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Abstract

Many foreseen advances in the design of food structures, suitable for ever demanding nutrient 

delivery systems, tailored controlled release, microencapsulation and protection of active ingredients, 

require a generation of superior dispersants than those currently provided by proteins.  While the most

efficient structure for such dispersants is relatively easy to specify, in foods they cannot simply be 

synthetically manufactured.  The review highlights several possible strategies for realising more 

efficient food colloid stabilisers and summarises the key recent progress for each approach, both 

experimentally and theoretically.  The emphasis is on those methods that lead to macromolecularly 

adsorbed layers. Practical aspects apart, we also discuss a number of interesting fundamental 

questions that each approach raises.     
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Introduction

Some years ago we attended a lecture by Professor Dickinson on the general topic of dispersants in 

food colloids. Three key take home messages from this talk for us where 1) many advocated advances

in the way that foods will be designed in future, such as surface engineering, or bottom up approach to

food structuring, can only truly be realised if we have a much better control over the nature and 

magnitude of interactions that operate between food constituents, 2) for structures on mesoscales, 

these  interactions essentially imply those operating between food colloidal particles and emulsions, 

3) customary food emulsifiers such as proteins, using which we normally manipulate such forces, 

have significant shortcomings in providing the required level of control for these envisaged future 

developments.  Yet, due to regulatory and safety issues, for food scientists the problem cannot simply 

be solved by synthesising a whole new generation of more efficient dispersants - an option that is 

often available for none-food related colloidal formulations in other industries. Instead, Professor 

Dickinson emphasised his view in which various existing components may be combined, or 

manipulated in a minute way, as to provide more superior surface functionality [1].  He provided two 

possible examples from his own work to demonstrate the principle.  One example was based on the 

preparation and use of conjugates of a protein with a polysaccharide [2*, 3*] and the second relied on 

the enhanced impact that the presence of a layer of whey protein imposed on stabilising properties of 

sodium caseinate [4, 5**].

Since Prof Dickinson’s talk on the subject, much has happened in this field and the area has rapidly 

grown into a dynamic branch of food colloid research, with a few other avenues also being actively 

pursued in the quest for achieving superior food dispersants.  Such research is not only important 

from a practical/industrial point of view, but it has also led to some very interesting and fundamental 

questions regarding our understanding of the behaviour of mixed surface active biopolymers at 

interfaces.  Our aim in this review is to provide a highlight of several of these strategies, providing an 

overview of advantages and possible limitations for each.  We also briefly discuss the questions that 

have arisen in the light of the work done so far in the literature, but still need to be resolved in our 

opinion, in order to fully optimise each method.  As with most multicomponent formulations, it is 

often possible to provide several (and sometimes contradictory) reasons for the observed experimental

behaviour of the systems involving mixtures of biopolymer dispersants.  In this respect, the theoretical

and modelling studies have proved a helpful tool in examining the plausibility of different 

explanations.  Where such work exists in relation to any of the methods discussed here, we will also 

attempt to summarise the main results of these theoretical studies.

One notable omission from our review is the so called Pickering route to stabilising emulsions, where 

it is the adsorption of small particles at the surface of the droplets (or bubbles) that is responsible for 

their colloid stability.  This is because firstly the mechanism of stabilisation by particles is quite 
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different to that induced by molecularly adsorbed interfacial films discussed here.  Furthermore, the 

vast amount of research on Pickering emulsions does not make it possible for us to do justice to the 

work that requires a separate lengthy review of its own.  It only suffices to mention that emulsion 

droplets stabilised by particles show exceptional stability against almost all modes of colloidal 

instability.  However, it remains a real challenge to produce edible yet sufficiently small (~ 10-50 nm) 

particles, with the appropriate surface chemistry for adsorption at air-water or oil-water interfaces, 

suitable for use in food systems.  Consequently, most reported work on the potential use of Pickering 

particles in food systems tends to involve rather coarse emulsions thus far  (>10 µm). 

It is useful to begin by examining the shortcomings of proteins as dispersants.  Most food related 

proteins are globular compact biopolymers.  Their strong amphiphilic nature means that they have a 

strong tendency for adsorption onto hydrophobic-hydrophilic interfaces.  When they do so, they tend 

to unfold to a larger or lesser extend and form relatively thin adsorbed surface layers.  Food proteins 

also tend to be smallish macromolecules, at least when compared to synthetic polymers typically used

as dispersants. Therefore, even relatively disordered proteins, such as casein, do not form particularly 

thick interfacial films (~ 3-5 nm).  When layers overlap, an osmotic differential appears between the 

regions in the gap separating the particles, where protein concentration is large, and that outside where

protein concentration is next to zero.  This ideally leads to a strong repulsion.  However, any 

interactions resulting from the overlap of the surface layers only manifest themselves when layers 

begin to touch.  They rapidly decay away as the inter-particle separation is increased further beyond 

this overlap distance.  For protein layers, at such separation distances the van der Waals attraction 

between colloidal particles or emulsion droplets (say of a size of a couple of microns) is not entirely 

negligible. The attraction suffices to cause aggregation of the drops.  Fortunately, proteins are also 

charged. The electrostatic repulsion between the layers operates at separations beyond overlap by a 

further distance of the order of the screening length, as dictated by the concentration of background 

electrolyte.  The combination of both the steric and the electrostatic repulsion is required to allow 

food protein emulsifiers to perform their function as dispersants.  Reduction of either of these 

components serves to cause colloidal instability.  This is nicely demonstrated by acidification and 

rennet coagulation of otherwise colloidally stable casein micelles in milk, where the electrostatic and 

the steric repulsions are turned off in each case, respectively.   This reliance of proteins on presence of

both components, and the many environmental factors such as pH, salt concentration, quality of  

solvent, temperature, etc., influencing one or both of these repulsion forces, makes the protein 

stabilised colloids quite susceptible to changes in processing conditions.  A further important issue 

that limits the efficiency of proteins as emulsifiers is their relatively blocky primary structure, with 

small segments of hydrophobic amino acids followed by equally short trains of hydrophilic ones.  In 

the context of synthetic polymers it has been shown that chains with many small adsorbing and non-

adsorbing sections are noticeably inferior in their dispersant stabilising ability compared to those 
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having long continuous blocks [6].   The presence of many adsorbing segments along the chain 

increases the possibility of the so called bridging configurations, where chains make multiple contacts

with surfaces of two neighbouring droplets. For polymers with many small anchoring segments and 

where the charge is low, this can even cause the mediated interactions to switch sign and become 

attractive, rather than the expected steric repulsion.    

 Mixed and Multiple layers 

In contrast to proteins, polysaccharides tend to be considerably larger macromolecules. Whereas the 

number of monomer residues making up a typical food protein may be  a couple of hundreds, the 

sugar moieties comprising say starch can be as many as tens or even hundreds of thousand monomer 

units.  Polysaccharides also tend to be hydrophilic molecules, with water acting as a good solvent for 

these biopolymers under a wide range of conditions.  Thus, when fully dissolved and under dilute 

conditions the chains are found to be highly swollen with typical radii of gyration that can be as large 

as 100 nm.  The swelling of chains is the result of strong excluded volume interaction between their 

monomers; precisely the same interactions that is also responsible for provision of strong steric 

repulsion between interfacial layers, upon their overlap.  Thick layers and strong repulsive forces, that

are not very sensitive to changes in pH or background electrolyte, make these molecules ideal 

candidates to act as dispersants.  However, the problem is that these biopolymers are not amphiphilic. 

Most polysaccharides show no affinity for adsorption at hydrophobic-hydrophilic interfaces. The 

technique discussed in this section, as well as the ones considered in the two following sections, 

describe several different means by which the polysaccharides can be made to reside on surfaces.  

They all share the basic approach of using much larger polysaccharides in one way or another to 

achieve the desired improved dispersant stabilising functionality.     

An interesting way of enticing the polysaccharides to adsorb at interface is to use their possible 

electric charge to attract them to an already deposited layer of opposite charge on the surface.  The 

idea owns its origins to the so called layer-by-layer deposition process, first suggested by Decher [7] 

to form multi-layers on macroscopic surfaces.  In each stage of the process the previous solution is 

washed.  Then a new solution, containing polymers of opposite charge to the existing layer so far, is 

introduced.  This process can be repeated many times to form stacks of alternate layers, one on top of 

another.  The first application of the technique to food colloids is due to McClements and his co-

workers [8*, 9**].  These researchers used the idea of L-b-L to deposit a layer of a negatively charged 

polysaccharide on top of an already adsorbed protein film at low pH, below the isoelectric point of the

protein. Under such conditions the protein film is positively charged and thus attracts the anionic 

polysaccharide.  Of course, the method can also be applied at pH values above iso-electric point of the
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protein, but this time employing a cationic polysaccharides (e,g. chitosan [10*]).  The initial studies by

McClements and co-workers [8*, 9**] were also significant in another important respect.  They were 

amongst the early examples of the application of L-b-L method to mesoscopically sized interfaces, 

using the surface of emulsion droplets as the template instead of a large macroscopic object. However,

doing so does pose several unique problems of its own which otherwise are not present during the 

deposition of multi-layer films on larger objects.  The most significant of these concerns the colloidal 

stability of the emulsions at intermediate stages of the deposition.  Polysaccharides can become 

simultaneously associated with two protein films on the surface of a pair of closely spaced droplets.  

This induces aggregation and subsequent coalescence of the emulsion drops through the bridging 

flocculation mechanism [8*, 11, 12].  Another important consideration is the integrity of the multi-

layers during large possible swings in pH as for example occurring in the storage period of the 

product.  This may result in the reversal of the charge of the protein layer.  With both biopolymers 

having the same charge polarity the polysaccharides are expected to begin to desorb from the surface. 

In practice it seems that the once formed, the protein + polysaccharide multilayer can tolerate this 

effect, provided the swing above (or below for cationic polysaccharides) is not too far away from the 

isoelectric point of the protein [8*]. This observation may be the result of some degree of inter-

diffusion of the two biopolymer sublayers.  It is not easy for polysaccharides to desorb immediately if 

they have become entangled with protein molecules.  The kinetics of disentanglement of long polymer

chains is known to be a relatively slow processes. This is an interesting point to which we shall return 

later on in this section.

Despite the above requirement for careful preparation, the potential of multi-layers as a superior 

means of stabilising emulsions in foods has been well demonstrated in the last decade or so.  Multi-

layer protein + polysaccharide stabilised emulsions have been shown to exhibit superior stability 

properties in the presence of high salt concentrations [9**], at pH values close to iso-electric point of 

protein (where primary emulsions would destabilise) [12, 13], though results contradicting the latter 

have also been reported in some cases [14].  Similarly, better stability during heating or freeze-thaw 

cycles [15, 16] is achieved through the use of protein + polysaccharide layers.  This is of particular 

interest in microencapsulation of active ingredients using the emulsification-drying route.  Often, in 

application of this technique to foods, polysaccharide is added to the emulsion dispersion in order to 

provide bulk to the final dried powder.  Given that the emulsions droplets are also normally stabilised 

using a protein, it is natural to choose the polysaccharide in such a way so as it enhances the emulsion

stability by forming multilayers.  Research investigating the possible use of multilayers in 

microencapsulation technologies are increasingly being reported in recent literature [17*, 18]. 

According to some of these studies there is an optimum level of polysaccharide which best suits the 

encapsulation process [17*] but the factors determining this value need further work to understand. 

The use of multilayers consisting of sodium caseinate with pectin, carrageenan, sodium alginate or 
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gum Arabic itself, has been found to provide the same degree of stabilising performance as that seen 

from gun Arabic in emulsion based beverages.  The latter is the colloid stabiliser of choice in these 

types of systems but there is a concerted attempt to replace it with more widely available functional 

ingredients [11].    

If the layer of polysaccharide around a droplet is also indigestible to various gastric enzymes, this 

ought to slowdown the hydrolysis and digestion of the oil in the emulsion formulation.  There is 

indeed good experimental evidence to support this suggestion [10*, 19, 20] and the potential of 

multilayers is currently an area of great interest both in the design of possible healthier foods and in 

controlled release application in nutraceuticals and pharmaceuticals [21].  The deposition of four or 

more consecutive layers is seldom reported in food related literature, but we stress that some of the 

studies we referred to so far do involve tertiary emulsions [19, 20].  Another interesting recent 

variation involves enzymatic crosslinking of the adsorbed secondary layer after its deposition [22*].  

Superior stabilising properties were observed.  

A different possible way of depositing a protein + polysaccharide layers is to opt for a mixed layer, by

carrying out the emulsification process in a single step in a solution consisting of both biopolymers 

simultaneously. Of course, care has to be taken that the concentrations are not above the miscibility 

gap and that possible complex formation between the biopolymers does not result in precipitation.  

These types of mixed layers have been deployed in formation of double emulsions [13, 23, 24].  The 

enhanced surface rheology of the adsorbed layer of complexes has been discussed by Fisher [25].  

Rather surprisingly relatively few systematic studies have been carried out to carefully compare the 

stabilising properties of mixed and multilayer films made of same protein and polysaccharide 

compositions.  A couple of notable exceptions are the interesting works by Jourdian et al [26**] and 

the more recent investigation by Azarikia and Abbasi [27*].  Both of these studies serve to show that 

the sequentially deposited multilayers have a somewhat superior stabilising properties, at pH values 

close to IEP of protein or at high salt concentrations, compared to mixed layers. These studies also 

brings us to a rather interesting question regarding the final configuration of our protein + 

polysaccharide layers.  Thermodynamic considerations tell us that this configuration is determined 

solely by the concentration of various components in the system, and the applied external conditions 

(pH, temperature, etc.).  More specifically, the equilibrium state of the adsorbed film is not a function 

of the procedure by which the deposition is carried out.  It stands to reason then that the mixed and the

multilayer films both cannot be the equilibrium arrangements for the biopolymers on the surface.  

Either one of these gradually evolves into the other, or both slowly change towards a common 

arrangement. Indeed, experiments of Jourdain et al [26**] suggest the latter to be the case. These 

researchers monitored the dynamic interfacial tension of mixed and sequentially adsorbed films and 

found that the two approached each other. The same was true of the measured surface viscosity, which
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increased for both films with time, rapidly for the mixed case and less slowly for L-b-L, but again 

towards the same values.   The question is then whether the final equilibrium arrangement is closer to 

a multilayer or a mixed film configuration? The question has clear relevance to the long term stability 

provided by protein + polysaccharide films.  In the last ten years or so there have also been several 

attempts to study the kinetics of multilayer films, as they are built up and then evolve further, by using

molecular dynamic simulations [28, 29].  Some of these studies show clear evidence that the 

boundaries between different sublayers become increasingly more “fuzzy” as different biopolymers 

diffuse and interpenetrate each other with time.  Unfortunately, these simulations are restricted to 

relatively short time periods and not sufficient for the evolution of the film to reach its final 

equilibrium state.  A different approach, more suited to dense polymer layers, was one adopted by us 

based on the use of self-consistent-field calculations [30*, 31**].  These studies do not provide much 

information on the kinetics and therefore the speed with which the films age.  But they do allow for 

the final equilibrium state to be determined.  Using a model of protein based on milk protein αs1-

casein, it was found that indeed for polysaccharides with a uniform distribution of charge the 

thermodynamically preferred state of the protein + polysaccharide layers is one more akin to a mixed 

film.  A true stable multilayer was nonetheless possible if parts of polysaccharide had a higher charge 

density with other parts lightly charged.  This was particularly the case when all of the strongly charge

segments were located at one end of the chains.  In the latter case, the combined electro-steric 

repulsion was also significantly improved.  The equilibrium configuration of the two types of layers, 

involving homogeneous and non-uniform charged polysaccharides, is depicted schematically in Fig. 

1, taken from reference [30*].  How fast will a multilayer revert to a mixed layer, remains an 

interesting question that deserves more experimental work.  It may turn out that multilayer structures 

are long lasting metastable states that will far exceed the shelf-life of the required food colloid 

formulation.  In that case one need not worry about the eventual state of the interfacial film. But this 

is unlikely to be the case for every possible polysaccharide and protein combination.

Other interesting and largely unanswered issues related to multilayer films concern the overcharging 

aspect.  When an anionic polysaccharide adsorbs on the primary positively charged protein film, it 

continues to do so beyond charge neutrality, making the resulting multi-layer negative [32].  Indeed 

this is exploited in the L-b-L method to lay the next layer of the cationic polysaccharide.  Fig. 2, taken

from the work of Guzey and McClements [9**], shows the reversal in the surface potential caused by 

adsorption of pectin onto a β−lactoglobulin laden surface at pH=4. Why does the negatively charged 

polysaccharide continue to accumulate onto a negative surface?  Various suggestion have been put 

forward.  Ettelaie et al [31**] have shown that the charge inhomogeneity of polysaccharide can lead to 

such a reversal.  However, it seems that reversal of surface potential also happens for uniformly 

charged cases.  Alternatively, it may be that other non-electrostatic interactions between 
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polysaccharides and proteins exist.  In the molecular dynamic simulations, such forces need to be 

assumed a priori and be included in order to generate stacks of sublayers on top of each other [29].  

Without them the simulation will not produce more than two sublayers.  We note that these 

interactions need to be rather strong if they are to counteract electrostatic repulsion.  This makes their 

origin somewhat difficult to envisage.  For example extensive hydrogen bonding between the two 

biopolymers can do the trick, but is not so obvious why it will happen to this extent.  Another 

possibility is that some localised areas of a polysaccharide become associated with positively charged 

part of the protein.  This suggestion may also explain why the multilayers persists for one or two pH 

units on the wrong side of IEP, where both biopolymers have the same charge polarity.  Once again, 

while easy to visualise for a pair of protein + polysaccharide in bulk solution away from other 

macromolecules, it is difficult to see how an extended object like a polysaccharide chain, once on the 

interface, ceases to experience the much more uniform field resulting from the average charge of the 

dense biopolymer film of which it is a part.  We should also mention one last possibility that is due to 

charge regulation of the protein.  For example, an anionic polysaccharide, will supress the pH in its 

locality.  It is this pH that a smaller protein molecule will feel in the vicinity of this polysaccharide, 

and not the actual value in bulk solution.  So even at the isoelectric pH, the net charge of a protein 

chain close to a polysaccharide may remain slightly positive.

A further likely area of future interest is the possible competitive adsorption of several different 

polysaccharides onto a primary protein layer. The importance of this arise from the likely 

simultaneous presence of different gums in commercial food formulations.  Even a single 

polysaccharide species will have a range of structural (e.g. level of branching), as well as size 

distribution. An initial study on the effect of inclusion of two polysaccharides can be found in the 

work of Chang et al [33*], where competitive adsorption of gum Arabic and fucoidan onto a primary 

caseinate layer was considered.  Perhaps not surprisingly, the more charged fucoidan was found to 

displace gum Arabic. In a separate theoretical study, Ettelaie et al [30*] predicted that for a mixture of 

two polysaccharides of the same charge and size, the more non-uniformly charged chains would 

displace the ones with a more homogenous distribution.  This was attributed to short segments with 

much higher charge density in the case of the former, thus showing the importance of charge density, 

in addition to the overall electric charge of the chains, in this type of adsorption processes.

Vegetable proteins are known not to be particularly good emulsifiers or steric colloid stabilisers, as 

they tend to be highly aggregated globular proteins.  However, the job of providing colloidal repulsive

forces, caused by the overlap of the surface layers, is delegated to the polysaccharides in the 

multilayer stabilisation technique.  Proteins only serve to attract the polysaccharides to the interface 

and therefore it is feasible to consider vegetable proteins for this purpose.  Nonetheless, the primary 

emulsions made with such proteins do have to be stable for a short but sufficient time until a 
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secondary layer can be deposited.  Several examples of the use of a vegetable protein with a 

polysaccharide have been reported in last few years [34, 35].

Conjugates of protein + polysaccharides

In our discussion in the previous section it was clear that the interactions responsible for accumulation

of polysaccharide at the surface of droplets were electrostatic in origin and as such somewhat 

vulnerable to factors that can drastically alter these forces.  To make the system less sensitive to such 

external parameters, one may attempt to covalently link the protein and polysaccharide molecules.  

Certain amino acid residues, most notably lysine can easily undergo a Maillard type reaction with the 

reducing sugar of polysaccharides, resulting in a covalent bond between the two biopolymers.  The 

reactions are promoted under relatively dry condition (i.e. at suitably low water activity) and require 

heat treatment over an incubation period of a few hours, at very least [2*].   A recent review of the 

nature of such reactions and conditions promoting them is given by Oliver at al [36]. The amphiphilic 

nature of protein means that it adsorbs on the surface of the emulsions droplets, thus dragging the 

attached polysaccharide chains with it to the interface.  Just as with the electrostatic complexes in the 

previous section, the main repulsion between the droplets is expected to be the steric one, mediated by

the overlap of thick polysaccharide layers at the interfaces.  Early experiments with such conjugates, 

demonstrated the exceptional emulsion stabilising properties of these hybrid biopolymer molecules 

[3*, 37] from the very onset. The contrast between the colloidal behaviour of the conjugate and protein

stabilised droplets is particularly astonishing at isoelectric pH of protein.  The conjugate stabilised 

emulsion is hardly affected, while the protein stabilise ones show extensive destabilisation and 

breakup at these relatively low pH values.

It is worth pointing out that protein + polysaccharide conjugates also occur naturally.  Glycoproteins 

such as κ-casein are proteins with a few small side chains, each consisting of 3 or 4 sugar moieties.  

Though not often considered as such, these are effectively conjugates.  The presence of these side 

chains, all occurring on one side of the protein, is thought to be crucial in providing κ-casein with its 

functional characteristics, stabilising colloidal casein micelles in milk [38].  Perhaps the best known 

of the naturally occurring conjugates is the proteinaceous fraction of gum Arabic, making up no more 

than around 12% of the total polysaccharide in this gum.  Gum Arabic is frequently used as an 

emulsifier and emulsion stabiliser in manufacturing of citrus soft drink products [39].  It owns its 

ability to act as such to this small portion of the gum.  The covalently bonded protein section of the 

conjugates acts as the agent causing the adsorption of the composite macromolecule onto 

hydrophobic-hydrophilic interfaces.  Other naturally occurring examples are to be found in almond 

gum [40], Persian gum [41] and cashew tree gum [42].  But in all of these naturally occurring cases 
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the portion of conjugates remains relatively quite small, making it more efficient to try and produce 

these “artificially” by reacting proteins with polysaccharides.

The emulsification and emulsion stabilisation properties of conjugates produced during reactions 

between a wide variety of different proteins and polysaccharides have been studied in the last 15 years

or so, with further new combinations being continuously tried and reported all the time.  A few recent 

examples of such work considered α-lactalbumin-acacia gum [43], β-lactoglobulin-gum Acacia Seyal 

[44] and whey protein-maltodextrin [2*].  More interestingly, the possibility of tertiary conjugates 

with nutritional as well as emulsion stabilising functionalities have been explored by linking 

polyphenol with protein and dextran [45*].  As with the discussion in the previous section, since the 

main functionality in providing the steric interactions is the responsibility of the polysaccharide 

section of the conjugate, it is possible to use vegetable proteins in place of animal derived ones.  Good

emulsion stabilising properties have been achieved by reacting vegetable derived proteins with 

polysaccharides, where such proteins on their own are known to have quite poor emulsifying 

performance.  Such studies have involved peanut protein isolate-dextran [46] and wheat protein-

dextran [47].

 

One way in which the efficiency of the stabilising layer can be further improved is by using 

conjugates that contain a gel forming polysaccharide.  It has been suggested that formation of a gel 

network by conjugates, accumulating at the interface, can make the layers robust to competitive 

displacement by small surfactant molecules [48].  This leads to a further advantage for such 

conjugates compared to proteins, as proteins are normally removed from the surface of droplets in the 

presence of low molecular weight emulsifiers.  This is not desirable as it leads to destabilisation of the

emulsion dispersion.  Other questions regarding optimising the interfacial properties of conjugates 

arise by considering the most optimum number of polysaccharide attachments and the location of 

such linkage along the protein backbone.  Akhtar and Dickinson [2*] showed that while the stability of

emulsions stabilised by β-lactoglobulin + dextran conjugate improved up to a point, due to attaching 

more polysaccharide chains to the protein molecule, beyond a certain number the emulsions were less 

stable.  This was attributed to the increasing hydrophilicity of the conjugates with attachment of more 

chains [2*].  With linkage of more polysaccharide chains to the protein, eventually it becomes 

preferable for the complex to remain in the aqueous solution, rather than to adsorb at the oil-water 

interface.  The location of the attachment is trickier to control. If it can be realised practically, it can 

prove an extremely useful way of making even more efficient food grade steric stabilisers. Wong et al 

[47] have made conjugates of wheat protein with different sized dextran and concluded that the larger 

sized dextran chains preferentially attach towards the N-terminus end of the protein.  Despite a larger 

number of linked smaller chains, the stabilising properties of conjugates involving larger dextran were
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demonstrated in this study [47].  It is certainly true that linking the polysaccharide to one end of the 

protein is preferential to attaching it to a middle section of the molecule, as was predicted by the SCF 

based calculations of Akinshina et al [49*].  However, different sizes of the dextran may also have 

been responsible for the observed differences in the emulsion stabilising behaviour of the two 

conjugates used in the work of Wong et al. Thicker interfacial films were obtained with conjugates of 

larger dextran chains [47]. Despite this, in real applications one has to balance the stabilising power of

the conjugates with its kinetic of adsorption.  Large molecules are slow at diffusing to interfaces and 

often do not pack as well as smaller molecules.  How small can one make the polysaccharide 

attachments before the conjugate shows no appreciable improvement over the protein? This question 

was considered in the theoretical work of Akinshina et al [49*], where a conjugate consisting of a “αs1-

casin like” protein and a relatively short polysaccharide chain was used as a model system.  Fig. 3 

shows the average calculated distance of each amino acid residue of this “αs1-casin like” molecule 

from the interface, when adsorbed on the surface.  Different locations considered for the attachment of

a short polysaccharide chain are also shown in the figure.  These in most cases correspond to the 

position of lysine in the primary structure of αs1-casin.  The protein αs1-casein is sometimes though as 

crudely having a tri-block type structure. The train-loop-train type configuration of the molecule 

adsorbed at the interface, so typical of tri-block synthetic type polymers, is quite evident in Fig. 3.  

Due to its tri-block like nature, αs1-casein suffer from a tendency to induce bridging flocculation 

between the emulsion droplets.  This is particularly the case at isoelectric point of the protein, where 

no electrostatic repulsion exists to counteract bridging attraction.  The same is thought to be the 

reason as to why β-casein, with its more di-block type structure, performs better as a colloid stabiliser.

What Akinshina et al observed was that attaching a short polysaccharide at middle of the hydrophilic 

loop (see Fig. 3) of their “αs1-casein like” protein increased the tendency for bridging.  In contrast, if 

attached to one end of the protein, the stabilising ability of the conjugate became markedly better than

the original αs1-casein, especially close to its isoelectric pH.  For long chains, the location of the 

attachment was found to be less critical [49*].                                               

Production of conjugates has largely been performed on a lab scale.  The scaling up of the process to 

an industrial level poses several complications of its own.  While attempts have been made to make 

protein + polysaccharide conjugates in wet form, still the most efficient techniques remain those using

dried powder mixtures of the two biopolymers.  As such the technique is unfortunately energy 

intensive and slow, particularly since the dry powder has to also undergo a considerable period of 

incubation at elevated temperatures.  In the light of these results, and since spray drying is a faster 

technique, it may be preferable to use it in the large scale industrial manufacturing of the conjugates.  

Other issues worthy of consideration are the impact of the contaminant.  For example commercial 

grade whey protein will most certainly contain some lactose impurity.  Even a small amount of this 
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impurity is appreciable on a molar basis, when compared to much larger polysaccharide molecules.  

The Maillard reaction between sugar and protein can block many reacting sites on the protein, thus 

reducing the efficiency of linkage between the two biopolymers.  The reactions between 

polysaccharide and protein may also not be complete in such large scale production.  This leaves 

behind unreacted protein which during emulsification process will most certainly compete with the 

conjugates for adsorption at the hydrophobic surfaces. How small does the portion of unreacted 

protein have to be to ensure that the conjugates will be the ones prevailing at the interface? Questions 

such as these, are likely to become more thoroughly investigated as and when the food industry 

begins to use protein-polysaccharide conjugates more extensively in the formulation of their products.

Issues relating to synthesis and the behaviour of conjugates as food grade dispersants have been the 

subject of several recent reviews.  The very latest of these can be found in the excellent articles of 

Dickinson [50**] and that of de Oliveira et al [51*]. 

            

Hydrophobically modified polysaccharides 

Polysaccharides are by and large hydrophilic macromolecules.  In the techniques discussed in the 

previous two sections, they were induced to reside on a hydrophobic surface through their favourable 

electrostatic interaction or covalent linkage with protein chains.  However, it is possible to do away 

with the protein and turn the polysaccharides into amphiphilic molecules, capable of adsorption at air-

water or oil-water interfaces, directly.  This is achieved by hydrophobic modification of the 

polysaccharide through covalent attachment of several small hydrophobic groups at different, often 

random, locations along the biopolymer backbone.  Adjusting the number and size of such sites, the 

amphiphilic nature of the hydrophobically modified polysaccharide can be fine-tuned. The method 

has most widely been applied to cellulose and its derivatives [52], chitosan [53], dextran and starch 

[54*-56*], perhaps not surprising given that these are the most abundant polysaccharides.  Other 

notable examples include hydrophobic modification of alginates [57].  The actual modification can 

take a number of different forms, but often involves the attachment of short alkane side chains to the 

polysaccharide. Chemical modification of starch for example can be obtained by esterification of acid 

anhydrides, such as octenyl succinic anhydride (OSA) and inclusion of fatty acid chlorides with 

hydroxyl groups in starch molecules [54*, 55, 58*, 59]. The hydrophobic nature of attachments 

necessities the use of a limited amount of organic solvent during synthesis of such modified 

polysaccharides, which is not particularly desirable in producing food grade ingredients. Alternative 

routes for such modification, not required organic solvents are increasingly being explored [56*], 

where, for example, the locus of the modification reactions are shifted to the centre of micellar 

structures, made by self-assembly of suitable surfactants [56*].  Despite this, at present only octenyl 

succinic anhydride (OSA) is currently a permitted food-grade reagent for the modification of starch 

[59].  This, somewhat synthetic aspect of the modification, is sometimes considered as one of the 

major disadvantages of hydrophobically modified polysaccharides, compared to other types of food 
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dispersants discussed in previous sections.  Furthermore, the degree of modification (i.e., the number 

of glycoside monomers of polysaccharide with attachments) allowed for use in foods is limited to a 

maximum of 3% in many countries, and in some cases even lower.  Fortunately, this is still sufficient 

to ensure the strong adsorption of hydrophobically modified starch to surface of oil emulsion droplets 

[54*, 55].   

While in some cases the modified starch may possess some electrical charge [60], the main 

mechanism for stabilising the emulsions in these types of modified biopolymers is through provision 

of steric repulsion.  This is nicely demonstrated by the work of Chanamai and McClements [61**] 

where they compared the behaviour of WPI stabilised droplets to those stabilised by hydrophobically 

modified starch and also gum Arabic.  In particular, modified starch stabilised emulsions were found 

to exhibit excellent stability at all pH values, including at isoelectric pH for WPI.  Furthermore, the 

measured ζ-potential was found to be very low in the entire range of pH values considered by these 

researchers [61**].  These results are reproduced here in Fig. 4.  It is this reliance on steric, rather than 

electrostatic stabilisation which gives the emulsions stabilised by modified starch their relative 

insensitivity to changes in the environmental conditions.  This is especially true of variation in pH and

background salt concentrations.  Nonetheless, there are also certain common features between 

hydrophobically modified starch and protein based systems.  As we mentioned in the introduction, 

excessive amount of biopolymer remaining in the solution can lead to depletion effects, while too 

little, to fully cover the surface of droplets, can cause bridging flocculation.  This pattern of bridging-

steric stabilisation-depletion flocculation, predicted with increasing biopolymer concentration, has 

been found for protein stabilised emulsions as well as synthetic random copolymers.  For modified 

starch, steric stabilisation followed by depletion has also been reported [62].  However, even higher 

concentrations of modified starch lead to the formation of gel networks in the bulk solution, resulting 

in a considerable increase in the viscosity [63].  This stabilises the droplets as it retards their 

Brownian motion and the rate of inter-droplet collisions.  It is interesting to speculate on the nature of 

such gel networks.  For hydrophobically modified starch this is more likely to progress through the 

association of the hydrophobic groups, as oppose to hydrogen bonding one normally observes for 

unmodified starch [64*]. As for bridging effect, while we do not know of studies that unquestionably 

demonstrate this by hydrophobically modified starch, polysaccharides are known to be capable of 

doing so under other different circumstances (e.g. in L-b-L stabilised emulsions [33*]).   

 

The use of a single functional ingredient which can act as both a stabiliser/emulsifier and also a 

rheology modifier can be quite useful in certain type of applications.  An especially good example of 

this is the use of hydrophobically modified starch in microencapsulation process, through the 

emulsification route.  In this method, one first homogenises the dispersed phase, containing the active 

ingredient (flavour, drug, vitamins, etc.), to form an emulsion.  This is then dried to remove the 
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dispersion medium, leaving behind a powder that includes the encapsulated active.  To provide the 

powder with the necessary bulk properties post drying, polysaccharide is also often included in the 

formulation.  In such applications, the hydrophobically modified polysaccharide can simultaneously 

provide both the above two required functionalities. Hydrophobically modified polysaccharides can 

also stabilise emulsions in somewhat different way, by acting as Pickering particles capable of 

adsorbing onto the surface of the droplets.  It seems that for the encapsulation purposes this mode of 

stabilisation is preferred to one involving molecularly adsorbed interfacial layers.  The use of 

hydrophobically modified starch granules in Pickering stabilisation of emulsions has been extensively

discussed by Yusoff and Murray [58*], Marefati at al [65*] and Sjöö et al [66].  Other possible 

techniques for synthesis of such modified polysaccharide based nanoparticles, suitable for use in 

Pickering stabilisation of food emulsions, have also been reported by a number of researchers [67].  In

particular, crosslinking the polysaccharide chains to ensure that the polysaccharide particles will not 

dissolve over time, is a useful technique worthy of mention in this context [68]. 

As in previous sections, use of a novel biopolymer as food grade dispersant introduces several 

interesting questions.  Starch is made from both branched (amylopectin) and linear (amylose) chains.  

Notwithstanding obvious differences in the molecular weight of these two components, which of 

these would be a more efficient dispersant if suitably modified?  One of the few theoretical studies 

concerning hydrophobically modified starch [69*] suggests that a combination of the two will give a 

superior stabilising behaviour compared to one expected from each component on its own.  The 

double act performed by hydrophobically modified amylose and amylopectin seems to mirror one 

involving combinations of globular and disordered proteins, such as whey protein + casein [4, 5**].  A 

rather lucid account of this combined synergic action of two biopolymers, reinforcing their interfacial 

properties, can be found in a very recent review by Dickinson [50**].   Another question concerns the 

position of attachments, particularly onto branched polysaccharides. Bai et al [70] have found that 

hydrophobic attachments favour locations close to branching points, particularly when the degree of 

modification is low.  It would be interesting to investigate (theoretically and experimentally) how the 

emulsifying and stabilising ability of the modified amylopectin is affected if the attachments are more 

uniform, or even biased towards the non-reducing ends.  In a somewhat related study, Tizzotti et al 

[71*] considered the influence of the degree of branching, level of modification and overall molecular 

weight of the chains.  Authors conclude that the trend in emulsifying behaviour of modified starch 

with these architectural parameters is not all that dissimilar to the one exhibited by low molecular 

weight synthetic branched surfactants. 

Starch begins to be hydrolysed in mouth, while protein is fragmented in stomach.  Yet, other 

polysaccharides are not digested at all.  Therefore, it is quite plausible to foresee the use of mixtures 

of emulsions, stabilised by different types of hydrophobically modified polysaccharides, as well as 
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with ones by proteins, to achieve tailored controlled realise profiles in food and related industries in 

future.

Fragmented proteins

An alternative approach to design of better food dispersants is to consider polypeptide fragments of 

proteins for this purpose.  The strategy is very different to those considered above.  Rather them 

attempting to make a larger entity (whether an electrostatic complex, conjugate or by hydrophobic 

attachments), this method results in smaller chains than the original protein. The basic idea is that by 

hydrolysing a protein to a smaller set of polypeptide fragments, some of these may have more 

desirable structures, boosting their emulsion stabilizing functionality. Smaller molecules also have the

added advantage of faster adsorption kinetics, making it in principle easier to produce very fine stable 

droplets. This is not only due to their higher diffusion coefficient, resulting from their smaller size, but

also the fact that such fragments are more likely to be in a coil-like disordered conformation.

However, experimental studies involving such fragments seem to provide a rather mixed picture, with 

some finding excellent improvement in interfacial properties [72, 73*], while many others reporting 

very little change, if not a deterioration in dispersant stabilising ability [74] relative to the original 

protein.  Some studies have even indicate a stronger ability of polypeptides to act as a barriers against 

oxidation [75], presumably due to their better packing at the interfaces, as well as possible antioxidant

properties.

Ettelaie at al [76**] applied self-consistent-field (SCF) calculations to fragments of a model protein.  

The aim of their study was to demonstrate that at least in principle there are situations in which the 

interfacial layers formed from fragmented proteins, could be shown to provide stronger colloidal 

repulsive forces than films of the original protein. For this purpose, the authors based their model 

protein on the primary structure of αs1-casein. They also considered a somewhat idealised situation 

where any one of the 14 possible bonds of αs1-casein, susceptible to hydrolysis by trypsin, can be 

individually and selectively targeted, with all the other peptide bonds remaining intact.  They argued 

that by breaking up the αs1-casein from essentially a tri-block like polymer, to one that has a di-block 

structure (i.e. more like β-casein) a stronger stabilising power would be achieved.  Indeed, their 

numerical calculations supported this view when a peptide bond close to the hydrophilic middle part 

of the αs1-casein, on the N-terminus side, was broken. This is displayed in graphs of Fig. 5, showing 

mediated colloidal interaction between 1 µm sized droplets arising from the overlap of adsorbed 

layers.  But perhaps more interestingly, when the same calculations were performed for breakage on 

the C-terminus side of the hydrophilic loop (see Fig. 3), they failed to show any significant 

improvements.  This is despite the fact that in both cases a polypeptide with a more di-block, β-casein
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like structure is generated.  The clue to resolving this puzzle came from examining the competitive 

adsorption between the two resulting fragments caused by hydrolysis of a single bond.  When the 

broken bond was on the N-terminus side of the hydrophilic loop, the di-block like polypeptide 

dominated the surface adsorption [76**].  However, if the cleaved bond was on the C-terminus side, it 

was the other less desirable fragment, that prevailed on the interface. The result is significant as it 

shows that not only suitable fragment structure is necessary, but also one needs to take into account 

how the wanted polypeptides compete for adsorption with all the other possible hydrolysates 

generated during the breakage of the protein.  Given that in practice the fragmentation is likely to 

involve several bonds, this may explain why the results of experiments could seem rather 

contradictory and somewhat difficult to reproduce.  Even relatively small changes in the degree of 

hydrolysis can very quickly alter the composition on the surface, due to strong competitive adsorption

between all the created polypeptide species.    

  

Despite the above difficulties, experimental attempts to use polypeptide fragments as 

emulsifiers/stabiliser abound in the literature. Since such chains still need to provide some steric 

stability, they cannot be too small.  One may expect then that the optimum degree of hydrolysis (DH) 

should occur at a relatively small level.  Indeed, Chen et al [72] used power ultrasound, as well as 

extrusion, to indiscriminately fragment soy bean protein. They found an improvement at first, but 

beyond a DH of around 1.25% the emulsifying ability of the resulting chains decreased sharply. An 

optimum level of hydrolysis was also reported by Zhang et al [73*], with higher DH values than 10% 

having a detrimental impact on both emulsion and foam stability, though not necessary foaming and 

emulsifying ability.  These opposing trends concerning the reduction in interfacial tension versus the 

emulsion stability, have also been seen for lentil protein isolate hydrolysed with heat + trypsin [77]. In

this latter study the authors only considered DH=4, 9 and 20%.  Already, at a DH value of 4%, a 

reduction in emulsion stability index was found.

 

The nature of the enzyme and thus the bonds that are susceptible to breakage, also has a big impact on

the interfacial properties of the fragments, as one may well expect.  This was demonstrated by work of

Barac et al [78] who used papain and a commercial enzyme to hydrolyse pea protein isolate.  While 

significant improvements in emulsifying properties, at least over some range of pH, was noticed for 

papain, the same was not true when the commercial enzyme was used. Similar differences in the 

emulsion stabilising behaviour of hydrolysates, produced by fragmentation of soy protein isolate by 

neutrase and trypsin, were also reported.  It was seen that polypeptides produced by the latter enzyme 

exhibited superior properties [79*].

Finally we should also mention that much of the research work on protein hydrolysates is not only 

driven by the interest in their surface adsorption properties, but also due to their potential to act as 
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antioxidants [80].  Further advantages (and disadvantages) of the use of fragmented proteins, in 

relation to the sensory aspects of foods, were recently examined recently by Gani [81*].  

In summary, it seems that a relatively non-selective of breakage of bonds is only of real benefit for 

proteins which have a poor initial emulsifying and emulsion stabilising behaviour, and then at 

relatively low DH values.  For proteins with already reasonable interfacial properties (e.g. sodium 

caseinate) little can be gained by fragmentation.  This is unless a very selective cleavage of bonds is 

performed.  Furthermore, it may be necessary to filter out some of the more undesirable hydrolysates, 

also generated in the process, for a true improvement to be seen in such cases.

 

Conclusions

Food industry still largely uses proteins as natural colloidal dispersants to stabilise emulsions and 

food grade nanoparticles. However, a bottom up approach to the design of food structure in future, 

requirements for more targeted delivery of food nutrients during digestion, and a more carefully 

tailored release profile of flavours during mastication of foods, all require a far better control over 

interactions that operate between food entities on mesoscale levels.  To achieve this, edible superior 

dispersants with performance better than those currently used in industry, are essential.  This review 

has examined recent progress on several fronts in this direction, namely the use of protein + 

polysaccharide multilayers, Maillard conjugates between protein and polysaccharides, hydrophobic 

modification of starch and other polysaccharides and the use of polypeptides obtained gentle 

hydrolysis of various proteins.  We have largely limited the review to dispersants which form 

molecularly adsorbed layers on interfaces.  Thus, for example, the stabilisation by small food grade 

particles (i.e. Pickering stabilisation) is not considered here.  However, this is not to say that much 

progress involving the realisation of such nanoscale particles, as well as interest in studying the 

properties of emulsions stabilised by them, has not already been made.  Other approaches not 

discussed but worth mentioning involve the use of combinations of proteins, either with each other or 

with small molecular weight emulsifiers.  Nonetheless, in such cases one has to be much more careful,

as often there are additional complications which are not usually conducive to good stabilising 

properties.  Examples are competitive adsorption between different proteins and between proteins and

small MW emulsifiers [82], as well as the possibility of phase separation and phase transition in the 

mixed interfacial films [83].

The optimisation of the strategies discussed in this review also highlight a number of very interesting 

fundamental questions, a few of which were briefly discussed here.  The progress in resolving these 

questions provides exciting areas of continued and future research, which will need a combination of 

careful experimental work, guided by underlying theoretical understanding, to fully answer.    
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Figure Captions

Fig. 1 – A schematic showing the differences between the equilibrium structure of two 

neighbouring protein + polysaccharide mixed layers, upon their overlap, when a) the charge 

of the polysaccharide is uniformly distributed along its backbone b) when a section of 

polysaccharide contains most of its charge [31*].

Fig. 2 – The ζ-potential of a priori adsorbed, positively charged protein layer, upon deposition

of a secondary pectin layer, at different bulk concentrations of pectin.  Results are taken from 

[9**] with permission and demonstrate the reversal of the charge of the interfacial layer when 

the secondary layer is adsorbed. 

Fig. 3 – The average distance for each monomer of αs1-casein from the surface, as obtained 

by SCF calculations, for a chain adsorbed as part of a dense protein layer on the interface. 

Monomers are labelled sequentially starting from 1, beginning with the first amino acid 

residue at N-terminus side.  The arrows indicate the possible positions on protein backbone 

considered for attachment of a polysaccharide chain in the calculations of Akinshina et al 

[49*].

Fig.4 – The ζ-potential of emulsion droplets stabilised by hydrophobically modified starch 

plotted as a function of pH, in solutions with different background salt concentrations. 

Results are taken from the work of Chanamai and McClements [61**].

Fig.5 – SCF calculated interactions between a pair of oil droplets of size 1 µm, mediated by 

the adsorbed interfacial films of a) intact αs1-casin and b) hydrolysates of αs1-casein produced

from the breakage of a single bond next to the hydrophilic loop of the protein, on the 

N-terminus side of the chain. All the results are at a salt volume fraction of 0.01 and pH 

values of 7 (dash-dotted line), 5 (short dashed line), 4.5 (long dashed line), and 3 (solid line). 

Data were taken from reference [76**].
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