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Abstract 

Background: One hour postprandial hyperglycaemia is associated with increased risk of type 

2 diabetes and cardiovascular disease. Physical activity has short-term beneficial effects on 

post-meal glucose response. This study compared the oral glucose tolerance test results of 3 

groups of people with habitually different levels of physical activity.  

Methods: Thirty-one adults without diabetes (age 25.9 ± 6.6 years; body mass index 23.8 ± 

3.8 kg.m-2) were recruited into 3 groups based on self-reported physical activity volume and 

intensity: Low Activity = < 30 min.day-1 of 'moderate' intensity activity (n = 11), Moderately 

Active = ≥ 30 min.day-1 of 'moderate' intensity physical activity (n = 10), and Very Active = 

≥ 60 min.day-1 of  'intense' physical activity (n = 10). Participants completed an oral glucose 

tolerance test (50 g glucose) with capillary blood samples obtained at baseline, 15, 30, 45, 60, 

90 and 120 minutes post-ingestion.  

Results: There were no significant differences between groups for age or percentage body fat 

or glycated haemoglobin (p> 0.05). The groups were significantly different in terms of 

baseline glucose, gender and BMI and this was accounted for in the analysis. There was a 

statistically significant effect of physical activity on the one hour postprandial glucose results 

(p=0.029), with differences between Very Active and Low Activity (p=0.008) groups but not 

between the Moderately Active and Low Activity groups (p=0.360), even when baseline 

glucose and gender differences were accounted for. For iAUC there was no significant effect 

of activity group once gender and bodyfat % had been accounted for. Those in the Low 

Activity group took an average 13.2 (95% CI: 2.8 – 23.5) minutes longer to reach peak 

glucose level than those in the Very Active group and this was significant (p=0.015). 

Conclusion: The results suggest that high levels of physical activity have a beneficial effect 

on postprandial blood glucose profiles when compared to low and moderate levels of activity. 
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1. Introduction 

In the UK, 3.2 million people are diagnosed with type 2 diabetes and an approximate 630,000 

remain undiagnosed. This number has risen from 1.4 million in 1996.1 Sedentary behaviour is 

strongly predictive of type 2 diabetes (T2D).2 Western populations have high rates of 

sedentary behaviour and low levels of participation in physical activity combined with high 

rates of diagnosed and undiagnosed T2D.1,2, 3 It has been suggested that 30 minutes of 

physical activity a day may represent the cut-off point at which people begin to accrue 

benefits to blood glucose control.4 Physical activity is seen as an effective preventative 

measure and a therapeutic intervention post-diagnosis.5,6 Even slow postprandial walking has 

an immediate effect on lowering blood glucose.7 There is a positive effect on glucose 

tolerance from either reducing weight by diet or by increasing physical activity.8 Participation 

in formal physical activity (gyms, walking, exercise classes etc.) may, however, form only 

part of the solution to effective blood glucose control.  Some studies indicate being sedentary 

is a risk factor for T2D, independent of participation in bouts of planned exercise. 9-11  

Therefore, public health interventions, aimed at preventing T2D, may need to focus on 

avoiding sedentary behaviour in addition to the promotion of planned exercise. 

Previous randomised controlled trials have found interventions involving around 150 minutes 

a week of physical activity have lowered the risk of progressing from impaired glucose 

tolerance to T2D by over 50%.12,13  Physical activity intensity and subsequent fitness levels 

also have stark implications for diabetes sufferers; Church et al. 12 found that those in the 

lowest, second and third quintiles for cardiorespiratory fitness had 4.5, 2.8 and 1.6 fold 

greater risk of all-cause mortality respectively than men in the highest quintile for fitness.14 

Despite this connection between physical activity and diabetes other work suggests the 

effects of exercise training on key health indicators: such as blood pressure and lipids in non-

diabetic populations are mild. 15,16 

Both chronic participation and acute bouts of physical activity clearly affect blood glucose 

control and in all probability frequency and intensity have an impact. An example from 

studies focussing on the effects of single bouts of exercise show insulin sensitivity is 



improved for only 1-3 days.16, 17 This supports the notion that it is advisable to not go longer 

than 3 consecutive days without being active.  

Although the above studies reflect the broad finding that physical activity is helpful in 

controlling blood glucose to our knowledge work still needs to be carried out to identify any 

observable differences in healthy individuals carrying out different volumes and intensities of 

physical activity. The present study investigates the blood glucose responses of healthy 

individuals undertaking different volumes and intensities of activity. It remains unclear 

whether there is a detectable or clinically significant difference in blood glucose response 

between low activity, active and very active non-diabetic people following a 50 g intake of 

carbohydrate. Our hypothesis was that responses would differ by volume and intensity of 

activity with those doing the most activity and at the greatest intensity having the lowest 1-

hour blood glucose value and the lowest incremental area under the curve (iAUC). 

 

2. Methods 

2.1 Participants 

A purposeful sample of 31 subjects were recruited (23 females and 8 males aged 25.9 ± 6.6 y; 

BMI 23.8 ± 3.8 kg.m2 and body fat 24.15 ± 4.21 %). Subjects were recruited via email 

advertisements, which specifically asked for individuals who undertook low, moderate or 

high levels of habitual physical activity. The email advertisements were circulated to 

approximately 1600 people within a large university faculty. A total of 40 volunteers (2.5%) 

responded, all of whom were invited to take part; 31 presented for data collection.  Subjects 

were classified by 3 ‘level of activity’ groups: Low Activity: people who did < 30 min of 

physical activity per day at or below moderate intensity; Moderately Active: ≥ 30 min per 

day of physical activity at moderate intensity; and Very Active: ≥ 60 min per day of physical 

activity at high intensity. Classification into ‘level of activity’ group was based on the mean 

duration of physical activity, determined using the Scottish Physical Activity Questionnaire 

(SPAQ)18 and the mean intensity of exercise calculated using a 1-10 Borg scale.19 The 

SPAQ asks participants to report the physical activity they have undertaken at home and 

work during the last month via interview with a data recorder familiar with the questionnaire. 

The estimated mean metabolic equivalents (METs) were calculated from the mean number of 

minutes of physical activity and the mean RPE values using the compendium of physical 

activities.20  



The exclusion criteria were: age <19 years or >59 years, presence of diabetes (as per the 

WHO definition of diagnosis21), chronic illness, acute infections, food allergies, smoking and 

being pregnant. All participants were informed of the risks and benefits of taking part in the 

study and provided written informed consent before any data was collected. The study was 

approved by Sheffield Hallam University Ethics committee.  

 

2.2 Procedures 

All subjects attended the research laboratory after a 12 hour fast on two occasions separated 

by a week. They were instructed to avoid alcohol and limit physical activity on the day prior 

to each test day and to eat the same meal at the same time the evening before.  

Prior to the physical measurements, participants were asked to void their bladders. Height 

(without shoes) and weight (indoor clothing) were recorded to the nearest 0.1 cm and 0.1 kg 

respectively (SECA 709 mechanical column scales with SECA 220 telescopic measuring rod; 

SECA Birmingham, United Kingdom). For consistency, participants were asked to wear the 

same clothes at each visit. Height measurements were made at the point of normal breath 

inspiration with the head orientated in the Frankfort horizontal plane. From these measures, 

BMI was calculated and rounded to the nearest 0.1. Bioelectrical impedance analysis was 

undertaken on non-conducting foam matting using a BodyStat 1500 (BodyStat Ltd., Isle of 

Man, British Isles). Measurements were made as per the manufacturer’s instructions 

following 5 minutes of supine rest. Percentage body fat and lean weight (kg) were recorded to 

the nearest 0.1% and 0.1 kg respectively. On the first test day, subjects provided a capillary 

blood sample for the determination of HbA1c. A baseline blood glucose measure was then 

taken. Within 15 min of the baseline glucose test, subjects consumed a 50 g dose of glucose 

made up to 200 ml with water. A timer was started from the first sip of glucose solution and 

further measurements were made at 15, 30, 45, 60, 90 and 120 minutes.  Subjects returned to 

the laboratory one week later and the oral glucose test was repeated. The mean blood glucose 

responses of the two visits were used for subsequent statistical analysis. Capillary samples of 

blood were obtained using sterilised softclix lancets (Roche Diabetes Care Ltd, Surrey 

England) and blood glucose was measured with One-Touch Ultra 2 glucose meters (Johnson 

& Johnson, Livingstone, Scotland). Each measurement was taken in duplicate. The proposed 

CV for glucose meters suggests allowing an error margin of 5–10%. 22 A control solution 

was used to verify the accuracy of the glucose meters and a CV of 4.63% was  calculated 



based on 10 replicates. Whole blood HbA1c was measured on an Alere Afinion AS100 

analyser (California, USA).   

2.3 Data analysis 

iAUC was calculated by the trapezoidal method outlined by Wolever et al.23 Differences 

between the activity groups in BMI, age, HbA1c, body fat %, physical activity duration and 

intensity and baseline glucose were ascertained by 1-way ANOVA while Fisher’s Exact test 

was used to compare the sex composition of the groups. The primary outcomes of glucose 

concentration after 1 hour and iAUC, together with time to peak, peak glucose and final 

glucose concentration (after 2 hours) were compared across groups using 1-way ANOVA.  

General linear models were then fitted to the primary outcomes to adjust for differences 

between the groups in baseline glucose, gender and BMI. Significance level was set at α=0.05 

and all analyses were performed using SPSS version 23 (IBM Corp. Armonk, NY, USA) 

Chicago. 

 

3. Results 

One subject, in the Low Activity group, displayed values which were commensurate with 

impaired glucose control (>11 mmol/l) and was removed from the analysis as an outlier. The 

baseline characteristics of all other subjects are summarized in Table 1. By definition 

physical activity differed across the groups, both in intensity and duration.  There were, 

however, significant differences at baseline between groups for blood glucose and, 

marginally, for BMI, with the moderately active group having the lower mean scores in each 

case; such differences could impact upon post-test glucose results. The gender composition of 

the groups also differed, though this was not quite statistically significant (p=0.053).  

Duration and intensity of physical activity were found to be highly correlated (r=0.903) in the 

study sample. 

 

 

 

 



Table 1: Baseline Characteristics of Participants 

    Low                         Moderately          Very  
    Activity  (n=10†) Active (n=10)     Active (n=10) p 

BMI (kg/m2)            25.8 ± 5.4             21.7 ± 1.7      24.0 ± 2.5        0.050 

Age (years)                    28.5 ± 9.1  22.8 ± 2.3    26.9 ± 6.2        0.147 

HbA1c (%)              5.3 ± 0.2  5.3 ± 0.3    5.3 ± 0.3        0.959 

Body fat (%)                    25.2 ± 5.6  23.7 ± 3.6    21.3 ± 3.0        0.125 

Baseline glucose (mmol/l) 5.0 ± 0.6             4.3 ± 0.2    4.7 ± 0.3        0.003 

Physical activity (min/d)    23.4 ± 3.3             76.3 ± 5.3    101.3 ± 5.9      <0.001 

Intensity (MET*)         3.1 ± 0.8             5.0 ± 0.7     6.9 ± 0.6      <0.001 

Gender                                7♀ 70%             10♀ 100%     5♀ 50%        0.053 

 *Average metabolic equivalent  
 †One subject, in the Low Activity group, displayed values which were commensurate with impaired glucose 
 control and was removed from the analysis as an outlier 
 All values except gender are mean ± standard deviation. 
 HbA1c= glycosylated haemoglobin, BMI= Body mass index.  
. 

 
Table 2: Blood glucose outcome measures 

 

                                               Low                      Moderately         Very 
                                               Activity (n=10)    Active (n=10)     Active (n=10)    p 
 

One-hour post-test (mmol/l) 7.50 ± 1.69          6.06 ± 0.97          5.55 ± 0.98        0.005 

iAUC (mmol/l.120 min-1) 171.53 ± 85.15    161.59 ± 83.63    73.71 ± 45.98 0.011 

Time to peak (min)             46.50 ± 11.07      45.00± 14.14       31.50 ± 8.51 0.012 

Peak glucose (mmol/l) 8.10 ± 1.30          7.05 ± 0.54         6.80 ± 0.74 0.009 

Two-hours post-test (mmol/l) 4.94 ± 0.99          4.40 ± 1.12         4.49 ± 0.63 0.401 

All values are mean ± standard deviation 

 
Table 2 shows the outcome measures for blood glucose across the three activity groups.  All 

outcome measures differ significantly between groups with the exception of two-hours post-

test when blood glucose has largely fallen back to baseline levels for most individuals.  On all 

significant measures, the worst outcomes are seen in the Low Activity group, while in general 



the results in the Moderately Active and Very Active groups are similar, with the exception 

of iAUC and time to peak glucose, where the Very Active group has a much-reduced average 

level.    

Figure 1 shows the mean blood glucose responses for the three groups over 120 minutes. 

Blood glucose peaked, on average, at around 30 minutes post-test for those in the Very 

Active group and somewhat later for the Low and Moderately Active groups.  For those in 

the Low Activity group the peak was considerably higher than the other two groups and 

remained higher for the duration of the test. 

 

Figure 1: Mean blood glucose by physical activity group.  

Error bars represent standard error of mean. 

 

 

 

 

 

 

 

 

3

4

5

6

7

8

9

-15 0 15 30 45 60 75 90 105 120

B
lo

o
d

 g
lu

co
se

 (
m

m
o

l/
l)

 

Time (min) 

Low Activity

Moderately

Active

Very Active



Table 3: Unadjusted linear model parameter estimates for one-hour glucose 

                                   Parameter            SE                    p     
                                                 
 

BMI (kg/m2)    0.085                0.071                      0.239      

Age (years)            0.047                0.041              0.253         

HBA1c (%)            2.177                1.149              0.069         

Body fat (%)            0.106                0.061              0.090        

Baseline  

glucose (mmol/l)      1.532                0.507              0.005        

Physical  

activity (min/d)      -0.440                0.139              0.004        

Intensity (MET)        -0.025                0.007              0.001          

Gender (F v M)            1.156                0.581              0.057          

Activity group                                                         0.050    

Very Active                 1.950               0.564              0.002  

v Low Activity                  

Moderately Active       0.515               0.564              0.369 

v Low Activity          

Each variable fitted in a univariate general linear model 

 

Unadjusted model estimates in Table 3 show that higher one-hour blood glucose is 

significantly associated with higher baseline glucose and with Low Activity group compared 

with Very Active group. This may relate to duration or intensity of physical activity, both of 

which are individually significant.  Although not statistically significant, higher HBA1c, 

higher body fat % and being female as opposed to male may also be associated with higher 

one-hour blood glucose.  There does not appear to be an association between BMI and one-

hour blood glucose. 

 



 

Table 4: Linear model parameter estimates for one-hour glucose 

 

                                 Parameter           SE                                 p           
                                                           
 

Intercept            -2.229                        2.333                               0.348               

Baseline  

glucose (mmol/l) 1.499                        0.484                            0.005         

Gender (F v M) 1.353                        0.469                               0.008           

Activity group                                                                  0.029    

Very Active v              1.350                        0.472                            0.008 

Low Activity                       

Moderately Active      0.513                          0.550                            0.360 

v Low Activity           

All variables adjusted for all other variables in a single model. 
R-Squared = 0.601 (Adjusted R-Squared = 0.537) 
 
All variables were fitted into a forward stepwise model (Table 4) for one-hour glucose (with 

the exception of physical activity duration and intensity, which were determined by and 

highly correlated with activity group).  Overall, activity group has a significant impact on 1-

hour blood glucose (p=0.029), even when baseline blood glucose (p=0.005) and gender 

(p=0.008) are accounted for.  The data suggest a mean increase in one-hour blood glucose of 

1.50 mmol/l (95% CI:  0.5 – 2.5 mmol/l) for each additional 1.0 mmol/l of  baseline glucose, 

and that, on average, females have one-hour blood glucose 1.35 mmol/l (95% CI: 0.4 – 2.3 

mmol/l) higher than males. Even when these are taken into account, those in the Low 

Activity group have an average one-hour blood glucose 1.35 mmol/l (95% CI: 0.4 – 2.3 

mmol/l) higher than those in the Very Active group, though the difference between Low 

Activity and Moderately Active groups is not significant. It should be noted that this model 

explains over 50% of the variation in 1-hour glucose in this sample. 

  

Similar analyses were carried out on iAUC, peak blood glucose and time to peak.  For iAUC 

there was no significant effect of activity group once gender and bodyfat % had been 



accounted for. For peak blood glucose, the effect of activity group was not quite significant 

once gender and baseline glucose had been accounted for.  Activity group was significantly 

associated with time to peak (p=0.009), with HBA1c not quite significant (p=0.065).  Those 

in the Low Activity group took an average 14.8 (95% CI: 4.8 - 24.9) minutes longer to reach 

peak glucose level than those in the Very Active group and this was significant (p=0.005); 

the difference between the Moderately Active and Very Active groups was, on average, 13.8 

(95% CI: 3.8 - 23.9) minutes and this was also significant (p=0.009). 

4. Discussion   

The main finding from this study is that healthy groups who are similar in terms of body 

composition, age and HbA1c but different in terms of volume and intensity of habitual 

physical activity, also have different responses to an oral glucose challenge indicating lower 

risk for T2D in the most physically active, even when differences in baseline blood glucose 

and gender are taken into account. 

It is of note that only the Moderate Activity group had a statistically lower BMI than the Low 

Activity and Very Active groups. The Low Activity group, on average, would be classified as 

“overweight" whereas the other two groups are in the healthy range. However, there is no 

indication from this study that BMI in the healthy/overweight range is associated with blood 

glucose response, especially once baseline blood glucose levels are taken into account. 

Only the Low Activity group do not meet the World Health Organization's target for adults to 

perform a minimum of 30 minutes physical activity on most days (their mean PA during the 

last month was 23 min/day).  All subjects in all three groups also had healthy HbA1c values.  

In diabetic subjects there is often a reduction in HbA1c when subjects undertake an exercise 

regime11. In the present investigation the blood glucose responses do not appear to be 

matched by commensurately ‘poor’ HbA1c values.   

The peak values reflect how high an individual's blood glucose reaches after 50g of 

carbohydrate and this was highest in the present investigation in the Low Activity  Group, 

lower in the Moderately Active group and lower still in the Very Active group (P= 0.009),  

but this effect did not remain significant once baseline blood glucose and gender were 

accounted for. Even in  groups of healthy individuals there appears to be a disparity in blood 

glucose response determined by volume and intensity of physical activity and the failure to 

reach statistical significance may be due to small numbers in this pilot study. This needs 



interpreting with caution and confirming in a larger study of healthy individuals matched 

closely for factors potentially affecting blood glucose response but diverse in terms of 

physical activity volume and/or intensity.  

In the present investigation, the time to peak is slower, the peak is higher and the return to 

baseline slower amongst the low activity subjects. This indicates poorer glucose tolerance in 

the Low Activity group versus the Moderately Active and Very Active groups.24, 25 

There was no significant difference in the iAUCs of the Moderately Active and Low Activity 

groups. There was a significant difference between the Very Active and the other two groups 

in response to 50g dose of glucose; however this difference did not remain significant once 

sex and % body fat had been accounted for. It is possible, however, that there is an increasing 

level of blood glucose control commensurate with the increase in volume and intensity of 

physical activity which again might be easier to detect with a larger number of subjects. 

The baseline glucose concentrations and HbA1c levels recorded for all our participants fell in 

the healthy-normal range. As a standalone measure this would not tell the full story of 

someone's response to carbohydrate intake, because the baseline glucose levels only partly 

predict the value at 1 and 2 hours post intake.26 Alyass and colleagues suggest that 1 hour 

glucose levels are a key predictor in T2D risk and that a 1 hour value of 8.9 mmol/l out 

performs other key indicators of diabetes risk (age, sex, BMI, family history of type 2 

diabetes). In the present study, the Low Activity group’s blood glucose rises were clearly 

greater than the two comparator groups, suggestive of lower insulin sensitivity in the least 

active.  Alyass and colleagues also suggest the 1 hour value has a greater predictive accuracy 

for T2D than HbA1c 26. In the present study 5 of the 10 Low Activity subjects had values of 

≥8.0 mmol/l at 1 hour and this was zero out of ten in both the active and very active groups. 

Other work has suggested the shape of the glucose curve and elevated one hour values are 

predictive of risk for T2D, for example subjects with curves similar to those found in the Low 

Activity group for the present investigation, were found to be at 5 times the risk for T2D of 

those who had normal glucose tolerance 7-8 years post-testing. 27 It seems unlikely with age 

and body fat percentage being so closely matched that these factors would explain the 

difference. It is more likely that the amount and intensity of physical activity is the key 

determinant of blood glucose response to a 50g dose of glucose. In the present investigation, 

there are signs of comparatively impaired glucose tolerance in the low activity subjects (i.e. 



close to 8 mmol/l at 1 hour) which may suggest a continuum from high risk to low risk by 

duration/frequency and intensity of PA. 

The evidence that the risk of T2D is lowered, and that in diabetics the control of their 

condition is positively affected by physical activity is extensive and compelling.28- 33 This 

protection is irrespective of whether the physical activity is aerobic or anaerobic in nature.33 

It has, however, been suggested that the two modes of exercise combined (resistance training 

and aerobic exercise) may offer greatest protection.28 More activity than being sedentary is 

helpful but intense activity is probably best in terms of dramatically affecting blood glucose 

dynamics. In this respect, activity and more critically, intense activity have been shown to be 

valuable tools in the prevention of T2D.32 

The mechanisms through which aerobic and resistance exercise improve blood glucose 

control have yet to be fully elucidated, but several mechanisms have been proposed. Aerobic 

exercise increases insulin sensitivity possibly through: (i) altering adipokine profiles.34  

and/or (ii) decreasing the concentrations of intramyocellular lipid intermediates, such as 

diacylglycerol and various ceramides that interfere with insulin signalling.35- 37 Aerobic 

exercise also activates AMPK-PGC-1α (5'-AMP-activated protein kinase -peroxisome 

proliferator-activated receptor-γ co-activator-1α) signalling, which promotes the expression 

of GLUT4 in skeletal muscle thereby increasing glucose uptake.38 The depletion of glycogen 

during aerobic exercise induces glycogen synthase and this enhances glucose disposal.39  

Resistance exercise also increases the expression of GLUT4 transport proteins (albeit through 

a different signalling pathway) and induces glycogen synthase, however, it seems to have 

benefits distinct from aerobic exercise.33 For example, emerging evidence suggests that 

hypertrophy of type 2 muscle fibres increases glycolytic capacity and this enhances glucose 

clearance and hence blood glucose control.30 

 

Study limitations and further work: 

The small number of participants in this study limits generalizability of the results and future 

work should be carried out with a greater number of participants. Subjects could also be 

better matched with reference to BMI, gender and baseline glucose; however, these variations 

do not appear to explain the significant difference in blood glucose values at 1 hour or a 53% 

disparity in the iAUC between the Low Activity and Very Active groups.  It is difficult to 



differentiate the effects of duration from those resulting from the intensity of physical 

activity, where these are highly correlated, and subjects with a wider range of physical 

activity patterns should be sought for further study.  Further work could corroborate the 

physical activity data with a validated objective measure such as accelerometry.  

 

5. Conclusion 

This work confirms that, in seemingly healthy (non-diabetic) subjects more exercise is better 

than less and that high intensity exercise is best in terms of blood glucose control. Fasted 

blood glucose values and HbA1c do not identify or predict the overall iAUC in this study but 

higher baseline blood glucose values are associated with higher blood glucose response. 

Participants with a BMI meeting the WHO definition of 'healthy' and who undertake more 

than the minimum number of minutes recommended by expert committees on physical 

activity have more effective blood glucose control than those who do not; however it is the 

group with the highest intensity and volume of activity who have the lowest 1 hour 

postprandial blood glucose values, lowest iAUC values and shortest time to peak.  Higher 

intensity exercise shows the most protective effects in relation to blood glucose control and 

diabetes risk; yet it is the exercise that individuals find most readily repeatable which matters. 

Attention should be focussed on the most effective methods for helping people become and 

maintain being physically active.   
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