
Open Research Online
The Open University’s repository of research publications
and other research outputs

Enhancing dependability through flexible adaptation to
changing requirements
Book Section

How to cite:

Wermelinger, Michel; Koutsoukos, Georgios; Lourenço, Hugo; Avillez, Richard; Gouveia, João; Andrade, Lúıs
and Fiadeiro, José Luiz (2004). Enhancing dependability through flexible adaptation to changing requirements. In: de
Lemos, Rogério; Gacek, Cristina and Romanovsky, Alexander eds. Architecting Dependable Systems II. Lecture Notes
in Computer Science (3069). Springer-Verlag, pp. 3–24.

For guidance on citations see FAQs.

c© 2004 Springer-Verlag

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/978-3-540-25939-81

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82900415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/978-3-540-25939-8_1
http://oro.open.ac.uk/policies.html


Enhancing dependability through flexible
adaptation to changing requirements?

Michel Wermelinger1, Georgios Koutsoukos2, Hugo Lourenço2, Richard
Avillez2, João Gouveia2, Lúıs Andrade2, and José Luiz Fiadeiro3

1 Dep. de Informática, Univ. Nova de Lisboa, 2829-516 Caparica, Portugal
mw@di.fct.unl.pt

2 ATX Software SA, Alameda António Sérgio, 7, 1C, 2795-023 Linda-a-Velha,
Portugal

{firstname.lastname}@atxsoftware.com
3 Dep. of Computer Science, Univ. of Leicester, Leicester LE1 7RH, UK

jose@fiadeiro.org

Abstract. This paper describes an architectural approach that facili-
tates the dynamic adaptation of systems to changing domain rules. The
approach relies on “coordination contracts”, a modelling and implemen-
tation primitive we have developed for run-time reconfiguration. Our
framework includes an engine that, whenever a service is called, checks
the domain rules that are applicable and configures the response of the
service before proceeding with the call.
This approach enhances dependability in two essential ways: on the one
hand, it guarantees that system execution is always consistent with the
domain logic because service response is configured automatically (i.e.,
without any need for programmer intervention); on the other hand, it
makes it possible for changes to be incorporated into existing domain
rules, and from new rules to be created, with little effort, because co-
ordination contracts can be superposed dynamically without having to
change neither the client nor the service code.
Our approach is illustrated through a case study in financial systems,
an area in which dependability arises mainly in the guise of business
concerns like adherence to agreed policies and conditions negotiated on
a case-by-case basis. We report on an information system that ATX
Software developed for a company specialised in recovering bad credit.
We show in particular how, by using this framework, we have devised a
way of generating rule-dependent SQL code for batch-oriented services.

1 Introduction

This paper describes an architectural approach to system development that fa-
cilitates adaptation to change so that organisations can effectively depend on
a continued service that satisfies evolving business requirements. This approach
has been used in a real project in which ATX Software developed an information

? This paper is a considerably extended version of [1].



system for a company specialised in recovering bad credit. The approach is based
on two key mechanisms:

– the externalisation of the domain rules from the code that implements core
system functionalities;

– the encapsulation of the code that enforces those domain rules into so-called
coordination contracts that can be created and deleted at run-time, hence
adapting computational services to the context in which they are called.

In the concrete case study that we present, the domain rules define the depen-
dency of the recovery process on business concerns of the financial institution
and product (e.g., house mortgage) for which the debt is being recovered. At
any given time, this business configuration defines the context in which services
are called.

These two mechanisms are aimed at two different classes of stakeholders.
Domain rules are intended for system users, who have no technical knowledge,
so that they can adapt the system in order to cope with requirements of newly
or already integrated financial institutions or products. Coordination contracts
are intended for system developers to add new behaviour without changing the
original service implementation. This is made possible with the ability of coor-
dination contracts to superpose, at run-time, new computations on the services
that are being execute locally in system components.

Coordination contracts [2] are a modelling and implementation primitive that
allows transparent interception of method calls and as such interfere with the
execution of the service in the client. Transparent means that neither the service
nor its client are aware of the existence of the coordination contract. Hence, if
the system has to be evolved to handle the requirements imposed by new in-
stitutions or products, many of the changes can be achieved by parameterising
the service (data changes) and by superposing new coordination contracts (be-
haviour changes), without changing the service’s nor the client’s code. This was
used, for instance, to replace the default calculation of the debt’s interest by a
different one. The user may then pick one of the available calculation formulae
(i.e., coordination contracts) when defining a domain rule.

To be more precise, a coordination contract is applicable to one or more
objects (called the contract’s participants) and has one or more coordination
rules, each one indicating which method of which participant will be intercepted,
under which conditions, and what actions to take in that case. In the particular
case of the system that we are reporting in this paper, all coordination contracts
are unary, the participant being the service affected by the domain rule to which
the coordination contract is associated. Moreover, each contract has a single rule.
We could have joined all coordination rules that may be applicable to the same
service into a single contract, but that would be less efficient in run-time and
more complex in design time due to more intricate rule definitions. The reason
is that once a contract is in place, it will intercept all methods given in all the
contract’s rules, and thus the rule conditions would have to check at run-time
if the rule is really applicable, or if the contract was put in place because of
another coordination rule.



In this project we used an environment that we have built for developing
Java applications using coordination contracts [3]. The environment is freely
available from www.atxsoftware.net. The tool allows writing contracts, and to
register Java classes (components) for coordination. The code for adapting those
components and for implementing the contract semantics is generated based on
a micro-architecture that uses the Proxy and Chain of Responsibility design
patterns [4]. This microarchitecture handles the superposition of the coordina-
tion mechanisms over existing components in a way that is transparent to the
component and contract designer. The environment also includes an animation
tool, with some reconfiguration capabilities, in which the run-time behavior of
contracts and their participants can be observed using sequence diagrams, thus
allowing testing of the deployed application.

In the context of this work, we are concerned mainly with the maintainability
attribute of dependability, and with faults that are accidental, human-made, and
developmental, whereby our approach could be classified as fault prevention [5].
To be more precise, instead of hard-wiring and duplicating domain rules across
multiple system services, which makes maintenance of the system error-prone
when rules change, we provide support to keep rules separate from the services
and to apply them only when needed. Our approach guarantees that whenever
a user changes a domain rule, any future invocation of a service (whether it is
a web-based interactive service or an SQL-based nightly batch service) that is
affected by it will automatically take the rule in consideration. Hence, depend-
ability, i.e., “the ability to deliver service that can justifiably be trusted” [5] is
maintained.

The structure of the paper is as follows. The next section provides the wider
context of our work, namely our architectural approach to the separation of
computation, coordination, and configuration. This explains the design ratio-
nale for the framework illustrated, through its application to the debt recovery
system, in the following sections. Section 3 starts describing the case study by
introducing some example domain rules, taken from the credit recovery domain,
and shows how coordination contracts are used to change the default service
functionalities according to the applicable domain rules. Section 4 sketches the
framework we implemented, describing how the service configuration is done at
run-time according to the rules. Section 5 explains how the same framework is
used to generate rule-dependent SQL code to be run in batch mode. The last
section presents some concluding remarks.

2 The Three Cs of Architectures

The architectural approach that we will be describing is based on the crucial
separation between “three Cs”: Computation, Coordination, and Configuration.
This separation needs to be supported at two different levels. On the one hand,
through semantic primitives that address the “business architecture”, i.e., the
means that need to be provided for modelling business entities (Computation),
the business rules that determine how the entities can interact (Coordination),



Fig. 1. The configuration framework

and the business contexts through which specific rules can be superposed, at run-
time, to specific entities (Configuration). On the other hand, the architectural
properties of the deployment infrastructures that can carry this distinction to
the design and implementation layers, and support the required levels of agility.

2.1 The CCC System Architecture

As already mentioned, the rationale for the methodology and technologies that
we have been building is in the strict separation between three aspects of the de-
velopment and deployment of any software system: the computations performed
locally in its components, the coordination mechanisms through which global
properties can emerge from those computations, and the configuration opera-
tions that ensure that the system will evolve according to given constraints such
as organisational policies, legislation, and other. Such layering should be strict
in order to allow for changes to be performed at each layer without interfering
with the levels below.

The Computation Layer should contain the components that perform the
computations that ensure the basic services provided within the system. Each
component has two interfaces [6]: a functional interface that includes the oper-
ations that allow one to query and change the encapsulated component state;
and a configuration interface that provides the component’s constructors and
destructors, and any other operations that are necessary to the correct manage-
ment of dynamic reconfiguration. One such operation is querying whether the
component is in a “stable” state in which the component may be deleted or
its “connections” to other components can be changed; another example is an



operation that can temporarily block the component’s execution while a recon-
figuration that involves it is processed. The reason for separate interfaces is to
be able to constrain the access that the various parts of the architecture have to
each other and, hence, achieve a cleaner separation of concerns. In the case of the
coordination layer, we require that no component should be able to invoke an-
other component’s configuration operations: components should not create other
components because that is a change to the currently existing configuration and,
as such, should be explicitly managed by the configuration layer.

The Coordination Layer defines the way computational components are inter-
connected for the system to behave, as a whole, according to set requirements. In
the terminology of Software Architecture, this layer is populated by the connec-
tors that regulate the interactions between the components of the layer below.
We call such connectors coordination contracts or, for simplicity, contracts. We
also require each contract to provide a functional and a configuration interface;
each constructor in the configuration interface must include as arguments the
components that the connector instance to be created will coordinate. We im-
pose two restrictions: a contract may not use the configuration interface of any
contract or component; and a contract may not use another contract’s functional
interface. The rationale for the first condition is again that configuration oper-
ations should only be performed by the configuration layer. The reason for the
second condition is to make it possible to evolve the system through (un)plugging
of individual contracts between components, which is only possible if there are
no dependencies among contracts. The coordination effects that contracts put
in place are described in terms of trigger-reaction rules as illustrated in Sec. 3.

At each state, the interconnections put in place among the population of ba-
sic components via contracts define the current configuration of the system. The
Configuration Layer is responsible for managing the current configuration, i.e.,
for determining, at each state, which components need to be active and what
interconnections need to be in place among which components. This layer pro-
vides a set of high-level reconfiguration operations that enforce global invariants
over the system’s configuration. The actual implementation of the configuration
layer may follow the technical architecture given in [7]: a configuration database
containing updated information about the current configuration, a consistency
manager that enforces a “stable” state in which reconfiguration can occur, and
a reconfiguration manager that executes the reconfiguration operations, using
the services of the database and the consistency manager. The implementation
of the reconfiguration operations makes use not only of the configuration in-
terfaces provided by the components and contracts, but also of the functional
interfaces because some changes to the configuration may depend on the cur-
rent state of components and contracts, and may trigger state modifications to
restore application-wide consistency.

Systems whose design architecture supports this separation of concerns through
a strict layering can be evolved in a compositional way. Changes that do not
require different computational properties can be brought about either by re-
configuring the way components interact, or adding new connectors that regu-



late the way existing components operate, instead of performing changes in the
components themselves. This can be achieved by superposing, dynamically, new
coordination and configuration mechanisms on the components that capture the
basic business entities. If the interactions were coded in the components them-
selves, such changes, if at all possible thanks to the availability of the source code,
besides requiring the corresponding objects to be reprogrammed, with possible
implications on the class hierarchy, would probably have side effects on all the
other objects that use their services, and so on, triggering a whole cascade of
changes that would be difficult to control.

On the other hand, the need for an explicit configuration layer, with its own
primitives and methodology, is justified by the need to control the evolution of
the configuration of the system according to the business policies of the organ-
isation or, more generally, to reflect constraints on the configurations that are
admissible (configuration invariants). This layer is also responsible for the de-
gree of self-adaptation that the system can exhibit. Reconfiguration operations
should be able to be programmed at this level that enable the system to react
to changes perceived in its environment by putting in place new components or
new contracts. In this way, the system should be able to adapt itself to take
profit of new operating conditions, or reconfigure itself to take corrective action,
and so on.

According to the nature of the platform in which the system is running,
this strict layering may be more or less directly enforced. For instance, we have
already argued that traditional object-oriented and component-based develop-
ment infrastructures do not support this layering from first-principles, which
motivates the need for new semantic modelling primitives as discussed in the
next subsection. However, this does not mean that they cannot accommodate
such an architecture: design techniques such as reflection or aspect-oriented pro-
gramming, or the use of design patterns, can be employed to provide the support
that is necessary from the middleware. In fact, we have shown how the separa-
tion between computation and coordination can be enforced in Java through the
use of well known design patterns, leading to what we called the “Coordination
Development Environment” or CDE [4, 3, 8].

The design patterns that we use in the CDE provide what we can call a
“micro-architecture” that enforces the externalisation of interactions, thus sep-
arating coordination from computation. It does so at the cost of introducing
an additional layer of adaptation that intercepts direct communication through
feature calling (clientship) and, basically, enforces an event-based approach. In
this respect, platforms that rely on event-based or publish-subscribe interaction
represent a real advantage over object-based ones: they support directly the
modelling primitives that we will mention next.

2.2 The CCC Business Architecture

The separation of coordination from computation has been advocated for a long
time in the Coordination Languages community [9], and the separation of all
three concerns is central to Software Architecture, which has put forward the



distinction between components, connectors and architectures [10]. The Config-
urable Distributed Systems community [11], in particular the Configuration Pro-
gramming approach [12], also gives first-class status to configuration. However,
these approaches do not provide a satisfying way to model the three concerns
in a way that supports evolution. Coordination languages do not make the con-
figuration explicit or have a very low-level coordination mechanism (e.g., tuple
spaces); architecture description languages do not handle evolution from first
principles or do it in a deficient way; configuration programming is not at the
business modelling level.

For instance, the reconfiguration operations that we provide through coordi-
nation contexts correspond more to what in other works is called a reconfigura-
tion script [13] than the basic commands provided by some ADLs to create and
remove components, connectors, and bindings between them [14]. Coordination
contexts also make explicit which invariants the configuration has to keep during
evolution. It is natural to express these invariants in a declarative language with
primitive predicates to query the current configuration (e.g., whether a contract
of a given type connects some given components). Such languages have been
proposed in Distributed Systems (e.g., Gerel-SL [13]) and Software Architecture
approaches (e.g., Armani [15]). However, all these approaches program the re-
configuration operations, i.e., they provide an operational specification of the
changes. Our position is that, at the modelling level, those operations should
also be specified in a declarative way, using the same language as for invariants,
by stating properties of the configuration before and after the change. In other
words, the semantics of each reconfiguration operation provided in this layer is
given by its pre- and post-conditions.

On the other hand, it is true that modelling languages like the UML [16]
already provide techniques that come close to our intended level of abstraction.
For instance, “use cases” come close to coordination contexts: they describe the
possible ways in which the system can be given access and used. However, they
do not end up being explicitly represented in the (application) architecture: they
are just a means of identifying classes and collaborations. More precisely, they
are not captured through formal entities through which run-time configuration
management can be explicitly supported. The same applies to the externalisation
of interactions. Although the advantage of making relationships first-class citi-
zens in conceptual modelling has been recognised by many authors (e.g., [17]),
which led to the ISO General Relationship Model (ISO/IEC 10165-7), things are
not as clean when it comes to supporting a strict separation of concerns.

For instance, one could argue that mechanisms like association classes provide
a way of making explicit how objects interact, but the typical implementation
of associations through attributes is still “identity”-based and does not really
externalise the interaction: it remains coded in the objects that participate in the
association. The best way of implementing an interaction through an association
class would seem to be for a new operation to be declared for the association
that can act as a mediator, putting in place a form of implicit invocation [18].
However, on the one hand, the fact that a mediator is used for coordinating the



interaction between two given objects does not prevent direct relationships from
being established that may side step it and violate the business rule that the
association is meant to capture. On the other hand, the solution is still intrusive
in the sense that the calls to the mediator must be explicitly programmed in the
implementation of the classes involved in the association.

Moreover, the use of mediators is not incremental in the sense that the addi-
tion of new business rules cannot be achieved by simply introducing new asso-
ciation classes and mediators. The other classes in the system need to be made
aware that new association classes have become available so that the right me-
diators are used for establishing the required interactions. That is, the burden
of deciding which mediator to interact with is put again on the side of clients.
Moreover, different rules may interact with each other thus requiring an addi-
tional level of coordination among the mediators themselves to be programmed.
This leads to models that are not as abstract as they ought to be due to the
need to make explicit (even program) the relationships that may exist between
the original classes and the mediators, and among the different mediators them-
selves.

The primitive — coordination law - that we have developed for modelling this
kind of contractual relationship between components circumvents these problems
by abandoning the “identity”-based mechanism on which the object-oriented
paradigm relies for interactions, and adopting instead a mechanism of super-
position that allows for collaborations to be modelled outside the components
as connectors (coordination contracts) that can be applied, at run-time, to co-
ordinate their behaviour. From a methodological point of view, this alternative
approach encourages developers to identify dependencies between components in
terms of services rather than identities. From the implementation point of view,
superposition of coordination contracts has the advantage of being non-intrusive
on the implementation of the components. That is, it does not require the code
that implements the components to be changed or adapted, precisely because
there is no information on the interactions that is coded inside the components.
As a result, systems can evolve through the addition, deletion or substitution of
coordination contracts without requiring any change in the way the core entities
have been deployed.

3 Business Rules and Coordination Contracts

ATX Software was given the task to re-implement in Java the information system
of Esṕırito Santo Cobranças, a debt recovery company that works for several
credit institutions, like banks and leasing companies. The goal was not only to
obtain a Web-based system, but also to make it more adaptable to new credit
institutions or to new financial products for which the debts have to be collected.
This meant that business rules should be easy to change and implement.

The first step was to make the rules explicit, which was not the case in the
old system, where the conditions that govern several aspects of the debt recovery
process were hardwired in tables or in the application code itself. We defined a



business rule to be given by a condition, an action, and a priority. The condition
is a boolean expression over relations (greater, equal, etc.) between parameters
and concrete values. The available parameters are defined by the rule type. The
action part is a set of assignments of values to other parameters, also defined
by the rule type. Some of the action parameters may be “calculation methods”
that change the behaviour of the service to which this rule is applicable. The
priority is used to allow the user to write fewer and more succint rules: instead
of writing one rule for each possible combination of the condition parameter
values, making sure that no two rules can be applied simultaneously, the user
can write a low priority, general, “catch-all” rule and then (with higher priority)
just those rules that define exceptions to the general case. As we will see later,
rules are evaluated by priority order. Therefore, within each rule type, each rule
has a unique priority.

To illustrate the concept of business rule, consider the agreement simulation
service that computes, given a start and ending date for the agreement, and the
number of payments desired by the ower, what the amount of each payment must
be in order to cover the complete debt. This calculation is highly variable on a
large number of factors, which can be divided into three groups. The first one
includes those factors that affect how the current debt of the ower is calculated,
like the interest and tax rates. This group of factors also affect all those services,
besides the agreement simulation, that need to know the current debt of a given
person. The second group includes those factors that define what debt should be
taken into account for the agreement: the debt on the day before the agreement
starts, the debt on the day the agreement ends, or yet another possibility? The
last group covers factors concerned with internal policies. Since the recovery of
part of the debt is better than nothing, when a debt collector is making an
agreement, he might pardon part of the debt. The exact percentage (of the total
debt amount) to be pardoned has an upper limit that depends on the category
of the debt collector: the company’s administration gives higher limits to more
experienced employees.

As expected, each group corresponds to a different business rule type, and
each factor is an action parameter for the corresponding rule type. The condi-
tion parameters are those that influence the values to be given for the action
parameters. As a concrete example, consider the last group in the previous para-
graph. The business rule type defines a condition parameter corresponding to
the category of the debt collector and an action parameter corresponding to the
maximum pardon percentage. A rule (i.e., an instance of the rule type) might
then be if category = ‘‘senior’’ or category = ‘‘director’’ then maxPardon

= 80%. The priorities might be used to impose a default rule that allows no par-
don of the debt. The lowest priority rule would then be if true then maxPardon

= 0%.

However, a more interesting rule type is the one corresponding to the cal-
culation of the debt (the first group of factors for the agreement service). The
debt is basically calculated as the sum of the loan instalments that the ower
has failed to pay, surcharged with an amount, called “late interest”. The rules



for calculating this amount are defined by the credit institution, and the most
common formula is: instalment amount * late interest rate * days the payment
is late / 365. In other words, the institution defines a yearly late interest rate
that is applied to the owed amount like any interest rate. This rate may depend
only on the kind of loan (if it was for a house, a car, etc.) or it may have been
defined in the particular loan contract signed between the institution and the
ower. In the first case, the rate may be given as an action parameter value of the
rule, in the second case it must be computed at run-time, given the person for
whom the agreement is being simulated. But as said before, the formula itself is
defined by the institution. For example, there are instutions that don’t take the
payment delay into account, i.e., the formula is just instalment amount * late

interest rate. For the moment, these are the only two formulas the system in-
corporates, but the debt recovery company already told us that in the forseeable
future they will have to handle financial institutions and products that have late
interest rates over different periods of time, e.g., quarterly rates (which means
the formula would have the constant 90 instead of 365).

In these cases, where business rules impose a specific behaviour on the un-
derlying services, we add an action parameter with a fixed list of possible values.
Each value (except the default one) corresponds to a coordination rule that
contains the behaviour to be superposed on the underlying service (which im-
plements the default behaviour, corresponding to the default value of the param-
eter). However, from the user’s perspective, there is nothing special in this kind
of parameter; the association to coordination rules is done “under the hood”.
For our concrete example, the late interest rule type would have as condition
parameters the institution and the product type, and as action parameters the
interest rate (a percentage), the rate source (if it is a general rate or if it depends
on the loan contract), and the rate kind (if it is a yearly rate or a fixed one). The
last two parameters are associated to coordination rules and the first parameter
(the rate) is optional, because it has to be provided only if the rate source is
general. Two rule examples are

– if institution = ’Big Bank’ and productType = ’car loan’

then rate = 7%, source = ’general’, kind = ’fixed’;
– if institution = ’Big Bank’ and productType = ’house loan’

then source = ’contract’, kind = ’yearly’.

As for the coordination rules, we need one for each computation that differs
from the default behaviour, which is implemented directly in the service because
it is assumed to be the case occurring most often. For the example, we need
a rule to fetch the rate from the database table that holds the loan contract
information for all processes handled by the debt recovery company, and another
rule to calculate the late interest according to the fixed rate formula.

Continuing with our example, the service has (at least) the following meth-
ods:

– void setRate(double percentage), which is used to pass the value of the rate

action parameter to the service;



– double getRate(), which is used by clients of the service, and by the next
method, to obtain the rate that is applicable;

– double getInterest(), which uses auxiliary methods implemented by the
same service to calculate the late interest to be paid. Its implementation is
return getInstalment() * getRate() * getDays() / 365;.

Given these methods, the coordination rules are as follows:

Fixed Rate This rule intercepts the getInterest() method unconditionally,
and executes: return getInstalment() * getRate().

Contracted Rate This rule intercepts the getRate() method under the condi-
tion !calculated, and executes: r = the rate obtained by consulting the database;

setRate(r); calculated = true.

The second rule requires the coordination contract to have a local boolean at-
tribute calculated, initialized to false. The idea is that, no matter how often
the service’s clients call the getRate() method, the database lookup will be done
only for the first call, and the rate is stored into the service object, as if it were
given directly by a business rule. This “shortcut” works because we know that
the rates stored in the database may only change at the beginning of the nightly
batch, not during the interest calculation.

The next section explains how the three parts (business rules, coordinations
contracts, and services) work together at run-time in order to ensure that the
correct (business and coordination) rules are applied at the right time to the
right services.

4 Architectural Framework

The architecture of the configuration framework, and the steps that are taken
at run-time, are shown next.

Application Service
1. Service Request //

8. Call Operation

��

Factory
7. Return Service

oo

2. Create Service
ssggggggggggggggggggggggggggg

3. Configure
��

Processing Service Service
Configurator

4. Evaluate Rules
��

5. Set Parameters
oo

6. Create Contract
ssgggggggggggggggggggggggggg

Contract

9. Intercept Call

OO

XML Meta and Instance Files

The process starts with the creation of an application service object to handle
the user’s request, e.g., the request for the simulation of the agreement. This
object contains the necessary data, obtained from the data given by the user
on the web page, and will call auxiliary processing services. Each service is
implemented by a class, whose objects will be created through a factory (step
1 in the figure). After creating the particular instance of the processing service



(step 2), the factory may call the service configurator (step 3), if the service is
known to be possibly subject to business rules. The configurator consults two
XML files containing information about the existing business rules. The one we
called meta file defines the rule types (see Fig. 2 for an example), while the
instance file contains the actual rules (see Fig. 3).

The configurator first looks into the meta file to check which business rules
are applicable for the given processing service. For each such rule, the meta file
defines a mapping from each of the rule type’s condition (resp. action) parameters
into getter (resp. setter) methods of the service, in order to obtain from (resp.
pass to) the service the values to be used in the evaluation of the conditions of
the rules (resp. the values given by the action part of the rules). There is also
the possibility that an action parameter is mapped to a coordination contract.
For our example, the mapping could be the one given in Table 1. Notice that the
default values general and yearly are not mapped to any coordination contract.

Parameter Value Method Coordination Contract

institution getInstitution
productType getProductType
rate setRate

source general
source contract Contracted Rate
kind yearly
kind fixed Fixed Rate

Table 1. Example mapping of parameter (values) to methods and contracts

With this information (which of course is read from the meta file only once,
and not every time the configurator is called), the configurator calls the nec-
essary getters of the service in order to obtain the concrete values for all the
relevant condition parameters. Now the configurator is able to evaluate the rules
in the instance file (step 4), from the highest to the lowest priority one, evaluat-
ing the boolean expression in the if part of each rule until one of them is true. If
the parameter values obtained from the service satisfy no rules’ condition, then
the configurator raises an exception. If a suitable rule is found, the configurator
reads the values of the action parameters and passes them to the service (step
5) by calling the respective setters. If the action parameter is associated with a
coordination contract, the configurator creates an instance of that contract (step
6), passing to the contract constructor the processing service object as the par-
ticipant. Continuing the example, the configurator would call the getInstitution

and getProductType methods. If the values obtained were “Big Bank” and “car
loan”, respectively, then, according to the example rules in the previous section,
the configurator would call setRate(0.07) on the service, and create an instance
of the “Fixed Rate” coordination contract.

At this point the configurator returns control to the factory, which in turn
returns to the application service a handler to the created (and configured) pro-



cessing service. The application service may now start calling the methods of the
processing service (step 8). If the behaviour of such a method was changed by
a business rule, the corresponding contract instance will intercept the call and
execute the different behaviour (step 9). To finish the example, if the applica-
tion service calls getInterest, it will be intercepted by the fixed rate contract,
returning getInstalment() * 0.07.

Of course, the application service is completely unaware that the processing
service has been configured and that the default behaviour has changed, because
the application just calls directly the methods provided by the processing service
to its clients. In fact, we follow the strict separation between computation and
configuration described in [6]: each processing service has two interfaces, one
listing the operations available to clients, the other listing the operations avail-
able to the configurator (like the getters and setters of business rule parameters).
The application service only knows the former interface, because that is the one
returned by the factory. This prevents the application service from changing the
configuration enforced by the business rules.

The user may edit the XML instance file through a tool we built for that
purpose to browse (Fig. 4), edit (Fig. 5) and create business rules. The tool
completely hides the XML syntax away from the user, allowing the manipula-
tion of rules in a user-friendly manner. Furthermore, it imposes all the necessary
constraints to make sure that, on the one hand, all data are consistent with
the business rules’ metadata (i.e., the rule types defined in the XML meta file),
and, on the other hand, that a well-defined XML instance file is produced. In
particular, the tool supplies the user with the possible domain values for re-
quired user input, it checks whether mandatory action parameters have been
assigned a value, facilitates the change of priorities among rules and guarantees
the uniqueness of priorities, allows to search all rules for a given institution, etc.
You may notice from the presented XML extracts that every rule type, rule, and
parameter has a unique identifier and a name. The identifier is used internally
by the configurator to establish cross-references between the instance and the
meta file, while the name is shown by the rule editing tool to the user (as shown
in the screenshots). The valueType attribute of a parameter is used by the rule
editor to present to the user (in a drop-down list) all the possible values for that
parameter. In Fig. 5 the drop-down list would appear by clicking on the button
with a down-arrow in the upper right part of the active window.

Notice that the user is (and must be) completely unaware of which services
are subject to which rule types, because that is not part of the problem domain.
The mapping between the rules and the service classes they affect is part of the
solution domain, and as such defined in the XML meta file. As such, each rule
type has a conceptual unity that makes sense from the business point of view,
without taking the underlying services implementation into account.



<service class="ComputeDebt">

<ruleType name="Late Interest" id="LateInterest">

<condition>

<conditionGroup>

<conditionParameter name="Financial Institution"

id="Inst" type="string">

<valueType name="Institution" />

<getter name="getInstitutionCd" returnType="String" />

<SQL>

<expr>AT_LATE_INTEREST_CALC.INSTITUTION_CD</expr>

<from>AT_LATE_INTEREST_CALC</from>

</SQL>

</conditionParameter>

<conditionParameter name="Credit Type"

id="CredType" type="string">

<valueType name="CreditType" />

<getter name="getCreditType" returnType="String" />

<SQL>

<expr>ST_PROCESS_CONTRACT.CREDIT_TYPE_CD</expr>

<from>ST_PROCESS_CONTRACT,AT_LATE_INTEREST_CALC</from>

<join>ST_PROCESS_CONTRACT.PROCESS_NBR =

AT_LATE_INTEREST_CALC.PROCESS_NBR</join>

</SQL>

</conditionParameter>

<!-- the current phase of the recovery process -->

<conditionParameter name="Phase" id="Phase" type="string">

<valueType name="ProcPhase" />

<getter name="getProcessPhase" returnType="String" />

<SQL>

<expr>AT_LATE_INTEREST_CALC.ACTUAL_PHASE_CD</expr>

<from>AT_LATE_INTEREST_CALC</from>

</SQL>

</conditionParameter>

<!-- other condition parameters -->

</conditionGroup>

</condition>

<!-- the action parameters would be given here -->

</ruleType>

</service>

Fig. 2. An extract of the XML meta file



<service class = "ComputeDebt" name = "ComputeDebt">

<ruleType id = "LateInterest">

<!-- other rules with higher priority -->

<rule name = "Big Bank, judicial phases" id = "3" priority = "3">

<conditionset type = "AND">

<comparison id = "Inst" serviceValue = "0916"

userValue = "Big Bank" operator = "equal"/>

<conditionset type = "OR">

<comparison id = "Phase" serviceValue = "0005"

userValue = "External judicial phase" operator = "equal"/>

<comparison id = "Phase" serviceValue = "0007"

userValue = "Internal judicial phase" operator = "equal"/>

</conditionset>

</conditionset>

<!-- the values for the action parameters come here -->

</rule>

<!-- remaining rules, with less priority -->

</ruleType>

</service>

Fig. 3. An extract of the XML instance file

5 Batch-oriented Rule Processing

The approach presented in the previous section is intended for the interactive,
web-based application services that are called on request by the user with the
necessary data. These data are passed along to a processing service. The con-
figurator queries the processing service for the data in order to evaluate the
conditions of the rules.

However, like most information systems, the debt recovery system also has
a substantial part working in batch. For example, the calculation of the debt
is not only needed on demand to project the future debt for the simulation
agreement service, it is also run every night to update the current debt of all the
current credit recovery processes registered in the system. In this case, the debt
calculation is performed by stored procedures in the database, written in SQL
and with the business rules hard-wired.

Hence, when we have a large set of objects (e.g., credit recovery processes)
for which we want to invoke the same processing service (e.g., debt calculation),
it is not very efficient to apply the service to each of these objects individually.
It is better to apply a “batch” strategy, reversing the configuration operation:
instead of starting with an object and then choosing the rule that it satisfies,
we take a rule and then select all the objects that satisfy it. This is much more
efficient because we may use the same configured processing service instance for
objects A and B if we are sure that for both A and B the same rule is chosen.



Fig. 4. Browsing rules for the debt calculation

We thus have the need to be able to determine for a given rule the set of
objects that satisfy it. Pragmatically speaking, we need a way of transforming
the if-part of a rule into an SQL condition that can be used in a SELECT query
to obtain those objects. Therefore we extended the rule type information in the
XML meta file, adding for each condition parameter the following information:

– an SQL expression that can be used to obtain the parameter value;
– the list of tables that must be queried to obtain the parameter value;
– a join condition between those tables.

Fig. 2 shows a fragment of the meta information for the debt calculation service.
There we see, for example, that in order to obtain the value of the product type
parameter we have to write the following query:

SELECT ST_PROCESS_CONTRACT.CREDIT_TYPE_CD
FROM ST_PROCESS_CONTRACT,AT_LATE_INTEREST_CALC
WHERE ST_PROCESS_CONTRACT.PROCESS_NBR =

AT_LATE_INTEREST_CALC.PROCESS_NBR

Using this information we can now take a rule condition and transform it
into a SQL fragment. As an example, consider the rule condition (for the same
service) in Fig. 3: it is applicable to all recovery processes of “Big Bank” that



Fig. 5. Editing the condition of a rule

are in the internal judicial phase (i.e., the company’s lawyers are dealing with
the process) or the external one (i.e., the case has gone to court). We may
compose the information for each of the rule parameters in order to obtain a
single SQL fragment for the rule condition. This fragment contains the following
information:

– the list of tables that must be queried in order to evaluate the rule condition;
– an SQL condition that expresses both the join conditions between the several

tables and the rule condition itself.

For our example, the meta file specifies that Inst and Phase, the two param-
eters occurring in the condition, only require the table AT LATE INTEREST CALC

to be queried. As for the rule condition, the meta file specifies that
AT LATE INTEREST CALC.INSTITUTION CD corresponds to the usage of the Inst

parameter, and AT LATE INTEREST CALC.ACTUAL PHASE CD to the Phase condi-
tion parameter. By a straightforward replacement of these names in the
boolean expression of the rule condition, we get the following SQL expression:
((AT LATE INTEREST CALC.INSTITUTION CD = ’0916’) AND

((AT LATE INTEREST CALC.ACTUAL PHASE CD = ’0005’) OR

(AT LATE INTEREST CALC.ACTUAL PHASE CD = ’0007’)))



The SQL representation of a rule is conveyed by an instance of class SQLRule,
which is contained in the service configurator, because the XML files are accessed
by the latter.

public class ServiceConfigurator {
public class SQLRule {

public String getId() { ... }
public String getName() { ... }
public String getWhere() { ... }
public String getFrom() { ... }

}
}

Each processing service class provides a static method for obtaining all of its
rules in this “SQL format”. This method simply calls a method of the service
configurator, passing the service identification, which returns all rules for that
service in decreasing order of priority. In the example below we show how we
can generate a specialized query for a rule. In this example we first obtain all
the service rules in “SQL format” and then generate a query that returns the
first object that satisfies the condition of the third rule.

ServiceConfigurator.SQLRule[] SQLrules = ComputeDebt.getSQLRules();

ServiceConfigurator.SQLRule rule = SQLrules[2];
System.out.println("Rule : " + rule.getId() + " - " + rule.getName());
String sql = "SELECT TOP 1 AT_LATE_INTEREST_CALC.PROCESS_NBR " +
" FROM " + rule.getFrom() +
" WHERE " + rule.getWhere() +
" AND PROCESSED = false";

System.out.println(sql);

The output generated is the following:

Rule : 3 - Big Bank, judicial phases

SELECT TOP 1 AT_LATE_INTEREST_CALC.PROCESS_NBR
FROM AT_LATE_INTEREST_CALC
WHERE ((AT_LATE_INTEREST_CALC.INSTITUTION_CD = ’0916’)
AND ((AT_LATE_INTEREST_CALC.ACTUAL_PHASE_CD = ’0005’)
OR (AT_LATE_INTEREST_CALC.ACTUAL_PHASE_CD = ’0007’)))
AND PROCESSED = false

Similar queries are generated for each rule and each query is executed. In
this way we obtain, for each rule, one object satisfying its condition. This object
is basically a representative of the equivalence class of all objects that satisfy
the given rule conditions. Now, step 1 of the run-time configuration (section 4)
is executed for each object. In other words, we execute the same call as if it



were an application service, but passing one of the already created objects as
data. The steps then proceed as usual. This means that after step 7, we obtain
a service instance that has been configured according to the rule corresponding
to the given object.

The generation of the SQL code for the batch version of a service proceeds as
follows, for each i from 1 to n (where n is the number of rules for that service).
First, generate the SQL query to select all objects satisfying the condition of the
i-th rule. This is done as shown above, but without the TOP 1 qualifier. Second,
call a special method on the i-th service instance. This method will generate the
SQL code that implements the service, based on a template that is customized
with the action parameters that have been set by the configurator on the service.

In summary, the SQL code that will be executed in batch is made up of n
“modules”, one for each rule. Each module first selects all objects to which the
rule is applicable, and then executes the parameterized SQL code that corre-
sponds to the Java code for the interactive version of the service. The modules
are run sequentially, according to the prioritization of the rules.

This raises a problem. If some object satisfies the conditions of two or more
rules, only the one with the highest priority should be applied to that object.
To preserve this semantics, each batch service uses an auxiliary table, initialized
with all objects to be processed by the service; in the case of the debt calculation
service, it is the AT LATE INTEREST CALC table. This table has a boolean column
called processed, initialized to false. As each batch module executes, it marks
each object it operates on as being processed. Hence, when the next module
starts, its query will only select objects that haven’t been processed yet. In this
way, no two rules will be applied to the same object.

The last, but not least, point to mention are coordination contracts. As said
above, one service instance has been created for each rule, and configured ac-
cordingly. This means that coordination contracts may have been superposed
on some service instances (step 6). Hence, the SQL code generated from those
service instances cannot be the same as for those that haven’t any coordination
contracts. The problem is that services are unaware of the existence of contracts.
The result is that when the code generation method of a service object is called
(step 8), the service object has no way to know that it should generate slightly
different code, to take the contract’s behaviour into account. In fact, it must not
know, because that would defeat the whole purpose of coordination contracts:
the different behaviours would be hard-wired into the service, restricting the
adaptability and flexibility needed for the evolution of the business rules. Since
the Java code (for the web-based part of the system) and the SQL code (for the
batch part) should be in the same “location”, to facilitate the maintenance of
the system, the solution is of course for each contract to also generate the part
of the code corresponding to the new behaviour it imposes on the underlying
service. For this to be possible, the trick is to make the code generation method
of the service also subject to coordination. In other words, when a contract is
applied to a service object, it will not only intercept the methods supplied by



the service to its clients, it will also intercept the code generation method (step
9) in order to adapt it to the new intended behaviour.

6 Concluding Remarks

This paper reports on the first industrial application of coordination contracts,
a mechanism we have developed for non-intrusive dynamic coordination among
components, where “dynamic” means that the coordination may change during
execution of the system.

Although the examples given are specific to the debt recovery domain, the
framework we developed is generic and can be used to help organisations main-
tain their dependence on business rules and achieve flexibility of adaptation to
changing rules. The framework provides a way to separate business rules from
services and to apply one or more rules to services depending on the exact ser-
vice call. Moreover, the approach is applicable to systems with an interactive
and a batch part (based on SQL procedures), both subject to the same rules.
This avoids the traditional scenario of duplicated business rules scattered among
many system services and entangled within their code, thus helping to prevent
unintentional faults by developers during software maintenance.

Flexibility of adaptation to change was achieved by two means. The first is the
definition of parameterised business rule types. The condition parameters can be
combined in arbitrary boolean expressions to provide expressivity, and priorities
among rules of the same type allow to distinguish between general vs. exceptional
cases. The second means are coordination contracts to encapsulate the behaviour
that deviates from the default case. At run-time, from the actual data passed
to the invoked service, a configurator component retrieves the applicable rules
(at most one of each rule type), parameterises the service according to the rules,
and creates the necessary contract instances. The contracts will intercept some
of the service’s functionalities and replace it by the new behaviour associated to
the corresponding business rule.

The architectural framework we designed can be used both for interactive as
well as batch application services. The difference lies in the fact that the batch
application service has to get one representative data object for each rule, and
only then can it create one processing service for each such data. The applica-
tion service then asks each of the obtained configured services to generate the
corresponding SQL code. Coordination contracts will also intercept these calls,
in order to generate code that corresponds to the execution of the contract in
the interactive case.

This approach has proved to work well for the system at hand. On the one
hand it guarantees that the system will automatically (i.e., without programmer
intervention) behave consistently with any change to the business rules. On the
other hand, it makes possible to incorporate some changes to existing rule types
and create new rule types with little effort, because coordination contracts can
be added in an incremental way without changing the client nor the service
code. Furthermore, the code of the services remains simple in the sense that it



does not have to entangle all the possible parameter combinations and behaviour
variations.

The main difficulty lies in the analysis and design of the services and the
rules. From the requirements, we have to analyse which rules make sense and
define what their variability points (the parameters) are. As for the services,
their functionality has to be decomposed into many atomic methods because
coordination rules “hook” into existing methods of the contract’s participants.
As such, having just a few, monolithic methods would decrease the flexibility
for future evolution of the system, and would require the coordination rule to
duplicate most of the method code except for a few changes.

The approach is also practical from the efficiency point of view. The over-
head imposed by the configurator’s operations (finding the rules, passing action
parameter values, and creating coordination contract objects) does not have a
major impact into the overall execution time of the application and processing
services. This is both true for the interactive and batch parts of the system. In
the former case, the user does not notice any delay in the system’s reply, in the
latter case, the time of generating the SQL procedures is negligible compared
to the time they will execute over the hundreds of thousands of records in the
database. Moreover, the execution time of the generated SQL code is comparable
to the original batch code, that had all rules hard-wired.

To sum up, even though we used coordination contracts in a narrow sense,
namely only as dynamic and transparent message filters on services, and not for
coordination among different services, we are convinced that they facilitate the
evolution of a system that has to be adapted to changing business rules.

7 Acknowledgments

This work was partially supported by project AGILE (IST-2001-32747) and the
Marie-Curie TOK-IAP action 3169 (Leg2NET), both funded by the European
Commission; by project POSI/32717/00 (Formal Approach to Software Archi-
tecture) funded by Fundação para a Ciência e Tecnologia and FEDER; and
by the research network RELEASE (Research Links to Explore and Advance
Software Evolution) funded by the European Science Foundation.

References

1. Wermelinger, M., Koutsoukos, G., Avillez, R., Gouveia, J., Andrade, L., Fiadeiro,
J.L.: Using coordination contracts for flexible adaptation to changing business
rules. In: Proc. of the 6th Intl. Workshop on the Principles of Software Evolution,
IEEE Computer Society Press (2003) 115–120

2. Andrade, L., Fiadeiro, J.L., Gouveia, J., Koutsoukos, G.: Separating computation,
coordination and configuration. Journal of Software Maintenance and Evolution:
Research and Practice 14 (2002) 353–369

3. Gouveia, J., Koutsoukos, G., Wermelinger, M., Andrade, L., Fiadeiro, J.L.: The
coordination development environment. In: Proc. of the 5th Intl. Conf. on Fun-
damental Approaches to Software Engineering. Volume 2306 of LNCS., Springer-
Verlag (2002) 323–326



4. Gouveia, J., Koutsoukos, G., Andrade, L., Fiadeiro, J.L.: Tool support for
coordination-based software evolution. In: Proc. TOOLS 38, IEEE Computer So-
ciety Press (2001) 184–196

5. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
In: 3rd Information Survivability Workshop, Software Engineering Institute (2000)

6. Wermelinger, M., Koutsoukos, G., Fiadeiro, J., Andrade, L., Gouveia, J.: Evolving
and using coordinated systems. In: Proc. of the 5th Intl. Workshop on Principles
of Software Evolution, ACM (2002) 43–46

7. Moazami-Goudarzi, K.: Consistency Preserving Dynamic Reconfiguration of Dis-
tributed Systems. PhD thesis, Imperial College London (1999)

8. K.Lano, J.L.Fiadeiro, L.Andrade: Software Design Using Java 2. Palgrave Macmil-
lan (2002)

9. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
munications of the ACM 35 (1992) 97–107

10. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17 (1992) 40–52

11. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proceed-
ings of the Fourth ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ACM Press (1996) 3–14

12. Kramer, J.: Configuration programming—a framework for the development of
distributable systems. In: International Conference on Computer Systems and
Software Engineering, Israel, IEEE (1990)

13. Endler, M., Wei, J.: Programming generic dynamic reconfigurations for distributed
applications. In: Proceedings of the First International Workshop on Configurable
Distributed Systems, IEE (1992) 68–79

14. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26 (2000) 70–93

15. Monroe, R.T.: Capturing software architecture design expertise with Armani.
Technical Report CMU-CS-98-163, School of Computer Science, Carnegie Mellon
University (1998)

16. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley (1998)

17. Kilov, H., Ross, J.: Information Modeling: an Object-oriented Approach. Prentice-
Hall (1994)

18. Notkin, D., Garlan, D., Griswold, W., Sullivan, K.: Adding implicit invocation
to languages: Three approaches. In: Object Technologies for Advanced Software.
Volume 742., Springer-Verlag (1993) 489–510


