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A B S T R A C T

Starting from a class of stochastically driven kinetic models of economic exchange,
here we present results highlighting the correlation of the Gini inequality index with the
social mobility rate, close to dynamical equilibrium. Except for the canonical-additive
case, our numerical results consistently indicate negative values of the correlation co-
efficient, in agreement with empirical evidence. This confirms that growing inequality
is not conducive to social mobility which then requires an “external source” to sustain
its dynamics. On the other hand, the sign of the correlation between inequality and
total income in the canonical ensemble depends on the way wealth enters or leaves the
system. At a technical level, the approach involves a generalization of a stochastic dy-
namical system formulation, that further paves the way for a probabilistic formulation
of perturbed economic exchange models.

c© 2017 Elsevier B. V. All rights reserved.

1. Introduction

This article reports results obtained from an application of a
statistical mechanics model to a socio-economic problem, in an
area that is currently attracting much interest, namely the rela-
tion between the Gini index of a country and its social mobility.

The Gini index G is a widespread measure of income inequal-
ity in a society expressed as a non-dimensional ratio of the rel-
ative mean absolute difference of income between two income
classes to double their mean [1]. The social mobility M can
be identified with multiple definitions [2], but in essence it is
defined as the probability for an individual to pass to the up-
per income class in a given unit time, averaged over all classes.
Empirical evidence shows a clear correlation between these two

∗Corresponding author: Tel.: +39-0471-017134; fax: +39-0471-017009;
e-mail: giovanni.modanese@unibz.it (Giovanni Modanese)

1E-mail: marialetizia.bertotti@unibz.it
2E-mail: a.k.chattopadhyay@aston.ac.uk

quantities, namely it is found that mobility reduces when in-
equality rises, thus implying a negative correlation between G
and M [3, 4]. This correlation, nicknamed the “Great Gatsby
Curve” [5], is important since it means that the increase of in-
equality (as presently observed in several countries) tends to be
a self-reinforcing phenomenon, unless it is complemented by
suitable social policies. It should also be stressed that this cor-
relation holds for societies at near equilibrium, while it may be
different in phases of strong economic growth [6].

The analytical structure of the model employed is a deriva-
tive of our well established kinetic model [8] that we briefly
recall below. The key feature of this macroeconomic model
was its ability to allow the computation of the income distribu-
tion of an idealized society as a macroscopic feature emerging
from elementary microscopic interactions between individuals
of different income classes. Using extensive numerical simu-
lations and related analysis, we arrive at a clear confirmation
of the negative correlation between G and M, when in equi-
librium. In line with our recent work incorporating the impact
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of randomness in monetary transactions [14], we now introduce
the vital stochastic element in the dynamics which then leads us
to a set of Langevin equations driven by additive or multiplica-
tive noise. Due to initial and boundary condition related con-
straints controlling the stochastic dynamics, this leads to non-
trivial analysis of constrained socioeconomic dynamics that we
study under the following separate ambits: Case A: total popu-
lation conservation, and Case B: total population conservation
and total income conservation.

We find that this potentially leads to a variety of possible
cases. Using thermodynamic analogy, one may consider both a
canonical ensemble (system in contact with the outside world)
or otherwise a microcanonical (isolated system, with conserved
total income), driven separately by additive and/or multiplica-
tive noise, which could be drawn from an ensemble of distribu-
tions (e.g. white Gaussian noise or Ornstein-Uhlenbeck noise
with memory effects).

For the case (Case A) of a fluctuating total income (canon-
ical ensemble), it is also possible to compute the correlation
between the Gini index G and the total income µ, defined as the
sum of the class populations each multiplied by the average in-
come of the class (see Sect. 2). This is of interest to economists
because it is often debated whether an increase in a countrys
GDP has generally a positive or negative influence on inequal-
ity [7]. Towards this end, our recent results show that the G-µ
correlation depends on the nature of noise, being positive for
additive noise and negative for multiplicative noise (in a cer-
tain range of G). In this sense, it is less general than the G-M
correlation. We discuss this result in Sect. 3.

The manuscript is organized as follows. In Sect. 2, the origi-
nal model is briefly recalled, followed by Sect. 3 where results
obtained in Sect. 2 are analyzed statistically. Sect. 4 contains
our conclusions and outlook.

2. Mathematical model

Our model [8] is based upon a system of n kinetic nonlinear
differential equations. The variables are the populations of n in-
come classes which make up a society of individuals interacting
among themselves and possibly with the external world. Typi-
cally n varies between 10 and 100. The equations are strongly
coupled and can only be solved numerically, due to the com-
plexity which arises from nonlinearity. They contain adjustable
constant coefficients which describe the transition probabilities
between income classes due to economic interactions. Unlike
in linear master equations, however, dynamics is also crucially
determined by the probabilities of encounters, which are pro-
portional to the products of the class populations.

The subdivision of the total population into classes is an es-
sential feature of the discretized kinetic theory, and allows to
recast the Boltzmann equation as a system of ordinary differen-
tial equations, instead of a partial differential equation. While
for, say, a gas of physical particles, this subdivision may seem
artificial, in economics the use of income classes is quite fre-
quent and especially natural when considering taxation. Also
the empirical studies on social mobility employ a subdivision
of society in income classes. The choice of n in our model is

a matter of convenience, but it is possible to use more or less
classes without any substantial changes in the results, provided
the simulations are run with the same total income.

The solution of the coupled equations represents the time
evolution of the class populations xi(t), i = 1, ..., n. It turns
out that, starting from arbitrary initial conditions, the system
independently evolves towards an equilibrium configuration,
namely the equilibrium income distribution, which depends
only on the initial total income and on the model parameters.
From the equilibrium configuration, one can evaluate several
quantities of economic interest, like the Gini inequality index,
the social mobility index, the Pareto exponent (for a possible
extended non-Gaussian tail in the probability density function),
etc.

In [9] the income distributions obtained from our model have
been fitted with the Kaniadakis κ-distribution, a very general
three-parameter distribution which gives an excellent descrip-
tion of empirical data both with and without Pareto tails. The
Pareto exponents of our distributions turn out to be typically in
the range 2.5 < a < 3.5, where a is the power-law exponent
( f ∼ r−a, where f is the income distribution and r is the income
variable). The value of a depends on the parameters defining
the microscopic interactions.

This kind of equations can also clearly be applied to model
various physical systems, where interactions are present which
depend on the product densities or concentrations, like for in-
stance in chemical kinetics, crystal growth, etc. [10].

In more sophisticated versions of the model, redistribution
terms (appearing as third-ordered correction terms in the dy-
namics) have been introduced. From the economic perspective,
these terms represent the effects of taxation and welfare bene-
fits [11]. A network structure can also be implemented to par-
lay inhomogeneous interactions that are directed along certain
preferred links [12]. Here we refer to the basic version of the
model, constituted out of quadratic terms, and represented as
follows

dxi(t)
dt

=

n∑
h,k=1

Ci
hk xh(t)xk(t) −

n∑
h,k=1

Ch
ik xi(t)xk(t), (1)

for i = 1, 2, ...n, where the constant coefficients Ci
hk, satisfying

for any fixed h and k the condition
n∑

i=1

Ci
hk = 1, express the

probability that an individual of the h class will belong to the i
class after a direct interaction with an individual of the k class;
they define all the features of the model, as described in detail
in the cited works [8, 9], and allow a large degree of flexibility.
The class populations xi are normalized to 1.

All analyzes are based on the previously alluded definition of
Gini index [1]. Our definition of equilibrium mobility is essen-
tially the weighted average, over all classes, of the probability
for an individual to be promoted to the upper class in the unit
time [13, 14]. Note that the model allows the definition and
computation of mobility because the equilibrium is dynamical,
i.e., it is obtained as a balance of up and down transitions along
the income ladder.

Let us now consider a system which is at equilibrium, but is
also subjected to random fluctuations of the populations, rep-
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resenting monetary transactions with stochastic perturbations.
Such fluctuations can be of two different kinds: canonical fluc-
tuations, with conservation of the total population but not of the
total income (case A), and micro-canonical, with conservation
both of the total population and of the total income (case B). In
economic literature, these are more popularly referred to as ”ex-
ogenous” and ”endogenous” fluctuations, respectively. Case A
refers to a system that can interact with the external world, as is
represented in the case of import/export of goods and capitals,
or in the case of incoming/outgoing tourism. Case B, on the
other hand, refers to fluctuations that occur when the system is
isolated and its total wealth remains unaffected in the dynamic
equilibrium state. In this case, the income distribution changes
not only due to transitions with fixed probabilities based on the
Ci

hk coefficients, but also due to random transitions caused by
temporary, uncontrolled factors.

The Langevin equation with additive noise is written in gen-
eral

dxi = D(1)
i (x)dt +

∑
j

D(2)
i j (x)ξ jΓ

√
dt, (2)

where the deterministic term D(1)
i (x) is as in eq. (1), ξi denotes

n independent Gaussian stochastic variables and the matrix D(2)

in the canonical case is such as to transform the ξi only by im-
posing

∑
i, j

D(2)
i j ξ j = 0, while in the micro-canonical case it must

also satisfy the conditions
∑
i, j

riD
(2)
i j (x)ξ j = 0 (see [14]). Here

ri is the income of the class i, taken equal to 10i in the present
computations. The total income is given by µ =

∑n
i=1 xiri.

The case of multiplicative noise is more involved, because it
intuitively relates to the expectation that random variations of
the populations are proportional to the population themselves.
(Note that multiplicative noise has been previously used in the
Bouchaud-Mezard model [15, 16], where it represents the ef-
fect of investment in the stock market. The evolution equa-
tions of that model, however, are linear, and do not represent
binary interactions like the kinetic equations; there are no in-
come classes and the time evolution of the income of each indi-
vidual depends on the income of the other (N − 1) individuals,
but not on its own income.) In the canonical case with multi-
plicative noise, the matrix D(2) is as given in [14], while for the
micro-canonical case with multiplicative noise the transforma-
tion needed is more complex and will be presented in detail in
a forthcoming paper [17].

3. Results

The Langevin equations are solved numerically with a
discrete-time algorithm based on a Taylor-Euler scheme of dis-
cretization. At each time step, a noise vector ξi is generated
and suitably normalized; the noise is added to the deterministic
model, either as an additive or a multiplicative term (propor-
tional to the population), with tunable amplitude Γ. The de-
terministic term represents the time dynamical evolution with
fixed probability, while the stochastic term represents the effects
of internal and external perturbations. A control loop ensures
that the variables xi remain always positive after the stochastic

(a) Micro-canonical, additive noise; M and G versus time t

(b) Micro-canonical, multiplicative noise; M and G versus
time t

Fig. 1. Samples of time series of mobility M and Gini index G in the micro-
canonical case. A negative correlation is clearly visible (compare Table 1,
first column). For graphical reasons, the real value of M has been multi-
plied by 800.



  

4 Maria Letizia Bertotti etal / Results in Physics (2017)

Table 1. Correlations RGM (Gini-mobility) and RGµ (Gini-total income) computed with initial total income µ = 30 and noise amplitude Γ = 0.001. Averages
of 50 realizations, each of 5000 integration steps.

Conserved total income µ
(micro-canonical)

Non-conserved total income µ
(canonical)

Additive noise RGM = −0.79 ± 0.02 RGM = 0.53 ± 0.05
RGµ = 0.68 ± 0.04

Multiplicative noise RGM = −0.90 ± 0.06 RGM = −0.58 ± 0.05
RGµ = −0.43 ± 0.05

(a) Canonical, additive noise; M and G versus time t

(b) Canonical, multiplicative noise; M and G versus time t

Fig. 2. Samples of time series of mobility, Gini index and total income in the
canonical case (compare Table 1, second column). For graphical reasons,
the real value of M has been multiplied by 800 and that of µ divided by
80. The multiplicative case shows a negative correlation between M and
G, in agreement with the micro-canonical case and the empirical data; the
G-µ correlation is also negative. The additive case is anomalous, showing
positive correlations between G, M and µ.

variations. When Γ = 0, the system evolves towards an equilib-
rium income distribution which depends on µ but not on the ini-
tial conditions. In order to arrive at a solution for the stochastic
model with Γ , 0, the deterministic equilibrium is taken as the
initial condition, which also ensures faster convergence. (Ex-
amples of these time-series are shown in Figs. 1 and 2, where
the correlations between M, G and µ are also qualitatively vis-
ible.) For each population variable xi we obtain a stochastic
time series, typically comprising ∼ 104 values. We study the
standard features of these time series, like statistical mean and
variance, time auto-correlation and Hurst exponent. However,
our main interest is in the time series of integral quantities, like
the total income µ and the Gini inequality index G. For white
Gaussian noise, these resemble closely a Wiener process with
time auto-correlation decreasing over a scale of ∼ 103 steps and
H ∼ 0.50.

The correlation RGM between G and M (see Table 1) is neg-
ative both for additive and multiplicative noise (except in the
additive-canonical case). On the other hand, RGµ is positive for
additive noise and negative for multiplicative noise. Note that
all temporal autocorrelation functions are computed at the same
time points. The values given in Table 1 are estimated for a to-
tal income µ = 30, in non-dimensional units that are related to
the Gini index G through a deterministic formulation already
discussed in [8], e.g. µ = 30 corresponds to G = 0.41. The
correlation RGµ with multiplicative noise has constant sign in a
range of µ and G of a few percent around these values. For its
behavior in a wider range see [17].

The introduction of an Ornstein-Uhlenbeck noise (with auto-
correlation time τ) in the dynamics does not substantially affect
the µ-G and M-G correlations, the most visible effect being that
on the Hurst exponent of the time series, which then approaches
the value 1, suggesting a Wiener process with memory. Work
is ongoing on the computation of the values of the µ-G corre-
lation in the phase space τ-Γ, that may lead to hidden phase
transitions.

For a correct interpretation of these results, it is important
to notice that canonical additive random variations in the class
populations have a more prominent effect on the rich classes,
whose populations are much smaller. Moreover, additive pop-
ulation variations in the rich classes cause much bigger varia-
tions in the total income. This explains why the RGµ correlation
is positive in the canonical additive case. In fact, in this case,
the sign of the total correlation is dominated by the behavior
of the rich classes. Any increase in the total income µ due to
an external inflow is strongly correlated with an increase of the
population of the rich classes, and therefore with an increase
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in the value of G. Also, the mobility increase which leads to
a positive RGM correlation is exclusive of the relatively richer
classes. On the other hand, multiplicative noise invokes a better
balance across income classes, hence is more realistic.

The reason why the micro-canonical RGM correlation is neg-
ative even with additive noise can be explained as follows: here
any population variation in the rich classes will precipitate a
greater variation in the other classes, due to an avalanche ef-
fect if the total income is still to be conserved. In practice, this
will redistribute the population variations occurring in the rich
classes, thereby redistributing wealth.

4. Conclusions, outlook

In this work, we have proposed a Langevin-type stochastic
formulation of economic exchange based on a set of discrete
stochastic kinetic equations describing a system with n inter-
acting classes and their populations x1, ..., xn. Given the transi-
tion probabilities between these classes, the deterministic equa-
tions lead us to the dynamical equilibrium configuration of the
system. Other quantities of interest, like for instance the relax-
ation times, the initial conditions which lead to equilibrium, etc.
could also be estimated starting from this structure. What the
noise-driven formulation does is to allow us to assess possibili-
ties of deviation from general ”deterministic” trends which are
intrinsically driven by transient fluctuations in market assets.
In turn, this strongly depends on the nature of noise perturb-
ing such market trends, with possibilities of a global economic
avalanche perpetrated through local modulations, a butterfly-
effect analogy.

The augmented models defined in Eqs. (1) and (2) can
cater to realms outside the purview of the immediate economic
contexts presented here. In the kinetic equations, the transi-
tion probabilities are proportional to products xix j of popu-
lations, which express the probability of encounters. In the
original Boltzmannian formulation of the microscopic kinetic
theory, such encounters were thought of as collisions between
molecules; in chemistry-based applications, the encounters are
reversible reactions between n reagents with concentrations
x1, ..., xn, etc. The model then describes which kind of encoun-
ters could occur, and which quantities are conserved in these
encounters, and so on.

For instance, in [10], the variables x1, ..., xn denote the
masses of n grains of a ceramic or metallic powder which grow
to produce a crystal aggregate under the effect of an applied
temperature and pressure. The total mass of the grains is con-
stant, but in certain conditions the equilibrium solution of the
kinetic equations describes grains of homogeneous size, while
in other conditions it shows that some grains grow much more
than others. The equations may also contain noise terms, which
can randomly drive the system from one regime to the other.
(Phenomenologically, the noise originates from local tempera-
ture and density fluctuations of the material.)

In any case, the noise should preserve, completely or par-
tially, those dynamical quantities which are conserved in the
deterministic equations. This may be easy to implement for
small n, but is non-trivial for large n. The relevant literature do

offer recipes for the introduction of noise into constrained sys-
tems, also for high dimensional values of n. For instance, in the
Brownian motion of large molecules, or polymers, certain de-
grees of freedom are regarded as frozen, while others are free to
fluctuate [18]. In the latter case the constraint is imposed explic-
itly in the deterministic equations through Lagrange multipliers,
and is also taken into account in the Langevin or Fokker-Planck
equations. The same applies to the case of a brownian motion
of a particle in n dimensions constrained to move on a line or a
surface [19]. On the other hand, the deterministic kinetic equa-
tions are such that certain quantities are conserved dynamically,
not through explicit constraints. Therefore, the introduction of
noise requires intrinsically different methods, compared to de-
terministic modeling. In this paper we have proposed a possible
technique, along with some concrete applications and prelimi-
nary results.
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