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Barcelona 08028, Spain

H. Rymer

Department of Earth Sciences, The Open University, Milton Keynes, MK7

6AA, United Kingdom.

L. K. Wooller

Department of Earth Sciences, The Open University, Milton Keynes, MK7

6AA, United Kingdom.

J. Gottsmann, Institute of Earth Sciences Jaume Almera, CSIC, Llúıs Solé Sabaŕıs s/n,
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2 GOTTSMANN ET AL.: GRAVITY CHANGES AT NISYROS CALDERA

Abstract. We report on short-term (over tens of minutes) residual grav-

ity changes recorded at the restless Nisyros caldera in Greece via a series of

discrete measurements at benchmarks within or in proximity to a hydrother-

mal area located along the caldera floor. The obtained time series reveal si-

nusoidal gravity variations with amplitudes of up to 25 µGal and wavelengths

of 40-50 min. Degassing of a magmatic source coupling into (shallow) hy-

drothermal systems including the ascent of steam pockets and transient pres-

sure variations during steam/liquid interface propagation appear to be the

most likely causative process for the observed short-term variations. We as-

sess standard protocols of micro-gravity surveys for hazard assessment in vol-

canic areas in the light of these findings and propose additional techniques,

such as continuous gravimetry, for the discrimination of hydrothermal sig-

nals from deeper-seated, i.e. magmatic, signals during gravity monitoring of

restless volcanoes hosting active hydrothermal systems.
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1. Introduction

Gravity change and deformation time series data are employed both to quantify the long-

term subsurface dynamics (mass/volume/density changes) at restless calderas [Rymer and

Tryggvason, 1993; Berrino, 1994; Battaglia et al., 2003; Gottsmann et al., 2003] and for

forecasting volcanic activity as a volcano develops from a state of unrest to a state where

a volcanic eruption has to be anticipated [Rymer and Williams-Jones , 2000; Gottsmann

and Rymer , 2002]. Critical to the interpretation of residual gravity variations, i.e. data

corrected for the effect of vertical ground deformation on gravity, is the correction for

additional phenomena such as, for instance, secular variations in the level of the ground

water table. Failure to account for such contributions results in attributing the entire

gravitational signal to deeper, usually magmatic, processes. Conclusions drawn may then

be unrealistic and may contribute little to the assessment of hazards associated with

volcanic unrest. The presence of active hydrothermal systems at many restless calderas

(e.g., Yellowstone, Long Valley, Campi Flegrei) expressed at the surface by fumaroles,

mudpools or geysers has often prompted controversial debates on the causative processes

of unrest: magma or hydrothermal fluid migration. One controversial recent example

is the case of ground inflation at Campi Flegrei between 1982 and 1984 [Berrino, 1994;

Bonafede and Mazzanti , 1998; Gottsmann et al., 2003, 2005].

Based on a detailed evaluation of short-term residual gravity variations recorded at the

restless caldera of Nisyros (Greece), this paper highlights a previously unrecognised effect

of hydrothermal activity on gravity changes measured at volcanic areas.

2. Micro-gravity surveys

A widely applied technique to quantify sub-surface mass/volume/density changes at

active volcanic areas is the inversion of gravity-height time series. These data are tra-

ditionaly obtained by joint deformation and micro-gravity surveys, whereby individual

relative gravity readings are obtained at benchmarks (with a simultaneous control of
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4 GOTTSMANN ET AL.: GRAVITY CHANGES AT NISYROS CALDERA

benchmark elevation) which are part of a larger network. Repeated occupation of the

network leads to gravity-height time series, which are evaluated with respect to base line

data obtained at a reference usually located outside the area of interest.

After correction for Earth and Ocean Tides, the difference in gravity observed between

a benchmark and the reference station, the observed gravity change (∆gobs), comprises

an array of signals. In order to extract the gravity signal produced by a sub-surface

mass and/or density change, gravity residuals need to be quantified. The residual gravity

change at each benchmark (∆gr) is obtained via

∆gr = ∆gobs −∆gFA ∗ Uz −∆gdef −∆gwt (1)

where ∆gFA is the free-air gravity gradient (-308.6 µGal/m; 1 µGal = 10−8 ms−2), Uz

is the vertical displacement, ∆gdef is the Bouguer effect of deformation, and the resulting

propagation of density boundaries, on gravity [Walsh and Rice, 1979] and ∆gwt is the

ground water table effect. In this discussion, we are particularly concerned with ∆gobs.

3. Observations and results from Nisyros caldera

Nisyros, an 8 km-wide island located at the eastern end of the Hellenic island arc,

hosts a 3.8 km-wide caldera. An approx. 0.9 km2 hydrothermal area with fumaroles and

mudpools is located in the central southern part of the caldera (known as the Lakki Plain;

Fig. 1) and has been the locus of at least 13 phreatic eruptions in historical times [Caliro

et al., 2005; Hardiman, 1996], the most recent in 1888. A volcano-seismic crisis on Nisyros

between 1995 and 1998 was accompanied by 14 cm of ground uplift on the island [Sachpazi

et al., 2002]. This episode has not (yet) culminated in an eruption.

A joint gravity-deformation network installed in 2003 [Gottsmann et al., 2004] was re-

occupied in 2004, using Lacoste and Romberg gravimeter G-403. The network runs around

the outside of the caldera and along a line roughly N–S through the caldera with a total

of 23 benchmarks. During both campaigns, we noticed significant (up to 25 µGal) gravity
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changes over a time scale of hours at six benchmarks located within the caldera floor as

well as at two benchmarks along the caldera rim (Fig. 1). These benchmarks lie within

or proximal to (1.5 km or less) the exposed hydrothermal area. The observed gravity

variations on the order of tens of µGal could be explained by neither tidal, atmospheric,

instrumental (drift or tare) nor by deformation effects (see below). The precision of each

meter reading was to within better than 3 µGal. It is important to note that we have not

noticed such variations distal to the hydrothermal system or the caldera rim, i.e., along

the flanks of the volcano.

The repetitive nature of these variations prompted us to conduct repeated readings at

a number of benchmarks located within the caldera (Fig. 1). This procedure involved

a set of 10 gravity readings taken every 4-5 min over a period of 30-60 min. A gravity

change time series obtained this way (after correcting for tidal effects) giving the mean

of each set of readings at a benchmark located close to Stefanos crater (Fig. 1) within

the hydrothermal area is shown in Figure 2. The data show a distinct pattern of gravity

changes which can be approximated by a sinusoidal variation with a wavelength of ca. 45

minutes and with a maximum amplitude of ca. 13 µGal. Data obtained at most other

benchmarks within the Lakki Plain show similar wavelengths and amplitudes. Maximum

amplitudes detected during the 2004 campaign were 25 µGal.

4. Discussion and Implications

In order to attribute the observed amplitude of gravity changes of 12–25 µGal to a free-

air effect due to vertical ground deformation, elevation changes of ca. 4-8 cm are required.

Such changes are clearly measurable with our GPS set-up using 2 Leica SR530 recievers

(rover and a reference station) and AT502 antennas at a 1 Hz sample rate during both

campaigns. However, within the precision of the measurements (± 3 cm ), at neither

benchmark were the gravity changes accompanied by resolvable ground height changes

(Fig. 2).
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Traditional inversion techniques employing homogenous, isotropic, elastic half-space

models require gravity changes to be associated with ground deformation in order to be

able to infer on the nature of the causative source by deducing the source density from

constraints on volume and mass variations at depth. In the absence of resolvable ground

deformation, such “simple” models fail to provide answers as to the nature of the causative

process of these short-term gravity variations on Nisyros and alternative models need to

be employed. In a recent paper, Caliro et al. [2005] provided a comprehensive study of

the hydrothermal system at Nisyros based on structural, geochemical and seismological

investigations. A number of arguments point towards the hydrothermal system as the

causative source for the observed short-term gravity variations. The gravity variations

were recorded so far in areas:

1. of intensive hydrothermal surface alteration,

2. bounded and dissected by faults,

3. of increased CO2 flux [Caliro et al., 2005] ≥ 5 times the background level of 8 g m−2

d−1 [Cardellini et al., 2003],

4. of low-frequency, harmonic signals which are interpreted by Caliro et al. [2005] to

be likely associated to the dynamics of fluid-filled buried cavities ca. 1–2 km beneath the

central part of the Lakki Plain ,

5. at the eastern-most zone of diffuse degassing of the Lakki plain where the occurence

of harmonic tremors indicates instabilities in the degassing process [Caliro et al., 2005].

A complex interplay between a magmatic source and the overlying hydrothermal sys-

tems with contributions from meteoric water and seawater appears to presently orchestrate

the degassing process on Nisysros [Chiodini et al., 2002; Brombach et al., 2003]. Magma

degassing is buffered by a deep hydrothermal system at boiling temperatures coupling into

a shallower hydrothermal system [Caliro et al., 2005]. The dominant causative process

for the observed short-term gravity variations could be the hydrothermal/magmatic de-
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gassing process itself, for instance, the generation, ascent and dissipation of steam pockets

from the boiling hydrothermal reservoir along fracture zone or faults as well as transient

pressure variations during steam/liquid interface propagation. A key candidate to fos-

ter effective degassing and steam propagation on Nisyros are large scale NE-SW striking

faults as well as the caldera boundary faults. Steam propagation along the latter could

explain the gravity variations observed along the caldera rim.

A short-term gravity increase could be triggered, for example, by rising steam pockets

resulting in underplating and uplift of an hydrothermal aquifer.

Assuming an effective void fraction φ of 0.4 in permeable caldera–fill deposits, a residual

gravity change (∆gr) of 20 µGal could be induced for example by a ca. 1.2 m change, δq,

in the level of an unconfined aquifer, if a water density ρw of 1000 kg/m3 is assumed.

∆gr = 2πGρwφδq (2)

After the dissipation of the pocket the resultant fall of the aquifer to its ’background

level’ could account for the subsequent gravity decrease (Fig. 2). Based on the obtained

data we would argue that such processes (at least on Nisyros) occur on the timescales of

tens of minutes, which is also supported by seismic data [Caliro et al., 2005].

Assuming that the observed gravity changes are predominantly associated with the cur-

rent “background” phase of degassing on Nisyros, it appears obvious that results obtained

via traditional, periodic gravity surveys are very much biased on the timing of benchmark

occupation. Conventional surveys only record instantaneous states of the mass distri-

bution at continuously active systems. If one happens to measure at a time where the

hydrothermal system is at approximately the same “state” as during the previous mea-

surement, the resulting residual change is likely to be close to zero. If however one happens

to relate a measurement corresponding to the “peak” of a gravity signal similar to that

shown in Fig. 2 to one corresponding to a “trough”, one could infer on a significant sub-
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surface mass change inducing the observed gravity change. As a consequence the time

scale associated with this process could be deduced to occur over several months or even

years if a “peak” measurement is compared with a “trough” measurement (or vice versa)

during a subsequent occupation (months or years later).

The straightforward method during traditional surveys is to incorporate short-term

gravity variations by employing the mean of the meter readings and associated errors. In

the case of Nisyros after a series of annual surveys, residual gravity changes would be as-

sociated with a significant level of noise. This data set would provide little information for

the precise quantification of associated sub-surface mass/density changes at the caldera.

A potential example of this dilemma is given in Figure 3, which shows residual grav-

ity data recorded during ground subsidence at the Campi Flegrei caldera [Berrino, 1994;

Gottsmann et al., 2003]. Data are shown for benchmarks Solfatara, located in an active

hydrothermal area of the Campi Flegrei caldera and at Serapeo, located in the area of

maximum ground deformation. Note, that some residual gravity changes between two

occupations are up to 40 µGal. One could speculate that some “spikes” in the shown

gravity data derive from relating “peak” and “trough” readings triggered by background

hydrothermal activity during two successive field campaigns. An interpretation of re-

sults obtained for example by the inversion of such time series accounting for potential

hydrothermally-induced short-term gravity variations would deviate significantly from an

interpretation based on the assumption that the recorded gravity variation represent long-

term mass/density variations beneath the caldera.

One question remaining, however, is whether the observed residual gravity changes are

simply induced by sub-surface mass/density fluctuations in the hydrothermal system(s)

or whether perhaps at least part of the signal corresponds to the gravimeter’s mechanical

response to, for example, microseisms induced by harmonic seismicity (tremors). Al-

though the gravimeter manufacturer claims that measurements are generally unaffected

by horizontal ground acceleration, limited studies indicate mechanical coupling effects
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in readings using gravimeters such as employed during our surveys. In order to better

quantify potential artifacts as well as fundamental sub-surface processes and their associ-

ated timescales, we deem it paramount to obtain long-term gravity change time series at

restless calderas, for instance, via the installation of continuously recording gravimeters.

Another solution could be employing two gravimeters operating simultanously, one in

continuous mode, a second employed following the routine of conventional micro-gravity

survey. The continuous time series would give critical baseline data via the statistical anal-

ysis of the data including spectral analysis. This approach could provide an important

tool for the discrimination of hydrothermal signals occurring over minutes from magmatic

signals occuring over months or years. This technique is certainly not yet standard for

volcano monitoring, although long-term continuous gravity observations on Etna have

provided important constraints on time scales of magma replenishment [Carbone et al.,

2003]. It is hence perhaps worth reappraising standard protocols of micro-gravity sur-

veys for volcano monitoring [Rymer , 1989] by fine-tuning the method for investigations at

hydrothermally-active volcanoes. Future continuous gravimetric investigations will have

to show whether the phenomenon reported here is also common at other volcanic systems

hosting hydrothermal areas.
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Figure 1. Shaded relief image of Nisyros

(36◦35.25’ N, 27◦10.0’ E) based on 90 m SRTM

image showing areas of hydrothermally altered

deposits and areas of anomalously high CO2

flux (after Caliro et al. [2005]) along the caldera

floor (Lakki Plain). Short-term residual grav-

ity changes were recorded at locations indicated

by circles. Time series shown in Figure 2 was

obtained at benchmark marked by black circle

(close to Stefanos crater.)

Figure 2. Left: Observed gravity change

time series recorded on Nisyros (close to Ste-

fanos crater) on 14.10.2004. 2σ errors on grav-

ity measurements are ±3 µGal. Right: Ele-

vation variation derived from 1Hz GPS mea-

surements close to Stefanos crater. The sim-

ilar form of variations in the two timesets do

not correlate in time. If we were to correct for

vertical deformation, it would in fact amplify

the residual gravity signal since positive height

change results in a decrease in gravity.

Figure 3. Residual gravity change time series

recorded at Solfatara (left) and Serapeo (right),

Campi Flegrei, Italy, from June 1987 to March

2001 during ground subsidence. Data from

Berrino [1994] and Gottsmann et al. [2003].
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