glue, then the
node and all its attached channels are removed. IfNode refers to
a component, then it is removed only if it is attached to no chan-
nels, because otherwise the resulting configuration would not be an
instance of the architecture anymore, since the glues connected to
Node would have an arity less than prescribed by the architectural
definition.

For example, the command ‘remove c’ (or ‘ remove s’) does not
change the configuration if it comes right after the connector cre-
ation command given above, because customer ‘c’ (resp. account
‘s’) is connected, namely to salary account ‘s’ (resp. customer ‘c’).

4.1.5 Query
The query expression

match {Decl1 [| [Decl2] [Con�guration]
[with Condition]]}

returns all tuples of nodesDecl1 for which there exist nodesDecl2
such that the current run-time configuration includes the sub-confi-
gurationCon�guration in a state whereCondition holds.

Con�guration is just a set of (in)equalities or connector predicates
(as defined in Section 3.2) over previously declared node variables,
in particular those inDecl1 andDecl2. The scope of those two
declaration sequences is just the query expression.Condition is
a boolean expression over the operations provided by the avail-
able data types, i.e., it may not contain connector predicates or
(in)equalities over node references. In other words,Condition tests
the state of the current configuration, whileCon�guration tests its
topology.

Thewith part can be omitted if the condition is a tautology, and
Decl2 andCon�guration can also be omitted when not necessary,
e.g., if we wish just to find in the current run-time configuration all
nodes given inDecl1.

For the query expression to be possible, the reconfiguration lan-
guage must include record types ‘record(Field1: Type1; Field2:
Type2; . . .)’ and list types ‘list(Type)’ with the usual operations
‘head’, ‘tail’, ‘cons’, ‘append’, and the empty list constant∅. The
type of the query expression is then ‘list(record(Decl1))’.

By storing the node tuples that match the query in a list, they be-
come amenable to further manipulation, like iteration, sorting, fil-
tering according to other criteria, counting, etc. Moreover, comput-
ing once the nodes on which we want to further operate, eliminates
the need to use dummy variables to make sure that no operation is
performed twice on the same tuple of nodes.

For example, the expression

match {c:Customer| a:SalaryAccount; m:Movement m(c, AS→ a)
with m.credit = 0}

selects all customers that have a salary account but have chosen not
to have any credit. The resulting list can be used for different pur-
poses, e.g., just counting how many customers are in that situation,
or transforming those accounts automatically into normal accounts.
The latter involves removing the connector and the salary account,
creating a normal account with the same balance and number, and
then connecting it to the customer. Therefore, a better expression
would be

match {c:Customer; a:SalaryAccount; m:Movement| m(c, AS→ a)
with m.credit = 0}

because it would also return the references to the accounts and
movements necessary for the ensuing transformations.

As another example,match {a:SalaryAccount| a 6= s} returns
all salary accounts except the one referred by variable ‘s’. If ‘s’
is undefined, so is the configuration condition, and therefore the
query returns the empty list.

4.1.6 Assignment
The assignmentVar := Exp updates the configuration variableVar,
if Exp is not undefined. Notice thatVar is not a local variable of
some node, because reconfiguration does not change the state of
existing nodes; it only initialises new nodes and removes nodes.

For example, assuming the existence of a function to calculate the
length of a list, the assignment

number := length(append(match {a:NormalAccount},
match {a:SalaryAccount})

would store in ‘number’ how many accounts the bank currently has.

4.1.7 Composite Commands
The basic commands just presented can be combined into compos-
ite commands using the sequencing operator ‘;’, the conditional
command

if Condition then Command [else Command] end if

and the iteration command

while Condition loop Command end loop

whereCommand is a basic or composite command, andCondition

is as explained in Section 4.1.5.

Since iterating through a list of nodes is so frequent, we introduce
the following abbreviation:

for Var in Expression loop Command end loop

Expression is a list,Var must be of the type of the list elements,
and this command expands into

NewVar :=Expression;
while NewVar 6= ∅ loop
Var := head(NewVar); NewVar := tail(NewVar);
Command

end loop

For example, to remove all unconnected customers, the command
is simply

for i in match {c:Customer} loop remove i.c end loop

with ‘i : record(c:Customer)’. In fact, it is guaranteed thatremove
does nothing if ‘c’ is connected.

4.2 Scripts
A script is a command that has a name so that it can be called from
other scripts. A script may have input and output parameters, and
private variables, with concrete syntax as for COMMUNITY designs
(see examples below). Scripts may be recursive (e.g., this is useful
to process tree topologies) and nested. Only top-level scripts can be
called directly by the user. The coordination between computation
and reconfiguration is achieved by a reconfiguration interpreter that
constantly executes the following loop:

1. Execute one computation step on the run-time configuration.

2. Let the user execute one of the scripts, if s/he wishes.

3. If there is a script called ‘Main’, execute it.

4. Go to step 1.

Step 2 caters for ad-hoc reconfiguration and step 3 handles pro-
grammed reconfiguration. By interleaving computation and recon-
figuration (as also done in [13]) one can be assured that changes to
the configuration will be triggered by changes to the state as soon
as needed. Furthermore, the changes performed in step 2 and 3 are
committed to the architecture only if, after execution of the called
script, the constraints on the architecture are still valid.

Notice that users may only call scripts; they may not write arbi-
trary commands. This is to prevent them from making changes that
would invalidate the architectural invariants. We assume that only
system administrators have the necessary overall knowledge of the
system to write scripts. Ad-hoc reconfiguration is also coped by
letting the set of available scripts change during system life-time.
The administrator may hence add, remove or replace scripts at any
time.

We now present the scripts for our bank example. We begin with
the main script. It is responsible for transforming salary accounts
automatically into normal accounts if the average balance is nega-
tive, and thereby updates the ‘salAccounts’ counter.

script Main
prv n : NormalAccount; i : record(m:Movement; c:Customer)

s : record(a:SalaryAccount)
for s in match {a:SalaryAccount| with a.avgbal< 0}
loop

i := head(match {m:Movement; c:Customer| m(c, AS→ s.a)});
n := create NormalAccount

with balance := s.a.balance
‖ avgbal := s.a.avgbal‖ number := s.a.number;

remove i.m;
remove s.a; salAccounts := salAccounts - 1;
apply Movement(i.c, AN→ n) with credit := 0

end loop
end script

Notice how the state of the salary account is transferred to the nor-
mal account.

The next script creates a normal account, with a given number. It
also creates a client and connects it to the account. The script does
nothing if an account with the given number already exists.

script CreateNormal
in number : nat
out n : NormalAccount
prv c : Customer
if match {a:NormalAccount| with a.number = number} = ∅

∧ match {a:SalaryAccount| with a.number = number} = ∅
then

n := create NormalAccount
with balance := 0‖ avgbal := 0‖ number := number;

c := create Customer with value := 0‖ ready := false;
apply Movement(c, AN→ n) with credit := 0;
allAccounts := allAccounts + 1

end if
end script

The third script creates a salary account, given the salary, the credit
the customer wishes, and the account number. The script first checks
that the credit asked for is less than the salary. Next, it proceeds ac-
cording to the three possible cases: if a salary account with that
number already exists, nothing is done; if a normal account with
that number exists, it is refined into a salary account, and the con-
nector is replaced; otherwise, the salary account has to be created
from scratch. Just to illustrate calling of scripts, this is done by cre-
ating a normal account and then proceeding as in the second case.

script CreateSalary
in salary, credit, number : nat
out s : SalaryAccount
prv n : NormalAccount; l : list(record(n: NormalAccount))

i : record(m:Movement; c:Customer);
if credit≤ salary∧

match {s:SalaryAccount| with s.number = number} = ∅
then

l := match {n:NormalAccount| with n.number = number};
if l = ∅ then CreateNormal(number, n)

else n := head(l).n
end if ;
i := head(match {m:Movement c:Customer| m(c, AN→ n)});
remove i.m;
s :=create SalaryAccountas n with salary := salary;
create Movement(i.c, AS→ s) with credit := credit;

salAccounts := salAccounts + 1
end if
end script

4.3 Semantics
There are two kinds of commands: the basic commands perform
the actual reconfiguration, while the composite commands and scripts
only control the flow of execution. The semantics we provide to
the language consists in translating the basic commands into the
graph rewrite rules (also calledgraph productions) defined in [29,
30]. The composite commands then just instruct the graph rewrit-
ing machine in which order the rules are to be executed. We do not
present the complete translation process, nor do we provide for-
mal definitions. We just sketch the main idea and provide concrete
examples. A report with further details is in preparation.

The compilation of the reconfiguration commands into productions
proceeds as follows. First, each component and glue design is com-
piled into a design that adds a new private variable ‘NI : nat’, such
thatNI is a name that does not occur in any design given in the
architecture. The purpose of the variable is to hold a unique node
identifier. For our example, we assumeNI is ‘node’.

Second, the compiler generatesconfiguration designsthat have only
private variables. Each design corresponds to one lexical scoping
level (i.e., to one reconfiguration script), and the private variables
correspond to the configuration variables that are visible in that
level. This means that all those designs include the global con-
figuration variables declared with the architecture. If a configu-
ration variable is a node reference (e.g., c:Customer) then it will
be compiled into a variable of type ‘nat’ (e.g., c:nat). That vari-
able will hold zero if the node reference is undefined, otherwise it
will hold the value of theNI variable of the referred node. More-
over, all those configuration designs have a variable ‘C : nat’ which
counts how many nodes have been globally created, so that each
newly created node can get a unique identifier. The nameC must
of course be different from the names of all configuration variables.
For our example we assumeC is ‘nodes’. The actual names of the
designs must be chosen by the compiler so that it does not conflict
with any other design specified in the architecture. For our exam-
ple, we assume those designs are named ‘CS ’ with S ranging over
the script names.

A basic command in scripts is translated into a set of graph pro-
ductions in which the left-hand side always includes ‘Cs’ and any
other nodes that are referred by the expressions ocurring in the
command. The right hand side includes also those same nodes,
but ‘C s’ is updated with the new values for the configuration vari-
ables and for the node counter. The right-hand side also includes
any newly created component or glue and omits any removed com-
ponent or glue.

As an example, we show in Figure 1 the graph production corre-
sponding to the component creation command given in the ‘Main’
script in Section 4.2. Each node is labelled with the design name
and with design variable/logical value pairs. According to the def-
initions in [29, 30], the production can only be applied if there is
a substitution for the logical variablesvnodes, vn, bal, etc., such
that the left hand side graph can be mapped to a subgraph of the
current run-time configuration. Notice that if the node reference
‘s.a’ is undefined (i.e.,sa = 0), then the production cannot be
applied (because ‘node’ is always positive), and the configuration
does not change, as required by the description ofcreate in Sec-

tion 4.1.1. Notice also howC Main is updated and how the new
node is initialised.

Our next example, in Figure 2, is the translation of the connector
removal command of script ‘Main’. Notice that one rule is gener-
ated for each possible instantiation of the roles. In this case, there
are only two possibilities: the first role is instantiated with a cus-
tomer and the second one is instantiated with a normal or salary
account. In the particular context of the execution of script ‘Main’,
by the time one of these rules is executed, one hasvc = cust. The
channel bindings have been omitted from the figure due to space
limitations.

The command to replace a component is the most complex one,
because one cannot knowa priori to which connectors the compo-
nent to be replaced is attached. Therefore the command is compiled
into a set of productions that do the replacement in three phases: the
first introduces the new component, the second relinks all connec-
tors to the new component, and the last phase removes the original
component. For the second phase, there is one production for each
role of each connector that the node to be replaced may instanti-
ate. For example, if there were two connectorsC1(R1, R2) and
C2(R4, R5, R6), and a noden1 of typeN1 were to be replaced by
a noden2 of type N2, with refinements fromR1, R4 andR6 to
N1, then there would be three productions, one replacing the first
channel ofC1 to n1 by a channel fromC2 to n2, another produc-
tion for the first channel ofC2 and the last production for the third
channel ofC2. The set of productions generated for this second
phase of the replacement is to be applied until no left-hand side can
be matched to the current configuration. At that point, the node to
be replaced has no connector attached and the single rule for the
last phase can be applied: it simply removes the node, updating the
node reference given in the command.

As a concrete example, let us take the component refinement com-
mand of ‘CreateSalary’. The semantics of this command is given
by three productions (Figure 3). The first introduces a new salary
account, transfers the state from ‘n’, initialises the ‘salary’ local
variable, and updates the node reference ‘s’. The second produc-
tion rebinds any ‘Movement’ connector that might be attached to
‘n’ to the new node ‘s’. The rebinding is done by moving the chan-
nel between the glue and the old node to the new node. The last
rule removes the node referred by ‘n’, which becomes undefined
(i.e., zero).

5. CONCLUDING REMARKS
Dynamic reconfiguration is an important topic for an increasing
number of software systems that must be continuously available
while coping with all kinds of changes. However, to our knowl-
edge, there is no work that tackles this problem from the Software
Architecture point of view and provides a formally based language
that integrates the three aspects argued for in [26]: architectural de-
scription, constraint, and modification. This paper is a first step in
that direction.

We have provided an approach that is both heterogeneous (for prag-
matic reasons) and uniform (for formal reasons). It is heteroge-
neous because it provides an dedicated, separate sub-language for
each aspect: a program design language for computation, a declar-
ative language for constraints, and an operational language for re-
configuration. It is uniform because it uses Category Theory as a
semantic foundation both for configurations (taken as categorical
diagrams) and reconfiguration (achieved through algebraic graph

C Main
nodes vnodes
n vn
i 〈im, ic〉
s 〈sa〉

SalaryAccount
node sa
balance bal
avgbal avg
number num
salary sal

//

C Main
nodes vnodes + 1
n vnodes + 1
i 〈im, ic〉
s 〈sa〉

SalaryAccount
node sa
balance bal
avgbal avg
number num
salary sal

NormalAccount
node vnodes + 1
balance bal
avgbal avg
number num

Figure 1: Semantics of ‘n :=create NormalAccount with balance := s.a.balance‖ avgbal := s.a.avgbal‖ number := s.a.number’

rewriting techniques [6]).

The approach also provides a strict separation between computation
and (re)configuration, while keeping them explicitly related. This
was already done at the formal level in our previous papers [29, 30],
and the language presented herein complies with that principle: the
components do not have access nor can change the configuration
variables or call scripts, and the reconfiguration scripts have access
but cannot change the state of components. Notice that replacing a
component by another one of the same design but with a different
state is not what we mean by state change, because there are actu-
ally two components involved: the original one is removed and a
new one is created.

The main goal of our language is to provide high-level constructs
that are suited to the architectural level of description of a sys-
tem. In particular, interactions are created and removed at the
level of connectors, hence guaranteeing that configurations are al-
ways instances of the architecture. This contrasts with other ap-
proaches which, like the Armani ADL [24], force the designer to
write explicit constraints to prevent dangling roles, or, like dis-
tributed systems approaches, require reconfiguration scripts to con-
nect the components port by port.

Because our emphasis was on obtaining an integrated language
that covers the three aspects (description, constraints, modifica-
tion), we are aware that other approaches handle some individual
aspects better, but in turn they have to sacrifice formality or breadth.
For example, Armani allows more complex architectures and con-
straints, Gerel [7] provides more expressive queries, and Goudarzi
[23] takes full advantage of the Java language to program reconfig-
urations.

Therefore, in future work, we want to further investigate which
fundamental constructs (not syntactic sugar!) are needed for the
various aspects, and how they can be formally grounded on our
algebraic framework. Practical feedback from such research will
be gathered by incorporating such reconfiguration primitives into a
tool [12] being built to construct and manage coordination contracts—
which are akin to connectors—among components implementing
core business functionalities [3].

Two other issues are also of concern to us. First, we would like to
be able to prove whether a given script maintains the architectural
invariants. For that purpose we intend to adapt the logic devel-
opped in [10]. Second, we want to extend this work to allow the
architecture itself to evolve. This means that during some period
the configuration is not an instance of any architecture, neither the
original nor the new one. This poses interesting problems both for
the language design (because the script will be typed by two archi-

tectural descriptions) and for the verification of the correctness of
such a reconfiguration process. We will look into [14, 8] and see
how it can be adapted to our framework.

Acknowledgments
We thank Lúıs Andrade and the anonymous reviewers for their
comments.

6. REFERENCES
[1] R. Allen, R. Douence, and D. Garlan. Specifying and

analyzing dynamic software architectures. InFundamental
Approaches to Software Engineering, volume 1382 ofLNCS,
pages 21–37. Springer-Verlag, 1998.

[2] R. Allen and D. Garlan. A formal basis for architectural
connection.ACM TOSEM, 6(3):213–249, July 1997.

[3] L. Andrade and J. L. Fiadeiro. Coordination technologies for
managing information system evolution. InProc. CAiSE’01,
volume 2068 ofLNCS, pages 374–387. Springer-Verlag,
2001.

[4] C. Canal, E. Pimentel, and J. M. Troya. Specification and
refinement of dynamic software architectures. InSoftware
Architecture, pages 107–125. Kluwer Academic Publishers,
1999.

[5] K. M. Chandy and J. Misra.Parallel Program Design—A
Foundation. Addison-Wesley, 1988.

[6] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel,
and M. Löwe. Algebraic approaches to graph transformation,
part I: Basic concepts and double pushout approach.
Technical Report TR-96-17, University of Pisa, Mar. 1996.

[7] M. Endler. A language for implementing generic dynamic
reconfigurations of distributed programs. InProceedings of
the 12th Brazilian Symposium on Computer Networks, pages
175–187, 1994.

[8] G. Engels and R. Heckel. Graph transformation as unifying
formal framework for system modeling and model evolution.
In Proc. of ICALP, volume 1853 ofLNCS, pages 127–150.
Springer-Verlag, 2000.

[9] J. L. Fiadeiro and A. Lopes. Semantics of architectural
connectors. InProceedings of TAPSOFT’97, volume 1214 of
LNCS, pages 505–519. Springer-Verlag, 1997.

[10] J. L. Fiadeiro, N. Mart́ı-Oliet, T. Maibaum, J. Meseguer, and
I. Pita. Towards a verification logic for rewriting logic. In
Recent Trends in Algebraic Development Techniques, number
1827 in LNCS, pages 438–458. Springer-Verlag, 2000.

C Main
nodes vnodes
n vn
i 〈im, ic〉
s 〈sa〉

Customer
node cust
value val
ready rd

NormalAccount
node salacc
balance bal
avgbal avg
number num

Movement
node im
credit cre

//

C Main
nodes vnodes
n vn
i 〈0, ic〉
s 〈sa〉

Customer
node cust
value val
ready rd

NormalAccount
node no
balance bal
avgbal avg
number num

C Main
nodes vnodes
n vn
i 〈im, ic〉
s 〈sa〉

Customer
node cust
value val
ready rd

SalaryAccount
node no
balance bal
avgbal avg
number num
salary sal

Movement
node im
credit cre

//

C Main
nodes vnodes
n vn
i 〈0, ic〉
s 〈va〉

Customer
node cust
value val
ready rd

SalaryAccount
node no
balance bal
avgbal avg
number num
salary sal

Figure 2: Semantics of ‘remove i.m’

[11] N. Francez and I. Forman.Interacting Processes.
Addison-Wesley, 1996.

[12] J. Gouveia, G. Koutsoukos, L. Andrade, and J. L. Fiadeiro.
Tool support for coordination-based software evolution. In
Proc. TOOLS 38, pages 184–196. IEEE Computer Society
Press, 2001.

[13] D. Hirsch, P. Inverardi, and U. Montanari. Modelling
software architectures and styles with graph grammars and
constraint solving. InSoftware Architecture, pages 127–143.
Kluwer Academic Publishers, 1999.

[14] D. Hirsch, P. Inverardi, and U. Montanari. Reconfiguration of
software architecture styles with name mobility. In
Coordination Languages and Models, volume 1906 of
LNCS, pages 148–163. Springer-Verlag, 2000.

[15] J. Kramer and J. Magee. The evolving philosophers problem:
Dynamic change management.IEEE Transactions on
Software Engineering, 16(11):1293–1306, Nov. 1990.

[16] A. Lopes.Não-determinismo e Composicionalidade na
Especificaç̃ao de Sistemas Reactivos. PhD thesis,
Universidade de Lisboa, Jan. 1999.

[17] A. Lopes and J. L. Fiadeiro. Using explicit state to describe
architectures. InProceedings of Fundamental Approaches to

Software Engineering, number 1577 in LNCS, pages
144–160. Springer-Verlag, 1999.

[18] J. Magee and J. Kramer. Dynamic structure in software
architectures. InProceedings of the Fourth ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
pages 3–14. ACM Press, 1996.

[19] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour
analysis of software architectures. InSoftware Architecture,
pages 35–50. Kluwer Academic Publishers, 1999.

[20] N. Medvidovic. ADLs and dynamic architecture changes. In
Joint Proceedings of the SIGSOFT’96 Workshops, pages
24–27. ACM Press, 1996.

[21] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a
taxonomy of software connectors. InProc. of the 22nd Intl.
Conf. on Software Engineering, pages 178–187. ACM Press,
2000.

[22] D. L. Métayer. Describing software architecture styles using
graph grammars.IEEE Transactions on Software
Engineering, 24(7):521–553, July 1998.

[23] K. Moazami-Goudarzi.Consistency Preserving Dynamic
Reconfiguration of Distributed Systems. PhD thesis, Imperial
College London, Mar. 1999.

C CreateSalary
nodes vnodes
salary sal
credit cre
number nu
s vs
n vn
l vl
i vi

NormalAccount
node vn
balance bal
avgbal avg
number num

//

C CreateSalary
nodes vnodes + 1
salary sal
credit cre
number nu
s vnodes + 1
n vn
l vl
i vi

NormalAccount
node vn
balance bal
avgbal avg
number num

SalaryAccount
node vnodes + 1
balance bal
avgbal avg
number num
salary sal

C CreateSalary
nodes vnodes
salary sal
credit cre
number nu
s vs
n vn
l vl
i vi

SalaryAccount
node vs
balance bal
avgbal avg
number num
salary sal

NormalAccount
node vn
balance bal
avgbal avg
number num

Movement
node no
credit cre

//

C CreateSalary
nodes vnodes
salary sal
credit cre
number nu
s vs
n vn
l vl
i vi

SalaryAccount
node vs
balance bal
avgbal avg
number num
salary sal

NormalAccount
node vn
balance bal
avgbal avg
number num

Movement
node no
credit cre

C CreateSalary
nodes vnodes
salary sal
credit cre
number nu
s vs
n vn
l vl
i vi

NormalAccount
node vn
balance bal
avgbal avg
number num

//

C CreateSalary
nodes vnodes
salary sal
credit cre
number nu
s vs
n 0
l vl
i vi

Figure 3: Semantics of ‘s := create SalaryAccount as n with salary := salary’

[24] R. T. Monroe. Capturing software architecture design
expertise with Armani. Technical Report CMU-CS-98-163,
School of Computer Science, Carnegie Mellon University,
Oct. 1998.

[25] R. T. Monroe, D. Garlan, and D. Wile.Acme StrawManual,
Nov. 1997.

[26] P. Oreizy. Issues in the runtime modification of software
architectures. Technical Report UCI-ICS-TR-96-35,
Department of Information and Computer Science,
University of California, Irvine, Aug. 1996.

[27] P. Rodgers. Constructs for programming with graph rewrites.
In Joint APPLIGRAPH and GETGRATS Workshop on Graph
Transformation Systems, number 2000-2 in
Forschungsberichte des Fachbereichs Informatik, pages
59–66. Technische Universität Berlin, 2000.

[28] G. Taentzer, M. Goedicke, and T. Meyer. Dynamic change
management by distributed graph transformation: Towards
configurable distributed systems. InProc. 6th Int. Workshop
on Theory and Application of Graph Transformation, 1998.

[29] M. Wermelinger and J. L. Fiadeiro. Algebraic software
architecture reconfiguration. InSoftware
Engineering—ESEC/FSE’99, volume 1687 ofLNCS, pages
393–409. Springer-Verlag, 1999.

[30] M. Wermelinger and J. L. Fiadeiro. A graph transformation
approach to run-time software architecture reconfiguration.
Science of Computer Programming, 2001. To appear.

	Introduction
	CommUnity
	Designs
	Configurations
	Refinement

	Software Architecture
	Connectors
	Constraints
	Configuration Variables
	Architectures

	Reconfiguration
	Commands
	Component Creation
	Component Refinement
	Connector Creation
	Removal
	Query
	Assignment
	Composite Commands

	Scripts
	Semantics

	Concluding Remarks
	REFERENCES

