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Abstract 

The efficacy of NiO nanoparticles dispersed on a nanoporous carbon matrix (NiO/NPC) for 

microcystine-LR degradation in aqueous media is reported. The NiO/NPC catalyst was 

characterized by porosimetry, scanning electron microscopy, elemental analysis, powder X-ray 

diffraction, and X-ray photoelectron spectroscopy, and applied to the oxidative degradation of 

microcystine-LR contaminated water in the presence of hydrogen peroxide as a function of pH 

under ambient conditions. Optimal MC-LR removal efficiency was 86 % at neutral pH catalyzed 

by this heterogeneous Fenton-like (NiO/NPC with H2O2) process, which has the added benefit of 

avoiding secondary metal pollution during microcystine–LR degradation. NiO/NPC represents 

an earth abundant catalyst for generating hydroxyl radicals to facilitate environmental 

depollution of organic pollutants from wastewater. 
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1. Introduction 

Advanced oxidation technology (AOT) is one of the most effective methods for removing 

non-biodegradable and persistent organic compounds in industrial wastewater [1]. Examples of 

AOTs include Fenton oxidation [2], photocatalytic oxidation [3], photo-Fenton oxidation [4], 

ozonation [5], catalytic wet air oxidation [6], and electro catalytic oxidation process [7], electro-

Fenton oxidation [8-10] which have all been effectively applied to facilitate the oxidative 

removal of persistent organic compounds in wastewater. AOTs are generally assumed to operate 

through •OH radicals as the major species responsible for the unselective mineralization of 

organic pollutants [11, 12][13]. Fenton oxidation is one of the most widely studied AOT in 

which a homogeneous ferrous salt and hydrogen peroxide react to liberate hydroxyl radicals in 

aqueous media [14], however efficiency is poor and confined to pH 2–4 [15]. Furthermore, iron 

hydroxide sludge and other by-products are produced during Fenton treatment of organic 

pollutants, with metal contaminants themselves necessitating further water treatment [16].  

Porous carbons such as activated carbon, graphene, and multi-walled carbon nanotubes 

[17-19] are attractive catalyst supports due to their high surface areas, tunable porosity and 

excellent chemical and thermal stability. For example, Ni nanoparticles over N-doped 

nanoporous carbons have been employed for nitrobenzene hydrogenation to p-aminophenol [20], 

while Kim et al [21] reported recently on the continuous removal of toxic acidic vapor via a 

nanostructured copper/nickel-coated nanoporous carbon sheets. He et al [22] also reported on the 

use of nickel nanoparticles as heterogeneous Fenton analogues for the degradation of crystal 

violet dye in aqueous solution under microwave irradiation. Heterogeneous, graphene oxide 

(GO) supported NiFe2O4 catalysts have also shown promise for the photo-Fenton degradation of 

methylene blue, rhodamine B and malachite green dyes under visible light irradiation [23]. We 
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reported previously the excellent catalytic activity of CuO nanoparticles dispersed throughout 

nanoporous carbon as a heterogeneous Fenton catalyst for degradation of toxic microcystine 

(MC)-LR in water [24]. Porous carbon supported FeOx and Co3O4 catalysts have also been used 

to remove refractory organic compounds in industrial wastewater [25, 26]. Nickel oxide 

nanoparticles are less investigated for dye degradation, however a laboratory scale study of 

wastewater treatment containing mono azo Orange II dye showed them as efficacious for 

decolorization under acidic conditions. Since nickel nanoparticles are prone to sintering during 

oxidative degradation reactions [27], and oxidized carbons are known to inhibit metal leaching in 

aqueous media, it is of interest to explore the performance of Ni nanoparticles dispersed over 

high area carbons for water depollution.  

Here we report the first study of MC-LR oxidative degradation over rod-like 

NiO/nanoporous carbon (NPC) heterogeneous Fenton catalysts and demonstrate their aqueous 

operation at neutral pH. 

2. Materials and methods 

2.1. Synthesis of nickel catalyst supported on porous carbon  

 A NiO/NPC heterogeneous Fenton catalyst was synthesized from rice husk (an 

agricultural by-product), which contained silicon as the principal inorganic component. Synthesis 

of the nanoporous carbon support was performed according to a literature procedure [28]. The 

rice hush sample was soaked in hydrofluoric acid (HF) for one week to remove silicon, and 

subsequently washed with deionized water several times until washings with a neutral pH were 

obtained. The resulting nanoporous carbon material is labelled NPC. Nanoporous carbon-

supported nickel catalyst (NiO/NPC) was prepared using a hydrothermal method in two steps: 

NPC was oxidized using 6 M HNO3 at its boiling point for 4 h and the sample was then dried at 
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100 °C. Next, about 2 g of the oxidized NPC was introduced into a 200 mL of 0.01 M nickel (II) 

nitrate hexahydrate solution in nitric acid for 5 h. The mixture was heated at 110 °C for 8 h under 

an inert atmosphere, and the resulting solid was subsequently annealed at 400 °C under a 

nitrogen atmosphere for 5 h. Thereafter, the nanoporous carbon-supported nickel catalyst was 

washed several times using deionized water. The synthesized samples were washed and dried at 

110 °C to afford the NiO/NPC catalysts. Fig. 1 illustrates the synthetic protocol for the NiO/NPC 

catalyst. 

2.2. Characterization of nanoporous carbon (NPC) and NiO/NPC 

 The physicochemical properties of the nanoporous carbon and supported nickel analogue 

were examined via electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy 

(XPS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), N2 porosimetry, 

and Fourier Transform infra-red (FT-IR). Crystalline phases were analyzed using a Rich Siefert 

3000 XRD diffractometer with Cu Kα1 radiation (λ = 1.5406 Å). Surface morphology was 

explored using a Quanta 200 FEG scanning electron microscope. Thermogravimetric analysis 

(TGA) was collected on a TGA Q50 (V20.6 Build 31) thermal analyzer employing a heating rate 

of 10 °C per minute under N2. Surface areas and porosity was measured using a Micromeritics 

ASAP 2020 analyzer. Free electron density was determined via EPR spectroscopy at room 

temperature using an EPR tube in a Bruker ESP 300E spectrometer operated at a microwave 

frequency of 9.399 GHz, with a modulation frequency of 100 kHz, a modulation amplitude of 

3.0 G, microwave power of 3.188 mW, center field of 3342 G, sweep width of 3000 G, and a 

sweep time of 20.972 s. XPS analysis was performed using a SPECS XPS system and 150 W Al 

K radiation. Ni 2p and C, O and N 1s XP spectra were obtained with 25 eV pass energy, with 

binding energies referenced to the C 1s binding energy of adventitious carbon at 284.4 eV.  FT-
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IR measurements were performed using a Perkin-Elmer FT-IR Spectrometer scan range 4000–

400 cm-1 averaged over 20 scans. Approximately 0.1 g of the NPC support or Ni/NPC catalyst 

were mixed with ~1 g of KBr (Merck, Germany), and pelletized 1 mm x 13 mm o.d. disks. 

2.3. Degradation of Microcystine-LR by NiO/NPC catalyst 

 A fluidized bed reactor was developed using a 5 mm thick polyacrylic leaf (Indian patent 

application number: 2728/DEL/2012). The total reactor volume was 550 mL with a working 

volume of 500 mL. 1 g of the Ni/NPC catalyst was first added to the reactor, with oxygen then 

supplied to promote MC-LR degradation by the fluidized catalyst. About 100 µg/L of MC-LR 

containing water was fed into the bottom of flow reactor in a batch study. Degradation studies 

were performed for 120 min with aliquots of the reaction mixture periodically sampled to 

investigate the progress of MC-LR degradation. The optimal hydrogen peroxide concentration 

was established by varying the hydrogen peroxide concentration employed, and the effect of 

time, pH, and catalyst loading were also studied: the length of reaction time was varied between 

10 to 120 min; experiments were conducted at pH 3, 7 or 9 through H2SO4 or NaOH addition 

while aerating the system. 

3. Results and discussion 

3.1. Characteristics of NiO/NPC 

Structural properties of the NiO/NPC catalyst were first analyzed by XPS and the 

resulting spectra shown in Fig. 2 (a-d). The C 1s spectrum is dominated by CHx species at 284.4 

eV binding energy characteristic of graphitic sp2-bonded amorphous carbon, ether or alcohol 

functions at 284.6 eV, and carboxylate functions at 288.5 eV [20, 29]. Multiple oxygen chemical 

environments were observed at 531.2, 532.8 eV, 535.5 and 531.2 eV indicating a broad 

distribution of oxygenate functionalities including (C-O-C, -C=O and O–C=O) were present in 
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the NiO/NPC catalyst consistent with the surface carbon species. Fig. 2c shows the Ni 2p3/2 XP 

spectra of the NiO/NPC catalyst, which exhibits two photoelectron peaks at 854.1 and 856.1 eV 

both arising from tetrahedral Ni2+ spin-orbit split species within NiO [30], in addition to three 

shake-up satellites at 857.4, 859.9, and 861.5.4 eV with various shake-up satellites. There was no 

evidence of metallic nickel. 

The XRD pattern of the parent NPC support is shown in Fig. 3 and exhibited two 

reflections at 2 = 22.95º and 43.6º, consistent with the (002) and (100) planes of graphite [31]. 

The corresponding pattern of NiO/NPC exhibited additional reflections at 2 = 37.27º, 42.89º, 

61.37º, and 79.64º, associated with (111), (200), (220), and (222) planes of nickel oxide [32]. 

The volume-averaged crystallite size of the NiO phase as determined using the Scherrer equation 

was 82 nm in diameter. The adsorption-desorption isotherm and pore size distribution for 

NiO/NPC are shown in Fig. 4 a and b; the total surface area and total pore volume of the 

NiO/NPC catalyst were 379 m2/g and 0.26 cm3/g, respectively, showing negligible decrease 

relative to the parent activated carbon [33].  The NiO/NPC comprised a mix of rough sheets and 

rod-like morphologies spanning the micron scale (Fig. 5a-c). EDX elemental analysis of the 

NiO/NPC catalyst (Fig. 5d) quantified the Ni loading at 6.4 wt%. Fig. 6 shows the EPR spectrum 

of NiO/NPC, evidencing the presence of Ni2+ species with a 3d8 outer shell configuration.  

Surface functionalities of the NiO/NPC were examined by FT-IR and shown in Fig. 7. 

Bands at 2918 and 2846 cm-1 are assigned to C-H stretches from the NPC support, while the 

broad band at 3423.65 cm-1 is attributed to OH/NH2 groups. Additional strong bands at 1616 and 

1100 cm-1 are assigned to symmetric and asymmetric stretches of carboxylate functions observed 

by XPS, consistent with previous reports [28], and slightly red-shifted to 1633 and 1106 cm-1 in 
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NiO/NPC, possibly indicating their interaction with NiO particles at the NPC interface. 

Fingerprint bands around 600 cm-1 are indicative of Ni-O lattice modes [34]. 

 

3.2 Microcystine-LR degradation 

 The catalytic removal of MC-LR by NiO/NPC catalyst via a heterogeneous Fenton 

oxidative degradation process was subsequently explored as a function of pH as shown in Fig. 8. 

The %removal efficiency was only moderately pH sensitive [35], showing a maximum of 89 % 

degradation after 120 min under acidic conditions, but with good activity (86 % degradation) 

even at neutral pH. In comparison, Bandala et al [36] only observed 61 % degradation of MC-LR 

by homogeneous Fenton oxidation after 180 min reaction and employing a low peroxide 

concentration. While Adriane et al have reported 89 % by solar/photo-Fenton, 77 % by UV-

A/photo-Fenton, and 84 % by UV-C/H2O2 AOT’s in aqueous solution. [37]  

The impact of hydrogen peroxide concentration was subsequently investigated in Fig. 9. 

MC-LR removal efficiency was directly proportional to [H2O2] for concentrations below 50 mM, 

presumably due to corresponding hydroxyl radical generation [38], above which a plateau was 

reached. Fig. 10 shows the impact of NiO/NPC catalyst loading on the heterogeneous Fenton 

degradation, which shows that the reaction is severely mass-transport limited for loadings above 

1 g/0.5 L (control experiments conducted without hydrogen peroxide evidenced minimal MC-LR 

adsorption and active site-blocking, accounting for only 0.2 % of the observed catalytic 

removal). Re-use experiments demonstrated excellent NiO/NPC recyclability, with only a small 

decrease in the 120 min removal efficiency to around 78 % after two recycles. ICP-OES of the 

filtrate and spent catalyst recovered after MC-LR oxidative-removal revealed negligible nickel 

leaching <0.7 ppm from the parent NiO/NPC. 
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3.3. Mechanism of MC-LR mineralization 

 It is likely that the NiO component of NiO/NPC formed during the materials synthesis 

plays an important role in the heterogeneous Fenton-like catalytic oxidation of MC-LR. 

Hydrogen peroxide decomposition and concomitant hydroxyl radical formation likely occurs via 

electron trapping on the NPC [24] (an extrinsic semiconductor) and reduction of Ni2+ as shown 

in Eq. (1) 

  aqadsvb OHOHNPCNiOOHhNPCNiO )(/)(/ *

22                                                       (1) 

The parallel reaction of molecular oxygen with NiO/NPC material may generate superoxide 

radical anions as shown in Eq. (2). 

adscb ONPCNiOOeNPCNiO )(/)(/ 22

                                                                                                                          (2) 

Hydroperoxy radicals are formed by proton abstraction from the MC-LR via reaction with 

superoxide radical anions as shown in Eqs. (3 and 4).  

adsadsads HONPCNiOHONPCNiO )(/)(/ 2)(2

                                                                   (3) 

adsaqads OHNPCNiOHHONPCNiO )2(/)(/ 2

                                                                 (4) 

4. Conclusions 

In this study, a nanoporous carbon supported nickel catalyst was prepared via chemical 

activation and hydrothermal treatment. The resulting NiO/NPC catalyst showed good activity 

toward MC-LR removal in an aqueous medium in the presence of hydrogen peroxide, achieving 

89 % degradation of the toxin within 120 min at pH 3. MC-LR degradation over NiO/NPC was 

only moderately dependent on pH, but 86 % degradation was still achieved at pH 7, but strongly 
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dependent on peroxide concentration, with a maximum activity for 50 mM [H2O2]. Nickel 

leaching from the NiO/NPC catalyst was negligible during the oxidative degradation process, 

with good activity retained over three recycles evidencing its potential for wastewater 

depollution. 
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Fig. 1 Schematic illustration for synthesis protocol for the NiO/NPC catalyst 
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Fig. 2 XP spectra of NiO/NPC a) C1s, b) O1s, c) Ni 2p, and d) survey scan spectrum of 

NiO/NPC 
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Fig. 3 XRD patterns of NPC and NiO/NPC 
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Fig. 4a Adsorption-desorption isotherm of NiO/NPC, b) pore size distribution of NiO/NPC 
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Fig. 5 SEM images of a) NPC, b,c) NiO/NPC and d) corresponding EDX spectrum of NiO/NPC 
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Fig. 6 EPR spectrum of NiO/NPC 
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Fig. 7 FT-IR spectra of NPC and NiO/NPC 
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Fig. 8 Effect of pH on removal of MC-LR. Reaction conditions: 1 g/0.5 L of NiO/NPC, 50 mM 

of H2O2, and 100 µg/L MC-LR 
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Fig.9 Effect of hydrogen peroxide for removal of MC-LR. Reaction conditions: 1 g/0.5 L of 

NiO/NPC, 120 min reaction, and 100 µg/L MC-LR 
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Fig. 10 (a) Effect of catalyst loading (g/0.5 L) on MC-LR removal, and (b) reusability of 

NiO/NPC. Reaction conditions: 1 g/0.5 L of NiO/NPC, 50 mM of H2O2, and 100 µg/L MC-LR  
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