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Classical spin model of the relaxation dynamics of rare-earth doped permalloy
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In this paper, the ultrafast dynamic behavior of rare-earth doped permalloy is investigated using an atomistic spin

model with Langevin dynamics. In line with experimental work, the effective Gilbert damping is calculated from

transverse relaxation simulations, which shows that rare-earth doping causes an increase in the damping. Analytic

theory suggests that this increase in damping would lead to a decrease in the demagnetization time. However,

longitudinal relaxation calculations show an increase with doping concentration instead. The simulations are in

a good agreement with previous experimental work of Radu et al. [Radu et al., Phys. Rev. Lett. 102, 117201

(2009)]. The longitudinal relaxation time of the magnetization is shown to be driven by the interaction between

the transition metal and the laser-excited conduction electrons, whereas the effective damping is predominantly

determined by the slower interaction between the rare-earth elements and the phonon heat bath. We conclude

that for complex materials, it is evidently important not to expect a single damping parameter but to consider the

energy transfer channel relevant to the technique and time scale of the measurement.

DOI: 10.1103/PhysRevB.86.174418 PACS number(s): 75.78.Jp, 75.50.Gg, 75.10.Hk

I. INTRODUCTION

Over the last decade ultrafast magnetization dynamics has

proved to be a complex and expanding field of magnetism

research. The increasing use of femtosecond lasers1–3 to

probe magnetic properties on the time scale of the exchange

interaction have been driven by the need to understand and

control the behavior of magnetic materials. Such control is

potentially important for future applications. The research

was initiated by the pioneering work of Beaurepaire et al.4

who first observed the subpicosecond collapse of magnetic

order in ferromagnetic nickel using femtosecond laser pulses.

The results showed that after a laser pulse, the magnetization

responds within the first picosecond leading to a sharp

demagnetization and a much longer remagnetization time.

These dynamics have been observed by other experimental

groups5,6 but the theoretical understanding of the dynamics

is still limited. Improving this understanding could pave the

way for magnetic storage devices with operating speeds much

faster than those of present devices.

Recently, there has emerged a strong interest in the

properties of GdFeCo following the discovery2 that circularly

polarized laser light gives rise to magnetization reversal in

the absence of an externally applied field. In this work, we

concentrate on the use of linearly polarized light for which the

heating caused by the laser pulse drives the dynamic behavior.

The focus of the current paper is on the understanding of

energy transfer channels in rare-earth (RE)/transition metal

(TM) alloys, which ultimately is necessary for a complete un-

derstanding of optomagnetic reversal and of the phenomenon

of heat-driven magnetization reversal.7

Specifically, we focus on the relationship between the mag-

netization dynamics, as characterized by the demagnetization

time following a laser pulse, and the intrinsic damping of

the material. Recent theoretical work by Koopmans et al.8

used a model based on Elliot-Yafet scattering of electrons on

impurities and phonons. An approximate relationship for the

characteristic demagnetization time is derived:

τd ≈
c0h̄

kBTCα
, (1)

where c0 is a material based parameter, TC is the Curie

temperature, and α is the Gilbert damping factor.9 This

theoretical model gives an inverse relationship between the

Gilbert damping and the demagnetization time, implying that

for larger damping the magnetization will demagnetize faster.

Koopmans’ work shows that this equation gives values that are

of the correct order of magnitude for certain results, such as

nickel, but it does not provide quantitative predictions.

Kazantseva et al.10 derive a similar result based on the

assumption that the thermal noise from the Langevin dynamics

is the dominant process in the demagnetization giving

τd ≈
μs

2λγ kBTe

, (2)

where γ is the gyromagnetic ratio, Te is the electron tempera-

ture, and μs is the magnitude of the atomic magnetic moment.

Equation (2) matches Koopmans’ model well and also predicts

a dependence of τd on the spin magnitude μs . This is borne

out by the experiments and calculations1 showing differential

relaxation of the magnetization of the RE and TM sublattices

in GdFeCo.

λ is the atomistic level coupling parameter arising in the

Langevin equation of the system. λ is analogous to α on

the atomistic scale, as they describe the direct transfer of

angular momentum into and out of the system. This parameter

encompasses an array of physical processes that mediate the

energy transfer. It is therefore crucial for the fundamental

understanding of magnetization dynamics and the possibility

of designing new magnetic devices.

The damping is a measurable quantity, determined, for

example, via ferromagnetic resonance (FMR) studies,11 but

as shown by Chubykalo-Fesenko et al.,12 it is important to

distinguish between the macroscopic and the microscopic

parameters. Importantly, the macroscopic damping contains

nonlinear effects that transfer energy which are not due to the

direct damping, such as the excitation of spin waves, which

removes energy from the FMR (k = 0) mode. Reference 12

shows, using an atomistic model, that the macroscopic α is

temperature dependent even though the atomic level parameter

λ remains constant; the values of λ and α only coinciding at
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T = 0 K. We therefore distinguish between the macroscopic

effective Gilbert damping parameter αeff , which is calculable

from FMR measurements and the direct Gilbert damping α,

that is present in Eqs. (1) and (2). These values must be

interpreted, in the spirit of the original derivations, as the

damping values at the atomic level.

The predicted relationship between τd and α was investi-

gated experimentally by Radu et al.13 The study aimed to use

the known dependence of the damping constant of permalloy

(Ni80Fe20) on the addition of RE impurities14 to investigate

how this changed the demagnetization time. A series of RE

doped permalloy samples of different concentrations were pre-

pared and FMR measurements showed the expected increase

of damping constant with RE concentration. However, the

predicted decrease of τd with α was not observed in subsequent

demagnetization measurements using ultrafast laser pulses. In

fact, a slight increase of τd with RE concentration was found,

in contradiction to the theoretical predictions.

Other theoretical work of Fähnle et al.15 also predicts

a relation between the damping and the demagnetization

time using “effective field theories.” This takes into account

the electronic structure in greater detail and arrives at two

different relations depending on the dominant component

of the damping. The “conductivity-like” contributions to

the damping lead to the “breathing Fermi-surface” model,

which predicts a linear relation between the damping and

demagnetization time. The other “resistivity-like” damping

contributions give a “bubbling Fermi-surface” model, which

then predicts an inverse relation instead. This supports both

of the different results of Refs. 8 and 13 under different

regimes.

In the present study, we investigate the effect of RE doping

on the dynamic properties of permalloy using atomistic spin

dynamics (ASD).16 Using this method, the nonequilibrium

dynamics at a finite temperature can be described using

the Landau-Lifshitz-Gilbert Langevin equation.17 To quantify

the demagnetization time from the simulations, the integral

relaxation time18 (IRT) is used.

The model incorporates two thermal reservoirs; represent-

ing the conduction electrons and the lattice, the thermo-

dynamics of which are represented by the two-temperature

model.19,20 The heating of the laser pulse acts directly

on the electron reservoir which then transfers the energy

into the lattice reservoir via electron-phonon interactions.

Within the ASD model, the mechanism that drives the

demagnetization of the material is the elevated temperatures

causing random orientation of the magnetic moments, rather

than the reduction in the magnitude of the moments. These

two thermal reservoirs are coupled to the spin dynamics using

two separate coupling parameters.21

This paper is organized as follows. First, the atomistic

spin dynamics model is introduced along with the extended

Heisenberg spin Hamiltonian and the Landau-Lifshitz-Gilbert

Langevin equation. A description of the two-temperature

model and the use of Langevin dynamics to model the thermal

noise follows, leading to a description of the the dynamic

simulations that were performed. The results of the simulations

are in a good agreement with the experiments of Radu et al.13

We conclude that in complex materials it is important not to

expect a single damping parameter but to consider the energy

transfer channel relevant to the technique and time scale of the

measurement.

II. DESCRIPTION OF THE MODEL

The model used is a classical spin model described in detail

in Refs. 16 and 22 and is outlined briefly here. The system

is viewed on an atomistic scale with each atom having an

associated magnetic moment. The basis of the model is the

numerical solution of a set of coupled Landau-Lifshitz-Gilbert

(LLG) equations of motion for the magnetic moments in an

effective field. The effective field combines the Hamiltonian

contribution and a thermal noise contribution. Each magnetic

moment is normalized, such that S = µ/|μs |, where μs is

the magnitude of the magnetic moment, hereafter noted as

μi to represent the magnitude at site i. The spin moments

are of constant magnitude and there is no fluctuations in the

magnitude of the localized magnetic moment.

An extended Heisenberg spin Hamiltonian is used, com-

prised of exchange, uniaxial anisotropy, and Zeeman energies.

The Hamiltonian is given by

H = −
∑

i �=j

Jij Si · Sj −
∑

i

dz S2
i,z −

∑

i

μi Si · B. (3)

Here, Jij is the exchange integral between spins i and j , limited

here to nearest neighbors, dz is the uniaxial anisotropy constant

along the z axis, Si is the normalized spin at site i, and B is

the applied field in tesla.

The system acts as a dilute ferrimagnet with two separate

ferromagnetic sublattices; the permalloy (TM) sublattice is

dominant with only small concentrations of RE doping

and most of the behavior evolves from this. The exchange

interaction between the TM and RE is antiferromagnetic,

giving rise to an antiparallel ground state below the Curie

temperature. We assume that the RE spins have ferromagnetic

exchange between themselves, but weaker than that of the TM

exchange.

The magnetization dynamics is described by the Landau-

Lifshitz-Gilbert equation.23 For atomic spins, it is written as

∂Si

∂t
= −

γi
(

1 + λ2
i

)

μi

Si × (Heff + λi Si × Heff). (4)

It is important to point out that the parameters γi , λi , and μi

are site dependent and vary depending on the species,22 but

here to restrict the set of open parameters, we assume γi is

constant.

To couple the thermal reservoirs into the spin system,

Langevin dynamics17 is applied using a stochastic noise term.

This converts the LLG equation into a stochastic differential

equation, which can be written as a standard Langevin equation

with multiplicative noise. The effective field, Heff , is derived

from the Hamiltonian and a thermal noise term ζ :

Heff = −
∂H

∂S
+ ζ . (5)

The thermal noise term is a stochastic process, that is,

parameterized by using the Fokker-Planck equation. Since the

coupling parameter controls the energy flow out of the system,
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it is found that it also controls the strength of the stochastic

process and thus the energy flow into the system.

The stochastic process requires a well-defined temperature,

which scales the strength of the noise. To that end, we employ

the two-temperature model.10,20 The two-temperature model

defines an temperature associated with that of the conduction

electrons and the phonons after laser excitation. The two

act as reservoirs to which the spin system can be coupled.

The time dependence of the heating (assumed uniform across

the sample) can be represented by two coupled differential

equations:

Ce

dTe

dt
= −Gel(Tl − Te) + P (t), (6)

Cl

dTl

dt
= −Gel(Te − Tl). (7)

In the simulations, the electron-phonon coupling factor

Gel and the lattice specific heat capacity Cl are taken to be

independent of temperature, which for the room temperature

calculations is a reasonable assumption. Lin et al.24 show that

the electron-coupling factor is reduced by the excitation of

d-band electrons but this occurs at high temperatures and so

this effect should be minimal in the situations considered here.

The parameters used were Gel = 1.7 × 1018 J m−3 K−1 s−1,

Cl = 3 × 106 J m−3 K−1 and Ce(Te) = 7 × 102 Te J m−3 K−1.

Using these parameters, the relevant time scale of the lattice

temperature dynamics can be calculated; the electron-phonon

coupling time, which is Cl/Gel = 1.765 ps, that describes the

exponential decay of the lattice temperature towards a constant

electron temperature.

We couple the TM species to the electron system, this

is based on previous studies of fast relaxation in transition

metals,10 which concluded that only a coupling of the TM to

the conduction electrons was sufficient to cause subpicosecond

demagnetization. This is consistent for metals with the

mechanism of Fähnle et al.15

The energy transfer mechanisms in the RE species are

more complex. The 4f electrons exhibit a strong spin-orbit

coupling, with spherical orbitals for Gd and nonspherical for

Ho. This leads to a large anisotropy in Ho and also a large

damping. Rebei and Hohlfeld25 have studied damping in the

RE metals arising from spin/lattice interactions and show that

the damping is relatively large in the Lanthanide series, but is

low for Gd. As discussed by Wietstruk et al.,26 the nonspherical

orbits, in their case for Tb, provide a coupling between the

magnetic moments with the motion of the lattice, while the

spherical orbits of Gd do not provide this mechanism. Thus

here we assume that the transfer of energy and momentum

is via spin/lattice interactions for Ho and via spin/conduction

electrons for Gd. This opens the possible coupling channels

between the two-temperature model and the RE spin system;

therefore two coupling parameters λRE
e and λRE

l are defined.21

For Gd, it is shown by Seib et al.27 that there is an effective

damping arising from a coupling of the localized 4f electrons

direct damping and the indirect damping of 5d6sp conduction

electrons. In Ref. 27, the contribution of the 5d6sp electrons

is in itself large but the effective contribution is weak and

comparable to the damping in Co. The direct 4f contribution

is, however, not known and thus which contribution dominates

the effective damping is unknown.

FIG. 1. (Color online) A schematic representing energy transfer

channels between the thermal reservoirs of the two-temperature

model (TTM) and the spin system, the dynamics of which is described

by the Landau-Lifshitz-Gilbert (LLG) equation. The Gaussian profile

represents the effect of laser heating, which is coupled to the electron

temperature. The electron reservoir is coupled to the lattice reservoir

via the coupling constant Gel. The transition metal (TM) spins, which

in our case are Ni and Fe, are then coupled to the electron temperature.

The rare-earth (RE) element, Ho or Gd, is coupled to either the

electron or lattice temperature. The TM and RE spins are coupled

via antiferromagnetic exchange giving rise to an antiparallel ground

state.

Figure 1 shows a schematic of the various energy transfer

channels between the thermal reservoirs of the two temperature

model (TTM) and the spin system. This serves to define the

coupling constants used in the model.

The stochastic process is assumed to be white noise with

the following mean and variance:

〈ζi,a(t)〉 = 0, (8)

〈ζi,a(t)ζj,b(t ′)〉 = δijδabδ(t − t ′)Dllg, (9)

where a and b refer to the components of the spin vector and

i and j to separate spins. Dllg is the strength of the stochastic

process and for the different species, we define the separate

coupling channels:

Dllg =

{

2μikB

γi
λTM

e Te, TM spins,
2μikB

γi

(

λRE
e Te + λRE

l Tl

)

, RE spins.
(10)

The RE coupling factors for the separate baths form the total

RE coupling in the LLG equation with a total damping λRE
i =

λRE
e + λRE

l . Te and Tl are the temperatures of the electron and

lattice bath, respectively, as described by the two-temperature

model. We note that the model is based on energy transfer and

does not explicitly conserve energy or angular momentum.

The numerical scheme used in the simulations is the semi-

implicit scheme defined by Ref. 28, which is a symplectic

integrator that conserves the magnitude of the spin length,

a requirement of the model. The basis of the scheme is the

implicit midpoint scheme as given in Ref. 29. However, to
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reduce the computational effort, an approximation is made in

predictor-corrector style:

S′
n = Sn −

Sn + S′
n

2
× A(Sn), (11)

Sn+1 = Sn −
Sn + Sn+1

2
× A

(

Sn + S′
n

2

)

, (12)

A(S) =
γ	t

(1 + λ2)μ
[Heff(S) + λ S × Heff(S)]. (13)

If we just consider a single step and express the cross

product as a matrix, skew [v] · w = v × w, then the equations

for a single site can be solved to give an explicit form:

Sn+1 = Sn + 1
2
skew [A]Sn+1 + 1

2
skew [A]Sn = Cay(A)Sn,

(14)

where Cay(A) is known as the Cayley transform which has the

solution given by30

Cay(A)X = X +
A × X + 1

2
A × A × X

1 + 1
4
|A|2

. (15)

The importance of using the Cayley transform is that it

applies a rotation to the spin vector rather than a translation

thus conserving the spin length. The crucial choice is the input

to A; one can choose a single step similar to an Euler method

or in this case, our semi-implicit scheme uses a predictor-

corrector step and so is equivalent to a Cayley version of

the Heun scheme shown in Ref. 30. In general, due to the

orthogonal nature of the Cayley transform, an addition of a

parallel term, A′ = A + σS, can be utilized to optimize the

scheme.30,31 However, this only has the effect of overdamping

the system, which does not allow the important dynamics to

be observed. As with all numerical schemes, the semi-implicit

scheme does have an error associated with the approximation.

Specifically, while having good convergence for equilibrium

properties, it has a larger error in the precession frequency

when the exchange field is included. This error decreases for

smaller time steps and as such 	t = 1 × 10−16s was found to

be suitably small enough.

III. RESULTS

Our aim is to compare our spin model results with the

measurements of Radu et al. in Ref. 13 in order to obtain

insight into the energy transfer processes in ferrimagnets.

We require studies of longitudinal and transverse relaxation

to calculate the demagnetization time and the effective

Gilbert damping respectively. Afterwards, we make a direct

comparison to the theory and experiment. The computational

results are in excellent qualitative agreement with experiment,

giving important insight into energy channels and damping

mechanisms in ferrimagnets.

Usually permalloy thin films are polycrystalline with a face

centered cubic (fcc) structure. Since the RE concentrations

in Ref. 13 are low, we assume a fixed lattice for the atomistic

model. The polycrystalline structure is simplified to be a single

fcc crystal with periodic boundary conditions. For the magnetic

moments, we use the values:32 μNi = 0.98 μB , μFe = 2.31 μB ,

μHo = 10.6 μB , and μGd = 7.94 μB . The exchange coupling

between the spins is ferromagnetic for TM-TM and RE-RE

interactions and antiferromagnetic for the TM-RE interaction

using the values JTM-TM = 3.60 × 10−21J , JRE-RE = 1.26 ×

10−21J , and JTM-RE = −1.09 × 10−21J . These exchange pa-

rameters are derived from standard relations between the

exchange and the Curie temperature.

As discussed in the last section, the coupling factors for

the TM and Gd are relatively small, while the coupling of Ho

is rather high. These quantities are not the Gilbert damping

parameters and on a atomistic scale are not well known. The

values are taken within the ranges shown in Rebei et al.25 and as

such we take the TM and Gd coupling to be λTM
e = λGd

e = 0.05

and the Ho coupling to be λHo
l = 0.5.

To calculate the longitudinal relaxation time of each

species, we begin with our system in the antiparallel ground

state at 0 K. We then apply a Heaviside step function to 300 K

to the electron temperature to represent the inital part of a

square heat pulse. Since the system needs only be simulated

until it reaches equilibrium, a reasonable time scale is 50 ps,

which allows a large system size, 18 nm3.

The demagnetization time from an ordered to a more dis-

ordered magnetic state is characterised by exponential decay,

described by a weighted sum with different time constants.

In Ref. 13, the demagnetization only occurs for about 200 fs

and as a result a single exponential fit is satisfactory. However,

during these simulations, the demagnetization is observed over

a longer scale and as such, fitting to multiple exponentials

does not fit well. Consequently, the integral relaxation time18

is a much better quantification of the demagnetization time as

this already accounts for all of the eigenmodes. The integral

relaxation time is calculated using

τIRT =

∫ ∞

0

〈Mz(t)〉 − 〈Mz(∞)〉

〈Mz(0)〉 − 〈Mz(∞)〉
dt. (16)

Here, Mz is the z component of the magnetization vector where

z is our anisotropy axis and the magnetization vector is initially

oriented along this axis. Since both the TM and RE sublattices

relax differently, the IRT is calculated separately for either

sublattice.

It was mentioned earlier that the effective damping as

observed in the experiments is not necessarily equivalent to

the atomic scale damping which must be used in the spirit

of the derivation of Eqs. (1) and (2). However, we proceed

along the lines of the experiments to effect a direct comparison

with the measurements and to allow interpretation of the

underlying physics.

The effective Gilbert damping of our RE doped permalloy

system is calculated from the transverse relaxation of the

total magnetization. These simulations are independent of the

laser induced dynamics and instead show the Gilbert damping

through FMR-like methods. This is done by equilibrating

the system with an applied field, h = 0.25 T, along the

anisotropy axis at a constant temperature of 1 K. We then

perform a coherent rotation of all of the spins to an angle

of 30 degrees in the yz plane. The system then undergoes

a relaxation back to equilibrium. The x component of the

magnetization is then fitted to using the function Mx(t) =

A cos(t/τp)/ cosh(t/τr + d). Within this equation τp and τr

are the precession and transverse relaxation times, respectively.

They have the form τp = (1 + α2
eff)/γ h, τr = τp/αeff . A and

d are parameters used to match the equilibrated length of the
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magnetization and the initial phase of spin. The damping can be

found using the relation between the precession and transverse

relaxation times; αeff = τp/τr . The results of the calculation

of the effective damping parameter are found to be consistent

with experimental observations.13,33

A. Longitudinal relaxation calculations

We have performed calculations of the longitudinal relax-

ation time demonstrating the differential response of the TM

and RE sublattices, which is consistent with the results of

Ref. 1. In general, the magnetization relaxes as an exponential

decay, starting at some initial value at t = 0 and decaying to a

new equilibrium value.

In TM-RE materials, since the sublattices are oppositely

aligned, the demagnetization of the sublattices can actually

cause the total magnetization to rise depending on which

sublattice is dominant. Due to this behavior, it is useful

to characterize the demagnetization time of each sublattice

separately rather than the total magnetization. In the exper-

iments of Ref. 13, the magneto-optic Kerr effect is used to

measure the magnetization dynamics and consequently, since

the TM sublattice provides the dominant signal, the calculated

demagnetization time will be linked to this sublattice.

Figure 2(a) shows the relaxation of a 8% doped permalloy

system to the temperature profile in Fig. 2(b). It is clear from
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FIG. 2. (Color online) (a) The z component of the total (dot-

dashed black line), TM (solid blue line), and RE (red dashed

line) magnetization as a function of time for Ni72Fe20Ho8 after

a change in temperature from 0 to 300 K. The TM spins are

coupled to the electron temperature, while the RE spins are coupled

to the phonon temperature. The TM spins respond faster to the

increase in temperature while the RE spins takes much longer, these

different time scales cause the total magnetization to first demagnetize

following the TM behavior before the demagnetization of the RE

occurs. The behavior of the electron and phonon temperatures, after

a step change in the electron temperature, are shown in (b). By

comparing the lattice temperatures dynamics to the RE, we can see

the RE spins demagnetize at a similar rate.

Fig. 2(a) that the TM sublattice (solid blue line) relaxes much

faster than that of the Ho sublattice (red dashed line). This is

due to the fact that the TM spins are coupled to the electron

temperature and also have a lower moment giving rise to

a shorter longitudinal relaxation time according to Eq. (2).

The Ho spins take longer to relax due to their coupling to

the phonon bath and their larger magnetic moment.1 The

total magnetization (dot-dashed black line) relaxes in a rather

complex manner as the two sublattices have completely

different time scales.

Since the TM sublattice has almost completely relaxed

within 200 fs, during which time the RE sublattice has only

relaxed by a few percent of saturation, the total magnetization

initially decreases following the TM magnetization. However,

on longer time scales for which the TM lattice is almost

in equilibrium, the RE sublattice slowly relaxes. Since the

sublattices are oppositely aligned, this slow reduction in the

RE lattice manifests as an increase in the total magnetization.

It is worth noting that the relaxation time of the TM

sublattice is comparable to the experimentally measured values

of τd , with the RE relaxing on a significantly longer time scale.

This is consistent with the time-resolved magneto-optic Kerr

effect signal originating in the TM signal rather than the total

magnetization.

Figure 3 shows the calculated temperature dependence of

the longitudinal relaxation time for permalloy doped with 5%

Ho. The relaxation time is shown for both sublattices. It can

be seen that the rare-earth relaxation time is much longer than

that of the transition metal. This, as shown in Fig. 2, is due

to the slower increase of the lattice temperature in addition to

the intrinsically slower relaxation of the RE due to its large

moment. At high temperature, the TM relaxation shows a peak

in the relaxation time close to the Curie temperature.

0.0
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0  200  400  600  800  1000  1200

τ I
R

T
 [
p
s
]
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FIG. 3. (Color online) Integral relaxation times for the TM (blue

squares) and RE (red circles) sublattices in Ni75Fe20Ho5 for different

temperature step sizes. The spins begin in the ground state at 0 K.

A Heaviside step function is then applied to the electron temperature

changing it to the required value. The TM behaves as expected with

a gradual increase until diverging at the Curie temperature. The RE

sublattice relaxation time generally decreases but exhibits a peak at

the Curie temperature consistent with the coupling to the TM by the

interlattice exchange. The solid lines are a guide to the eye showing

the divergent behavior.

174418-5



M. O. A. ELLIS, T. A. OSTLER, AND R. W. CHANTRELL PHYSICAL REVIEW B 86, 174418 (2012)

This is the critical slowing down characteristic of all

phase transitions. Interestingly, the RE also exhibits a peak at

the TC , although this temperature is much higher than the RE

ordering temperature. This reflects the strong intersublattice

exchange with the TM sublattice slowing the relaxation of the

RE sublattice.

B. Ferromagnetic resonance simulations

We next investigate the effects of the RE doping on the

macroscopic effective Gilbert damping of the system within

the atomistic model. As described earlier the effective Gilbert

damping is calculated from the motion of the magnetization in

an applied field. The calculated results exhibit precession and

slow damping back to equilibrium, allowing the determination

of the transverse relaxation time and damping parameter by

fitting to a damped oscillatory function.

Figure 4 shows the fit to the x component of a selection of

concentrations to highlight the effect of doping on the rate of

damping in Ho doped permalloy at low temperature. Clearly,

the macroscopic damping increases with RE concentration,

consistent with experiment. At low doping concentrations

the transverse relaxation time is not so short as to seriously

-0.5
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 0  100  200  300  400

Time [ps]

(c) 6% Ho

-0.5

0.0

0.5

M
x
 [
M

s
]

(b) 3% Ho

-0.5

0.0

0.5 (a) 0% Ho

FIG. 4. (Color online) Transverse (x) component of the reduced

total magnetization as a function of time after excitation of the system

by coherent rotation of the spins to an angle of 30 degrees. Different

concentrations are shown highlighting the effect of doping as the

concentration is increased from 0% (a) to 6% (c) at 1K. The strength

of the applied field was h = 0.25 T in all cases, applied along the

z axis. The dashed lines represent a fitted cos(t/τp)/ cosh(t/τr + d)

function and the shaded area shows the envelope of the damping

function from which the Gilbert damping factor can be extracted.

The fitting parameters τp and τr are the precession and transverse

relaxation times, respectively, and for a simple single macrospin,

have the values τp = (1 + α2
eff)/γ h, τr = τp/αeff . and so the ratio of

the times give the damping factor.
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e
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FIG. 5. (Color online) The relation between the RE concentration

and the Gilbert damping parameter for Ho (red squares) and Gd (blue

circles). The analytic form (lines) for both Ho and Gd from Eq. (17)

agrees well with the calculated damping from the model (points) at

T = 1 K. The damping diverges at the magnetization compensation

point where the total Ms is zero as the RE sublattice magnetization

completely cancels the TM sublattice magnetization. At low doping

concentrations, the change in the damping is almost linear, which

agrees well with the results of Ref. 13.

limit the number of precession cycles giving an accurate

determination of the effective damping parameter α. At higher

concentrations, the transverse relaxation time is very short

causing the fitting to be less accurate, as shown in Fig. 4(c).

Nonetheless, the fit of the damped oscillatory function is still

sufficiently good to give a reasonable value of αeff .

Figure 5 shows the calculated effective Gilbert damping

factor as a function of concentration of Gd (blue circles) and Ho

(red squares) at 1 K. By modeling the ferrimagnetic system as

two coupled sublattices, as in Wangsness et al.,34 an expression

for the effective damping of the total magnetization can be

derived:

αeff =
MTMλTM

e + MRE

(

λRE
e + λRE

l

)

MTM − MRE

. (17)

As the figure shows the calculations match well with the

analytic solution, the damping diverging at the point where

the magnetization of the two sublattices cancel.

The model correctly reproduces the effect of RE impurities

on damping in permalloy shown experimentally in Refs. 13 and

33. This is an important test of the model and the introduction

of an additional damping channel via the strong spin-orbit

coupling of the RE spins.

C. Comparison of theory and experiment

Before embarking upon a direct comparison of the model

predictions with experiment, we first investigate the theoretical

predictions of Refs. 8 and 10 by investigating the longitudinal

relaxation time in a system without the complexity of multiple

sublattices and energy transfer channels. Specifically, we

calculate the IRT as a function of the coupling to the thermal

bath for a range of x in NixFe1−x . The variation of composition

introduces a variation in the effective magnetic moment per

atom, μeff . We neglect any change in the local magnetic

moments of Ni and Fe or crystalline structure from the change
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FIG. 6. (Color online) Variation of the longitudinal relaxation

time of permalloy (light blue squares), 60% Fe (dark blue triangles),

and 40% Fe (black diamonds) as a function of thermal bath coupling

calculated using the atomistic model. The solid lines are fitted

functions using τIRT = (C0/λ) + d . The variation of Fe percentage

aims to vary the effective magnetic moment per atom (μeff) as no

structural change is considered. Initially, the system is in an ordered

state until a Heaviside step function is applied to Te = 300 K. The

relationship matches well with Eqs. (1) and (2). The lines are a fitted

function to each data set, for which the constant C0 is proportional to

the magnetic moment as shown in the inset.

in composition, as this serves to specifically investigate how

the change in effective moment changes the longitudinal

relaxation.

Figure 6 shows that in this case there is an inverse relation

between the demagnetization time and coupling factor, in

direct agreement with Ref. 8. The inset shows the fitting

parameters for a larger range of compositions and shows that

there is linear relation with the effective magnetic moment

and fitting parameter, as predicted in Ref. 10. Thus, in this

simple case, with all spins coupled to the same heat bath, the

analytical model predictions are consistent with the numerical

calculations.

We now move to the longitudinal relaxation calculations

for the permalloy doped with low concentrations of Ho and

Gd. Figure 7 shows the relaxation time as a function of RE

concentration for three different cases; Gd is coupled to the

electron reservoir (blue circles), Ho coupled to the lattice

reservoir (red squares), and Ho coupled to the electrons (red

triangles). The first two cases are as discussed previously but

the last case is included for comparison. The results clearly

show that for higher concentrations of Gd and Ho coupled

to the electrons have little effect on the demagnetization time,

while when the Ho is coupled to the lattice the demagnetization

time increases.

Comparison of our model calculations to the experiments

of Radu et al.13 leads to a clear interpretation of the results.

Specifically, the coupling of the Ho to the electron reservoir,

even with a high damping, does not give the same behavior

as observed in the experiments. This supports the assumption

that there is a strong interaction between the lattice and the

Ho moments. The coupling of the Ho spins to the lattice
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FIG. 7. (Color online) The change in the integral relaxation time

of the TM sublattice for a range of concentrations of Ho (red squares

and triangles) and Gd (blue circles). Results are shown for Ho coupled

to either the lattice (squares) or the electrons (triangles); this shows

that the increase of the demagnetization time occurs due to the spin-

lattice interaction of Ho. This agrees well with the experimental

work of Radu et al. apart from a different scale. We find the integral

relaxation time is longer than the values of the demagnetization time

from the experiments. The behavior is consistent but in disagreement

with predictions from Eqs. (1) and (2).

reservoir shows an increase in the longitundinal relaxation time

of approximately a factor of 5 over the range of concentrations

between 0% and 10%. This behavior of the relaxation time on

the Ho doping and also the behavior with the Gd doping are in

agreement with the experimental data, although on a different

time scale. This suggests that the energy transfer channel via

the lattice heat bath dominates the demagnetization time for

the impurity spins in Ho doped permalloy.

In the experiments of Ref. 13, the demagnetization time

of the permalloy is found to be about, τd ∼ 75 fs. In our

calculations of the integral relaxation time in Fig. 6, this would

correspond to a damping of over 0.1, which for permalloy is too

high in relation to the generally accepted experimental value.

However, the agreement between theory and experiment in

terms of the magnitude of the longitudinal relaxation time to

within a factor of 2 is reasonable since the calculation of the

electron temperature via the two-temperature model may not

give exactly the exact experimental temperature variation. In

addition, in Ref. 13, the demagnetization time is fitted to a

single exponential where as the integral relaxation time used

here accounts for all the eigenmodes of the magnetization

relaxation. This along with the model not accounting for the

full details of the experiments, such as laser fluence, explain

as to why there is a difference in the time scales.

The behavior of the demagnetization time with the RE dop-

ing is in disagreement with the prediction of Koopmans’ model

using the effective damping calculated from the transverse

relaxation. Within the atomistic model, the increase arises

from the coupling of the Ho spins to the lattice temperature,

removing the large damping species from the energy channel

associated with the subpicosecond demagnetization, which is

by the transfer of energy from the laser into the spin system
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via the conduction electrons. Thus the simple model of a

single energy transfer channel, cannot be expected to apply,

especially when taking the α value from FMR experiments,

which involve a different energy transfer channel, specifically

the spin/lattice interaction.

Therefore from Figs. 6 and 7 both the theoretical results

of Ref. 8 and experimental results of Ref. 13 are exhibited

in the Langevin spin model and highlight different effects

within it. In the different cases, the energy transfer channels are

different; in Fig. 6, the TM is coupled to the electron reservoir,

which is found to cause the ultrafast demagnetization. Whilst

in the calculations of the doped permalloy, the Ho is coupled

to the lattice. For the TM case, the larger the coupling values

the stronger the coupling to the electron reservoir causing it to

demagnetize faster, which is shown in the results. For the Ho

doping case, energy is transferred from the electron reservoir

to the lattice reservoir before it causes the demagnetization

of the Ho sublattice. So even for the large coupling constants

λRE
l assumed for Ho, the energy transfer via the lattice is a

much slower channel leading to the behavior similar to the

experimental results presented by Radu et al.

IV. CONCLUSION

We have studied the ultrafast demagnetization in RE doped

permalloy for comparison with the experiments of Radu

et al.,13 which disagree with simple analytical models that

predict an inverse dependence on the macroscopic damping

parameter. Our computational model reflects two of the

possible energy transfer channels responsible for damping.

Two coupling factors are used to couple the spins to separate

heat baths under the assumption that the laser energy is

transferred via an effective increase of the electron temperature

into the TM spins with the RE more strongly coupled to

the lattice via spin orbit coupling. This model describes

the separate dynamics of the transition metal and rare-earth

elements, consistent with recent studies.1,7 This leads to

differential dynamic behavior, with the demagnetization time

dominated by the interaction between the conduction electrons

and TM spins, and the longer timescales associated with FMR

dominated by the RE element.

By calculating the longitudinal relaxation time, after a step

change in the electron temperature, we can see that at the

Curie temperature the TM relaxation time diverges. Due to the

exchange coupling between the sublattices the diverging TM

relaxation time causes a lengthening in the RE relaxation time.

Looking at the case of undoped permalloy, the relaxation time

is described well by the theoretical predictions of Koopmans

et al. with an inverse relationship with the coupling factor.

Ferromagnetic resonance simulations have been carried

out in order to calculate the effective macroscopic damping.

These simulations have confirmed that the effect of RE

impurities is to increase the overall damping of the system

with increasing RE concentration, in qualitative agreement

with the experimental results of Radu et al. Given the increase

in macroscopic damping with RE concentration the theoretical

models of Refs. 8 and 10 predict a decrease in demagnetization

time with RE concentration. Our calculations show a linear

increase, consistent with the experimental work of Radu

et al.13 This results directly from the coupling of the rare-earth

elements to the lattice temperature as expected due to the very

strong spin-orbit coupling. Since the relaxation of the rare-

earth sublattice is restricted by the thermalization of the lattice

temperature it can be seen that this dominates the behavior and

the higher concentration of rare-earth impurities reduces the

amount of fast relaxing transition metal atoms.

The damping in magnetic materials is a very complex

process, that is not controlled by a single mechanism and

incorporates a large amount of underlying physics. Here we

conclude that in order to describe the ultrafast dynamics of

amorphous TM-RE alloys it is necessary to allow two coupling

channels. The first couples the TM spins to the conduction elec-

tron temperature and the second couples the RE to the lattice.

The former is responsible for the ultrafast demagnetization

and the latter for the rather slower longitudinal macroscopic

relaxation associated with FMR. In complex materials, it is

evidently important not to expect a single damping parameter

but to consider the energy transfer channel relevant to the

technique and time scale of the measurement.
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