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     Thesis Summary 

Protein oxidation can cause aggregation, fragmentation, and affect enzymatic activity 
and binding partner interactions. Protein oxidation is implicated in a range of age-
related pathologies including neurodegeneration and cancer. The VHR and PTEN 
phosphatases studied are sensitive to oxidation and regulated by protein-protein 
interactions. PTEN acts by dephosphorylating phosphatidylinositol (3,4,5)-
triphosphate, negatively regulating the Akt pathway as part of a signalling control 
network that can protect against apoptosis, and is involved in the regulation of cell 
fate regulation and cancer. VHR is involved in neural development and cancer.  
A technology workflow for detecting protein oxidation and to correlate oxidative 
modifications to enzymatic activity and protein-protein interaction was developed; 
which may contribute towards the advancement of fundamental science as well as 
potential therapeutic and biomarker target identification in proteins. The technology 
platform consists of the mass spectrometric technique MS2 to detect, validate, map 
and quantify oxidative modifications. The technology workflow consists of enzymatic 
activity assays to correlate modification with changes in activity, targeted MS2 and 
statistical analysis. The fundamental and distinct contribution to knowledge in this 
thesis is a systematic mapping of protein oxidative modifications over a range of 
oxidants and concentrations of hypochlorous acid (HOCl), 3-morpholino-sydnonimine 
(sin-1) and tetranitromethane for VHR (vaccinia H1 related) and PTEN (phosphatase 
and tensin homolog on chromosome 10), including modification identification 
including active site residues and putative binding domain, mapping the relative 
abundances of those modification and statistically correlating them to changes in 
enzymatic activity. Additional contributions to knowledge have been i) the non-
specificity and complexity of oxidation profiles and oxidant damage of nitrating agents, 
that have largely been proposed to be specific without substantial oxidative capacity 
and ii) expanding the known interactome of VHR (vaccinia H1 related) through array 
and co-immunoprecipitation.  
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   1. Introduction  

 

1.1. Damage, error, ageing and disease 

 Health may be defined as a state associated with a particular type of functioning, 

and absence of disease, damage and error. Health may be increased by 1) Restoral of 

health to that greater than no intervention yet lower than any previous state of health 2) 

Restoral of previous state of health directly prior to damage/error 3) Restoral of previous 

state of health to a prior timepoint before damage/error 4) Increase in health superior to 

any prior timepoint. 

 There is a role of the environment and a sub-optimal environment can affect  

health and longevity, including environmentally induced errors and damage 

contributing to ageing and disease processes. One potential role of the environment 

on ageing is through contribution to inflammatory-linked ageing through lifelong 

exposure to environmental antigens. Chronic antigenic stress resulting from exposure 

to multiple antigens, including allergens from the environment, may lead over time to 

an accumulation of memory and effector T cells, a reduction of naïve T cells and 

shrinkage of the T cell repertoire. This may be important as many diseases have an 

inflammatory pathogenesis, including neurodegeneration, atherosclerosis, diabetes, 

osteoporosis and sarcopenia (reviewed by De Martinis et al, 2005). 

 Behaviour has also been demonstrated to lead to organ regeneration, whereby 

sexual experience has been demonstrated to stimulate neurogenesis (Leuner et al, 

2010), thus suggesting a role of modification to behaviours on ageing and disease. 

 Physiological homeostasis and homeostatic capacity has been demonstrated to 

be involved in age-related diseases, such as the association between physiological 

homeostasis and early recovery from stroke via medical interventions with molecules, 

including antipyretics, antibiotics, oxygen and insulin, and regulation of physiologic 
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variables such as serum osmolarity, temperature, arterial oxygen saturation and blood 

glucose (Langhorne et al, 2000).  

 Organ and tissue structure loss, such as pineal gland degeneration and 

calcification, occur progressively with age. This pineal gland calcification has been 

correlated with an exacerbated effect on decreased functioning and organ and tissue 

structure loss (Turgut et al, 2008). The pineal gland produced neuropeptide 

epithalamin has been demonstrated to normalise basic functioning in H. sapiens such 

as cardiovascular, immune and nervous systems, homeostasis and metabolism, with 

associated reduced incidence of acute respiratory disease, hypertension, deforming 

osteoarthrosis, and osteoporosis (Khavinson & Morozov, 2003). Turgut et al (2008) 

state that the relationship between organ structure of the pineal gland is associated 

with a loss in secretory activity. Khavinson & Morozov (2003) demonstrate the 

potential of specific organ systems, organs, tissues and molecules to effect systemic 

alterations as part of their function or during dysfunction from accumulation of 

damage and error. This is demonstrated through the therapeutic application of pineal 

neuropeptides, that are reduced with age-related pineal gland calcification. Loss of 

homeostasis in the brain includes damage to the blood brain barrier (BBB) of 

epithelial cell tight junctions, where impaired BBB permeability may lead to the error 

of impaired clearance of moieties including the β –amyloid (Aβ) peptide which may 

contribute to brain deposits of Aβ peptide, a process implicated in neurodegeneration 

(Weiss et al, 2009). 

 Moving down from the organ and tissue level to the cellular level - Cells also have 

a cellular homeostasis, where differentiated and undifferentiated cells may undergo 

stress accumulate errors and have replicative limitations due to chromosomal 

telomere length which when shortened during cellular replication to a point of loss of 

chromosomal integrity (Corey et al, 2009, review), lead to a loss of cellular 

homeostasis. There are multiple cellular outcomes that can come from interaction 
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with stressors, with defined end points that result in maladaptive cellular functioning, 

limiting their function or leading to cell death, these are proliferation, quiescence, 

apoptosis, necrosis and cellular senescence (Hayflick, 1961).  

 Cellular senescence represents, for that cell, a potential replicative endpoint due 

to an inability to perform cell division, usually as a result of telomere shortening and 

the triggering of a DNA damage response.  Although it is possible for the regenerative 

capacity of an organism to compensate for this as demonstrated by Hydra vulgaris 

(Martinez, 1998; Vaupel, 2004) which has multiple features including a high 

proportion of stem cells, constant and rapid cell turnover, few cell types, a simple 

body plan and an absence of the germ line being separated from the soma.  Hence, 

there may be the potential to negate both senescence and cell proliferation by 

cellular, tissue and organ removal and replacement strategies in H. sapiens. 

 Cellular senescence has a trade off against another homeostatic dysregulation, 

that of uncontrolled cell proliferation, an attribute of cancerous cells (Campisi, 2001; 

Collado et al., 2005; Wagner et al., 2008; Rodier and Campisi, 2011). Cellular 

senescence is associated with the diseases of ageing through inflammation leading to 

cancer, and organismal ageing, and in preventing proliferation of potential cancer 

cells, and also has a role in promoting tissue repair (Sharpless and Depinho, 2004; 

Rodier and Campisi, 2011).  

 Damage and errors can also occur at the molecular level, intracellularly or 

extracellularly. Molecule loss and molecular structural damage and errors, and 

molecular interaction errors may occur intracellularly and extracellularly, which may 

contribute towards a loss of tissue and cell homeostasis. Damaged or dysfunctional 

proteins that are not cleared by the cell or organism may form intracellular aggregates 

or extracellular plaques, which are either unstructured aggregates or structured into 

amyloid insoluble fibrils (Knowles et al, 2015, Sin and Nollen, 2015, review). Protein 

misfolding, aggregation, accumulation and plaques have been suggested to be 
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involved in disease pathology across tissues and organs including the pancreas with 

aggregates of the islet amyloid polypeptide (Mukherjee et al, 2015), and the brain in 

Alzheimer’s disease pathology (Haass and Selkoe, 2007). 

 Proteasomes are protein complexes which degrade unneeded, damaged or 

misfolded proteins down to peptides of seven or eight amino acids in length. The 

proteasome is essential to the cell cycle and also to apoptosis (Orlowski, 1999), so is 

involved in organismal homeostasis in addition to cellular homeostasis. The 

proteosome is also involved in the regulation of gene expression and responses to 

stress, including involvement in the ubiquitin post-translational modification of p53, 

where the p53 tumour suppressor pathway is a frequently altered in H. sapiens 

cancers (Devine and Dai, 2013). Alteration of the proteosome-ubiquitin pathway 

demonstrates the role of protein damage, protein homeostasis and stress for ageing 

and cellular homeostasis, and is an example of a pathway involved in cellular and 

organismal homeostasis.  

 In addition to the role of proteins in molecular damage and error, reactive oxygen 

species and cellular energy metabolism in the mitochondria are linked to cellular 

biochemical homeostasis, damage and error. This has been demonstrated by mouse 

knockouts of hypoxia-inducible factors (HIFs), where the HIF knockout mice displayed 

multiple organ pathology. Biochemical assays of HIF knockout mice samples showed 

enhanced generation of reactive oxygen species, reduced expression of anti-oxidant 

enzymes, studies showing lactic acidosis, altered Krebs cycle function, and 

dysregulated the molecular and reaction dynamics of fatty acid oxidation 

(Scortegagna et al., 2003). Reactive oxygen species are also implicated in the 

process of carcinogenesis including the formation of protein adducts (Bensaad and 

Vousden, 2005; Ziech et al, 2010, review). 

 Stressors such as inflammation (Kaur and Halliwell, 1994) and dietary fat (Djuric 

et al, 2001) can cause an increase reactive molecules, dysregulate the mechanisms 
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of redox homeostasis, or lead to an inability of the mechanisms of redox homeostasis 

to handle an increase in stressors, at the intracellular and molecular level; these 

collectively are classified as oxidative stress. Kaur and Halliwell (1994) demonstrate 

3-nitrotyrosine to be present in the inflamed joint from patients with rheumatoid 

arthritis; 3-nitrotyrosine is a product of the reaction of nitric oxide with the superoxide 

radical, which generates peroxynitrite which then can decompose to products that 

nitrate aromatic amino acids such as tyrosine. Djuric et al (2001) found oxidative 

damage to DNA, 5-hydroxymethyluracil, to be 3X higher in a non-intervention group 

than low-fat diet group. 

 Short term controlled oxidative stress can be important in preventing oxidative 

damage, as long as homeostasis is maintained (Harris et al., 1998). This is known as 

hormesis, where hormesis describes a dose-response relationship where treatments 

at a lower level are beneficial but harmful at a higher level (Gems and Partridge, 

2008).  

 Oxidative stress is thought to be involved in the development of a range of clinical 

conditions.  Infections are though to induce oxidative stress (Dey et al., 2009; Pacher 

et al., 2007), an example of which is the activation of the mitochondrial apoptotic 

pathway, which has been implicated in hepatocyte apoptosis during malaria. 

Fluorescence imaging has been used to monitor intramitochondrial superoxide anion 

generation during malaria, and inactivates mitochondrial aconitase  (Dey et al., 2009). 

Oxidative stress has been implicated in carcinogenesis through the activation of 

transcription factors and subsequent expression of growth factors, inflammatory 

cytokines, chemokines, cell regulatory molecules and anti-inflammatory molecules. 

During the initiation stage of cancer, reactive oxygen species may produce DNA 

damage introducing gene mutations and structural alterations of DNA. In the 

promotion stage of carcinogenesis, reactive oxygen species may contribute to 

abnormal gene expression, block cell-to-cell communication and modify second 
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messenger systems. In the progression stage of carcinogenesis, reactive oxygen 

species may contribute to both genetic and epigenetic mechanisms (Klaunig et al., 

1998). Reuter et al (2010, review) suggest that oxidative stress and inflammatory 

pathways contribute to cancer through chronic inflammation, recruitment of 

inflammatory cells to generate reactive oxygen species, involvement in cancer stem 

cell and tumour cell survival, cell proliferation, cell invasion and angiogenesis, 

detailing a signalling role in pathogenesis through errant signalling in addition to a role 

of damage causation. Oxidative stress may also be implicated in neurodegenerative 

disorder pathogenesis (Smith et al., 2000; Perry et al., 2002; Grune et al., 2004; Gella 

and Durany, 2009, Pacher et al., 2007,).  Perry et al (2002, review) state that 

oxidative stress precedes protein aggregation, fibril and plaque formation in age-

related neurodegeneration and involves oxygen radical damage including advanced 

glycation end products, nitration, lipid peroxidation adduction products, carbonyl-

modified neurofilament protein and free carbonyls.  

 The utility of understanding types of ageing damage includes identifying markers 

for health, longevity and disease, drug target identification and drug development and 

therapy and medical device development and intervention. Given that ageing is a 

multifaceted process, there is a resource allocation risk of exploring and developing 1) 

Biomarkers and drugs that target mechanisms, molecules and processes that are 

correlated with ageing but do not have the capacity to restore homeostatic function, 

regenerate tissue and/or slow damage and error processes 2) Drugs that have side 

effects that progress other ageing pathways and damages, or 3) Biomarkers and 

drugs that have no correlation or causation for ageing or diseases of ageing in a way 

that is clinically relevant to maximise gains in health and longevity with efficient time 

and resources. Resource allocation risks may also come from assessing clinical 

targets and biomarkers at an inappropriate level of biological hierarchy or complexity. 
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 Understanding enough physiology and biology to systematically repair, 

regenerate and replace physiological systems at the appropriate system level, and at 

the right time has the potential to deliver maximal health and longevity gains to a 

patient. In order to deliver maximal health and longevity gains to the patient, the 

development of techniques, understanding of biological processes, discovery of 

therapeutic targets, developing therapeutics and discovering effective biomarkers is 

required, and these require high quality, appropriate biological datasets and 

appropriate action following acquisition, handling and analysis. 

 

    1.1.1. The state of the patient 

 

1.1.1.1. Omics: Markers and targets 

 

Ome denotes a mass or part of a specified kind and the collection and analysis of that 

specified mass or kind is defined as omics, such as a proteome, and proteomics for a 

set of proteins and the collection and analysis of a protein set. Omes are sub-sets of 

samples with cut-offs in space and time, pertaining to one set of molecules, person, 

population, environment or a combination of these which may be analysed, modified 

or engineered. Pre-defined omes tend to be separated and classified by the type of 

molecule they contain or a particular tissue type or state of health or disease that they 

are associated with. Work that combines these omes together for complimentary 

analysis and modification is often denoted as panomics (Chen et al., 2012). Omics 

represents a systems approach to science and omics is a conceptual framework that 

has been made possible through high-throughput, multiplexed and automated 

technologies.  Omics allows multiple biomolecules and data points to be detected in 

one sample and multiple samples to be processed.  
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 Markers, predictors and targets for intervention can be environmental, and may 

correlate with the geographic location an individual lives and thus what molecules and 

stressors an individual comes into contact with, and the resources available in a 

particular environment or location, Cheshire (2012) demonstrates differences in life 

expectancy at birth and child poverty across geographic locations. Markers for 

assessing exposure to environmental carcinogens may include protein oxidation 

(Ziech et al., 2010, review).  

 Markers, predictors and targets of intervention may be social and behavioural. 

For example, Terracciano et al (2008) found general activity, emotional stability and 

sociability, and conscientiousness to be personal predictors of longevity, by 

performing a temperament survey as part of a longitudinal studying of ageing. 

Palmore (Palmore, 1982) also showed health self-rating, work satisfaction and 

performance intelligence as predictors of longevity and morbidities, within both fixed 

time windows and longitudinal studies, an example of which is morbidity within a 25-

year time follow up. 

 Markers and predictors may be physiological, such as heart rate (HR) and heart 

rate variability (HRV) (Poirier, 2014). HR is indicative of the status of the 

cardiovascular system, cardiac autonomic nervous system and metabolic rate. 

Exercise can reduce HR and there is an association between functional 

cardiovascular capacity and mortality, where effect of exercise on cardiovascular 

capacity can be measured with HR (Myers et al., 2002). Soares-Miranda et al (2014) 

analysed cross-sectional and longitudinal data for physical activity and HRV, and 

reported that greater total leisure time activity, walking alone, walking pace and 

walking distance were prospectively associated with favourable HRV indices.  

 Physiological and organ system markers and predictors such as HRV patterns 

may indicate which system may fail first, the likelihood of failure, time-to-failure and 

order of failure given mechanical models, such as the mechanical models for heart 
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failure (Louridas and Lourida, 2012), whilst to detect some organ failures, organ 

specific time-to-failures, cancer incidence and relative failure rates between organs 

additional testing modalities may be required. Mechanical and engineering 

mathematics may be useful including applying stress testing, time-to-failure, 

mechanical part longevity and part lifecycles methods to biology and medical devices, 

not only for preventative, predictive and personalised medicine but in the engineering 

and maintenance of tissue engineered organs, organ transplants and implanted 

medical devices. Magnetic resonance imaging (MRI) has also been used to monitor 

brain ageing at an organ and tissue level, where ventricular enlargement was 

demonstrated in rodents during ageing, and has been proposed as a structural 

biomarker (Chen et al., 2011). 

 Biological markers, or biomarkers, are molecules, signatures or patterns that are 

indicative of a particular process, capacity, response, phenotype, state of the 

organism or ome, and predictive, prognostic, diagnostic and utilised to monitor a 

particular outcome. Biomarker diagnostics can have several characteristics including 

early detection of state or phenotype formation, ability to be detected in small 

amounts, ease of detection, time taken to process sample for biomarker, high 

correlation to state or phenotype and direct role in state or phenotype.  Biomarkers 

infer the existence of a state or phenotype and the utility of biomarkers can come from 

the ability to rapidly make decisions and take actions based on current data. Accurate 

diagnostic molecular biomarkers are at the forefront of changes from one state or 

phenotype to another that may be involved in an out-of-homeostasis occurrence or 

damage, and so research and utilisation of biomarker-led scanning, screening and 

diagnostics allow for the detection of states and phenotypes so that these states can 

be attempted to be modified via a potential intervention. This modification may be in 

the form of an alteration in clinical therapeutic administration, healthcare, healthcare 
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recommendations for lifestyle and environment, surgery, or optimisation of 

regenerative medicine bioreactor variables for growing tissues and organs.  

 Omics may be used for marker discovery, discovery of therapeutic targets, 

assessing states of survival and disease, and engineer and select for survival states 

through personalised, predictive, preventative and therapeutic strategies to select for 

omes that have associated endpoints or likelihoods for survival. Biomarker omics may 

be used to assess the real-time, or longitudinally sampled, survival outcomes linked to 

a particular phenomena (Chen et al., 2012). Chen et al (2012) perform a personalised 

analysis of genomic, transcriptomic, proteomic, metabolomic and auto-antibody 

profiles of an individual over a 14 month period, and utilised the omic data to identify 

disease risk. Chen et al (2012) performed the auto-antibody profiling using Invitrogen 

ProtoArray Protein Microarray v5.0 array technology that contained 9,483 unique 

proteins spotted in duplicate, and patient serum and plasma samples alongside those 

of healthy controls. They detected antigens with increase reactivity including an 

insulin receptor binding protein. They also performed proteomic mass spectrometry 

across healthy and diseased states for the relative levels of 6,280 proteins across 14 

timepoints, using isobaric mass tags, liquid chromatography and mass spectrometry 

of protein peptides (Cox and Mann, 2010; Theodoridis et al., 2011). In addition to 

personalised medicine approaches, longitudinal studies of ageing populations and 

populations with age-related disease may have utility for discovery and assessment of 

markers and targets. Engelfriet et al (2013) provide a review of markers of ageing in 

longitudinal studies in H. sapiens.  

Biomarker analysis of individuals such as super-centenarians and astronauts 

may provide useful datasets alongside personalised medicine datasets and 

population studies of ageing and age-related disease, as super-centenarians and 

astronauts represent exemplar populations and datapoints relating to exceptional 

fitness, training, and longevity. Thus these patient cohorts may be able to provide 
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unique data to improve the health of other patients, and potentially providing quality of 

care and biometric benchmarks, alongside healthy controls and young control for the 

wider application of preventative, personalised and regenerative medicine. The 

impact of space travel on astronaut physiology and the potential for oxidative stress 

represents a usage for biomarkers and personalised and preventative medicine 

(Schmidt and Goodwin 2013).  Schmidt and Goodwin (2013) describe an assessment 

of pre-mission status of conjugation agents that bind therapeutic agents to be 

administered therapeutically to the astronauts. This is so an assessment may be 

made regarding the depletion of molecules such as glutathione, which determine drug 

metabolism and cellular redox balance and prevent damage to cellular components 

from reactive oxygen species. Schmidt and Goodwin (2013) state that the purpose of 

personalised medicine for astronauts, and the biological capacity of the individual, is 

not to exclude individuals from spaceflight but to mitigate and limit the damage from 

metabolic processes on a personalised basis.  

Omics can be used to discover biomarkers associated with longevity, 

biomarker differences in long-lived individuals. An example of this being analysis of 

Japanese centenarian plasma by proteomic peptide mass fingerprinting (Miura et al., 

2011). Miura et al (2011) found the proteins paraoxonase 1, and apolipoprotein E 

were decreased in abundance whilst haptoglobin and α1-microglobulin were 

increased in abundance in their super-centenarian cohort. These proteins are 

involved in oxidative stress response and systemic redox regulation, and it Miura et al 

(2011) suggest that serum paraoxonase 1 may be protective against the development 

of atherosclerosis via a prevention of oxidation for particular super-centenarians (Ng, 

2005; Miura et al., 2011). 

 Molecular targets may include intracellular moieties such as proteins. 

Intracellularly targeted therapeutics may affect the binding affinity of a protein to other 

proteins and moieties in a signalling pathway. 2-Phenylethynesulfonamide is an 
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example of this, which reduces the binding affinity of p53 to B-cell lymphoma 2 and B-

cell lymphoma xL (Wang and Sun, 2010, review). 

 Molecular targets may include extracellular proteins, such as the Tau protein, 

where there is an indication that extracellular Tau protein may induce protein 

aggregation in neighbouring cells. The approaches of blocking protein uptake and 

interaction with cells, and clearing extracellular Tau protein are suggested by Holmes 

and Diamond (2014). The Tau protein is an example of a target that is also a 

biomarker utilised for diagnostic and predictive purposes (Schraen-Maschke et al., 

2008). 

 Molecular targets may include protein post-translational modifications, such as 

the modification of histone proteins, which are involved in the packaging of DNA and 

regulation of access to DNA by transcription machinery, and regulators of DNA. 

Histone modification therapy of cancer may include therapeutics that interfere with the 

activity of enzymes involved in modifying histones (Biancotto et al., 2010). 

Scenarios when there is a requirement for technology development for omics 

and informatics analysis and for biomarker, target and therapeutic discovery include 

1) If and when there is a need to find additional biomarkers, predictors and targets 2) 

If known markers, known predictors and medical interventions are not the most 

effective solution or 3) There is a need to analyse large throughputs of patient 

samples or multiple biomarkers at speed or in multiplex 

Method and technology development is a driver of performance in biomarker 

and therapeutic target discovery and analytics. Reliability, reproducibility, expertise, 

point-of-care, sensitivity, false positive and false negative rates, health risks, 

development cost, development time, technology cost and cost per test and test time 

are factors that need to be considered along the value chain and in biomarker 

technology development. In research and development of biomarkers and therapeutic 

targets – for a particular physiology one must consider what the criteria are for the 
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state that is being measured and which markers and targets as well as which 

technologies and methods meet criteria. Tandem mass spectrometry is an example of 

a sensitive technology, which allows large-scale quantitative analysis of peptides and 

specific modifications to amino acids (Larsen et al., 2006), which may enable markers 

and therapeutic targets to be discovered and developed. 

 

1.1.1.1.1. Proteomics  

 

 Proteins have the properties of markers and therapeutic targets, which may be 

exploited. This may include being a marker indicative of or target involved in the 

functioning and state of a given biological intracellular or extracellular system 

including signalling receptors and cellular signalling, gene expression, catalysing 

metabolic reactions, and homeostatic and structural roles.  

 Proteomics, the study of sub-sets of proteins and their states has an important 

role in the clinic and at the pre-clinical work primarily in marker, predictor and target 

identification. Dalle-Donne et al (2006) detail diseases associated with increased 

oxidative stress on the basis of potential biomarkers of oxidative damage, which 

includes damage to proteins. Mayr et al (2006) review proteomics-based development 

of markers in cardiovascular disease and the role of proteomic-based biomarkers for 

therapeutic development. Mayr et al (2006) describe how the usage of 2D 

electrophoresis of proteins followed by mass spectrometry, to analyse 

phospholamban genetic knockouts in rodents showed alterations in myofibril proteins, 

calcium-handling proteins and post-translational modification of proteins (Chu et al., 

2004). These proteins may be involved in enhanced cardiac function in the genetically 

altered rodents, and this approach could potentially yield therapeutic targets through 

understanding the mechanisms of the sarcoplasmic reticulum and calcium cycling 
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sub-proteome related to the knockout gene and dysregulated proteins (Mayr et al., 

2006). 

 Proteomics techniques include mass spectrometric techniques deriving from 

liquid chromatography and tandem mass spectrometry (Larsen et al., 2006; Mann, 

2010; Theodoridis et al., 2011) or 2D gel electrophoretic protein separation and mass 

spectrometry (Chu et al., 2006), immunohistochemical techniques including two-

dimensional Western blotting (Zhan and Desiderio, 2004) and microarray techniques 

(Chen et al. 2012) as well as assays for protein function but can include any 

technique, with labelling or label free, that detects proteins, the activity of a protein or 

the function of a protein, including its interactions. 

 Technologies for protein marker and therapeutic target discovery offer specific 

criteria, benefits and limitations. Chemical assays usually assess a specific target or 

more limited set of biomarkers absolutely and comparatively to mass spectrometric 

and arraying technologies. Chemical assays can offer specificity, chemical as oppose 

to computational readouts and signal amplification. Mass spectrometric methods may 

include signal amplification via mass tags, a demonstration of this would be the use of 

boronic acid isolation of proteins that contain oligosaccarchide chains covalently 

bonded to polypeptide side-chains, referred to as glycoproteins, followed by tagging 

of glycoproteins with gold nanoparticles (Liu et al., 2013).  

 Assays rely on the specificity of the chemical interaction or reaction, where the 

number of molecules that can generate false-positives and negatives is limited. To 

decrease the likelihood of false-negatives or positives a complementary method can 

be used.  A demonstration of proteomic assay confirm or compliment mass 

spectrometry is the usage of Western blotting to detect nitrotyrosine in H. sapiens 

pituitary proteome, alongside the usage of tandem mass spectrometry to confirm the 

protein sequence (Zhan and Desiderio, 2004). 
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 Protein assays may be qualitative, relative, semi-quantitative or quantitative and 

can be used to measure enzyme activity levels, such as anti-oxidant capacity, where 

enzyme kinetics may be measured spectrophotometrically over time or by measuring 

the substrate or a metabolite, as demonstrated by Paglia and Valentine (1967) for the 

quantitative direct measurement of glutathione peroxidase by linking the peroxidase 

reaction to glutathione reductase. Biochemical screening can include screening of 

blood serum markers using an array of colorimetric tests that detect shifts in 

absorption maximum and the reflection density of chromophores or complexes 

present or formed. Staruchova et al (2008) demonstrate this in screening 

aminotransaminase, alanine aminotransferase, γ-glutamyltransferase, alkaline 

phosphatase, amylase, urea, creatinine, albumin proteins and total protein alongside 

non-protein metabolites in serum samples from H. sapiens to assess the effect of 

mineral wool exposure using a Vitros 250 analyser.  

 Chemical assays may have limitations regarding correlation to physiological and 

higher-order functions and structures than the specific molecular targets of the assay.  

Samples may not be practical to take, sample collection may be invasive, there may 

be low resolution if multiple target molecules or signals are required, or if an assay 

cannot distinguish between different molecules. Chemical assays may be used in 

combination with each other or with different techniques to identify markers or targets, 

which may include measurements taken alongside such as non-biochemical markers 

from an organism and physiologic level, including continuous monitoring of a patient 

across environments and from personal, cohort, group and longitudinal data maximise 

the utility of chemical assays for the purposes of elucidating markers and targets of 

health, disease, organismal states and therapeutic targets. To assess the full utility of 

chemical markers and targets, having more markers may be of utility, as may the 

acquisition of corresponding functional data and correlational data – such as 
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combining the enzymatic activity measurements of proteins via chemical assays with 

mass spectrometry of proteins. 

  Mass spectrometry offers qualitative, relative, semi-quantitative or quantitative 

methods for identifying and measuring protein markers and targets from their mass.  

 Mass spectrometry proteomics may be utilised for non-invasive samples as 

demonstrated by Zimmerli et al (2008) who use electrospray time-of-flight mass 

spectrometry to develop coronary artery disease from urinary samples from patients. 

 High throughput technologies such as mass spectrometry and protein 

microarrays have allowed for algorithmic models to be created that are predictive to 

clinically appropriate and approved levels of sensitivity to diagnose between patients 

at risk and healthy controls, including different types of growths including between 

and benign versus malignant growths, and cardiovascular disease, allowing 

appropriate treatment, stratified medicine and assign risk groupings and the use of 

multiple protein biomarkers developed from high throughput proteomics can improve 

clinical sensitivity of tests (Zimmerli et al, 2008; Moore et al., 2010; Yurkovetsky et al., 

2010). Zimmerli et al (2008) demonstrate the development of a biomarkers set that is 

a signature for coronary artery disease and is predictive, showing a 98% sensitivity 

and 95% specificity, and demonstrate that a change in biomarkers in patients given 

therapy and those who make behavioural changes. The biomarker panel consisted of 

15 polypeptides with identifier, masses and migration time.  

 Microarray technology proteomics includes forward and reverse phase protein 

arrays. Forward-phase arrays have the capture agent immobilised on the array and 

are probed with samples, and reverse-phase arrays have the samples immobilised 

and are probed with to detect the presence of a specific moiety.  

 Microarrays contain a miniaturised dot-blot, where antibodies or proteins bound 

to a surface are probed with a solution that contains moieties that bind the desired 

arrayed surface molecule, which is followed by the further probing with of the array 
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with solutions of detection molecules such as antibodies with conjugated 

fluorophores, followed by scanning with a fluorescence reader to associate 

fluorescent signal with protein-protein binding to assess molecule interaction function. 

Array technology can be used for quantifying the relative, semi-quantitative or 

quantitative abundances of proteins and protein modifications. 

 A demonstration of the use of protein microarrays for analysing disease samples 

is analysing ovarian metastasis in epithelial ovarian cancer, which has the worst 

prognosis of all gynaecological cancers and late stage presentation (Sheehan et al., 

2005). Sheehan et al (2005) demonstrates the analysing of cell signalling network 

deregulation, hyperactivity and modifications that occur with metastatic cancer with 

the outcome of finding metastatic signatures from primary tumours via protein array 

assessment of protein interactions and their modifications. Sheehan et al (2005) 

utilised laser capture microdissected frozen tumour sections as samples to create a 

reverse-phased array on nitrocellulose slides and the arrays where probed with 

phosphospecific antibodies to proteins involved in mitogenesis to assess their 

phosphorylation post-translational modification status. 

  Protein arrays may have utility for the full potential of biomarkers to add 

functionality meta-data to biomarker databases to develop metrics and identify the 

most predictive markers present in a clinical sample. Akbani et al (2014) state that 

reagents of appropriate quality, centralised data repositories, flexible shared 

standards and best practices, and development of best practices for sample handling 

have the potential to make protein array technology appropriate for clinical practice, 

alongside other limitations that may be protein, protein post-translational modification 

or sample specific.  
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 1.1.1.1.1.1. Protein Post-Translational Modifications  

 

Protein post-translational modifications (PTMs) indicate a particular state that a 

protein is in and have a significant effect on protein and cellular function by modifying 

stability, interaction, conformation, sub-cellular localisation, activity and binding 

(Spickett et al., 2006; Spickett & Pitt, 2010). PTM occurs after the translational step in 

protein production. PTMs are caused via interaction with other proteins and moieties 

and are, enzymatically or non-enzymatically, chemically or biologically induced.  

PTMs effect protein function and may include gain of activity or function, and thus 

have a role in regulating signal transduction pathways that control cell states, survival 

and function. PTMs represent both markers for a state, and also targets for 

therapeutic intervention. Protein phosphorylation PTM involves a substantial set of the 

proteome (Cohen, 1998), this modification occurs when a phosphate group from 

adenosine triphosphate is transferred to serine, threonine or tyrosine protein residues 

enzymatically via protein kinases, a reaction which is reversible enzymatically via 

protein phosphatases. The regulation of kinase and phosphatase enzymes that 

modify proteins with phosphorylation PTMs are themselves regulated and 

dysregulated. For proteins involved in transcriptional regulation and cell signalling, 

sub-stoichiometric quantities of protein PTM may be required to alter signalling 

dynamics and competing signalling pathway strengths. p53 is a example of a protein 

that is modified at Serine 315 by kinase activity with stoichiometric levels of 

phosphorylation PMT, which is associated with changes in protein interaction and 

transactivation (Loughery et al., 2014). 

 As the PTM state of a protein may directly affect its function, any PTM that occurs 

that increases the protein, cell or organism’s likelihood of survival may give that 

protein, cell or organism a selective advantage that can increase its own survival 

and/or its mutual survival along with other cells and tissues. PTMs may also decrease 



- 43 

the survival likelihood of a protein, cell or organism, and thus may favour the survival 

of a particular process, state, molecule or cell to the health detriment of the organism.  

 There are many types of PTM and PTM-status events, and phosphorylation and 

de-phosphorylation of cellular signalling proteins have been widely studied in cellular 

biology and biology of cell proliferation and cancer. Cellular signalling transduction 

pathways control cell states and gene transcription involve a series of protein kinases 

and regulatory phosphatases, including 90 protein tyrosine kinases and 107 protein 

tyrosine phosphatases in H. sapiens (Alonso et al., 2004). Alonso et al (2004) state 

that whilst the genes are known, alternative spliced products, PTMs and protein-

interactions for kinases and phosphatases are required in a comprehensive, detailed 

and quantitative manner.  

 Signal transduction pathways have a role in the control of cell fate, survival and 

function, and involve enabling protein activities, crosstalk and sub-cellular localisation. 

Signalling proteins exist as multiprotein micromachines complexes, that contain 

control, execution and feedback mechanisms. Signalling protein complexes exist 

transiently, with binding strengths and kinetics of such interactions having the 

potential to be regulated by PTMs. A demonstrated example of this is the SH2 and 

PTB domains, where phosphorylated tyrosine residues are the docking sites within a 

sequence that confers specificity to specific docking proteins (Pawson, 2004).  

Tyrosine kinase receptors, such as epidermal growth factor receptor, are a class of 

protein which use ligand-binding triggered auto-phosphorylation to generate 

phosphotyrosine docking sites for subsequent recruitment of SH2 and PTB domain 

contain proteins that have specificity and are in a particular sub-cellular localisation, 

which leads to activation of a particular receptor-activated signalling pathway and 

competing signalling pathway strength (Schulze et al, 2005). 

 Another instance of PTM are oxidised proteomes, or proxomes, which are sub-

omes that includes a unique sub-set of proteins undergoing redox reactions and the 
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organism’s proteome. Previous proxomics has been used to map proxomes for 

fundamental biological knowledge (Thamsen & Jakob., 2011). Thamsen & Jakob 

(2011) show how mass spectrometry with specific probes and gel separation can be 

used for particular thiol modifications, and that this has been used to map reversible 

cysteine thiol oxidation status across cellular redox networks. Proxomics has been 

utilised to map proxomes in Alzheimer’s disease, including protein nitrotyrosine and 

carbonyls in proteins (Sultana et al., 2006). Dalle-Donne et al (2005) review how the 

proxome relates to oxidative stress and disease, which is a step in the workflow for 

screening for potential biomarkers and therapeutic targets, subsequent biomarker and 

therapeutic development and diagnostics and understanding similarities and shared 

processes involving protein oxidation between disease, cell and tissue types. 

  Protein oxidative PTM is additionally important as oxidation arising from 

oxidative stress plays a role in many diseases and processes that advance ageing 

such as inflammation and also is involved in the interaction and correlation between 

inflammation, cancer and ageing (Reuter et al, 2010).  

  

1.1.1.1.1.1.1. Protein Oxidative Post-Translational Modifications 

 

Proteins can become oxidised including nitrations and chlorinations, due to the 

presence of oxidising agents, in vivo this occurs via oxidants and free radicals that 

enter the body, or are produced in the body including intracellularly via enzymatic 

reactions or as part of energy metabolism or signal transduction and redox signalling. 

Oxidants that modify proteins include reactive oxygen species (ROS) such as H2O2, 

superoxide and HOCl, reactive nitrogen species (RNS) such as peroxynitrite and 

metal ions Fe (III) and Cu (II) (Stadtman, 1991) and molecular products of other 

primary oxidation reactions (Spickett et al., 2006). Oxidants are also generated 

enzymatically (Sauer et al, 2001) through electron leakage form the mitochondrial 
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electron transport chain, cytochrome P450 and redox-cycling enzymes, oxidase 

enzymes such as NADPH oxidase, dual oxidases, xanthine oxidase and phagocyte 

oxidases. 	

 Protein oxidation consists of an attack by an oxidising agent that modifies the 

protein leading to protein backbone cleavage, protein adducts or protein side chain 

oxidative PTM (Stadtman, 2001).  Protein oxidation can be damaging to proteins 

causing or leading to degradation or sub-optimally affecting protein function by side-

chain modification. Protein oxidation can also be damaging to cells and organisms if 

redox signalling is dysregulated. The interplay between protein oxidations that are 

involved in cell signal transduction and protein regulation, and protein oxidations that 

sub-optimally affect function and lead to disease may be an important class of 

biomarkers and targets if additional markers and targets are needed. 

 Oxidation can lead to protein aggregation, cross-linking, fragmentation and loss 

or gain of enzymatic and functional properties, including interactions (Capeillere-

Blandin et al, 1991). This has been demonstrated by the exposure of β2-microglobulin 

to radical oxidation leading to aggregation and the formation of dityrosines. Protein 

aggregates caused by protein oxidation may have a role in disease via aggregates 

contributing to the formation of plaques in amyloidosis (van Ypersele de Strihou et al, 

1991; Koch 1992).  

 Methionine oxidation (Figure 1.) has biological relevance in homeostasis and 

ageing including, oxidant scavenging, redox cycling and protection systems such as 

Methionine sulphoxide reductase A (MsrA) (Wu et al., 2012) exist in the mitochondria. 

Methionine sulfoxide (Figure 1.b) is chemically and biologically reversible, via 

chemical reduction or sulfoxide reductase enzymes. Methionine sulphone (Figure 2.c) 

has been proposed to be chemically and biologically irreversible, aside from via 

protein degradation and protein synthesis, which effectively replaces modified 

proteins with unmodified versions. Methionine residues in proteins have been 
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proposed to functionally act as a scavenger and protect other more critical residues 

from oxidation and thus have an anti-oxidant role (Levine et al., 1996). Ghesquiere et 

al (2011) perform an experiment in vivo using H. sapiens Jurkat cells stressed with 

H2O2, stable isotope labelled methionine, diagonal chromatography and tandem mass 

spectrometry to assess the cellular proteome of protein-bound methionine oxidation.  

 

 

 
 
 
 
 
 
 
 
 
 
Figure 1. Methionine residue oxidations  
a) Methionine b) methionine sulfoxide c) methionine sulfone 
 

Experimentally, methionine oxidation analysis is non-trivial as methionine residues 

are readily and continually oxidised, including by air, by protein separation on sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and by 

electrospray ionisation before mass spectrometric analysis.  

 The most readily oxidised protein residues are cysteine and methionine. This 

biochemical feature is due to the sulphur on the amino acid side chains of cysteine 

and methionine.  

 Cysteine oxidation is important (Figure 2.), as biological evolution has taken 

advantage of the oxidisibility of the cysteine residue by utilising it in protein active 

sites, including redox-based molecular switch regulatory mechanisms, such as in the 

active site of the CX5R phosphatase and tensin homologue deleted on chromosome 

ten (PTEN) protein (Leslie et al., 2003), and also in maintaining secondary and 

tertiary protein structure due to cysteine disulphide bridge formation. The thiol of 

a) b) c) 
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cysteine and its oxidation to a disulphide (Figure 2.b) is biologically reversible, as is 

the singly oxidised sulfenic acid and the doubly oxidised sulfinic acid (Figure 2.c) 

(Jeong et al., 2006) with the sulfonic acid (Figure 2.d) described as biologically 

irreversible. S-nitrosothiols are another class of cysteine oxidation in vivo (Forman et 

al., 2004; Hess et al., 2005). Cysteine specificity for redox signalling can also come 

from accessibility to the residue, whereby active site clefts may alter accessibility to 

oxidants and anti-oxidants such as glutathione, as well as spatial location of the 

protein to the oxidant source, such as PTEN localisation to the cell membrane. 

Enzymatic reversibility of cysteine oxidation is possible with protein disulphide 

oxidoreductase activity via enzymes such as glutaredoxin, thioredoxin, thioredoxin 

reductase and thioredoxin peroxidases and protein disulphide isomerases (Holmgren, 

1989). The reversible reactions can function as molecular redox switches, and are 

thusly considered a regulatory mechanism, although the possibility of dysregulated 

reversible signalling has the possibility to be a class of damage depending on the 

state the switch should be in and the downstream outcomes of the reversible but sub-

optimal state of the molecular logic gate. 

 

 

 

Figure 2. Cysteine residue oxidations  
a) Cysteine b) cysteine disulphide c) cysteine sulphinic acid d) cysteine sulphonic acid  
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Non-sulphur residue oxidations include tyrosine modifications (Figure 3.), including 3-

chlorotyrosine, 3-nitrotyrosine and 3-hydroxytyrosine, but also include modifications 

such as 5-hydroxyproline. Studies have indicated that tyrosine nitration is a highly 

selective process limited to specific residues on specific proteins (Aulak et al., 2001; 

Gow et al, 2004; Kanski et al, 2005; Kanski et al 2005a) due to both the charges of 

neighbouring residues, absence of proximal cysteines (Rubbo et al., 2000) and 

hydrophobicity of the environment.  

 Nitrated PTMs are caused by RNS, which are a sub-set of oxidants. In vivo 

nitrations occur due to the formation of nitrating agents such as peroxynitrite. 

Peroxynitrite is formed from nitric oxide (NO) and the ROS superoxide (O2
•−). 

Peroxynitrite is formed when NO and superoxide are synthesised in close proximity, 

combining spontaneously via a diffusion limited reaction (Huie & Padmaja, 1993). 

Peroxynitrite is an oxidising and nitrating agent and has multiple biological targets 

including protein transition metal centres and cysteine thiol oxidation (Alvarez & Radi, 

2003). Peroxynitrite can oxidise the cysteines of enzyme active site residues including 

those of protein tyrosine phosphatases (Buchczyk et al, 2003; Rubbo et al,1996) 

amongst others including glyceraldehyde-3-phosphate dehydrogenase, creatine 

kinase and mitochondrial respiratory chain complex I, II and III proteins (see Pacher 

et al. 2007 comprehensive peroxynitrite review). 

 Determination of the prevalence of peroxynitrite oxidation of enzyme active sites, 

and the relevance of these to cell signalling, cell states and end fates, and disease 

states may have utility for therapeutic target development and marker identification. 

 Peroxynitrite has been shown to nitrate tyrosine (Pacher et al, 2007). 

Pathological conditions can increase peroxynitrite generation leading to dysfunction of 

critical processes and signalling and induce cell death (Spickett et al., 2006). 

Nitrotyrosines are an interesting moiety as it is formed in at least 50 human diseases 

(Greenacre & Ischiropoulos, 2001) including acute inflammatory lung tissue, 
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atherosclerosis and rheumatoid arthritis (Shacter, 2000). Nitrotyrosines are also a 

marker of nitroxidative stress on a cellular, tissue and systemic level and can disrupt 

nitric oxide signalling (Radi, 2013). Radi (2013) states that nitrotyrosine in vivo is 

generated from peroxynitrite-mediated nitration and other sources including heme 

peroxidase-catalysed reactions and that yields may be quantified via calculation of the 

steady-state of nitrating species, secondary radical processes over tyrosyl radicals, 

superoxide dismutase presence and diffusion of relevant moieties across cellular 

compartments.   

 The formation of nitrotyrosine in proteins was demonstrated in 1966 via 

tetranitromethane treatment (Sokolovsky et al, 1966). Tyrosines are also targets of 

de-/phosphorylation, and phosphorylation and de-phosphorylation are critical for 

cellular signalling, cell cycle and cell fate. Nitrotyrosine (Figure 4. b) has been 

proposed to mimic phosphotyrosine (Mallozzi et al., 2001),  which may provide a 

direction for diagnostics development, biomarker development and drug target 

development if additional biomarkers and small molecule therapeutics are needed 

above and beyond what exists rather than developing regenerative and prosthetic 

medicine, translating current knowledge and implementing diagnostics. 

An example of tyrosine oxidations having been used as markers, has been 

demonstrated by 3-nitrotyrosine, which has been seen in bio-banked samples to be 

elevated over 6-fold in Fabry disease patients (Shu et al., 2014) measured by liquid 

chromatography coupled electron spray ionisation mass spectrometry. Shu et al 

(2014) demonstrate that in a mouse model of Fabry disease 3-nitrotyrosine was 

increased in aortic samples 40 to 120-fold and Shu et al (2014) suggest 3-

nitrotyrosine is a marker for vascular involvement in Fabry disease – when it may be a 

biomarker for the vascular pathology that is part of Fabry disease. 

 Proteins are recycled, repaired and protected by a series of mechanisms 

including proteolysis, proteostasis, translation, anti-oxidant systems, enzymatic 
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systems to reverse oxidative modifications, lysosomes, redox sensing systems. Yet, 

ROS and oxidative stress related damage may still occur in cells, and proteins that 

are irreversibly oxidised and have gained or lost function are predicted to disrupt 

protein, cellular and organismal homeostasis and homeostatic capacity. 

 

 

 

 

 

 

Figure 3. Tyrosine residue modifications  
a) Tyrosine b) Nitrotyrosine c) Hydroxytyrosine d) Chlorotyrosine  
 

Some protein oxidations are biologically reversible, others are irreversible such as 

methionine sulfone, and cysteine sulphonic acid. The reversibility, clearance, amino 

acid location, abundance, occurrence and function of a protein oxidation will all have 

an effect on whether a particular instance of a modification affects health sub-

optimally. 

 To measure protein oxidations, the amount of oxidised protein, specific 

oxidations, specific proteins, specific protein sites, general levels of oxidation, indirect 

measures of oxidation, oxidised protein aggregates and protein interactions and 

enzymatic function can be measured.  

 Carbonylation is a non-enzymatic PTM, where carbonyl stress leads to carbonyl 

compound formation via the autooxidation of carbohydrates and lipids reacting with 

protein amino groups, and is used a general marker for ageing. Kalim et al (2014) 

suggests that as protein carbonylation is mechanistically involved in adverse clinical 
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outcomes for kidney disease. Protein carbonyls have been observed in Alzheimer’s 

disease, arthritis, diabetes, sepsis, chronic renal failure and respiratory distress 

syndrome (Dalle-Donne, 2003, review).  2,4-dinitrophenylhydrazine (DNPH) can be 

used to detect carbonyls through spectrophotometric assay, enzyme-linked 

immunosorbent assay, western blot immunoassay (Dalle-Donne, 2003, review), or 

laser desorption/ionisation mass spectrometry with enrichment protocols and labelling 

such as the use of DNPH (Fenaille et al., 2004; Fenaille et al., 2005; Bollineni et al., 

2011), biotinylated probes and hydrazines coupled to fluorescent moieties alongside 

label-free techniques (reviewed by Fedorova et al, 2013).  

Wang et al (2007) demonstrated amino acid analysis and quantification of protein-

bound homocitrulline and assessment of proportional amounts of lysine on a global 

level for outcomes for kidney disease.  The carbamylation of protein targets has been 

analysed at specific sites of protein targets (Claxton et al., 2013; Pietrement et al., 

2013) and mass spectrometry used to determine the most abundant sites of 

carbamylation (Kalim et al., 2014; Berg et al., 2014), with carbamylated proteins being 

strongly predictive regarding mortality risk and urea concentrations in kidney disease 

(Kalim et al., 2014). 

A case of a specific protein being oxidised which is involved in disease and which 

it is has been suggested has use as a biomarker and therapeutic is the oxidative 

modification of the dopamine transporter, in bipolar disorder (Kim, 2012). The 4-

hydroxynonenal (4-HNE) oxidation product has also been found to be increased in 

these patients (Wang et al., 2009), which has potential for both detection and 

mechanism-based therapeutics.  

To measure oxidised protein aggregates and advanced protein oxidation 

products, including cross-linked proteins via tyrosine crosslinks, spectrophotometric 

methods can be combined with chromatographic methods to develop biomarkers for 

diseases that accelerate ageing processes such as diabetes (Witko-Sarsat et al., 
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1996). Witko-Sarsat et al (1996) demonstrated this using plasma fractionation size-

exclusion chromatography, resulting in distinct peaks not present in control plasma 

and also demonstrated that advanced oxidation protein products correlated, for 

uremia patients, with advanced glycation end products and di-tyrosine biomarkers of 

ageing and disease. The top down, non-fragmentative method of polyacrylamide gel 

electrophoresis was used to visualise protein aggregates as a complimentary method 

to spectrophotometry. Witko-Sarsat et al (1996) also demonstrate for uremia, that lipid 

peroxidation markers do not correlate with advanced oxidation protein products, 

although lipids may enhance the in vivo process of advanced oxidation protein 

product formation.  

As a demonstration of a global index of protein oxidation, plasma protein 

carbonyls and advanced oxidation protein products are stable end products and be 

significantly increased in diabetic patients versus controls (Pandey et al, 2010). 

Pandey et al (2010) found that protein oxidation products such as carbonyl moieties 

on lysine, arginine, proline and histidine as well as dinitrotyrosine which have been 

previously recognised as a measure of protein damage and oxidative stress (Levine 

et al., 1990; Witko-Sarsat et al., 1996) are markers for type 2 diabetic patients and 

correlate to the scavenging capacity of blood plasma.  

 Specific proteins that are already known and used as markers and therapeutic 

targets can be analysed further to gain higher resolution about the oxidisation status 

for these proteins and what oxidation products they might form in order to have higher 

resolution or more specific biomarkers, predictors or targets, and assess the 

relevance of specific oxPTMs in health and disease states. 

 

 

 1.1.1.1.1.2. Cys-X5-Arg phosphatases 
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Cys-X5-Arg motif containing phosphatases are a sub-set of the protein tyrosine 

phosphatase (PTP) superfamily of phosphatases that contain a characteristic Cys-X5-

Arg sequence motif in the active site region, where the cysteine is in the thiolate form 

where the sulphur molecule is not bound to a hydrogen (Chiarugi et al., 2005) and can 

be more readily oxidised. The reaction mechanism of PTPs has, in review, not been 

fully characterised (Kolmodin and Åqvist, 2001). PTPs are involved in 

phosphorylation-dependent signaling pathways, although not always the 

dephosphorylation of tyrosine, the PTP designation refers to a superfamily homology 

rather than strictly to function or enzymatic substrate. PTPs have a diverse set of 

biological functions including redox sensing and cellular redox status has a important 

role in PTP signal transduction (Denu & Tanner., 1998). Oxidants have been shown 

to cause an increase in tyrosine phosphorylation and thus it has been suggested that 

this is the result of PTP inhibition (Denu & Tanner., 1998; Hecht & Zick., 1992; Knebel 

et al., 1996; Sullivan et al., 1994). Denu & Tanner (1998) state that PTPs may be 

regulated by reversible reduction and oxidation involving cellular oxidants such as 

H2O2 including H2O2 transiently generated by growth factor stimulation and that H2O2 

production is associated with tyrosine phosphorylation. Denu & Tanner (1998) 

describe that effect of oxidants on PTP function of PTPs utilising chemical 

modification, pH kinetic assays and mutagenesis experiments. The catalytic cysteine 

thiolate of PTPs was determined to be oxidised, and formation of a cysteine sulfenic 

acid intermediate was formed after attack of the catalytic thiolate on H2O2; the PTPs 

assessed were PTP1, leukocyte antigen-related PTP, and vaccinia H1-related (VHR) 

PTP. PTPs have been suggested as candidate therapeutic targets (Alonso et al., 

2004), including PTP1B which may be involved in insulin signalling as a negative 

regulator (Elchebly et al., 1999). PTP inhibitors are an emerging therapeutic class and 

multiple small molecule inhibitors for specific PTPs such as PTEN have already been 

identified (Mak et al., 2010). Although PTPs do not always require post-translational 
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modification for catalytic activity (Denu et al., 1996), as demonstrated by PTPs 

expressed using bacterial expression systems showing catalytic activity (Denu et al., 

1996; Denu & Tanner., 1998).  

 

 1.1.1.1.1.2.1. Phosphatase and tensin homolog deleted on 

chromosome ten (PTEN) 

 

The roles of PTEN were discovered during the study of genetic mutations and the 

cancer tumour suppressor role of PTEN (Li, 1997; Steck et al., 1997). The crystal 

structure of PTEN is known (Figure 5.) (Lee et al., 1999), although high-resolution 

proteomic, proxomic (omics of protein oxidation), interactomic and intracellular 

localisation data is scarce as novel technologies and methods are only recently 

starting to allow this research to take place.  PTEN is a protein phosphatase involved 

in cell signalling and cell survival (Rodriguez & Huynh-Do., 2012). PTEN has a highly 

conserved active site motif with the arrangement Cys-X5-Arg (CX5R), which is 

homologous to many other proteins in the protein tyrosine phosphatases (PTPs) 

superfamily. Although unlike other PTPs, PTEN has a non-protein phosphoinositide 

substrate (Lee et al., 1999; Maehama & Dixon, 1999). PTEN dephosphorylates 

phosphatidylinositol (3,4,5)-triphosphate. PTEN has been show to be regulated at the 

transcriptional level, post-transcriptional level, via non-coding RNA, PTM and protein-

protein interaction (PPI) levels (Song et al., 2012). This dephosphorylation is a major 

function of PTEN that is critical to the regulation, specifically the inhibition, of the 

PI3K/AKT/mammalian target of rapamycin (mTOR) signalling pathway (Figure 5.). 

The PI3K/AKT/mTOR pathway promotes cell proliferation and inhibits apoptosis and 

involves the phosphorylation by PI3-kinase (PI3K) of PIP2 to PIP3, which acts as a 

membrane localisation factor for the AKT protein (Figure 5), with rapamycin being a 

longevity-promoting compound (Harrison et al., 2009). PTEN dephosphorylation, 
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which has been proposed to be via protein kinase CK2 (Torres & Pulido, 2001), 

catalyses and regulates the downstream PI3K action on PDK1 and downstream to 

AKT and all potential downstream AKT signalling endpoints. PTEN action is the 

opposite of PI3K, and the regulation of kinases and phosphatase action by PTEN is 

important for cellular and organismal homeostasis with a role in signalling in a major 

signalling pathway, that is upstream and close to the membrane protein receptors. 

Thus if PTEN is modified in any way that adversely affects function, this will impact 

upon the AKT signalling pathway regulation and lead to cell division, cell proliferation, 

affect cell migration and cell adhesion (Fine et al., 2009; Lin et al., 2004). These 

features make PTEN genetic mutation a frequent occurrence in a multitude of cancers 

including prostate cancer (Li, 1997; Lin et al., 2004; Lotan et al., 2011), of which 

PTEN is a prognostic marker (Lotan et al., 2011), abnormal growths of tissue 

(Gunaratne et al., 2011) and breast cancer (Li, 1997). PTEN loss in cancer can also 

be an epigenetic event regulated post-transcriptionally through oncogenic microRNAs, 

and inhibitory phosphorylation, ubiquitinylation and oxidation, and is not exclusively 

due to genetic mutations in the PTEN gene (Leslie & Foti, 2011).  

PTEN has been proposed to be a gatekeeper against cancer of similar import to 

the tumour suppressor p53 (Yin & Shen, 2008).  Partial loss of function of the PTEN 

gene is important in PTEN disease states (Leslie & Foti, 2011), thus it can be inferred 

that non-genomic partial loss of PTEN activity may also have a role in cancer risk and 

disease.  
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Figure 4. PTEN regulation of the AKT signalling pathway 
The AKT signal transduction pathway showing alternate cell fates and PTEN 
phosphorylation of PIP3 to PIP2 at the cell membrane. Figure adapted from Castellino 
et al (2007). PDK1 = phosphoinositide-dependent kinase 1  
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Figure 5. PTEN structure  
PTEN with active site cysteines Cys71 and Cys124 labelled in yellow. Phosphatase 
domain, phophatase active site, C2 domain and Carboxy-terminus (C-terminal) tail 
labelled with arrows. PTEN structure from Lee et al (2009). 
 

PTEN is involved in a diverse range of pathways and processes in addition to cell fate 

regulation. PTEN is involved in the regeneration capacity of neurons (Liu et al., 2010). 

PTEN down-regulation increased regeneration capacity in cortical neurons of adult 

rodents through compensatory sprouting of uninjured axons past a spinal chord lesion 

(Liu et al., 2010), which demonstrates PTENs role in growth and repair as well as 

age-related diseases such as cancer and neurodegeneration which involve cell 

proliferation and cell loss. PTEN is also involved in the negative regulation of the 

insulin signalling pathway, where PTEN deletion in the liver leads to insulin 

resistance, steatosis, inflammation and cancer including through activation of a 

mammalian target of rapamycin and nuclear factor kappa B complex, (Nakashima et 

al., 2000; Tang et al., 2005; Vinciguerra et al., 2009; Vinciguerra & Foti, 2008a, 

2008b), thus PTEN is important in the ageing of the liver and the age-associated 
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disease of diabetes, liver steatosis and fatty liver disease (Vinciguerra & Foti, 2008b). 

Vinciguerra & Foti (2009) describe a potential mechanism of unsaturated fatty acids 

up-regulating expression of microRNA-21, which binds to PTEN messenger RNA and 

induces PTEN RNA degradation.  

 PTEN is an interfacial enzyme that can enter a highly active state when bound 

transiently to the inner cell membrane containing its substrate and other acid lipids 

(Leslie et al, 2008). This property of PTEN allows PTEN function to be spatially 

regulated, and is suggested to explain how PTEN forms PIP3 gradients and 

sustaining cell polarity needed for motility in neuronal and epithelial tissue 

development. The function of PTEN in addition to regulation at a spatial and 

conformational level is also regulated biochemically. Biochemical regulation of PTEN 

occurs when the nucleophilic and catalytic active site cysteine moiety, whose thiol 

residue in the active site cleft is involved in a dephosphorylation reaction, forms a 

cysteine disulphide. Thiols are organosulphur compounds that can undergo s-

alkylation, they are acidic, readily oxidised, and can form metal ion complexes. The 

cysteine disulphide bridge between regulatory Cys71 and nucleophilic Cys124 in 

PTEN is considered biologically reversible and has been demonstrated to be 

inducible by oxidants and reversible by reductants. PTEN reversible inactivation has 

been demonstrated biochemically by Lee et al (2002) by disulphide formation with 

H2O2, and after matrix-assisted laser desorption/ionisation mass spectrometric 

detection of the disulphide bond containing cysteine-cysteine fragment.  The 

inactivation of PTEN through disulphide formation between Cys71 and nucleophilic 

Cys124 induced by H2O2 by oxidation potentiates PIP3 generation and activation of 

the Akt kinase pathway in experimental in vivo overexpression studies Kwon et al 

suggest that local spatial control of H2O2 could have a regulatory function by 

increasing local PIP3 concentration in order to trigger downstream signalling (Kwon et 

al., 2004).  
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 Disulphide bonds are weaker than carbon-carbon and carbon-hydrogen bonds, 

and is susceptible to scission by polar reagents, electrophiles and nucleophiles. 

Cleavage occurs via reduction, including chemicals in proteomic analysis including 

mercaptoethanol and dithiothreitol (DTT).  Given the role of PTEN in Akt signalling, 

therapeutic development for PTEN active site has been performed at a pre-clinical 

stage, with molecular therapeutics based on vanadate scaffolds (Rosivatz et al., 

2006), such as VO-OHpic (Mak et al., 2010) and the application of 

bisperoxovanadium compounds, which are known PTP inhibitors (Schmid et al., 

2004). VO-OHpic is a non-competitive inhibitor where the inhibitor can bind the 

enzyme and enzyme-substrate complex, and is suggested that vanadium compounds 

deliver vanadium to the active site (Mak et al., 2010). 

 The PPI interactome of PTEN has been well characterised across species, using 

multiple experimental techniques, with multiple databases, laboratories and 

techniques confirming many of the protein-protein interactors (Adey et al., 2000; 

Diepen et al., 2009; Fan et al., 2009; Giot et al., 2003; Kang-Park, Lee, & Lee, 2003; 

Leslie et al., 2009; Lin et al., 2004; Maddika et al., 2011; Mori et al., 2008; Pramanik 

et al., 2009; Salmena et al., 2008; Shen et al., 2007; Shewan et al., 2011; Shu et al., 

2008; Song et al., 2011; Stelzl et al., 2005; Takahashi et al., 2006; Valiente et al., 

2005; Vazquez et al., 2000; Vogelmann et al., 2005; Wu et al., 2010; Yim et al., 

2009). Demonstrated interactions between specific PTEN domains and interactors 

involve proteins interacting with carboxy-terminus (C-terminus) tail and associated 

PDZ domain, which interacts with the C-terminus to promote phosphorylation and 

stability (Okahara et al., 2004) and membrane-associated guanylate kinase inverted 2 

and Na+ H+ exchanger regulatory factor which interact with the PTEN PDZ domain for 

recruitment of PTEN to the membrane (review, Salmena et al., 2008). The PTEN 

interactors (Appendix 1.), due to their number are involved in a vast array of biological 
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processes placing PTEN only a few PPIs away from involvement in most cellular 

processes, health processes and disease processes.  

 PTEN has many known PTMs including phosphorylation of the C-terminal tail 

region including Ser380, Thr382, Thr383, Ser385, Ser370 and Thr366 (Salmena et 

al., 2008), acetylation of Lys125 and Lys128 and ubiquitinylation of Lys13 and Lys289 

(Salmena et al., 2008). It is also established that PTEN Cys124 and Cys71 in the 

active site form a disulphide bond upon oxidative stress (Lee et al., 2002), PTEN was 

inactivated via macrophage endogenous ROS or H2O2. Salmena et al (2008) note that 

post translational modification of PTEN, particularly oxidative modification may be 

therapeutically powerful and thus further investigation of the active site cysteines may 

yield important results. 

  PTEN oxidation has also been linked to cancer and the development of T-cell 

acute lymphoblastic leukaemia that have high levels of ROS (Silva et al., 2008). 

Current findings with regards to PTEN oxidation focus on PTEN redox regulation and 

reversible modification of active site cysteines (Covey et al., 2007; Lim & Clément, 

2007; Pei et al., 2009; Yu et al., 2005).  

 There are some fundamental features of PTEN that give it the potential to be a 

biomarker. PTEN is both a highly modifiable signalling protein with many identified 

sites of modification including at Lys13, Cys71, Cys124, Lys125, Lys128, Ser229, 

Thr232, Lys289, Thr319, Thr321, Thr366, Ser370, Ser380, Thr382, Thr383, Ser38 

(Salmena et al., 2008), in the centre of multiple pathways (Figure 4.) and has many 

protein-protein interactors (Appendix 1.). PTEN can also take on multiple 

conformations due to its open and closed conformational states (Leslie et al., 2008) 

and PTEN exists in multiple states of oxidation with multiple PPI partners in the 

nucleus (Trotman et al., 2007) in addition to cytoplasmic co-localisation with 

interaction partners. To conclude, the state of PTEN in cells may be highly predictive 

of many states, and discovery and diagnosis of those states may give key insights 
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into the state of a particular cell whether it is a patient sample before or after 

administration of a therapeutic or to assess or manipulate cellular processes in tissue 

engineering. PTEN PPI could potentially also be used as a biomarker if samples 

could be assayed or arrayed. By investigating the PTEN proxome, PTEN interactome 

and PTEN proxo-interactome this may yield many potential specific biomolecules, that 

with high-throughput and multiplex technology could be used to categorise healthy 

and sub-optimal states by their existence and abundance in samples. 

 

 1.1.1.1.1.2.2. Dual specificity phosphatase Vaccinia H1-related 

phosphatase (VHR/DUSP3) 

 

Vaccinia H1-related phosphatase (VHR) is a PTP and dual specificity phosphatase 

(DUSP). The structure of VHR has been determined by x-ray crystallography (Figure 

7.) (Yuvaniyama et al.,1996) DUSPs are structurally related to PTPs and have been 

implicated in mitogen activated protein kinase (MAPK) regulation (Alonso et al., 

2004). DUSPs differ from PTPs in that DUSP active site clefts are shallower which 

gives reduced biomolecule specificity (Camps et al., 2000; Stewart., 1999; 

Yuvaniyama et al., 1996). DUSPs are regulated by mitogenic signalling (Grumont et 

al.,1996; Rohan et al., 1993; Sun et al.,1993; Ward et al., 1994).  VHR has been 

shown to dephosphorylate epithelial growth factor receptor (EGFR) and platelet 

derived growth factor receptor (PDGFR) in vitro (Ishibashi et al.,1992), but in vivo 

studies have failed to support this (Wang et al., 2011).This in vitro activity may be due 

to the shallow active site binding cleft conferring the property of lower substrate 

specificity on VHR. VHR has also been shown to inactivate c-Jun N-terminal kinases 

(JNKs) and extracellular signalling related kinases (ERK) (Figure 6.)(Alonso et al., 

2001; Denu et al., 1999; Jacob et al, 2002; Todd et al., 2002), although VHRs ability 
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to suppress MAPK activity is weak compared to other MAPK phosphatases (MKPs) 

(Alonso et al., 2001).  

Figure 6. VHR regulation of the ERK signalling pathway 
VHR negatively regulates ERK and inhibits ERK pathway, which is connected to the 
Akt signalling pathway. RTK = Receptor tyrosine kinase. Ras = Rat sarcoma. Raf = 
Mural leukaemia viral oncogene homolog. Rac = Ras-like protein TC25. MEK = 
Mitogen activated protein kinase. 
 
 The active site of VHR is less complex with regards to cysteine redox regulation 

(Denu et al., 1998; Yuvaniyama et al., 1996) because it has one active site 

nucleophilic Cys124 without another local cysteine within 9Å  with which to form a 

cysteine disulphide bridge, making intramolecular disulphide bridges improbable 

(Denu & Tanner, 1998). This feature is critical for enzymatic regulation of VHR. This 

does not mean that oxidation and reduction of this active site cysteine cannot occur, 

only that the reversible disulphide bridge regulatory mechanism is not present. 

Additionally, cysteine sulphenic, sulphinic and sulphonic acid formation may occur 

and regulate activity under various cellular states, although cysteine di- and tri-

oxidation are not reversible biologically. Thus if non-reversible nucleophile oxidation 

were to have a regulatory effect, it might conceivably have an effect via a cumulative 
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build up of oxidation steering cell fate in a particular direction, or regulate cell fate 

through a balance of oxidation versus protein degradation. Nonetheless irreversible 

oxidation of VHR, as with PTEN may have a yet-to-be-elucidated functional role in cell 

fate and disease states and thus be of importance. Denu and Tanner (1998) suggest 

that a cysteine disulphide bridge formation might be possible in VHR once an initial 

sulphenic acid has formed. 

 

 

 

 

 

 

 

 

 

Figure 7. VHR 3D structure Protein data bank (1VHR). Protein structure discovered 
by Yuvaniyama et al (1996). 
 

 Knockdown of VHR expression leads to cell cycle arrest and senescence, 

(Rahmouni et al., 2006). Evidence from cultured cells, tumour transplants and clinical 

samples suggests that VHR is involved in cancer, including the pathogenesis of non-

small cell lung cancer, through the mechanism of inhibiting phospholipase Cγ and 

protein kinase C (Wang et al., 2011).  

 VHR is also highly expressed and is localised to the nucleus as well as 

cytoplasm, which contrasts to its cytoplasmic localisation that is seen in primary 

keratinocytes (Henkens et al., 2008). VHR upregulation in cancer cell lines has been 

shown to be due to post-translational stabilisation (Henkens et al., 2008), which is of 

interest when studying the effects of protein oxidative PTM on function, as oxPTMs 
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may lead to a gain-in-function modification that promotes growth or carcinogenesis. 

Henkens et al (2008) suggest increased translation or decreased degradation of VHR 

in cancer cell lines. 

 VHR inhibition in cervical cancer cell lines has been shown to halt cell cycle 

progression and VHR inhibition in cancer, to induce cellular senescence, has been 

proposed to be an anti-cancer therapy (Henkens et al., 2008).  VHR has also been 

demonstrated to be pro-angiogenic physiologically in a mouse model (Amand et al., 

2014). 

 The VHR protein-protein interactome (Appendices 2.) has been searched 

experimentally, but the current known interactome remains comparatively small and 

consists primarily of well characterised signalling pathway protein receptors and 

kinases (Alonso et al., 2003; Ewing et al., 2007; Ishibashi et al., 1992; Najarro et al., 

2001; Rual et al., 2005; Todd et al., 1999). Well characterised signalling protein 

receptors and kinase interactors include Human leukocyte antigen-B (HLA-B), 

colorectal mutant cancer protein (MCC), Neurogenic differentiation 1 (NEUROD1), 

BCL2/adenovirus E1B (BNIP3L) and Zeta-chain associated protein kinase (ZAP70), a 

T cell surface membrane protein. ZAP70 includes a phosphorylation interaction with 

Tyr138 of VHR. Thus VHR has specific roles in immune system function, neural 

development and also a role in cancer with MCC. The well categorised Janus kinase-

signal transducer and activator of transcription (JAK-STAT) and MAPK/ERK signalling 

pathways that VHR interacts with, are known to be critical to cellular cycle regulation 

including sub-optimal cellular senescence and cell proliferation events associated with 

ageing, loss of organismal homeostasis and cancer (Aaronson & Horvath, 2002; 

Sebolt-Leopold, 2008; Zheng et al., 2003). VHR also dimerises, which has been 

demonstrated to act as a negative regulatory mechanism for catalytic phosphatase 

activity (Pavik et al., 2014). 
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 VHR can be inactivated by metal ions including Fe3+, Zn2+, Cu2+ and Cd2+. The 

Cu2+ ion, which causes VHR inactivation that is over 200-fold as potent as H2O2 

inactivation (Kim, Cho, Ryu, & Choi, 2000). The addition of dithiothreitol (DTT) can 

reverse the Cu2+oxidation-based inactivation, and it was inferred from thiol labelling by 

Kim et al (2000) that this reversal was due to inactivation and subsequent reduction 

and reactivation of the VHR active site cysteine.  

 

1.1.4. Technology Development 

 

1.1.4.1. Mass Spectrometry 

 

Mass spectrometric technology development has utility for biomarker and therapy 

development and implementation. Mass spectrometry has specific benefits in being 

high-throughput, accessing protein sequence and modification specific information, 

allowing semi-quantitative and quantitative experimentation, and high potential and 

capacity for automation. Mass spectrometry measures the mass-to-charge ratio (m/z) 

of ions in relation to their motion in an electric or magnetic field. Biomolecules are 

converted to ions in the gas phase and separated by m/z ratio.  

 The identification of proteins and protein modifications can be performed 

combining liquid chromatography and with electrospray ionisation mass spectrometry 

(LC-ESI-MS). Whether in vivo or in vitro, the abundance of modified peptide ions can 

be sub-stoichiometric, with samples containing other biomolecules, whether other 

proteins, or non-modified peptides, or other modified peptides.  

 For protein modifications such as protein oxidation, MS/MS is required whereby a 

peptide is further fragmented so as to be able to predict where the additional mass 

has been added on the peptide to determine the modification and amino acid.  
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 Sample stability can affect representative detection of protein modifications, as 

samples and modifications can have limited stability, thus sample preparation as well 

as sample acquisition are important factors.  

 Electrophoresis is employed for protein pre-fractionation for high-resolution 

separation of proteins and peptides prior to LC-MS. Electrophoretic techniques 

consist of the migration of charged particles in an electric field, where due to the 

differences in particle size and net charges, migration across the field occurs at 

variable velocities and thus achieving distinct separation of proteins, peptides, 

aggregates and fragment biomolecules. Gel matrices are employed as a substrate for 

the electrophoretic separation of proteins. Polyacrylamide gels are used, which are 

polymerised from acrylamide monomers using a crosslinking agent. The pore size for 

migration of proteins is determined by total acrylamide concentration and degree of 

crosslinking.  

 Liquid chromatography allows proteins to be separated according to differences 

in specific properties of charge, size, hydrophobicity and biorecognition. Ion exchange 

chromatography (IEX) allows separation of molecular species with differences in 

charged amino acids from their side-chains, carboxyl and amino acid termini, bound 

ions, and prosthetic groups. The charge on amino acid side-chain is dependent on the 

pH of the solution and the pKa of the specific side-chain, and the microenvironment of 

the side-chain.  IEX columns consist of a matrix of spherical particles with ionic 

groups that are negatively or positively charged in a column packed bed that is 

equilibrated with a buffer. For IEX, following column equilibration, sample application 

of oppositely charged peptides bind to ionic groups with uncharged peptides and 

peptides with the same charge as the IEX medium, eluting. Next, a series of elutions 

are applied with increasing ionic strength to displace biomolecules, resulting finally in 

removal of ionically bound biomolecules. Resolution, the degree of separation 

between peaks, is important for resolution and this is dependent upon the type and 
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number of functional groups on the column matrix, and experimental conditions such 

as pH, ionic strength and elution conditions. 

 Reverse phase chromatography (RPC) separation and pre-fractionation is also 

used for proteomic analysis. RPC consists of a separation with a column matrix with a 

hydrophobic surface. The separation is due to differential separation that is predicted 

to be driven by an entropic phenomenon where more hydrophobic samples elute at a 

retarded rate in comparison to less hydrophobic samples upon increasing the 

percentage of organic component in solution. The initial, primarily aqueous, mobile 

phase leads to a high degree of organised water structure around both the 

immobilised ligand matrix and the solute, where it is advantageous, as the solute 

binds the hydrophobic ligand, for the hydrophobic moieties to associate. RPC is an 

adsorptive process where solute molecules partition between the mobile and 

stationary phase, where the partition distribution depending on binding properties, 

hydrophobicity of the solute and the composition of the mobile phase. Initial LC run 

phases are designed for solute peptide adsorption from the mobile to stationary 

phase, with later run phases designed to favour desorption of the peptides with 

gradient elution.  Polarity of the mobile phase is controlled by water-miscible organic 

solvent such as acetonitrile utilitised alongside ion-pairing agents (trifluoroacetic acid, 

formic acid). Nano Liquid Chromatography (NanoLC) systems are used to attain 

resolution, sensitive and selectivity for proteomics applications. NanoLC involves 

columns with internal diameters ~<75μm and low flow rates (~300nL/min) for high 

sensitivity down to sub-femtomole detection, and selectivity to increase peptide 

identification reliability, which has utility for identification in samples with a large ome, 

deep omes with a wide dynamic range of molecules, small sample sizes, rare 

samples, unique samples and expensive samples. A limiting factor of the MS 

technique is ion intensity. Ion intensity can be modified by taking larger samples, 

sample enrichment, increasing detection ability, although in a clinical context there 
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are patent limitations for taking sample size and the abundance of a biomolecule in 

relation to the health of the patient and stage of therapy or disease process as 

absolute limitations; where additional limitations exist up to the capacity of the column 

used for chromatography where concentration is of import. For each run, the duty 

cycle of the mass spectrometer, that is the time taken to acquire the MS and MS/MS 

for a given run, dictates how many precursor ions can be selected for MS/MS – when 

this is combined with complex digests and/or non-abundant ions, less modified ions 

will be selected. Modification may also affect effective ionisation of peptides.  

 Following chromatographic separation, peptides are ionised for mass 

spectrometry, the ionisation and ionisation source is the first stage mass 

spectrometry, before separation in the analyser and detection by the detector. The ion 

source is the region of a mass spectrometer whereby peptides are converted to gas 

phase ions. Fenn et al (1989) demonstrated electrospray ionisation (ESI) for 

biomolecules with high sensitivity.  ESI ions are produced when the sample dissolved 

in a solvent is applied through a narrow capillary tube at atmospheric pressure under 

the influence of an electrical field, thus creating a potential difference between the 

capillary and the MS inlet, generating a force extending the liquid, creating a liquid 

cone formation on the tip of the capillary which then creates a fine mist (Taylor 1964). 

The cone, formed from repulsive forces between like charges forms droplets, whilst 

maintaining droplet charge. Droplets form smaller droplets until nano-meter droplets 

are formed. Charges are distributed over the potential charge sites, leading to multiply 

charged biomolecules, and an effectively reduced mass for the biomolecule of 

interest. 

 Ions are separated using analysers. In Time-of-flight (TOF) analysers the mass 

measurement is determined upon measurement of the TOF of an ion in the analyser 

to measure the mass of product ions and/or precursor ions. The triple quadrupole 

analyser (Morris et al., 1996; Loboda et al., 2000) consists of four parallel and 
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hyperbolic rods, with oscillating voltage switching between opposite pairs of rods, in 

which some gas phase ions reach a stable trajectory. Ions traversing the space 

between the rods will only pass through the rods to reach to the detector if they have 

certain m/z values, where a range of voltages allows a wide m/z and absolute mass 

range to be observed.  The triple quadrupole analyser coupled with ESI has been 

demonstrated to be of high utility for proteomics (von Haller et al., 2001) including 

additional fragmentation, for additional structural information with tandem mass 

spectrometry (MS/MS) using the first and final quadrupoles as mass filters and the 

middle quadrupole as a collision cell for further fragmentation. In the collision cell the 

ions collide in gas phase with neutral gas at an increased pressure, which fragments 

the ion by collision-induced dissociation (CID). Ions are accelerated by electrical 

potential to a high kinetic energy for the collision. During the collision some kinetic 

energy converts to internal energy resulting in bond breakage, for fragments to be 

analysed and detected. MS/MS leads to unique fragment ions, which have utility for 

identification, structural information and identification and structural determination in 

complex samples where the likelihood of precursor ions with identical mass is 

increased. CID also has utility for precursor ion scanning MS modes where it is 

important to determine which precursor the product originated from as a means of 

identifying products by their unique precursors and precursor fragments.  

 The presence of isotopes in the detected amino acids will produce several 

characteristic peaks, of differing mass, for isotopes of atoms such as carbon or 

nitrogen. The monoisotopic mass may be utilised for identification in cases where it is 

the largest peak due to 13C abundances, as is checking for characteristic peak 

distributions.  

For MS/MS analysis, m/z ratios are informative for in silico prediction of the 

amino acid sequence of the peptide and peptide modifications, when compared to 

peptide and protein databases with informatics protocols. Protein identification 
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analysis takes the form of a selection of or combination of peptide mass fingerprinting, 

and tandem mass spectrometry. The peptide mass fingerprint (PMF) technique of 

digested proteins and sequence database search algorithms consists of in silico 

digest of every protein in the database with the same digestion reagent that is used in 

the in vitro digestion, and then comparing the theoretical in silico digestions to the 

experimentally obtained peptide masses from the MS spectrum (Pappin et al., 1993; 

Henzel et al., 1993; Mann et al., 1993; Yates et al., 1993; James et al., 1993). The 

matches are then scored, with scores reflecting the number of times the peptide mass 

was observed and matched and how accurate the match was in terms of masses. In 

order to perform PMF the knowledge of peptide modifications is also required, as is 

the error tolerance for the accuracy of the mass measurement which is dependent on 

MS calibration and mass accuracy. In order for PMF to give an unambiguous result, a 

significant number of experimental masses should match the expected masses for the 

cleavage specificity of the digestive enzyme used. MS/MS allows for product and 

precursor ion scan analysis. Product ion scans use the first MS to specifically select 

the precursor ion/s of interest. The precursor ion is then allowed into the collision cell 

for CID. The products of the CID are resolved by MS/MS, and are then detected to 

produce a product ion spectrum. The low energy fragmentation leads to precursor ion 

fragments that fragment predictably at peptide amide bonds along the peptide 

backbone, which leads to a two series of ions being produced. The N-terminal ion 

series is formed from the peptide N-terminal amino acids and its extensions, the C-

terminal ion series is denoted as the y-ion series and is formed from the peptide C-

terminal amino acid and its extensions. Sequence information has been demonstrated 

to be able to identify a protein from a few peptides from a well-characterised genome 

(Susin et al., 1999).  Precursor ion scanning mode has the first part of the MS 

analyser transmit all ions into the collision cell for CID, with the final MS/MS analyser 

being fixed for a specific mass to detect the fragments. 
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Figure 8. Fragmentation pattern and nomenclature  
Figure adapted from Peptide Fragmentation (2016). Nomenclature of fragment ions 
from Roepstorff & Fohlman (1984). 
Sequence validation and searching for sequences not predicted by informatics 

requires de novo sequencing of a peptide fragmentation spectrum, where the 

complimentary b-ion and y-ion spectra are used to reconstruct the sequence from 

amino acid and fragment masses. 

 MS has the capability to identify proteins and their PTMs. In order to attain 

functional information with utility for therapy development and/or theranostics 

development techniques such as protein arrays and co-immunoprecipitation can be 

performed.  

 

1.1.4.2. Biochips, biosensors and bioprinting  

 

Biochips and miniaturisation innovation has enabled miniaturised systems that can be 

performed on the surface of a chip or slide, and for the development of biosensors. 

Biochips primarily consist of a slide, commonly a glass slide, coated with a polymer or 

matrix layer or a silicon wafer, referred to as the substrate. Multiple component 

biochips can be designed with channels, spots, reaction chambers, filters and other 
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compartments to perform single or multiple sets of reactions on biological objects in 

serial or parallel. Advantages of biochips include their size, small sample size 

required for detection, high-throughput and multiplex experimentation. Biochips and 

the miniaturisation of assays permit biomarker assays and theranostics to be 

performed nearer the patient at point of care, as demonstrated by biosensor 

bioelectronic graphene oxide nanoribbon analysis of amino acids by Martin et al 

detecting H2O2 with pulse voltammetry (2015) and by point of care immunoassays and 

peptide assays for infectious diseases with antibodies to infectious diseases as 

reviewed by Su et al (2014). Biosensors also have the potential to be performed from 

a patient’s personal items as demonstrated by the mobile monitoring of heart rate 

variability (HRV) and application of HRV signal algorithms to detect seizures 

(Jeppesen et al., 2014), From inside the patient, there is potential with an implant or 

on-board a patient’s artificial systems, as demonstrated with artificial heart monitoring 

systems that relay artificial organ information as well as blood flow data from the 

organ to external devices (Chung et al., 2004). 

 Microarray biochips technologies are based on a microscope slide format. 

Proteins or other moieties are arrayed upon membrane substrates in small volumes in 

spots, which will show the intensity of the signal and interaction upon binding of 

probe/s and spectroscopic detection.  

 Microscope slide coatings include nitrocellulose, which binds biomolecules. 

Nitrocellulose has superior binding to glass and is protective of the protein tertiary 

structure. Proteins can be arrayed onto slides with a variety of arraying technologies, 

including nanolithography and piezoelectric spotting. Piezoelectric spotters utilise 

electrical charge to deposit droplets of biomolecule containing solution containing onto 

the slides in an array pattern. Probing of arrays occurs with probes of interest, 

including cell lysate solutions, antibodies and other biomolecules. 
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 Microarray biochips has been used for medical profiling has been demonstrated 

using biochips for genotyping alongside protein microarrays for autoantibody profiling 

(Chen et al., 2012). Biochips can also be used to assess therapeutic effect of an 

intervention and as part of therapeutic development, by discovering interacting 

moieties or changes in amounts and properties of moieties present, Akbani et al 

(2014, review) state that protein biochips have been used to dynamically profile post-

translational signalling events, and characterised the effect of inhibition of epidermal 

growth factor on sensitisation of cancer cells to genotoxic drugs. Akbani et al (2014, 

review) also state that protein arrays may be used to detect levels of protein and 

protein PTMs in order to identify sets of protein markers that predict sensitivity and 

resistance to a therapeutic moiety.  

 Protein-protein microarrays describe arrays, which have proteins spotted on an 

array substrate, and are probed with protein, which may bind to the spotted protein on 

the array. Protein-protein microarrays are a sub-set of protein microarrays that screen 

for protein-protein interactions and sample a nearby space to gene transcript arrays 

although they are more expensive to produce due to the complexity of proteins and 

elegant biochemical structure of DNA. Protein-protein microarrays have multiple 

distinct features from gene transcript arrays, including ability to directly assess which 

proteins are expressed, as many RNA fragments are non-translated through 

degradation pathways, competitive inhibition and some never being translated, and 

do not assess protein PTMs. For performing functional proteomics and identifying 

which proteins interact under particular conditions, protein-protein microarrays have 

potential utility for understanding signalling dynamics and monitoring functional 

changes and PTMs including phosphorylation, ubiquitinylation, acetylation and 

nitrosylation (Hu et al., 2001). 

 Protein-protein interactions (PPIs) that are measured in protein microarrays are 

the physical contacts between two or more proteins due to chemical events or 
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electrostatic forces. Proteins can have stable and transient interactions occurring over 

different time scales, and thus measured by different and appropriate methods. 

Longer, or stable interactions as they are referred to, can be probed and assessed via 

protein-protein microarray library screening. The PPI interface can be modified by the 

environment the interaction is taking place in as well as PTMs. Aberrant PPIs and 

signalling have the potential for proteins to interact with other partners, or not interact 

with partners, and thus reduce their function, or have additional functionality.  Protein-

peptide interactions can also be performed to assess the interactions between a 

partial protein sequence which has utility for therapeutic molecule screening and 

identifying protein interactions with consensus sequences (Landgraf et al., 2004).  

 PPIs may also be assessed via non-biochip methods including 

immunoprecipitation techniques such as tagging the protein or peptide of interest with 

subsequent immobilisation to beads covered in a corresponding tag, which are then 

probed with protein. Bound proteins may then be identified via technologies including 

Western blotting or mass spectrometry (Schulze et al., 2005). 
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     1.2. Aims 

 

The aims of this project are i) to show as proof-of-principle that protein oxidative 

modifications from a variety of sources can be mapped with regards to their location, 

abundance, effects on activity and protein-protein interaction ii) to determine the 

extent of oxidation and nitration of nitrating species, including the abundances of 

modification associated with nitrating species iii) develop the knowledgebase of VHR 

and PTEN with regards to their oxidations, peptide fragments, interactors, oxidations 

of residues with known function and to explore the relationship of function and activity 

for VHR and PTEN to understand their fundamental biology to advance the 

knowledgebase for biomarker and therapeutic target identification iv) Develop and 

assess workflows for mass spectrometric identification of protein-wide systematic 

identification of protein oxidative modifications, abundances and validation of 

modifications for both research, development and diagnostic purposes. By using 

mass spectrometric techniques to identify multiple previously uncharacterised peptide 

modifications, these modifications may be statistically correlated with changes in 

activity and the peptides responsible for these changes can be identified, paving the 

way to searching for them in novel and more complex biological samples. Enzymatic 

assays of phosphatase activity will be used to determine the effect on activity of 

variable oxidative agents at variable concentrations, and the effect of the specific 

peptide modifications found at those molar concentrations of oxidant. By using 

protein-protein arrays, and co-immunoprecipitation we can find what interacts with our 

candidate proteins of interest, and from the interactome, literature analysis of 

candidates and modification mapping – develop synthetic modified peptides to 

challenge protein libraries, with as well as oxidise proteins before a protein-pair array 

to research the effect of oxidation on protein interaction. Co-immunoprecipitation in 
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combination with mass spectrometry will also be used to detect candidate interactors 

as a comparative and combinational method. 
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2. Materials and Methods 

	
2.1. Methods Summary  

 

This project focuses on functional proteomics, which is defined as the functional effect 

of a particular protein or protein post-translational modification and builds upon the 

importance of not only identifying aspects of a proteome and but their functional role, 

role as a biomarker and role as a target in health and longevity. Functional proteomics 

has previously been used to identify how genetic modifications affect the proteome in 

cancer (Gonzalez-Angulo et al., 2011; Kolch & Pitt, 2010).  

 All reagents were stored at their recommended temperatures and conditions. All 

work that needed to be sterile was done under a blue Bunsen burner flame. Proteins 

were stored at -800C (New Brunswick ultra low temperature freezer, U725 innova®) 

and kept on ice or in a cold room at all times. All reactions where temperature is not 

stated were performed at room temperature.  
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2.2. Methods 

 

2.2.1.Plasmid constructs 

 

Plasmid constructs were used to express test proteins (PTEN, VHR) for subsequent 

purification and in vitro analysis via 3-O-methyl-fluorescein phosphatase (OMFP) 

release assay, protein-protein interaction microarrays and MS/MS analysis. For full 

plasmid construct sequences refer to appendix (Appendices 3, 4, 5, 6.).  

 

Table 1. Plasmid constructs 

Protein encoded Taxonomy Plasmid vector Fusion protein 

PTEN Homo sapiens 

sapiens  

pGEX-4T1 GST 

VHR Homo sapiens 

sapiens 

pGEX-4T1 GST 

VHR Homo sapiens 

sapiens 

pcDNA 3.1 Flag 
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Figure 9. pGEX-4T1 vector map Vector map for pGEX-4T1. Inserted gene designed 
as a GST fusion with a linker sequence in open reading frame (ORF) 1. pGEX-4T1 
also contains Lac promoter and ampicillin resistance gene. Drawn using PlasMapper 
online (http://wishart.biology.ualberta.ca/PlasMapper/index.html). 
	
	
	
	
2.2.2. Minipreps and Maxipreps 

	
Plasmid DNA for future transformations was miniprepped using the GeneJET™ 

Plasmid Miniprep Kit (Thermo Scientific, EU) and standard kit protocol. PTEN-GST 

and VHR-GST in pGEX plasmid constructs were miniprepped and the plasmid DNA 

was stored at -800C, VHR-Flag pcDNA 3.1 plasmid constructs were maxiprepped 

using the PureYield™ Plasmid Maxiprep System (Promega, USA) and the plasmid 

DNA stored at -800C. A Maxiprep system was used for VHR-Flag pcDNA 3.1 for 

larger yields required for HCT 116 cell line transfection. Miniprep and Maxiprep kits 

used according to availability. 
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2.2.3.Transformation of PTEN and VHR 

 

The PTEN-GST and VHR-GST containing pGEX plasmids (Figure 9.) were 

transformed into transformation competent DH5α E.coli cells (See 2.2.3.1. Generating 

competency in E.coli cells). All transformation and expression procedures were 

carried out in sterile conditions. DH5α E.coli cells were used for expression, 

replicating the protocol from Imperial College London collaborator Doctor Lok Hang 

Mak (See 2.2.4. Expression of PTEN and VHR). 

	 Luria Broth (LB) growth medium was prepared using 5g yeast extract, large 

granules (Fisher Scientific, UK), 10g bacto-tryptone, large granules, microbial media, 

(Fisher Scientific, UK), 10g NaCl (Sigma Aldrich, US), pH 7.5, made up to 1L with 

high quality distilled water, autoclave). 100mg/mL ampicillin sodium salt (Sigma, US) 

was added to medium on the day of experimentation. Agar for agar plates was made 

using LB medium with the addition of 15g bacto-agar, (DIFCO, US) to make 1L, 

autoclave). Agar was microwaved (Pacific™) then cooled to 500C in a water bath 

(Clifton) before the addition of 100mg/mL ampicillin sodium salt (Sigma, US) and 

pouring into petri dishes.  

 

2.2.3.1. Generating competency in E.coli cells 

 

DH5α E.coli cell transformation competency was achieved via rubidium chloride 

(RbCl). A 5mL LB medium culture of E.coli cells was grown for 24hr. The 5ml LB 

culture was then used to inoculate a 250mL culture, which was grown at 370C to an 

Optical Density (OD) of 0.5 Absorbance (A). The 250mL culture was then cooled on 

ice for 15min then transferred to centrifuge bottles. The culture was centrifuged for 

10min at 4.5K RPM in JSA J-20 rotor (Beckman) and cells formed pellets. The 
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supernatant was discarded and the pellet was resuspended in 30mL of Tfb1 rubidium 

chloride medium (RbCl 100mM, manganese chloride MnCl2 – 4H2O 50mM, potassium 

acetate 30mM, CaCl2-2H2 10mM, Glycerol 15% final volume, H2O 500mL final 

volume). Cells were put on ice and then centrifuged for 5min at 4K RPM. The pellet 

was then resuspended in 6ml Tfb2 medium on ice (0.2M 3-(N-morpholino) 

propanesulfonic acid (MOPS) (Good et al., 1966) 10mM, RbCl 10mM, CaCl2-2H2 

10mM, Glycerol 15% final volume, 400mL final volume). 0.2M MOPS buffer (20.93g 

MOPS in 500mL H2O, pH6.5, filter sterilise). Cells were then aliquoted on dry ice and 

stored at -800C until use. 

 

2.2.3.3. Transformation 

 

Competent DH5α E.coli cells were transformed with pGEX-4T1 plasmids containing 

PTEN or VHR attached to a glutathione-S-transferase with a linker region, ampicillin 

resistance and an IPTG inducible promoter (Gift from Doctor Woscholski’s laboratory, 

Imperial College London) (see Table 1, Figure 9, Appendices 4, 5, 6.). 100μL 

competent cells and 1μL of miniprepped plasmid were used for transformation. The 

plasmid DNA was mixed with the competed cells and left on ice for 30min. The 

competent cell and plasmid DNA containing suspension was heat shocked at 420C for 

90sec using a heat block (Grant). The transformed cells were then cooled on ice for 

2min. Next 0.5mL of LB medium was added to transformed cells to rescue them. The 

transformed cells were then incubated at 370C for 1hr in MAXQ 8000 incubator 

(Thermo Scientific) at rotation speed 180. Transformed cells were plated onto agar 

plates containing ampicillin (10μg/mL) plates were then sealed and then incubated at 

370C for 16hr. 
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2.2.4. Expression of PTEN and VHR 

 

Sufficient quantities of PTEN and VHR proteins were required for in vitro studies. The 

pGEX vector system (Figure 9.) with ampicillin resistance and an IPTG inducible 

promoter for the gene of interest was used, and DH5α E.coli were used as previous 

experimental data and experiment optimisation by Doctor Lok Hang Mak had shown 

that the pGEX vector system with DH5α E.coli had produced sufficient protein for 

assaying and additional studies (communication with Doctor Lok Hang Mak, Imperial 

College London; data not shown).  

 Transformed DH5α E.coli cells plated on LB agar with 100μg/mL of ampicillin 

were taken out of the plate incubator. Several colonies were picked using a pipette tip. 

Next 10mL LB Broth mini-cultures were grown with pipette tip with colonies inserted 

into LB Broth with 100μg/mL of ampicillin. The mini-cultures were grown for 16hr at 

370C in a MAXQ 8000 incubator (Thermo Scientific) at rotation setting 180. After 16hr 

the 10mL mini-culture of transformed E.coli cells were used to inoculate a 1L growth 

culture in 2L shaker flasks (Fisherbrand). The growth medium consisted of LB 

medium with 100μg/mL of ampicillin. The 1L growth cultures were grown at 370C until 

an Optical Density (OD) of 0.5-0.6 Absorbance (A) was reached. OD was measured, 

at multiple timepoints, using 1mL fraction of growth culture on a UV/VIS 

spectrophotometer (PerkinElmer™ instruments, PTP-6 Peltier System with Perkin 

Elmer precisely, Lambda 35 UV/VIS Spectrophotometer, US) 

at an absorbance of 600nm, with H2O and LB medium as blanks. When the OD 

reaches 0.5-0.6A, 1mL 1M per 1L Isopropyl beta-D-1-thiogalactopyranoside (IPTG) 

was added to induce expression of the protein of interest. At the point of IPTG 

induction, the cultures were incubated at 230C for 24hr in a shaking incubator (MAXQ 

8000, Thermo Scientific) at 180-rotation speed. After 24hr the OD of the cells was 

measured by spectrophotometer. The cultures were then transferred to 1L centrifuge 



- 84 

bottles to fit FIBERLite® F8-61000y rotor (Piramoon Technologies Inc.). Cultures 

were centrifuged for 30min at 1.9K RPM with refrigeration at 40C in Sorvall 

EVOLUTION RC centrifuge (Thermo Scientific). The supernatant was discarded 

keeping the cell pellets. 20mL of 20mM TRIS (Trizma® base, Sigma Aldrich, US) 

including 50μL protease inhibitor cocktail (Protease Cocktail set III EDTA-free, 

CALBIOCHEM®, US) was added to cell pellets to protect expressed protein and be 

able to further concentrate pellet in Oakridge centrifuge tubes (QuickSeal™, 

Beckman) using a JA-20 J series rotor (Beckman) and an Avanti® J-E centrifuge 

(Beckman coulter) at 10K RPM, for 15min at 40C. The supernatant was discarded and 

the pellet was stored at -200C until purification. 

 

2.2.5. Bradford assay for the determination of protein concentration  

 

Bradford assays were used to determine the concentration of proteins before 

oxidation, OMFP assay, arraying, array probing and after filtration and concentration. 

Bradford assay assays were carried out using the Thermo Scientific Coomassie Stain 

Plus Bradford Assay protocol (http://www.piercenet.com/instructions/2160229.pdf) in 

addition to the Coomassie Plus™ Protein Assay Reagent kit (Thermo Scientific, US). 

The microtiterplate version of the protocol was carried out to minimise protein usage. 

The BSA protein standards and experimental samples were analysed in triplicate 

wells, and 5-fold dilutions of the protein were carried out to find values in the middle of 

the BSA standard curve. The BioTek® plate reader (Biotek, UK) was used to analyse 

the wells. Protein concentration was found by creating a standard curve from the BSA 

protein samples, finding the equation for the values plotted, and then rearranging 

equation to find the unknown (X). 
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2.2.6. Purification of PTEN and VHR 

 

Pellets of transformed DH5α E.coli cells containing pGEX-4T1 vector including gene 

of interest and expressed protein of interest were defrosted on ice. A cell lysis solution 

was prepared with 2mg/mL Lysozyme, 1μL /1mL protease inhibitor cocktail (Roche), 

10 μL/1mL Triton-X 100 (BDH, UK), 50mM TRIS (Trizma® base, Sigma Aldrich, US), 

2mM chelating agent Ethylenediaminetetraacetic acid (EDTA, BDH limited, UK) 2mM 

of reducing agent DL-Dithiothreitol (DTT, Fisher Chemical, US). 50mL of lysis solution 

was added to pellets per 1L of culture that formed pellet. The pellet in lysis solution 

was stirred with a magnetic stirrer in a glass beaker for 1hr in a cold room.  

 5mL of Glutathione Sepharose™ 4B column beads (GE Healthcare), for affinity 

purification, were added to a gravity column. Glutathione Sepharose beads consist of 

reduced glutathione covalently coupled to Sepharose® beads via a 10-carbon spacer 

arm. The column beads were equilibrated with 60mL of equilibration buffer consisting 

of 50mM TRIS, 140mM NaCl and 2.7mM KCl (Fisher Scientific), pH 7.4. The lysed 

cell solution was homogenised X10 using manual homogeniser apparatus to suspend 

the protein in solution. Next the lysed and homogenised sample was sonicated. 

Experiments carried out based on optimised protocol by Doctor Lok Hang Mak 

(Imperial College London). Sonication of samples was performed using a UP50H, 

ultrasonic processor (Hielscher ultrasound technology). Sonication was performed on 

ice. The cell and protein suspension was sonicated for 30sec, and then rested for 

1min X10 cycles. The sonicated suspension was then spun down in a centrifuge in a 

JA-20 rotor at 15K RPM, for 60min at 40C. Samples of pre- and post-sonication were 

stored in freezer, along with the pellet from the centrifugation for SDS-PAGE and 

Coomassie staining analysis. The supernatant after centrifugation which contained 

the soluble protein was filtered in a 0.45uM syringe filter tip (Millex® Syringe-driven 
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filter unit, 0.45uM, Millipore, Ireland). A sample was taken post-filtration for SDS-

PAGE and Coomassie staining analysis.  

 The filtered supernatant was then loaded onto the Glutathione Sepharose™4B 

column and slowly gravity filtered. The column was then washed with a series of wash 

buffers including surfactant in the first wash, with increasing amounts of salt. The 

column was first washed with 25mL of 50mM TRIS, 140mM NaCl, 2.7mM KCl, 1% 

Triton X-100, 2mM DTT, and pH 7.4. The column was then washed with 40mL 50mM 

TRIS, 140mM NaCl, 2.7mM KCl, 2mM DTT and pH 7.4. The column was finally 

washed with 40mL of 50mM TRIS, 500mM NaCl, 2.7mM KCl, 2mM DTT and pH 7.4. 

The wash buffer was then collected for analysis with SDS-PAGE and Coomassie 

staining for presence of protein in flow through. An elution buffer of 50mM TRIS, 

20mM L- glutathione reduced (Sigma Aldrich, US), 250mM NaCl and 2mM DTT at 

pH7.4 was then added to the column, 2mL of this was allowed through the column 

then the column cap was securely fastened and the elution buffer was incubated on 

the column with the protein and beads overnight in the cold room. 

 After overnight cold room incubation the protein was eluted by collecting it into a 

suitable vessel. The protein was then concentrated if less then 1mg/mL as 

concentrated protein meant less additional compounds at final concentration in the 3-

O-methylfluorescein phosphate (OMFP) activity assay, and smaller volumes for 

oxidation experiments. 50% glycerol (Analytic reagent grade, Fisher Chemical, UK) 

was then added to the protein and the protein was stored at -800C.  

 The volume of the protein solution was recorded, and then a Bradford assay 

(Thermo Scientific, US) of protein concentration determination was performed.  

 To assess protein activity an OMFP assay of phosphatase activity (See 2.2.11. 

OMFP assay of phosphatase activity) was performed. Following the Bradford assay 

estimation of concentration of the protein the specific activity (nMole/min/mg protein) 

was calculated. The specific activity of that protein batch was then used to compare 
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activities between batches. The specific activity of a batch was also used to compare 

to the specific activity of the same batch after subsequent concentration, freeze-thaw 

cycles and filtrations when comparing treated (oxidised) versus control samples.  

 In order to ascertain the purity of the sample an SDS-PAGE and Coomassie stain 

were performed. Adequate purity of the sample was inferred by the presence of a 

single band on the gel. The identity of the protein could also be inferred by the size of 

the band relative to the protein ladder marker (PageRuler™ Plus, Fermentas), 

although this would be confirmed later by MS/MS analysis and Mascot software 

protein predictions. Adequate purity was required for attaining the specific activity of 

the protein, and for array interactions. The collected samples from all the stages of 

the purification procedure were also run via SDS-PAGE and Coomassie stained to 

assess whether protein produced was transferred onto the column, had bound to the 

column, and had eluted appropriately. The gel was kept to test fragments from 

fractions and stages of purification.  

 The Glutathione Sepharose™ 4B column material was regenerated after each 

use. The column was first washed with 10mL of 0.1M TRIS, 0.5M NaCl and pH 8.5 

wash solution. The column was then washed with 10mL 0.1M sodium acetate (BDH, 

UK), 0.5M NaCl, pH 4.5 wash solution. These wash steps were then repeated twice in 

an alternating fashion. Next the column material was washed with 10mL of 6M 

chaotrope guanidine hydrochloride (Sigma Aldrich, US), and then immediately 

followed by a wash with 30mL of TRIS column equilibration buffer. Next 15mL of 70% 

ethanol (Fisher Scientific) was used to wash the column, immediately followed by a 

wash with 50mL of column equilibration buffer. To store the Glutathione Sepharose™ 

4B column, 15mL of 20% ethanol was added, 10mL was allowed to flow through the 

column, then the column was closed and the wet column was stored in the cold room. 
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2.2.7. SDS-PAGE and Coomassie staining 

 

2.2.7.1. SDS-PAGE 

 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) separates 

proteins by electrophoretic properties, and thus proteins with different masses 

separate in space when ran on an SDS-PAGE gel.  SDS-PAGE was used as part of 

multiple protocols, including in-gel digest and analysis of protein purity. 

The BIORAD SDS-PAGE gel tank system was used (BIO RAD, US) in 

combination with a power pack (Consort, E844). 12% acrylamide resolving gels were 

made with 4.2mL H2O, 2.5mL 1.5M TRIS-HCl pH8.8, 3.1mL 40% acrylamide/bis 

37.5:1 (Sigma, US) and 100μL 10% sodium dodecyl sulphate. 

(SDS), 50μL 10% oxidising agent ammonium persulfate (electrophoresis grade >= 

98% pure, Sigma, US) and 20μL TEMED ((NNN’-N’ Tetramethylethylenediamine, 

BDH Limited, UK) were used added to catalyse polymerisation of acrylamide. 6.7% 

acrylamide stacking gels were made using 980μL H2O, 440μL 1.5M TRIS-HCl pH6.8, 

300μL 40% acrylamide/bis 37.5:1, 18μL. SDS gel running buffer was made as a 10X 

solution (30g TRIS, 144g glycine (Fisher Scientific, UK), 100mL SDS, final volume 1L 

made up with H2O) and diluted to 1X before running gel. 

 10μL samples were mixed with 10μL Sample Buffer and Laemmli 2X Concentrate 

(Sigma Life Science, US) then boiled on a heat block for 10min and loaded into wells 

in gel. 10μL of PageRuler™ Plus Prestained Protein Ladder (Thermo Scientific, US) 

was loaded as visible marker including proteins of known molecular weights. Gel 

electrophoresis was run at 120V until visible loading buffer dye front had reached the 

bottom of the gel, thus maximally separating out proteins on gel by their 

electrophoretic qualities. 
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2.2.7.2. Coomassie staining 

 

For in-gel digestion and assessment of protein purification SDS-PAGE gels were 

stained with Coomassie stain solution made with 0.5g Coomassie dye per 100mL of 

45% methanol (Fisher Scientific), 45% H2O and 10% acetic acid. 

 Gels were stained for 12hr and then destained using a destain solution consisting 

of 45% methanol, 45% H2O and 10% acetic acid. This was done on a rotational 

shaker plate (Mini orbital shaker, SSM1, Stuart®). An appropriate amount of stain and 

destain was used to fully submerge the gel. Gels were destained until bands 

appeared and could be resolved with low noise from the background. Gels were then 

photographed using the G:BOX (SYNGENE) fluorescence and natural light gel 

photography device and associated software. 

 Densitometry on Coomassie stained SDS-PAGE gels was performed by using 

ImageJ (https://imagej.nih.gov/ij/). A rectangle selection tool was used to create 

blocks around either Coomassie stained gel bands or around the complete SDS-

PAGE gel lane, where controls for non-stained areas were selected from empty SDS-

PAGE gel lanes. ImageJ profile plots were created for each sample and background 

noise was cut off manually using the ImageJ ‘straight line selection tool’ where profile 

plots do not reach the baseline. Next the ImageJ ‘wand’ tool was used to select the 

area inside the profile plots representing the densities from the gel bands and lanes, 

and the ImageJ ‘label peaks’ tool was used to label each peak with a percentage of 

the total size of all the highlighted peaks that represent gel band and lane 

densitometry. The percentage densitometry compared to the control band or lane was 

then calculated. 

 

 

 



- 90 

2.2.8. Filtration 

 

Illustra™ NAP™-5 columns (GE Healthcare, UK) were used to buffer exchange 

protein samples (PTEN-GST, VHR-GST) into non-reducing buffer for subsequent 

oxidation and OMFP assay. The standard Illustra™ NAP™-5 column protocol was 

followed (http://www.gelifesciences.co.jp/tech_support/manual/pdf/17085301.pdf). 

Protein was filtered into phosphate buffer (50mM, pH7.4) 

 Slide-a-Lyzer dialysis cassette (Thermo Scientific, US) membrane filtration was 

also used to buffer exchange protein samples (PTEN-GST and VHR-GST) into non-

reducing buffer.  The standard Slide-a-Lyzer protocol was followed 

(http://www.piercenet.com/instructions/2160729.pdf), Protein was filtered into 

phosphate buffer (50mM, pH7.4) Microcon centrifugal filter devices (Millipore, US) 

were also used for protein ultrafiltration.  

 

2.2.9. Oxidation 

 

Protein was oxidised over a range of oxidant concentrations. The amount of 

protein added was determined by the amount needed for the downstream reactions.  

Reducing agents were removed prior to oxidation via filtration. Filtration was 

performed at 40C. 

The amounts of OMFP assay protein used were previously determined via 

optimisation by Doctor Lok Hang Mak (Imperial College London). Protein amounts to 

for digestion experiments to yield sufficient protein for downstream experiments 

where experimentally determined by Oxidative Stress Group, Aston University. 

Protoarray probing protein amounts required for experimentation were determined 

experimentally by the Invitrogen Protoarray Human Microarray standard protocol in 

combination with Dynamic Bioarray silicon dioxide chip technology which determined 
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liquid volumes of sample. Values of protein concentration are for proteins as fusion 

constructs with GST. 

20% Trichloroacetic acid (TCA, Sigma-Aldrich, US) kept at 40C was added 

(incubate oxidation reaction on ice for 20min with TCA), then a centrifugation step 

(5min, 13K RPM), then the pellet was washed with 1ml ice-cold acetone and then re-

pelleted. The pellet was span until dry using a vacuum centrifuge. An alternative 

reaction stopping method of adding excess L-Methionine (Sigma, US) was used with 

Lysozyme to co-optimise reaction stopping and mass spectrometry sequence 

coverage. Protein that was to be assayed in the OMFP assay was not stopped, but 

reactants would have been diluted in OMFP master mix. 

 

2.2.9.1. Hypochlorous acid (HOCl) oxidation  

 

Protein samples were treated with Hypochlorous acid (HOCl, Sigma-Aldrich, US), 

incubating at room temperature for 1hr with a range of concentrations and molar 

ratios (See 3.4.1. Oxidation of PTEN-GST with HOCl and sin-1 generated 

peroxynitrite and 3.4.5 Oxidation of VHR-GST with HOCl, sin-1 generated 

peroxynitrite and tetranitromethane), and was adapted from Mouls et al (2009).  

 HOCl may react with amino group side-chains, including the chlorine from the 

HOCl displacing a hydrogen (Dychdala, 1991). 

As HOCl degrades over time when stored at 40C, in order for an accurate 

molar ratio of oxidant to protein oxidation to be carried out, HOCl stock which varied in 

concentration over time was regularly empirically determined on a UV/VIS 

spectrophotometer (PerkinElmer™ instruments, PTP-6 Peltier System and Perkin 

Elmer precisely, Lambda 35 UV/VIS Spectrophotometer, US) at 292nm wavelength.  

Phosphate buffer (50mM, pH7.4) was used as a buffer for the oxidation as 

TRIS buffer has a primary amine that reacts with HOCl (Fu et al, 2001).  
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2.2.9.2. 3-Morpholinosydnonimine (SIN-1) oxidation 

	
Samples were treated with sin-1 (Sigma-Aldrich, US) incubating at 250C using a 

heating block (Grant) for 1hr with a range of concentrations (protocol from personal 

communication with Doctor Corinne Spickett and Doctor Karina Tveen Jensen, 

Oxidative Stress Group Aston University). Phosphate buffer (50mM, pH7.4) was used 

for sin-1 oxidation.  

 Kirsch et al (1998) state that sin-1 releases nitric oxide and superoxide, and is 

used as a source for peroxynitrite. Peroxynitrite is an oxidant formed in the diffusion-

controlled reaction of superoxide and nitrogen monoxide.  

 

2.2.9.3. Tetranitromethane oxidation 

 

Samples were treated with tetranitromethane (Sigma, US) incubating at 250C using a 

heating block (Grant, UK) for 1hr as per sin-1 oxidation. Ammonium bicarbonate 

(10mM, pH 7.8) was used for tetranitromethane oxidation which was the buffer used 

by Ghesquiere et al (2009).Tetranitromethane was used for increased nitration of 

tyrosyl residues, through the nitration of phenol groups to form 3-nitrotyrosine 

(Sokolovsky, Riordan, & Vallee, 1966).  

 

2.2.10. Digestion protocols 

 

In order to detect protein identity, and the identity and abundance of modifications by 

bottom-up MS based MS/MS proteins need to be fragmented to sizes that can be 

ionized by electrospray ionisation (ESI), and be manipulated in the quadrupoles. Two 

digestion protocols where used to digest protein, in-gel digestion and in-solution 

digestion.  
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In-gel digestion can be performed with less protein sample, with increases in 

the effective concentration and Km of the trypsin digestion enzyme, but is subject to 

selection bias as only the protein that is present in the band that is cut out and 

analysed is detected by subsequent MS/MS analysis. As modification of protein 

structures by oxidation, nitration and chlorination may include changes in mass by 

addition of molecules to amino acid side chains, fragmentation and aggregation, 

these changes may affect the electrophoretic properties of sub-populations of protein 

molecules which may or may not be selected for by the cutting out and digestion of a 

Coomassie stained gel section.  

 

2.2.10.1. In-gel digestion  

 

Load and run purified, oxidised protein samples and controls onto an SDS-PAGE gel 

in 2X loading buffer. Next Coomassie stain the protein in the SDS-PAGE gel (See 

2.2.7.2. Coomassie staining). 

 Coomassie stained sample bands were excised from gel lanes with a scalpel. Gel 

pieces were dissected further into smaller segments. The gel pieces were then 

transferred to a microcentrifuge tube. Gel pieces were washed in 500μL of 100mM 

ammonium bicarbonate with (Mini orbital shaker, SSM1, Stuart®) shaking for 30min. 

Next the wash solution was pipetted off and discarded. Then 500μL of 50% 

Acetonitrile in 100mM ammonium bicarbonate was added, submerging the gel pieces, 

and then washed with rotational shaking (Mini orbital shaker, SSM1, Stuart®) for 

30min. Next the wash solution was discarded. 

A reduction step with 100mM and 10μL 45mM DTT (Sigma) was then 

performed, in order to chemical reduce any cysteine disulphide bridges that may form 

between and within denatured protein strands. The incubation of the gel pieces with 

DTT was done at 600C for 30min using a heating block (Grant). 
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Next an alkylation step was performed to alkylate the free cysteines 

carbamidomethyl cysteine so that cysteine disulphide bridges do not reform. Note that 

this prevents the detection of cysteine disulphide bridges in CX5R proteins such as 

PTEN, which has a redox sensitive cysteine disulphide bridge nucleophile in its active 

site. Other, further oxidised forms such as sulphinic acid (dioxidised cysteine side 

chain) and sulphonic acid (trioxidised cysteine side chain).  

The alkylation step was performed using 100mM iodoacetamide (Sigma, US) 

incubation at room temperature for 10min followed by incubation in the dark for 30min. 

Afterwards the supernatant was discarded. 

 The gel pieces were then washed in 50% acetonitrile, 100mM ammonium 

bicarbonate for 30min with rotational shaking (Mini orbital shaker, SSM1, Stuart®) 

Next the gel pieces were dried by the addition of 50μL acetonitrile for 10min. A 

solution of trypsin was then added to digest the protein. Trypsin was added in excess 

to protein (1:50) in a 25mM ammonium bicarbonate. The gel pieces were covered and 

protein was heated at 370C on a heating block for 12hr. 

 After 12hr samples were taken off the heat block and centrifuged for 5min at 13K 

RPM to collect liquid at bottom with protein and gel pieces. Transfer liquid into a new 

microcentrifuge tube. Then add 20μL 5% Formic acid to gel pieces, and then incubate 

for 20min at 350C. Next 40μL acetonitrile was added to gel pieces and then they were 

incubated at room temperature for 20min. Next the samples were centrifuged (5min, 

13K RPM). All liquid was then transferred to the centrifuge tube containing the 

collected digested protein sample. Next a drying step was performed to the digested 

protein sample using a Concentrator plus vacuum centrifuge (Eppendorf) and 

samples were stored at -200C until use in MS experiments. 
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2.2.10.2. Double digestion 

 

In order to improve sequence coverage, and/or total between runs sequence 

coverage, a sequential double digestion protocol was implemented with two digestion 

enzymes. The enzymes were selected after the ExPASy Peptide Cutter in silico 

digestion software (http://web.expasy.org/peptide_cutter/) suggested a suitable 

candidate peptide (NGRVLVHCR) given the requirements of peptides of a suitable 

length and mass for detection via MS. The GluC/AspN (Sigma-Aldrich, US) procedure 

for the double digest used in investigation of VHR sequence coverage and active site 

coverage was adapted from Ragan (2002). Followed in-gel digestion protocol 

(2.2.10.1. In-gel digestion) for first digest, with the following adaptations of 300ng 

GluC in 100mM ammonium bicarbonate. The second digestion was an in-solution 

digest with sample incubated overnight at 370C with 80ng AspN added to 2μL of 

100mM ammonium bicarbonate. 

 

2.2.11. OMFP assay of phosphatase activity 

 

The 3-O-methylfluorescein phosphate (OMFP) assay of phosphatase activity was 

used as the primary method of determining protein activity of a known amount of 

PTEN or VHR protein. The OMFP substrate undergoes cleavage to OMF + P via 

phosphatase activity and OMF fluorescence intensity is detected.  

 Firstly an SDS-PAGE and Coomassie staining analysis of protein was performed 

to determine the purity of the sample by visual inspection of the Coomassie stained 

proteins for presence of any Coomassie-binding moieties not of the expected size 

(See 2.2.7. SDS-PAGE and Coomassie staining), from which to calculate a specific 

activity of the protein construct rather than just of a certain concentration of protein 
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containing enzymatic activity.  A Bradford assay (Thermo Scientific, US) was 

performed to calculate the concentration of protein in sample. 

 The OMFP reagent was prepared by addition of 3-O-methylfluorescein 

phosphate cyclohexylammonium salt (Sigma-Aldrich) powder to dimethyl sulfoxide 

(DMSO, Fisher BioReagents®, US), fresh on the day of experimentation (0.0025g in 

250μL DMSO). OMFP DMSO solution was mixed using a TopMix FB15024 vortex 

mixer (Fisher Scientific), and then sonicated using a sonicating water bath (Ultrawave 

limited, UK) for 30min.  

 Master mixes contained OMFP assay buffer (TRIS 100mM, pH 7.0) 1mM DTT, 

protein for four wells and the final volume of the master mixes is 600μL.  

 The experiment was carried out in white 96 well plates using a Spectra MAX 

GEMINI XS Fluorescence plate reader (Molecular Devices). 

 and associated Softmax Pro® Software for Spectra MAX GEMINI XS Fluorescence 

plate reader. Reactions were carried out in triplicate with blanks containing the OMFP 

assay buffer and reaction mix but without protein. In order to start the reaction 50μL of 

reaction mix (TRIS 100mM, 2μL DMSO OMFP solution) was added to the wells 

containing 150μL of master mix, and the reaction was recorded via the plate reader 

immediately following the addition of the OMFP. The reaction kinetics were monitored 

over the course of 20min. 

 Usage of plate reader and plate reader software including optimisation of 

settings. The maximum relative fluorescence unit (RFU) threshold was increased so 

that the readings would not saturate (increased to 40K RFU threshold) and sensitivity 

of reading was reduced to low to prevent background noise fluctuations. Plate reader 

settings were optimised for the concentrations of protein and the activities of the 

particular proteins used. A maximum amount of readings, and thus minimal time 

between reading intervals was used for reaction monitoring and kinetics. 
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 In order to calculate the specific activity of the protein sample, a 3-O-

Methylfluorescein (OMF) standard curve was produced using OMF powder (Apollo 

Scientific Limited). 

 The specific activity of the protein was used to determine the quality of protein 

expression and purification, the effects of buffers and filtration methods, the effects of 

oxidation treatments and to ensure that the protein is in an active conformation for 

protein-protein interaction microarray arraying and probing. 

 

2.2.12. Liquid chromatography coupled mass spectrometry 

	
    2.2.12.1. TOF MS/MS	

 

 An ABSciex quadrupole time of flight (QTOF) 5600 time of flight analyser mass 

spectrometer	(ABSciex,	Warrington,	UK)	was used to perform experiments.  

 20μg protein samples were resuspended up to a volume of 30μL with Eluent A 

(98% acetonitrile, 2% H2O, 0.1% formic acid) prior to LC-MS analysis, which allowed 

for technical replicates or usage for a different MS experiment as 10 μL of 

resuspended sample was used per MS experiment. Eluent A and Eluent B (98% H2O, 

2% acetonitrile, 0.1% formic acid) were used in the HPLC system to separate the 

peptides.  

 The custom on-line system included a Dionex Ultimate 3000 (Dionex, Camberley) 

High-performance liquid chromatography (HPLC) system on-line to QTOF 5600 to 

separate peptides connected via a New Objective PicoTip emitter (FS360-20-10-N, 

Woburn, MA, USA). The peptides were captured and desalted on a C18RP pre-

column (C18 PepMap™ 5 μm, 5mm x 0.3 mm i.d. Dionex, Bellefonte, PA, USA). 

Peptides were separated on a C18 nano-HPLC column (C18 PepMap™ 5 μm, 5mm x 

0.3 mm i.d. Dionex, Bellefonte, PA, USA) using a gradient elution running from 2% to 

45% aqueous acetonitrile (0.1% formic acid) in 60min and a final washing step 
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running from 45% to 90% aqueous acetonitrile (0.1% formic acid) in 1min. The 

system was then washed with 90% aqueous acetonitrile (0.1% formic acid for 5min 

and then equilibrated with 2% aqueous acetonitrile (0.1% formic acid) (See Appendix 

7). Chromeleon Xpress software was used for controlling the Dionex Ultimate 3000 

HPLC system and Analyst® TF 1.5 software (ABSciex, Warrington) was used to 

control and record the QTOF. The computer controlling the online system was a DELL 

Precision T3500 with Intel® Xeon® Inside™. 

Ionisation of the peptides as achieved with a spray voltage set at 2.4KV, a source 

temperature set at 150ºC, declustering potential set at 50V and a curtain set at 15. 

Survey high resolution. The MS method was run in independent data acquisition (IDA) 

with dynamic exclusion for 20s, 250ms acquisition time and rolling collision energy 

following from Mouls et al (2011) with a duration setting of 60min per sample, 

synchronization mode set to LC Sync, and the Original Configuration set to 

‘instrument signature’ TripleTOF 5600, and ‘ion source’ Nanospray, and ‘device 

methods’ set to Dionex Chromatography MS link. The scan type was set to TOF MS, 

accumulation time to 0.200031s, polarity was set to positive. For the period, the cycle 

time was set to 2.2503, period was set to 1, cycles were set to 1600 and delay time 

was set to 0sec. The IDA experiment was set to scan in positive ion mode for TOF 

Masses (Da) of minimum of 350 and maximum of 1250. For ‘advanced MS’ settings, 

Analyst was set to ‘Auto Adjust with mass’, with a Q1 transmission window of Mass 

(Da) 330.0000, 100%, with an acquisition parameter of ‘time bins to sum’ of 4. TOF 

extraction parameters were set to settling time (ms) of 0 and pause between mass 

ranges (ms) of 1.028. Time-to-digital converter channels 1,2 3 and 4 were checked. 

Switch criteria for Survey scan for IDA were set to ‘for ions greater than 350m/z, for 

ions smaller than 1250m/z, with a charge state of 2 to 5, which exceeds 250 counts 

per second and excludes isotopes with 4Da. Mass tolerance was set to 50mDa, and 

maximum number of candidate ions to monitor per cycle was set to 10. Exclude 
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former target ions was set to for 40sec. Raw data files were converted to .mgf files via 

PeakView® software (http://www.absciex.com/products/software/peakview-software). 

The mass spectrometer was calibrated by disconnecting the HPLC from the 

needle and connected to a syringe pump (Harvard Apparatus, MA, US) containing 

tuning solution for the AB SCIEX TripleTOF™ System (AB SCIEX, UK). The spray 

was then started via the Chromeleon Xpress software and the spray was checked via 

the needle camera on the ABSciex 5600. The spray was left until stabilisation. The 

829 Dalton peak from the tuning solution (AB SCIEX, UK) was optimised to be 104 

signal intensity via Analyst® TF 1.5 software. The total ion chromatogram (TIC) was 

optimised to be 106 signal intensity. The accumulation time for the calibration was set 

to 1sec, the period duration to 5min, ion source voltage to 2400, ion source gas 1 

was set to 12 and ion source gas 2 was set to 0. The TIC of the positive TOF was 

selected for TOF calibration with the ALILTLVS reference tuning solution. The calibration 

was calculated for the spectrum. The calibration was also performed for MS/MS product ions 

with high sensitivity selected and a collision energy of 50, then the needle was reconnected to 

the HPLC. 

 The position of the needle was moved and optimised per run, and calibrations 

were optimised for each run and needle. Replicates were run in serial in a single 

batch where possible, which was optimised for analysis with Progenesis QI for 

proteomics software (Nonlinear Dynamics, UK) for optimised Progenesis file 

alignments. The source and needle were optimised for the HPLC Dionex Ultimate 

3000 HPLC system and for the properties of the specific independent data 

acquisition run.  

2.2.12.2. Targeted ion scan 

	
The precursor ion scan experiment scanned for selected product ion masses which 

had either been previously detected in a standard MS/MS experiment or calculated 
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based on predicted mass and charge if unable to detect them or not present in 

standard MS/MS experiment results.  

 The acquisition method was set to a duration of 60min, Original Configuration 

was set to Instrument signature: TripleTOF 5600, Ion source was set to: Nanospray 

and Device methods were set to Dionex Chromatography MS link. The scan type was 

set for TOF MS, the accumulation time: 0.2000031, TOF Masses (Da) were set to 

min:350 and max: 1250. IDA was unchecked. Polarity was positive. The period had a 

cycle time of 1.8503sec, cycles set to 1946, period 1 and a delay time of 0sec. 

Analyst was set to ‘Auto Adjust with mass’, with a Q1 transmission window of Mass 

(Da) 330.0000, 100%, with an acquisition parameter of ‘time bins to sum’ of 4. TOF 

extraction parameters were set to settling time (ms) of 0 and pause between mass 

ranges (ms) of 1.028. TDC channels 1,2 3 and 4 were checked. 

 For the product ion scan experiments scan type Product Ion was selected, TOF 

masses (Da) min: 100 to max: 2000 were selected with high resolution settings. Auto-

adjust with mass was checked. The Q2 transmission window was set to 50% 80(Da) 

and 50% 230 (Da), and resolution was set to ‘unit’.   

 

2.2.12.3. In silico identification of modified peptides 

 

2.2.12.3.1. Mascot in silico identification 

 

Mascot software 

(http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MIS) 

was run on MS raw data that had been converted to .mgf files by Peakview® version 

1.0.0.3 (ABSciex). 

 Variable modifications were searched for in groups of modifications on Mascot. 

The first modification set searched for was carbamidomethylation as a fixed 
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modification, and as variable modifications of methionine oxidation, nitrotyrosine 

oxidation, nitrotyrosine (or chlorotyrosine for HOCl treated samples) cysteine 

dioxidation, cysteine trioxidation. The second search performed was for histidine 

oxidation, tryptophan oxidation, lysine oxidation, proline oxidation and methionine 

dioxidation.  Additional modifications were searched for including allysine, tryptophan 

dioxidation and tryptophan nitration. Error tolerant search was also performed after 

targeted searches as an unbiased and due diligence approach to check for other PTM 

modifications that may have occurred that we did not identify as targets to search for.  

 For Mascot protein database settings the SwissProt non-redundant database was 

used as a database of protein sequences to search against. For Mascot taxonomy 

settings the nearest taxonomy to the protein of interest was selected, for PTEN and 

VHR this was Homo sapiens. For enzyme settings trypsin was inputted as the 

digestion method. The peptide tolerance used was +/- 0.8 Da, so as have a tolerance 

value smaller than a hydrogen atom, peptide charges of 2+, 3+ and 4+ was used, 

MS/MS ion search was selected. All other settings were appropriate to instrument 

used and standard settings.  

 The Mascot score and protein sequence coverage for the protein was used to 

comparatively assess MS/MS runs, oxidant treatments, tryptic enzymes and oxidant 

treatment concentrations. The ‘score distribution’ window was used to assess 

‘Peptide score distribution’ for the ion score for that Mascot search that corresponds 

to a P value of p<0.05, which was noted, yet all modifications were checked on 

Mascot for their sequencing and y-ion series, in addition to searches in the raw data 

via Peakview. Rare or unexpected peptides were sequenced using de novo 

sequencing in cases where systematic manual or automated modification searching 

was performed, for experiments searching for particular peptides or modification, in 

these cases all modifications were sequenced de novo. 
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 The output retrieved from Mascot included the sequence coverage, peptide 

sequences containing the modified and unmodified residue, modifications found, 

statistical likelihood of the modification as an ion score, and retention times of the ion.  

Data was retrieved for peptides with multiple modifications, fragmentation patterns 

and charge states, and all non-modified versions. Peptides found in one search, were 

recorded to be searched for in the downstream raw data analysis of other samples, 

were that peptide may not have been detected by Mascot in that sample, and may not 

have been covered by the sequence coverage for that sample. For eXtracted Ion 

Chromatograph (XIC) the mass, charge and retention times of the peptides of interest 

(non-modified and modified intra- and inter-sample) were recorded. The search 

results for each Mascot run were also analysed for the error range and drift for quality 

control purposes. 

 The peptides predicted by Mascot were investigated using the detailed view for 

each Mascot peptide query. The Mascot sequencing graph in the ‘peptide view’ was 

used to assess whether the peaks picked by Mascot were above the noise.  Mascot 

was also used to predict the likelihood of modifications being false positives using the 

Mascot sequencing tool. Peptide sequences where checked for i) peaks that could be 

differentiated from noise ii) whether the modification was covered in the sequence by 

assessing the y ions and the extent of coverage of y ions over the peptide and 

oxidative modification/s, including continuous y ion coverage, and coverage of other 

amino acids that could also be modified with the modifications that are being 

searched for in the search parameters. 
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2.2.12.3.2. Progenesis in silico identification  

 

Progenesis LC-MS (Nonlinear Dynamics, UK) was used to search multiple replicates 

and perform in silico experiments to find the abundances of modifications 

automatically and provide statistics for the modifications. Progenesis was used in 

combination with Mascot, where modifications were predicted by Mascot and 

uploaded into Progenesis as a batch before the automated Progenesis XIC. A 

threshold was applied to the results with a cut off recommended by Mascot for the 

appropriate 0.05 significance p-value. Progenesis modifications still required manual 

validation and de novo sequencing in Peakview® version 1.0.0.3 analysis suite (AB 

SCIEX, UK). 

 Data was imported in the AB SCIEX .wiff format. All runs for varying 

concentrations and replicates were attempted to be aligned as part of an in silico 

experiment. The chromatography was then aligned in the import data window for 

similarities, artefacts and manual quality control. The imported data was then aligned. 

Samples with an alignment score of lower than 30% were removed from the 

alignment, or if a sample was empirically found to be reducing the overall alignment 

and number and quality of modifications found, it was also removed. The 

experimental design setup separated samples out by treatment condition and added 

replicates samples to the condition. Peptides were identified via the exporting of the 

mass spectra to Mascot in the ‘identify peptides’ panel and then imported as ‘import 

search results’. Statistical significance cut offs were applied in the ‘refine 

identifications’ window, with a score less than suggested by Mascot and then deleted 

from the search. A report was then generated with all features extracted from 

Progenesis for downstream data analysis. Standard settings for Progenesis were 

used, and automated alignments were used. 
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     2.2.12.3.3. Analysis of raw MS data 

 

2.2.12.3.3.1. Extracted ion chromatography  

 

The PeakView® version 1.0.0.3 analysis suite was used to analyse MS/MS data for 

each predicted ion of interest previously identified in the Mascot search, Progenesis 

or from product ion scanning. It was used to convert files to .MGF for Mascot 

searching, to assess the spread of the MS/MS data via Independent Data Acquisition 

(IDA) view. Standard options were used for Peakview analyses, with ‘peak labelling & 

finding’ with spectra default threshold of 5%, maximum charge state for peak finder of 

6, ‘centroid height percentage’ of 50%, and with chromatogram settings of area set to 

5%, noise percentage set to 40%, baseline subtraction window set to 40% and peak 

splitting factor set to 10 points. Gaussian smoothing peak integration was applied for 

purposes of presentation and not for analysis.  

 To assess the intensity of the peaks and quality of the run, the TIC view was 

used to make sure that the majority of the peptides from the on-line HPLC run have 

been ionised and detected by the MS program. 

 The total intensity within a mass tolerance window around a mass-to-charge 

(m/z) ratio of predicted peptide of interest is plotted. The size of the mass tolerance 

used was 0.2 either side of m/z value.  XICs are used to determine the intensity, and 

thus abundance, of a specific m/z ratio ion. The predicted mass, charge and time the 

ion where observed are needed to perform an XIC. By first finding the ion that has the 

closest m/z and appears at the time expected (data obtained from Mascot search), 

the peak that this ion is part of can be found, as well as the area of this peak which is 

an accurate measure of abundance of that ion.  

 The numerical area under the peak from all unmodified versions of a peptide and 

other modifications can then be compared to the area under the peak from the 
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modified peptide of interest, and a percentage abundance for each modification can 

be found. This can be performed intra-sample to determine the modification level in a 

sample, and inter-sample when comparing varying treatments or comparing to 

controls. The numerical percentage abundances where found for varying oxidising 

and nitrating agents and over varying molar ratios and plotted as a landscape to 

visualise global oxidative PTMs and their abundances. 

 For each oxidised peptide, there may also be a non-oxidised version of the 

peptide. There may also be non-standardly cleaved versions of the peptide, both 

oxidised and non-oxidised. Some versions of a peptide may be present in some 

samples and not in others. In order to perform quantitative analysis, all relevant 

versions of peptides must be searched for in all sample data files.  

  

2.2.12.3.3.2. De novo sequencing 

 

Peptides of interest were sequenced via de novo sequencing from raw data, whereby 

the masses of individual amino acids and modified amino acids are known and for a 

particular MS ion, its MS/MS fragments where analysed in a way where the 

fragmentation where analysed to see whether the fragments matched the amino acids 

and modified amino acids expected, calculated or predicted by Mascot. A full de novo 

sequencing was used as an additional check for the validity of the predicted results, 

or in cases where predictive software did not show the peptides that were expected 

for a particular protein, product ion scan or digestion that were of particular interest. 

 Peakview de novo sequencing was performed as the final in silico validation 

assessment; where the validation of modified residues within an identifiable section of 

amino acids from the peptide in question being searched for. The first de novo 

sequencing attempt for each peptide was done as a blinded experiment not knowing 

or being able to refer to the peptide sequence looking for, only having access to the 
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Peakview de novo sequencing panel and a lookup table of amino acid masses. A 

second pass de novo sequencing was then attempted with the peptide sequence 

available if de novo sequencing without knowledge of the peptide sequence was not 

possible. For de novo sequencing sequence coverage was not relevant for the 

purposes of searching for sequences not detected by Mascot.  

 

2.2.12.3.4. Computational modeling  

	
2.2.12.3.4.1 Mediator modeling  

 

The mean of the technical replicates from the VHR phosphatase percentage activity, 

micromolar concentration of treatment and total percentage modification of amino 

acid residues were used. The mean activity level is defined as the model dependent 

variable and the input is the modification level. Each amino acid is treated separately 

in the analysis, where assume the percentage modification for each amino acid is 

independent to the other amino acids. Resampling was used with n = 10000 random 

samples added, to calculate 95% confidence intervals for single mediator analysis. A 

resampling method was applied due to sample and sample variable numbers, for 

attainment of statistical significance (Based on communication with Doctor Alexis 

Boukouvalas, Aston University School of Engineering and Applied Science). 

 For multiple mediator modeling a forward effect is calculated which captures the 

effect of the first mediator on the second mediator with the total indirect effect being 

the total effect of the first and second mediators minus the relationship between the 

percentage phosphatase activity and the treatment molarity. Resampling was used 

with n = 5000 random samples to calculate 99% confidence intervals for the multiple 

mediator analysis.  
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2.2.13. Protein-protein interactions 

 

2.2.13.1. Arraying protein and antibody spots onto substrate using 

sciFLEXARRAYER S3 

	

Arrays were spotted with antibodies and proteins for several uses including testing 

and optimising antibody-protein interactions, protein-protein interactions, oxidised 

protein-protein interactions, as well as testing biochips for probing and incubation 

(Dynamic Bioarray).  

 Arrays were spotted using sciFLEXARRAYER S3 (Scienion AG, Germany). 

Spots were arrayed in 10-by-10 grids with 4-by-8 blocks of grids. Each block had an 

identical layout (Figure 10.) The spotting pattern used enabled multiple replicates of 

the same experiment to be spotted in parallel as well as enabling positive and 

negative controls and different spotting and probing concentrations and treatments to 

be applied. The spotting pattern also fitted the Dynamic Bioarray biochips used which 

either had one hydrophilic chamber that covered all blocks and grids (Figure 10), or 

one individual hydrophilic chamber per block (Figure 11). The sciFLEXARRAYER 

software and hardware was used as recommended in the Scienion S3 Quickstart 

Guide and Operations Manual obtained with the sciFLEXARRAYER.  
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Figure 10. Array spotting layout schematic  
a) Arrays where spotted in a 2-by-8 grid pattern onto substrate b) Array spots were 
spotted in 10-by-10 blocks in each 2-by-8 or 2-by-12 grid pattern. 2-by-8 pattern 
shown in schematic. b) is a close-up view of a single section of the 2-by-8 grid pattern 
in a). 

 
 
 
 

 

a) b) 
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Figure 11. Dynamic Bioarray chip configurations  
a) Multi-well Dynamic Bioarray chip b) Single well Dynamic Bioarray chip. 
(See protocol usage in 2.2.13.2. Protoarray probing for antibody-protein, 
protein-protein and protein-peptide arrays using Dynamic Bioarray biochip 
and lifterslip technologies) 
 
 

Positive and negative controls were spotted on arrays in a similar block design to 

Protoarray® with positive and negative controls at the beginning and end of each 

block. Positive controls where antibodies with fluorescent probes (Molecular Probes, 

Cell Signalling Technologies). 

 Negative controls included PBS and a negative control protein Albumin, from 

bovine serum (BSA, Sigma, US) or VHR-GST. VHR-GST was used as a negative 

control for PTEN-GST; VHR is also a part of the PTP superfamily with CX5R 

phosphatase motif homology, so this should detect non-specific binding that a 

standard BSA positive control may not. 

Hydrophilic 
Well 

Hydrophobic  
Section 

a) 

b) 

Hydrophobic 
Section 

Hydrophilic  
Well 
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 The piezo tip settings were set to 92V, 48 pulse, Frequency 500 Hertz, LED delay 

500.These contribute to the droplet formation and shape and should be optimised for 

spot shape, spot size, reduction of satellite spots and the uniformity within and 

between spots. Samples were aliquoted into 96 or 386 well, V-shape, Griener PP-

Microplates (Greiner bio-one, Germany). Wash procedures were performed prior to 

arraying. 1X PBST (0.1% Tween-20) washing the inside and outside of the piezo tip, 

then 1X Doctor Ekaterina McKenna’s proprietary array tip cleaning detergent solution, 

then 1X HPLC grade water wash, then 1X PBST (0.1% Tween-20). Between samples 

2 wash cycles of 1XPBST (0.1% Tween-20) were performed to avoid contamination 

and to clean piezo tip for high quality arraying. The array tip was washed with 

1XPBST after the arraying procedure.  

 Arraying was performed on a clean bench, and extra care was taken to minimise 

dust and particulate matter using the following techniques and preventative 

measures: dusting, cleaning down surfaces, regularly swapping nitrile gloves, tying 

hair back, lab coats, minimising exposure of substrates in open environment, handling 

substrates by edges, minimising traffic in laboratory, creation of a designated clean 

bench. Quality control procedure was performed and analysed using the 

sciFLEXARRAYER (Scienion AG, Germany) camera system and quality control 

software to diagnose and minimise spotting error, and optimise quality. After arraying 

and drying, slides were sealed in 5-place slide mailer tube (Fisherbrand, UK) with 

nitrogen and stored in the fridge for use the next day when they were equilibrated to 

room temperature. 
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2.2.13.2. Protoarray probing for antibody-protein, protein-protein and 

protein-peptide arrays using Dynamic Bioarray biochip and lifterslip 

technologies  

 

Arrays were probed with the biomolecules of interest to detect interactions between 

proteins and peptides and the spotted proteins and antibodies. Probing was 

performed using a modified version of the Invitrogen Protoarray® protein-protein 

interaction (PPI) application notes 

(http://www.invitrogen.com/etc/medialib/en/filelibrary/protein_expression/pdfs.Par.737

73.File.dat/Application-Note-Protein-Protein.pdf) and short protocol 

(http://tools.invitrogen.com/content/sfs/manuals/protoarrayPPI_short_protocol.pdf) . 

Modifications were made through communications with, knowledge transfer from and 

on request of industrial research partner Doctor Ekaterina McKenna who had pre-

optimised protocol for usage with Dynamic Bioarray chips based on proprietary 

intellectual property (Dynamic Bioarray).  

 

Modifications to the Invitrogen Protoarray® protocol are: 

• Primary probe was incubated in proprietary Dynamic Bioarray hydrophilic silicon 

dioxide microfluidic system (Dynamic Bioarray, Doctor Ekaterina McKenna).  A 

minimum of 180ul of primary probe (protein or primary antibody) was used per 

slide (PATH™ plus Protein Microarray Slide, Silver Quant®). This proprietary 

technology (subject to non-disclosure agreement whilst incorporating) uses less 

probe, lowering amount of protein needed to be expressed, and less primary 

antibody, which minimises expense, and also minimises total harm to animals 

antibodies raised in. For comparative analysis, the standard Lifterslip™ (Thermo 

Scientific) technology was used in parallel. 

• Buffers used were as follows. Washing, protein suspension and antibody buffer 

(1XPBS, 0.1% Tween 20), Blocking buffer (1XPBS, 1% BSA). Notable 
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differences include a lack of blocking reagent in washing buffer, lack of reducing 

agents in blocking buffer and lack of detergent in blocking buffer.  

• Air dry blocked slides for 30min in dark rather than proceeding directly to probing. 

• Incubated Protoarray with protein at RT for 1hr rather than 90min at 40C. 

• Wash 4X 15min after primary antibody with washing buffer rather than 4X 5min. 

• Array drying was performed ON, although submerging in deionised water and 

drying by centrifugation preferential.  

• Arrays were imaged the day after the array probing procedure. Arrays were kept 

in a slide mailer tube in the dark. 

 

Modifications to standard Human Protoarray® v5.0 were recommended in knowledge 

transfer from Doctor Ekaterina McKenna (Dynamic Bioarray), as to be suitable for 

Dynamic Bioarray technology (Figure 11.), but further empirical tests would be carried 

out to determine the suitability of the standard Human Protoarray® v5.0 buffers with 

the Dynamic Bioarray technology. 

 Bespoke arrays were probed using the same modified Protoarray® Human 

Protoarray v5.0 (Invitrogen, US) probing protocol to maintain consistency and to be 

able to undergo parallel testing and optimisation with the bespoke PATH™ plus 

Protein Microarray Slide (Gentel Biosciences, US) substrate array results in order to 

optimise probe protein concentrations to minimise background, minimise sample 

usage and increase resolution. 

 

 

 

 

 

 

 



- 113 

2.2.13.3. Array Scanning 

 

A GenePix® 4300A array reader (Molecular Devices) with associated GenePixPro 7 

software (Molecular Devices) was used to image both Protoarrays® (Invitrogen, US) 

and bespoke arrays on PATH™ plus Protein Microarray Slide (Gentel Biosciences, 

US) and Silver Quant® microarray slide (Intuitive Biosciences) substrates.  

 Arrays were scanned following the GenePix® 4300A array reader manual 

combined with the Protoarray® Human Protein Microarray short protocol manual. 

Resolution settings of either 5-10nm were used. Single colour images were imaged 

as using Alexa Fluor® 647. Files were saved and exported as JPEG and TIFF files. 

 

2.2.13.4. Array data acquisition and analysis 

	

Software for array data acquisition and analysis included the Invitrogen ProtoArray® 

Prospector Imager and Prospector. Prospector Imager was used to align the GAL 

files with the database of which proteins are arrayed in which spot, and Prospector 

was used to statistically analyse the probability of the positive interaction between 

protein of interest and arrayed protein on ProtoArray® library. 

 

Array data acquisition and analysis was carried out according to the following 

instruction manuals.  

• The ProtoArray® Human Protein Microarray Protein-Protein Interaction short protocol. 

• ProtoArray® Prospector Imager v4.0 user manual. 

• ProtoArray® Prospector v5.2 User Guide. 
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2.2.14. Molecular Biology 

 

2.2.14.1. Sub-cloning tagged VHR for mammalian expression system and 

immunoprecipitation experiments 

 

Plasmids where digested with tags and VHR plasmid with BamH1 and Xho1 

restriction enzyme sites. Next plasmids were ligated and transformed. Overnight 

E.coli growths of pcDNA 3.1 N-terminal FLAG and pGEX VHR were grown. A FLAG 

tag was used as a smaller tag than GST so as to reduce obstruction of epitopes, 

domains, or alter function of fusion protein. A Miniprep kit (Promega, UK) was used to 

extract plasmid DNA using the standard kit and instructions 

(https://www.promega.co.uk/~/media/files/resources/protocols/technical%20bulletins/

101/pureyield%20plasmid%20miniprep%20system%20protocol.pdf).  

 

2.2.14.2. Digestion  

 

Plasmid DNA was digested by BamH1 and Xho1 using the New England Biolabs 

restriction enzyme protocol (https://www.neb.com/protocols/2014/05/07/double-

digest-protocol-with-standard-restriction-enzymes). The digestion mix of BamH1-HF 

(1μL), Xho1 (1μL), 10X Cutsmarter buffer (5μL), plasmid DNA (1μg) in distilled H2O 

(50ul) was incubated for 10 minutes at 370C in a water bath.  

The digested DNA was then run on an agarose gel to separate digested 

plasmid sections as well as to validate a successful digestion. The agarose gel was 

run as a 1% agarose gel with TBE buffer (Tris-borate-EDTA) (Tris Base 890mM, Boric 

acid 890mM, EDTA 20mM, pH 8.3). To stain the DNA in the agarose gel, Sybersafe 

was used rather than Ethidium Bromide to reduce risk and danger of the experiment.  
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Bands where cut out using a gel extraction kit (Thermo, US) for subsequent 

purification of the DNA.  

 

2.2.14.3. Ligation 

 

Ligation was performed using 10ng of vector plasmid (pcDNA 3.1) as well as 60ng 

insert (VHR that was previously in pGEX). The protocol was for New England Biolabs 

T4 DNA ligase, T4 DNA ligase. The ligation reaction was left at room temperature for 

4hr.  

 

2.2.14.4. Transformation 

 

Transformation was performed with 5μl of ligation reaction with 50μl of competent 

cells. The transformed DNA was checked for correctness via gene sequencing 

(Eurofins, UK) and then a Maxiprep (Promega, UK) was performed to produce the 

yields of DNA required. 

	

2.2.14.5. Cell culture 

	

2.2.14.5.1. Culturing HCT 116 cells for transfection and co-immunoprecipitation  

 

H. sapiens colon carcinoma HCT 116 cell line derivative was used for in vivo study (C. 

Lee et al., 2004; Mendes-Pereira et al., 2009).This cell line was used by our 

collaborators across the Proxomics Project and was gifted by the Professor David 

Klug and The Molecular Dynamics Group from Imperial College London. The gifted 

HCT 116 cells were at passage 10 on receipt.  
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Standard aseptic technique was used to handle cells. Cells where handled in 

an aseptic and sterile flow hood and incubated under standard temperature, O2 and 

CO2.  Cells were grown in Dulbecco’s Modified Eagles Medium (DMEM) (Life 

Technologies, UK) supplemented with 10% Fetal Bovine Serum (FBS) (Life 

Technologies, UK) and 1% penicillin-streptomycin (Life Technologies, UK) antibiotics. 

Cells were grown in an incubator, in flasks (Life Technologies, UK) and passaged and 

split prior to confluence. 

 

2.2.14.5.2. Cell passaging 

 

Cells were washed with sterile PBS prior to passaging, splitting and changes of media. 

Medium was incubated to 370C prior to contact with cells. Numbers of passages were 

counted for the information of the laboratory. 

 Media from cells was removed, cells washed with PBS. PBS was removed and 

then 0.25% trypsin EDTA (Gibco, UK) was added, at 1-3mls for 10min at RT. After 

cells were checked for visual detaching from flask surface 5ml of DMEM 10% FBS 

medium was added to the cells. Cells in medium where split between canted neck 

pyrogenic flasks (Corning, US) in appropriate quantities. Additional cells were safely 

disposed of. New medium was added to fully cover the adherent cells in the flask.  

         

     2.2.14.5.3. Adherent cell transfection 

 

      Adherent cells were transfected by re-plating cells 24hr prior to transfection in  

     DMEM supplemented with 10% FBS after plating at 50-70% confluence. pcDNA 3.1     

     containing FLAG-tagged VHR was added to 1.5ml of Opti-MEM® (Life Technologies,    

      UK) at varying concentrations (35μg, 52.5 μg, 70μg). Diluted lipofectamine 2000   

      (Life Technologies, USA) reagent was added to 1.5ml of Opti-MEM® to create  
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     differing concentrations (112.5μl,168μl, 225μl). For each transfection 9mls of Opti- 

     MEM® was added as per manufacturers instructions to tube containing both  

     lipofectamine and DNA, after separate incubation as per lipofectamine manufacturer  

     standard protocol. The lipofectamine, DNA, Opti-MEM® transfection mix was  

     incubated for 30min at RT. DMEM medium with FBS was removed from the cells to  

     be transfected and DMEM minus serum was added ensuring cells were covered   

     before adding the contents of the lipofectamine, DNA, Opti-MEM® transfection mix. 

    After 5hr transfection mix and medium was replaced with DMEM medium    

    supplemented with 10% FBS. 

 

2.2.14.5.4. Cell harvesting 

 

Cells were harvested for lysis and downstream experimentation and analysis, by 

removing the media, washing with refrigerated PBS, then applying NP-40 lysis buffer 

consisting of NP40 (Life Technologies, USA) 1%, NaCl 150mM, Tris-Cl 50mM, pH 8.0. 

Flasks with transfected cells on ice were incubated with NP40 lysis buffer for 20min. 

Cells were collected and then centrifuged at 16,000G at 40C for 10mins. After 

centrifugation, supernatant was removed and transferred to new centrifuge tubes.  

 

2.2.15. Co-immunoprecipitation  

 

Dynabeads® Protein G (Life Technologies AS, Oslo) were resuspended in a vial and 

mixed via a vortex shaker for ~30sec. Dynabeads® (50μl) were added to centrifuge 

vials per sample including replicates.  The centrifuge tubes containing Dynabeads® 

were placed on a rack with a magnet at the bottom (Millipore, UK) to separate the 

Dynabeads® from the Dynabead® solution. The Dynabead solution was removed 

leaving the Dynabeads®. The Dynabeads were then pre-equilibrated via a series of 
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washes (x4) with PBS supplemented with 0.02% Tween. Next the antibody (FLAG® 

M2 mouse monoclonal primary antibody DYKDDDK tag (Sigma-Aldrich USA) was 

added at the maximum suggested concentration from the Dynabead® standard 

protocol to PBS supplemented with 0.02% Tween. The antibody in solution was 

added to the Dynabeads and incubated with rotational shaking at RT for 10min. After 

incubation of antibody with Dynabeads the centrifuge tube containing them was 

placed on the rack with the magnet to pull down the magnetic Dynabeads with 

antibody bound and the supernatant was removed. The antibody bound Dynabeads® 

were resuspended in 200μl PBS supplemented with 0.02% Tween and washed gently 

with pipetting. To immunoprecipitate target antigen the centrifuge tube containing the 

antibody bound Dynabeads® was placed upon the rack with magnetic pull down, 

supernatant was removed then lysate from cell culture, adherent cell transfection and 

cell harvesting was added to the centrifuge tube and gently resuspended. The lysate, 

with the antibody bound Dynabeads® was incubated with rotation ON in a cold room. 

After ON incubation the antibody bound Dynabeads® with lysate was added to the 

rack with the magnetic bottom and the supernatant was removed and transferred to 

separate centrifuge tubes for subsequent analysis. The Dynabeads® with antibody 

and bound material from lysate was washed with 200μl of PBS and then supernatant 

was removed whilst on magnetic rack. 100μl of PBS was added to the sample and 

transferred to new centrifuge tubes. To elute the target antigen, the sample tubes on 

the rack with magnetic bottom, remove supernatant then add 30μl of Laemmli sample 

buffer per sample to 30μl of sample for SDS page electrophoresis, Coomassie 

staining, MS and Western blotting.  Incubate samples with rotation for 2min, heat 

samples in heating block for 10min at 700C, place sample tube on rack with magnetic 

bottom and then transfer supernatant to a new centrifuge tube before transferring 

samples minus Dynabeads® to gels. 
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 Crosslinking the antibody to the Dynabeads was performed using a BS3 

conjugation buffer (20mM sodium phosphate, 0.15M NaCl, pH 7.9) and BS3 

quenching buffer (1M Tris HCl, pH 7.5) and carried out as per the Dynabead standard 

protocol.  

 

2.2.16. Western Blotting 

 

Western blotting procedure was performed by taking an SDS-PAGE gel that contains 

protein samples and transferring it to an activated polyvinylidene fluoride membrane 

that had been soaked in methanol for 15min. Filter papers and sponges where 

soaked prior to usage in transfer buffer (28.8g glycine, 6.04g TRIS, 200mL methanol, 

1.6L H2O) for 15min. A Western blotting tank and cassette kit was used (BIO RAD). 

The cassette was constructed as sponge, filter paper, gel, membrane, filter paper, 

and sponge, making sure that the protein would travel with the electric current onto 

the membrane. The cassette was submerged in transfer buffer in the Western blotting 

tank and then 70V were applied for 1hr. After 1hr the membrane was removed, 

checking that the visible protein ladder marker proteins (Page Ruler™ Plus Protein 

Ladder, Fermentas) had transferred to the membrane. Next the membrane was 

incubated with shaking for 2hr at room temperature in TBST with milk powder 

blocking solution consisting of 8.8g NaCl, 0.2g KCl, 3g TRIS, 500μl Tween-20 (Fisher 

Scientific, UK), 50g milk powder (Marvel), pH 7.4, final volume of 1L made up with 

H2O. Next the primary antibody against the protein of interest was added in a 5% BSA 

TBST solution (8.8g NaCl, 0.2g KCl, 3g TRIS, 500μL Tween-20). The primary 

antibody was added at a 1:1000 dilution of the stock. The membrane was incubated 

with the primary antibody solution for 2hr with shaking. Next the membrane was 

washed X2 10min with TBST. Next a HRP system secondary antibody (1:1000) 

against the primary antibody rose in a different animal species was applied in 5% 
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BSA TBST and incubated for 1hr with shaking. After the membrane was washed for 

15min with X2 TBST with shaking. 	

 The detection of protein of interest-primary antibody-secondary antibody-HRP 

complex was achieved by addition of 5ml of chemiluminescent substrate (super signal 

west picochemiluminescent substrate, Thermo Scientific). The chemiluminescent 

substrate was incubated with membrane for 5min. G-box detection hardware and 

software was used to capture an image (using auto-exposure and visible marker 

settings) of the chemiluminescence, putting the membrane between copier 

transparency film (Niceday). 

 

2.2.17. Informatics analysis 

 

2.2.17.1. ExPASy ProtParam 

 

ProtParam (http://web.expasy.org/protparam/) was used to predict molecular weight 

of PTEN, VHR and GST.  

 

2.2.17.2. NCBI BLAST local alignment search tool 

  

Used NCBI portal to search for plasmid sequences versus NCBI protein database 

(http://blast.ncbi.nlm.nih.gov/). Plasmid sequences supplied by Doctor Lok Hang Mak, 

for additional details including taxonomy of proteins and homology between related 

mammalian proteins. 
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2.2.17.3. Protein-protein interaction databases 

 

The following databases were used to assess current openly available data on the 

protein-protein interactors with the proteins of interest:  

 

PSIQUIC database  

(http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml) 

EMBL-EBI IntAct database (http://www.ebi.ac.uk/intact/) 

STRING database of known and predicted interactions (http://string-db.org/)  

PIPS database (http://www.compbio.dundee.ac.uk/www-pips/),  

MINT (http://mint.bio.uniroma2.it/mint/Welcome.do)  

APID (http://bioinfow.dep.usal.es/apid/index.htm) 

Reactome (http://www.reactome.org/ReactomeGWT/entrypoint.html) 

Irefindex (http://irefindex.uio.no/wiki/iRefIndex) 

Biogrid (http://thebiogrid.org/) 

SPIKE (http://www.cs.tau.ac.il/~spike/) 

UniPROT (http://www.uniprot.org/) 

BIND (http://bond.unleashedinformatics.com/) 

 PANTHER (http://www.pantherdb.org/)  

 

Protein-protein interaction databases were searched to determine the amount of 

previous research already conducted and accessible in public and publicly known 

pay-for-access databases. These databases contained known and predicted 

interactors and these lists of proteins were used to compile cross-database lists 

(Appendix 1, 2.) of protein interactors with which to compare and contrast our protein-

protein interaction array work, including Protoarray® Human Protein Microarray library 

screens. The databases were also useful to determine with which techniques protein-
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protein interactors were found by, as some techniques may give technique specific 

results that may be due to resolving power of technique or technique specific errors.  

 

 

2.2.17.4. Molecular viewers 

 

2.2.17.4.1. Chimera 

 

Chimera  (http://www.cgl.ucsf.edu/chimera/) by Pettersen et al (2004)  was used to 

visualise the 3D structure from X-ray crystallography data of the proteins of interest. 

Protein 3D structure data was retrieved from the Protein Data Bank 

(http://www.pdb.org/pdb/home/home.do). This was done in order to make informed 

predictions about which amino acids and side chains might be important structurally 

for protein-protein binding, enzymatic regulation and may be easier to modify due to 

their positioning near the surface of the protein, or the location of other amino acids 

nearby which may facilitate a reaction. 

3D protein structure images could also be used to map any modifications that were 

predicted by MASCOT software.  The data used from the Protein Data Bank was as 

follows: PTEN structure data, 1D5R (Lee et al., 1999) and VHR structural data, 1VHR 

(Yuvaniyama., et al, 1996). 
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     Preface  

 

The following research details the experimentation to develop a series of methods to 

correlate detection of specific oxidative modifications with detection of changes in 

enzymatic activity and protein-protein interaction.  

 

Experiments: 

 

• Transformation, expression and purification of proteins of interest 

• Development of oxidation protocols to generate and detect oxidative modifications in 

PTEN and VHR 

• Oxidation with HOCl, sin-1 and tetranitromethane 

• Technology transfer and development of activity assay for phosphatase activity 

• Analysis of activity versus gel densitometry 

• Protocol optimisation to maintain activity in phosphatases during handling and 

experimentation 

• Mass spectrometric analysis (MS/MS) of PTEN and VHR 

• Mass spectrometric analysis (Product ion scanning) of proteins of VHR  

• Systematic manual and automated semi-quantitative analyses of abundances 

• De novo sequencing and validation of modifications 

•  Double digestion of VHR for increased coverage and search for VHR active site 

cysteine  

• In silico analysis of modifications versus activity for correlation  

• Technology transfer of arraying and array probing 

• Analysis of array probing methods for Dynamic Bioarray 

• Development of arraying protocols for VHR  

• Library array of VHR with Protoarray for identification of potential interactors  
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• In silico and literature analysis of Protoarray potential interactors 

• Investigating effect of oxidation of protein-pair interactions via protein-protein arrays 

• Generation of VHR construct with appropriate tags for co-immunoprecipitation  

• Transfection of cell line with VHR 

• Co-immunoprecipitation of VHR with MS identification of potential interactors 

• In silico analysis of co-immunoprecipitation gel bands to identify potential interactors 

• Comparison of Protoarray and co-immunoprecipitation interactors and literature 

 

Outcomes: 

 

• Successfully generating active purified proteins of interest (PTEN and VHR) 

• Quantifying the expression yields of protein of interest (PTEN and VHR) 

• Successfully assaying phosphatase activity of proteins of interest 

• Quantifying the specific activity of proteins of interest 

• Successfully assaying proteins after removal of non-reducing buffer 

• Successful identification of oxidations in protein of interest (PTEN and VHR) 

• Successful identification of oxidations that occur differentially between oxidation 

concentrations in protein of interest (PTEN and VHR) 

• Successful analysis of abundance of oxidative modifications in protein of interest 

(PTEN and VHR) 

• Successfully assaying of proteins onto an array substrate 

• Successfully probing library array with VHR to identity potential interactors 

• Successfully co-immunoprecipitating potential interactors for VHR 

• Experimental skills gaining in mass spectrometry, arraying, array probing, assaying 

phosphatase activity, oxidation of proteins, digestion of proteins, transformation of 

cells, expression and purification of proteins 
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• Technology and knowledge transfer from Imperial College London research 

partnership 

• Technology and knowledge transfer from Dynamic Bioarray industry collaboration 

 

Scientific knowledge that has been developed in this document includes the 

identification of oxidations in PTEN and VHR in specific residues, due to reaction with 

specific amounts of oxidants, correlating VHR activity with modifications and 

discovery of potential VHR interactors via protein-protein array and co-

immunoprecipitation  
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Chapter 3 

Oxidation of CX5R phosphatases 
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3. Oxidation of CX5R phosphatases 

	

3.1. Introduction 

 

3.1.1. Investigation of the effects of hypochlorous acid, sin-1 and 

tetranitromethane  

 

The aims of this investigation include assessing the oxidative PTM signature for 

single proteins under a variety of treatments, assessing the specificity and differences 

between the commonly used in vitro nitrating agents tetranitromethane and the 

peroxynitrite generator sin-1, and the oxidising and chlorinating agent hypochlorous 

acid (HOCl). In particular, the aims are to explore whether oxidation, nitration and 

chlorination occurs on residues previously implicated in other types of signalling and 

novel residues, and whether, with global functional proteomic analysis, the 

importance and properties of these oxidants can be advanced by assessing the global 

effects on a single protein. 

 The study of HOCl on the function and activity of proteins, protein aggregation 

and protein fragmentation is important regarding what metabolites may be present in 

samples after bacterial infection (Thomas, 1979). Bacterial infection is important with 

regards to mitigating surgery risk, co-morbidities with non-communicable diseases 

and for communicable disease prevention. HOCl oxidation and chlorination was 

performed because it is present in vivo, generated by activated neutrophils by 

myeloperoxidase-mediated peroxidation of chloride ions. HOCl production is involved 

in the immune response to bacterial infection (Albrich et al.,1981; Harrison & Schultz, 

1976; Thomas, 1979) and also ischemia-induced inflammation (Panizzi et al., 2009).  
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 Concentrations in particular cellular locations during particular cellular phases 

and undergoing particular cellular processes are unknown – and so a range of in vitro 

concentrations will be employed so as to potentially cover the range of concentrations 

that occur in vivo. 

 Peroxynitrite is an oxidising and nitrating agent. Peroxynitrite is involved in 

multiple states associated with loss of homeostasis and ageing damage including 

stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic 

inflammatory diseases, cancer, and neurodegenerative disorders (Pacher et al., 

2007). Oxidation and nitration were of interest as both are present in vivo (Pacher et 

al., 2007). For our in vitro studies proteins were oxidised and nitrated with 3-

morpholinosydnonimine (sin-1) a peroxynitrite (ONOO-) generator, where peroxynitrite 

induces oxidative stress in neurons (Wallace et al., 2006) and contributes to the 

pathogenesis of neuropathological states (Jang et al., 2004). Sin-1 has been used in 

studies focused on protein tyrosine nitration and thiol oxidation, for example as 

demonstrated by Daiber et al (2013) with immunological and assaying techniques. 

 Tetranitromethane (TNM) is a non-biological oxidant, which was used as an 

alternative to sin-1 to generate high levels of nitration in an in vitro system. TNM has 

been demonstrated as a reagent for chemically altering proteins (Wormall, 1930), 

including for the nitration of tyrosyl residues in proteins to 3-nitrotyrosine (Sokolovsky 

et al., 1966; Riordan and Vallee, 1972). Sokolovsky describes TNM as a mild and 

specific nitrating reagent at pH 8, with cysteine being modified at pH 6 rather than 

tyrosine; its primary uses pertain to its residue specificity and to its acidic mildness for 

the treatment of enzymatically active proteins sensitive to pH (Roberts and Caserio, 

1964). Exploration of the specificity and action of a range of biologically relevant 

oxidants and agents which may produce modifications that are biologically relevant 

may have importance for clinical applications involving cell signalling enzymes with 

cysteine active sites and phosphorylated tyrosine residues. 
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3.2. Results 

 

3.2.1. Transformation, expression and purification of PTEN-GST and VHR-GST 

 

 PTEN-GST and VHR-GST were overexpressed in E.coli in pGEX-4T1 plasmid 

vectors (See 2.2.4. Expression of PTEN and VHR) and affinity purified using a GST 

and Glutathione Sepharose® 4B system via a gravity column. Samples and flow 

through from the purification procedure were run on SDS-PAGE (Figures 12,13.) and 

stained with Coomassie stain to assess efficiency of purification, purity of protein and 

to assess comparative yields and to detect stages of yield loss from samples taken 

over course of purification. Initial assessment of the purity of the protein was 

performed via manual inspection of the gel lanes for additional bands stained with 

Coomassie dye. Figure 12.c and Figure 13.c show an MS analysis of proteins used 

for further experiments, which demonstrates that protein of interest (PTEN, VHR) and 

the GST fusion tag are most abundant and that there are some contaminants and 

impurities from laboratory processing during in-gel digestion, MS instrumentation, and 

E. coli proteins with low Mascot scores from the MS analysis software Mascot. 

 The transformation, expression and purification protocol for PTEN-GST and VHR- 

    GST was transferred from Doctor Lok Hang Mak, Imperial College London.  

 Bradford assays were performed on the purified protein to determine expression 

yields. Bradford assays were also performed post-filtration and prior to an OMFP 

assay of enzymatic function (See 3.3. Assaying phosphatase activity of CX5R 

phosphatases).  

 The protein yields as determined by Bradford assay corresponding to the PTEN-

GST expression in Figure 12 are 2.89mg per litre of culture, and 8.69mg total yield. 
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The yield corresponding to the VHR-GST expression in Figure 13 are 7.7mg per litre 

of culture and 15.4mg total yield. These represent exemplar yields. 
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     Figure 12. SDS-PAGE and Coomassie staining analysis of PTEN-GST 
expression and purification protocol and purified fractions 

Purified protein fraction numbering indicates which 1ml fraction protein was obtained 
from. Marker bands have been labelled with masses of proteins in KDa.  PTEN-GST was 
eluted from the column in 1ml fractions and run on an SDS-PAGE gel.  a) Supernatants 
from procedure including from pre-sonication, pre-centrifugation, unbound protein and 
washes Filtered protein = Glutathione Sepharose 4B column filtered protein. Unbound 
protein = protein not bound to Glutathione Sepharose 4B column b) Purified protein 
fractions.. c) Mass spectrometric analysis and Mascot Search of final purified fraction. 
Numeric = Mascot Score for protein. OS= Organism, GN= Gene Name.  (n=4) 

a) 

b) 

c) 
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     Figure 13. SDS-PAGE and Coomassie staining analysis of VHR-GST expression  
and purification protocol and purified fractions  
VHR-GST was eluted from the column in 1ml fractions and ran on a gel via SDS-
PAGE.  Purified protein fraction numbering indicates which 1ml fraction protein was 
obtained from. Marker bands have been labelled with masses of proteins in KDa. Gel 
lane labels indicate when samples were taken in the purification processes. a) 
Supernatants from procedure including from pre-sonication, pre-centrifugation, 
unbound protein and washes and first purified protein fractions b) Additional purified 
protein fractions. Filtered protein = Glutathione Sepharose 4B column filtered protein. 
Unbound protein = protein not bound to Glutathione Sepharose 4B column c) Mass 
spectrometric analysis and Mascot Search of final purified fraction. Numeric = Mascot 
Score for protein. OS= Organism, GN= Gene Name. (n=4). 

 

a) 

b) 

c) 
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    3.3. Assaying phosphatase activity of CX5R phosphatases 

 

3.3.1. Assessment of gel filtration and retainment of PTEN-GST and 

VHR-GST activity 

 

An assaying for enzymatic phosphatase specific activity of PTEN and VHR was 

performed. A standard Bradford assay was used to determine protein concentration 

performed post-filtration, with the assumption that all the protein in the solutions was 

the protein of interest, an experiment to assess effect of gel filtration on enzyme 

phosphatase activity, and a measurement of enzymatic activity using the OMFP 

assay was performed prior to and post-buffer exchange, to compare between batches 

and between experiments carried out both at Aston University and our collaborators, 

the group of Dr Rudiger Woscholski at Imperial College London. The OMFP 

phosphatase assay system was used. An OMF standard curve was experimentally 

obtained for the calculation of specific activity (Figure 14., Table 2.), measurements of 

the activity of expression preparations (Figure 15., Figure 16.) and measurement of 

the activity of expression preparations prior to oxidative treatments and after filtration 

to remove reducing agents (Figure 17., Figure 18). 
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     Figure 14. Representative OMF calibration curve  
r2 values and formula as below 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15. OMFP assay for phosphatase activity of expressed and purified 
PTEN-GST in reducing conditions RFU displayed is mean rise in RFU of the 
experimental control minus the mean RFU in the no-enzyme negative control, over 
20min, normalised to start at zero. Specific activity of PTEN-GST = 0.65 
nMoles/min/mg protein, and 10.59μg PTEN-GST used per well for experiment shown 
(n=3).  
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Figure 16. OMFP assay for phosphatase activity of expressed and purified 
VHR-GST in reducing conditions RFU displayed is mean rise in RFU of the 
experimental control minus the mean RFU in the no-enzyme negative control, over 
1min, normalised to start at zero. Specific activity of VHR-GST = 298.46 
nMoles/min/mg protein, and 0.0425μg PTEN-GST used per well for experiment 
shown (n=3). 
 

 

Protein  Specific activity 

PTEN-GST 0.65nMoles/min/mg protein 

VHR-GST 298.46 nMoles/min/mg protein 

Table 2. Specific activities of expressed and purified protein in non-reducing 

buffer.  
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3.3.2.Tests to assess the effect of different methods for buffer 

exchange on enzymatic activity as assayed by the OMFP activity 

assay 

 

3.3.2.2. Column filtration 

 

PTEN-GST and VHR-GST were stored with DTT (See 2.2.6. Purification of PTEN and 

VHR) and for subsequent oxidation studies with molar ratios of protein to oxidant, 

reducing agents needed to be removed prior to studies via gel filtration. A Bradford 

assay was performed on samples prior to filtration, to determine the volume of sample 

to use for experimentation, and post-filtration to determine losses during the filtration 

and to determine the amounts of oxidant to use for oxidation studies. Protein used for 

OMFP assay was assayed via Bradford assay post-filtration, to ensure that the 

difference in activity is not due to a loss of protein during gel filtration. Size exclusion 

gravity column filtration was tested for the effect of column gel filtration on PTEN-GST 

and VHR-GST activity as assayed by the OMFP assay. VHR-GST was column filtered 

and retained activity (Figure 17.), column filtration inactivated PTEN-GST (Figure 18.). 

Column filtration would be used on both proteins for comparable treatment and taken 

forward.  
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Figure 17. OMFP assay for phosphatase activity of VHR-GST after NAP-5 
column filtration RFU displayed is mean rise in RFU of the experimental control 
minus the mean RFU in the in the no-enzyme negative control, over 10min, 
normalised to start at zero. Specific activity of VHR-GST in reducing buffer = 1371.55 
nMole/min/mg protein. Specific activity of VHR-GST after column filtration of reducing 
agents = 1338.48 nMoles/min/mg protein. Error bars represent standard deviation 
(n=3). 
 

 

Figure 18. OMFP assay for phosphatase activity of PTEN-GST after NAP-5 
column filtration RFU displayed is mean rise in RFU of the experimental control 
minus the mean RFU in the no-enzyme negative control, over 10, normalised to start 
at zero. Specific activity of PTEN-GST in reducing buffer = 1.15 nMole/min/mg 
protein. Error bars represent standard deviation (n = 3). 
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3.4. Oxidation of PTEN-GST and VHR-GST 

 

3.4.1. Oxidation of PTEN-GST with HOCl and sin-1 generated 

peroxynitrite  

 

Buffer exchanged PTEN-GST was oxidised with a range of molar ratios of oxidants 

HOCl and sin-1 with downstream assaying via the OMFP assay, and analysis by 

SDS-PAGE (Figure 19.). A range of oxidant molarities were used to detect oxidations 

that only occur at particular molar ratios and in order to optimise PTEN oxidation 

treatment for the repeatable generation of specific modifications and specific 

abundances of modifications. Ranges of oxidant molarities used may cover and 

exceed in vivo cellular molar ratios and concentration, which are currently unknown. 

Coomassie staining was performed on the gel. The bands corresponding to PTEN-

GST were subsequently excised for in-gel trypsin digestion and MS analysis. 
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     Figure 19. SDS-PAGE and Coomassie staining of PTEN-GST oxidised using  
     75:1 and 150:1 molar ratio sin-1 and 30:1 and 300:1 molar ratio HOCl 

PTEN-GST was oxidised with HOCl at 30:1 and 300:1 molar ratio concentration to 
PTEN-GST for 1hr at room temperature. PTEN-GST was oxidised with SIN-1 at 75:1 
and 150:1 molar concentration to PTEN-GST for 1hr at 370C. The PTEN-GST band 
that has excised for in-gel digestion and identified as PTEN-GST by mass 
spectrometry has been indicated with an arrow. The masses of the bands in the 
protein marker lane have been indicated with arrows. Controls were non-treated 
PTEN-GST that were incubated at the same conditions as oxidised samples. 
Representative gel. Note high protein loading amounts necessary for sequence 
coverage upon high levels of treatment given loss of protein from bands.  
 

The post-oxidation SDS-PAGE and Coomassie staining (Figure 19.) shows that 

bands corresponding to native protein change in intensity upon oxidation in 

comparison to control. The relative intensity of higher molecular weight bands can be 

seen near the intersection of the stacking and running gels (Figure 19). An additional 

low-molecular weight band can also be seen in the HOCl 300:1 sample in addition to 

variation in the levels of other low-molecular weight bands in high concentrations of 

treatment in comparison to the native protein control. Multiple additional bands are 

present in both the control and oxidised sample. Samples loading amounts in Figure 

19. were optimised over a series of prior experiments (n=4) so bands could be 

observed in the most concentrated treatment sample, and detection of protein in all 

samples via MS, in addition to being optimised for sequence coverage and 

identification of oxidations with significant ion scores across the majority of samples 
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and treatments. Low molecular and high molecular weight bands were excised from 

the gel and MS analysis was also performed on these, including assessment of 

modifications present. At the time performed this experiment quantitative analysis via 

Progenesis software was not yet available. 

 

3.4.2. Tandem mass spectrometry of PTEN  

 

Tandem mass spectrometry (MS/MS) was performed in triplicate to assess which 

molar ratios of which oxidants oxidise the proteins of interest, which types of 

modifications specific oxidants cause, what the abundances of the modifications and 

relative abundances are and to assess which residues are most susceptible to 

oxidation. Also to be included in the assessment of protein oxidation via TOF MS/MS 

were those oxidations were sufficient to cause functional changes in the activity and 

interactions of the protein of interest, which modifications are correlated with changes 

in activity and what the different modification patterns between proteins, oxidants and 

oxidation ratios were. MS/MS was also used for the detection of specific instances of 

modifications that are correlated with changes of function so that these can be 

identified for later stage targeted scan MS techniques application.  

Peptides from PTEN-GST were separated using reverse-phase liquid 

chromatography, ionised via electrospray ionisation before tandem MS. A 

representative total ion chromatogram (TIC) was obtained for each MS run (Figure 

20.), displaying the gradient of the HPLC run and separation of peptides that was 

used for the standard TOF MS/MS runs and plotted as intensity versus time. The TIC 

was then visualised on Analyst or Peakview software prior to in silico analysis and 

manual validation to assess that the MS/MS run had detected the peptides from each 

run. Figure 20 shows a representative TIC intensity and representative exemplarily of 

peptide detection coverage within each run.  
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 Mascot software analysis output was searching along with Peakview software 

search of raw data informed by Mascot output of TOF MS/MS of oxidant treated 

protein. Priority searches include searches for di- and tri-oxidation of active site 

nucleophilic and regulatory back-door cysteines of PTPs and tyrosine modifications 

including nitration which has been suggested may mimic phosphotyrosine (Mallozzi et 

al., 2001). The following additional modifications were also searched for: Methionine 

oxidation, methionine dioxidation, tryptophan oxidation, histidine oxidation, proline 

oxidation, lysine oxidation. In addition, error tolerant searches were performed, which 

predicts all modifications that match the query database (see Methods). 
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Figure 20. Representative Total Ion Chromatogram of PTEN-GST Total ion 
chromatogram of Nanospray LC-MS of in gel trypsin digested PTEN-GST using reverse-
phase chromatography. Peaks are labelled with retention times. 
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3.4.3. Mascot search of PTEN modification 

	
 Individual amino acid modifications predicted by Mascot analysis were confirmed 

in the following ways i) Experimental repeats from same oxidation concentration and 

range of concentrations of oxidant ii) Analysis of the raw data by the generation of 

extracted ion chromatographs for individual peptide mass-to-charge ratios for the 

modified and unmodified peptides in the control and experimental samples, 

regardless of whether they of their appearance in all Mascot searches. 

 

Figure 21. Representative sequence coverage analysis of PTEN after trypsin in-
gel digestion. Sequence coverage for PTEN-GST. Mascot search results output 
including variable modifications searched for and enzyme proteins were cleaved with. 
Detected amino acids are highlighted in red and black amino acids were not detected.  
 

The sequence coverage percentage for PTEN in Figure 21. is 70%, which represents 

exemplar sequence coverage for PTEN covered by assigned peptide matches 

(Exemplar sequence coverage in Table 3). Sequence coverage ranged from 10-70%, 

where 10% sequence coverage was upon treatment of PTEN-GST with 1:300 PTEN-

HOCl molar ratio HOCl, average sequence coverage for unmodified PTEN-GST in 

triplicate was 49%. There are three large sections starting at amino acids 12, 85 and 

350 of PTEN that are not detected with the amount of protein sampled, trypsin 

digestion and MS/MS TOF setup. The uncovered sequence sections contained 

residues known to be functional including the Cys124 the nucleophilic cysteine. 



- 144 

   

 

 

 

 

 

 

 

 

 

 

 Table 3. Exemplar sequence coverage versus treatment for PTEN 

  

Sequence coverage for PTEN with the SCIEX 5600 LC-MS system and digestion 

protocol used, following treatment with sin-1 showed an increase at sin-1 1:75 molar 

ratio and a small decrease in sequence coverage at sin-1 1:150 (Table 3.). PTEN 

sequence coverage was reduced further on HOCl treatment, which at HOCl 1:300 

reduced sequence coverage to 1/5 (Table 3.).  

 Mascot searching identified a number of predicted peptide modifications in PTEN 

(Figure 22a.). ‘Start – End’ corresponds to the N-terminal and C-terminal of the 

protein peptide sequence. The mass-to-charge ratio for the monoisotopic mass of the 

ion observed experimentally is displayed as ‘Observed’. The mass of the peptide 

calculated from the observed m/z is displayed as ‘Mr(expt)’. The theoretical mass of 

the peptide calculated based on its sequence is displayed as ‘Mr(calc)’. The 

difference between the theoretical (Mr(calc)) and experimental (Mr(expt)) masses is 

expressed as ‘Delta’. The number of missed enzymatic cleavage sites is represented 

as ‘Miss’. 

Treatment  

(Protein: 

Treatment) 

Sequence 

coverage 

(%) 

Untreated 48 

Sin-1 1:75 55 

Sin-1 1:150 47 

HOCl 1:25 29 

HOCl 1:100 44 

HOCl 1:150 35 

HOCl 1:300 10 
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 The Mascot ‘ion score’ for the likelihood that Mascot has correctly identified the 

peptide in question is displayed next to the peptide sequence in question and the 

modifications associated with that sequence. The Mascot ion score is calculated by 

the Mascot search engine for each peptide that is matched from the MS/MS list of 

peaks. The Mascot ion score is based on the probability that ion fragmentation 

matches are non-random. If the Mascot Ion Score is equal or greater than the Mascot 

Significance Level calculated for the search, this match is considered to be 

statistically non-random and statistically significant to 95% confidence.  

 Mascot displayed the MS/MS spectrum (Figure 22.b) including the masses that it 

has matched to ion fragments present in the experimental data (Figure 22.c table). 

MS/MS spectra are used for validation of Mascot predictions by ensuring that the 

modification predicted are well sequenced and covered by y and b ion series runs that 

correspond to peptide fragmentation patterns (Figure 22.c). Mascot ion tables (e.g. 

Figure 22.c) were used to manually assess the Mascot assignments for both 

unmodified and modified peptides; all modifications were taken forward to raw data 

analysis and XIC via Peakview. 

 Multiple modifications were predicted by Mascot upon sin-1 and HOCl treatment 

of PTEN including cysteine dioxidation and trioxidation, tyrosine oxidation, nitration 

and chlorination and methionine oxidation (see Tables 3, 4 and Appendices 8, 9.). 

Only modifications that were validated via manual assessment of the MS/MS spectra 

are shown and were chosen for extracted ion chromatogram generation. n=>1000 

modifications were found and in silico validated via Mascot, Peakview XIC, and 

Peakview de novo sequencing and n=>10000 peptides were assessed via Mascot 

and Peakview XIC; for  appropriate datasets where data was suitable for Progenesis 

software, Progenesis analysis of these modifications and peptides was also 

performed.  

 



- 146 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
Figure 22. Representative Mascot output for Cys71 modification in sin-1 treated 
PTEN-GST a) Representative sample output from Mascot search for Cysteine di-, tri-
oxidation and carbamidomethylation of PTEN active site regulatory cysteine Cys71 b) 
Representative MS/MS spectrum and sequencing of Cys71 trioxidation with the amino 
acids found via manual de novo sequencing added to the spectrum manually c) and 
ion table. Bold typeface in the ion table indicates non-redundant matches of fragment 
ions used to generate score. Red typeface in the ion table indicates the highest 
scoring match to a particular query. n=>1000 

a) 

b) 

c) 
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Table 4. Summary of unique residue modifications predicted by Mascot for sin-
1 oxidation found in 1:75 and 1:150 sin-1 oxidation at 370C for 1 hour 
Grey highlighting indicates residue oxidatively modified in sample. See Appendix 8 for 
Mascot information regarding peptides. 

 

Mascot search for modified peptides in PTEN following sin-1 oxidation at 1:75 and 1:150 

sin-1 oxidation at 370C for 1 hour identified modifications that occurred in all samples 

including non-treated control, modifications that occurred at both 1:75 and 1:150 sin-1 

molar ratio concentration and modifications that only occurred at the highest level of sin-

1 oxidation (see Table 4 and Appendices 8.). The higher the oxidant concentration, the 

greater the range of different oxidations and nitrations were predicted, including 

modifications not seen in lower treatments regardless of the decreasing sequence 

coverage for the protein. As table 4 and appendices 8 show modifications found in the 

Amino acid 

residue in 

PTEN 

Control 75:1 

Sin-1 : 

PTEN 

150:1 

Sin-1 : 

PTEN 

Y68    

Y138    

C71    

Y155    

Y46    

M134    

Y225    

M239    

Y336    

Y76     
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control were also found in the treated samples. Untreated control samples were run first 

on MS to avoid any potential cross contamination of modified peptides from treated 

samples. Variability of occurrence of modifications between treatments was analysed 

and visualised to detect non-linear and non-exponential patterns in the increased 

occurrence of modifications, in addition to assessing between-sample comparative 

presence of the modification. Minimal oxidation is expected in non-treated control, and 

minimisation of adventitious oxidation was attempted by following protocols that 

minimise protein contact with oxygen. PTMs in non-treated control will serve as 

background PTM during quantitative analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5. Summary table of unique residue modifications predicted by Mascot 
for HOCl oxidations found in 1:30 and 1:300 molar concentration HOCl 
oxidation at room temperature for 1 hour Grey highlighting indicates residue 
oxidatively modified in sample. See Appendix 9 for Mascot information regarding 
peptides. 

Amino acid 

residue in 

PTEN 

Control 30:1 

HOCl : PTEN 

300:1 

HOCl : 

PTEN 

C71    

M134    

Y138    

Y177    

Y178    

Y180    

M205    

M239    

M270    

Y316    
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A Mascot search for modified peptides in PTEN following HOCl oxidation at 1:30 and 

1:300 molar concentration at room temperature for 1 hour found that Cys71 oxidative 

modifications occurred in all samples including non-treated control. Modifications that 

occurred at both 1:30 and 1:300 molar HOCl concentrations and modifications that 

occurred in either the higher and lower concentration (see Table 5 and Appendices 

9). The HOCl modifications in Table 5 show less linear or exponential increase in 

identification of modifications by Mascot with increasing treatment molar ratio; where 

the HOCl treatment molar ratios are different to the sin-1 molar ratios and HOCl band 

Coomassie staining intensity and sequence coverage were lower.  

 

3.4.4. Extracted Ion Chromatography (XIC) of PTEN modifications 

induced by SIN-1 and HOCl oxidation 

 

Preliminary studies of protein oxidation abundance were carried out using PTEN.  XIC 

were generated from the data as a validation and assessment step for Mascot, to 

assess whether ions predicted by Mascot were present. XICs were also used to 

assess whether the masses found by Mascot and predicted via calculations were due 

to a peptide, with characteristic isotopic distributions(Figure 23.b). The abundance of 

oxidative modification was quantified for oxidation treatments of PTEN to be further 

utilised downstream for assessing the practical suitability of PTEN for analysis of the 

effect of OxPTM on PPI, and optimisation of oxidation protocols for generating a 

range of OxPTM appropriate for altering PPI, whilst maintaining the PTEN structure 

as seen by Coomassie stained SDS-PAGE.  

 If the abundance of modification was similar to the difference in activity observed 

via the parallel OMFP assay, the oxidative modifications could account for the 

changes in activity. XIC would also be useful to determine when amino acid side 



- 150 

chain modifications are not sufficient in abundance to account for changes in activity  

(Table 6, Figure 25.), which would suggest that alternative mechanisms such as 

backbone cleavage and aggregation are being induced by oxidation and causing 

changes in activity. 

 To quantify the abundance of 1) oxidised to 2) unmodified peptides XICs were 

generated (see Methods) for each version of the modified and unmodified peptide. 

Versions of the peptides included modifications other than the one quantifying that are 

present on the same peptide sequence, incomplete trypsin digestion fragments, 

different sized fragments caused by modification changing trypsin cleavage sites and 

peptides modified with the modification of interest. The peak areas of the unmodified 

and modified fragments were obtained using Peakview®, and spectra were generated 

to confirm the presence of the peptide mass to further validate the peptides identity by 

confirming an isotopic fingerprint, and to further validate that the ions are indeed part 

of that XIC peak (Figures 23, 24.). De novo sequencing was also performed as part of 

the XIC workflow whilst using Peakview® and searching for a particular peptide and 

modification.  

 PTEN was treated with sin-1 1:10, 1:75 and 1:150 molar ratio of PTEN: 

treatment, and HOCl 1:30 and 1:300 PTEN: treatment. After the modifications had 

been determined via Mascot and a table of peptides including modified peptides had 

been built (Appendices 8, 9.) XICs of the relevant peptides were generated and de 

novo sequencing of modifications were performed. A representative XIC of the 

peptide containing Cys71, the PTEN resolving active site cysteine, with masses for 

the unmodified and trioxidised form is displayed in Figure 23 alongside the spectra. 

Figure 23.a displays the XICs of 585.77 +/- 0.01Da and 582.43 +/- 0.01Da, with 

intensities (abundance) plotted against retention time as the XIC output of Peakview. 

In the representative example the modified residue is lower abundance and has 

higher noise-to-signal ratio. The peaks that were first assessed via manual validation 
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of the XIC spectra using Peakview were the ones at the retention time identified via 

Mascot or calculated based on the shift in retention time observed in other peptides 

with that modification in the same sample or another sample. For each XIC peak the 

spectra was generated (Figure 23.b.). The spectra was checked for the m/z of the 

peptide being the monoisotopic peak, the presence of the characteristic isotopic 

distribution, isotopic peak differences in masses, and that peaks were not being 

combined to give a false negative. A representative XIC and spectra is also shown for 

Tyr336 as an example of a tyrosine nitration including the tyrosine-containing peptide 

isotopic distribution (Figure 24). 

 Mascot prediction and XIC analysis of Cys71, the PTEN non-nucleophilic active 

site cysteine, showed some trioxidation modification in the untreated sample (Table 

6.). The intensity of signal, and thus presumably the abundance, of Cys71 trioxidation 

increased upon treatment with sin-1 and HOCl, with a linear dose-response 

correlation for HOCl and a non-dose dependent response for sin-1.  

Due to the loss of activity of PTEN-GST upon filtration, its low absolute activity 

compared to VHR-GST as measured by the OMFP assay, and its lower protein 

expression as compared to VHR-GST made VHR-GST the primary candidate to take 

forward to further functional proteomics mass spectrometry and protein-interaction 

studies. After initial PTEN-GST oxidation experiments, the decision was taken to not 

pursue studies of PTEN-GST beyond initial oxidation studies, due to amount of 

protein expressed and loss of activity upon column filtration when compared to VHR-

GST, including not performing PTEN-GST oxidation studies on PTEN-GST in 

reducing buffer.  
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Figure 23. Representative extracted ion chromatograms and spectra of 
peptides containing trioxidised versus unmodified Cys71 in 1:150 molar 
concentration sin-1 treated PTEN a) Extracted Ion chromatogram (XIC) of 
unmodified and modified Cys71 b) Spectra of unmodified and modified Cys71. 
Asterisk (*) points to monoisotopic peak. XICs were generated with Peakview, 
parameters were standard, with peaks +/- 0.1Da of inputted value shown. Areas 
under peaks were calculated by Peakview for ions and read off.  
 

 

Abundance of unmodified 
peptide containing Cys71 

Abundance of peptide 
containing trioxidised Cys71 

a) 

m/z of carbamidomethylated 
Cys71 containing peptide 

b) 

m/z of trioxidised Cys71 
containing peptide 
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Figure 24. Representative extracted ion chromatograms and spectra of 
peptides containing nitrated versus unmodified Tyr336 in 1:150 molar 
concentration sin-1 treated PTEN  
Extracted Ion chromatogram (XIC) of unmodified and modified Tyr336 b) Spectra of 
unmodified and modified Tyr336. Asterisk (*) points to monoisotopic peak. XICs were 
generated with Peakview, parameters were standard, with peaks +/- 0.1Da of inputted 
value shown. Areas under peaks were calculated by Peakview for ions and read off. 

Abundance of unmodified 
peptide containing Tyr336 

Abundance of peptide 
containing nitrated Tyr336 

m/z of peptide containing 
unmodified Tyr336 

m/z of peptide containing 
nitrated Tyr336 

a) 

b) 
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Ratios of Cys71 trioxidation in PTEN treated with sin-1 

PTEN non-oxidised 

control 

PTEN treated with SIN-

1 1:75 molar ratio 

concentration 

PTEN treated with sin-

1 1:150 molar ratio 

concentration 

0.003% 0.026% 0.007% 

Ratios of Cys71 trioxidation in PTEN treated with HOCl 

PTEN non-oxidised 

control 

PTEN treated with 

HOCl 1:30 molar ratio 

concentration 

PTEN treated with 

HOCl 1:300 molar ratio 

concentration 

0.003% 0.0035% 0.009% 

Table 6. Relative modification levels for non-nucleophilic active site regulatory 
cysteine Cys71 modifications from oxidation by sin-1 and HOCl 
Ratios of trioxidised versus non-oxidised PTEN active site Cys71 in oxidised and 
control sample.  

 

3.4.5. Oxidation of VHR-GST with HOCl, sin-1 generated peroxynitrite 

and tetranitromethane 

	
	

3.4.5.1. SDS-PAGE and Coomassie staining of oxidised VHR 

 
VHR was treated with a series of VHR-GST:reagent molar ratios of sin-1, TNM and 

HOCl. For Sin-1 (Figure 25a.) and tetranitromethane (Figure 26a.) the decrease in 

percentage OMFP activity was greater than the decrease in the percentage full lane 

densitometry. For sin-1 treatment the band percentage intensity shows a decrease 

similar to the percentage OMFP activity (Figure 25a). For tetranitromethane, the 

percentage OMFP activity decreases at a different rate to the percentage band 

intensity (Figure 26a.) 
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Figure 25. OMFP activity assay of phosphatase activity, densitometric analysis 
of SDS-PAGE and Coomassie stained SDS-PAGE of VHR upon treatment with 
sin-1 a) OMFP activity is plotted versus the densitometry of the full gel lane, and b) 
densitometry for the main VHR gel band for sin-1 treatment Coomassie stained SDS-
PAGE for VHR treated with sin-1. Note high protein loading amounts necessary for 
sequence coverage upon high levels of treatment given loss of protein from bands.  
n=3 
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Figure 26. OMFP activity assay of phosphatase activity, densitometric analysis 
of SDS-PAGE and Coomassie stained SDS-PAGE of VHR upon treatment with 
tetranitromethane a) OMFP activity is plotted versus the densitometry of the full gel 
lane, and b) densitometry for the main VHR gel band for tetranitromethane treatment 
Coomassie stained SDS-PAGE for VHR treated with tetranitromethane. Exemplar 
result shown. Note high protein loading amounts necessary for sequence coverage 
upon high levels of treatment given loss of protein from bands.  	
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3.4.5.2. Tandem mass spectrometry of VHR 

	
VHR was treated with a series of VHR-GST:treatment molar ratios of sin-1, TNM and 

HOCl and then analysed via tandem LC-MS after cutting bands from the gel. The 

sequence coverage for VHR for the different treatments is presented in Table 7, with 

the corresponding Coomassie stained SDS PAGE and enzyme activity, where 

obtained, given in Figure 25 and 26. The sequence coverage for VHR drops by a 

maximum of ~15%, which upon treatment with HOCl, at 1:150 VHR: HOCl. TNM 

sequence coverage is increased from the untreated (Table 7, Figure 27a). 

VHR upon increased oxidative treatment with HOCl gives an oxidation signature 

showing that particular regions exhibit increased oxidation and oxidation abundance 

including Pro49-Met69 and Tyr138-Met141, that also exhibit a waveform-like bell 

curve phenomenon. Novel modifications of note taking the body of literature into 

account would be Tyr138 chlorination showing that HOCl chlorination leads to the 

chlorination of the residue that interacts with ZAP-70 for VHR activation. Using 

Progenesis to analyse the data abundances gave a time saving of over x1000.  

A comparative analysis of sin-1, tetranitromethane and HOCl insult indicates 

that there are common residues and also common regions of VHR that are modified 

such as the regions Pro49-Met69, a beta-sheet region, and Tyr138-Met141 which is 

an external end of an alpha-helix. There are also residues that have a higher 

abundance upon insult by a particular oxidising species. Tyr101 and Cys171 

modification abundance show a tendency to be increased upon tetranitromethane 

treatment and Tyr85 shows a tendency for increased modification abundance. This 

particular comparative analysis of oxidative modification profiles if extrapolated could 

show promise for predicting or diagnosing what type of insult or stressor was being 

applied, as well as stratifying types of insults although this would require further in 

vivo experimentation and mathematical modeling. 
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Sequence coverage for VHR was higher than for PTEN under similar digestion, 

LC-MS and treatment protocols (Table 5 compared to Table 7). VHR sequence 

coverage decreases upon sin-1 and HOCl treatment, although not to the lowered 

levels that HOCl lowered sequence coverage in PTEN. TNM treatment increased 

sequence coverage, where sequence coverage remained high over treatments. 

VHR modification abundances, as percentages of the unmodified peptides, 

alongside VHR activity were plotted for sin-1, TNM (Figure 28) and HOCl (Figure 29) 

treatment. Sin-1 and TNM abundance percentages were identified and calculated via 

Mascot and manual XIC, HOCl results were identified and performed with Progenesis 

and Mascot tools. The bands excised for the HOCl Progenesis automated analysis 

are present in Appendices 13, which are instructive of the excision method for all VHR 

LC-MS and areas selected for densitometric analysis, unless otherwise stated. VHR 

modification abundances plotted with standard error for select residues are plotted in 

Figure 30.  
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Treatment Sequence 

coverage (%) 

Untreated 69 

Sin-1 1:10 69 

Sin-1 1:75 67 

Sin-1 1:150 64 

Sin-1 1:300 64.5 

HOCl 1:30 68.5 

HOCl 1:150 59 

HOCl 1:300 60 

TNM 1:10 76 

TNM 1:75 76 

TNM 1:150 76 

TNM 1:300 74 

TNM 1:1000 75 

Table 7. Sequence coverage versus treatment for VHR 
Sin-1 n=3, HOCl n=3, TNM n=1 
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Figure 27. Representative sequence coverage of VHR after trypsin in-gel 
digestion and representative extracted ion chromatograms and spectra of 
peptides containing nitrated versus unmodified Tyr38 in sin-1 treated VHR 
a) Sequence coverage for VHR-GST. Mascot search results output including variable 
modifications searched for and enzyme proteins were cleaved with. Detected amino 
acids are highlighted in red and black amino acids were not detected.	
 b) Extracted Ion Chromatogram (XIC) of unmodified and modified Tyr38 c) Spectra of 
unmodified and modified Tyr38. The mass windows that generated the spectra are 
shown. Mass windows were selected for the whole peak. XICs were generated with 
Peakview, parameters were standard, with peaks +/- 0.1Da of inputted value shown. 
Areas under peaks were calculated by Peakview for ions and read off.	

a) 

b) 

 

c) 

Abundance of unmodified 
peptide containing  Tyr38 

Abundance of peptide 
containing nitrated Tyr38 

m/z of unmodified 
peptide containing Tyr38 

m/z of nitrated 
peptide containing Tyr38 
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Figure 28. Functional proteomics of VHR upon oxidative treatment with sin-1 
and TNM and phosphatase assay and in-gel digest of the major band 
corresponding to the molecular weight of the intact and active protein a) sin-1 
treatment for 1hr at 37 degrees Celsius at 1:10 (21μM), 1:75 (80μM), 1:150 (160μM), 
1:300 (320 μM)  protein: oxidant molar ratios. Relative abundance of modified to un-
modified residues were calculated as a percentage and plotted alongside percentage 
phosphatase activity. n=3. b) tetranitromethane treatment or 1hr at 37 degrees 
Celsius at 1:10 (33μM), 1:75 (275μM), 1:150 (550μM), 1:300 (1.1mM) and 1:1000 
(3.3mM) protein: oxidant molar ratios. Relative abundance of modified to un-modified 
residues were calculated and plotted as a percentage alongside percentage 
phosphatase activity. Ox= Oxidation. Nitro= Nitration. DiOx = Dioxidation. TriOx = 
Trioxidation. Representative study. 
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Figure 29. Functional proteomics of VHR upon oxidative insult of HOCl and 
phosphatase assay and in-gel digest of the major band corresponding to the 
molecular weight of the intact and active protein a) HOCl treatment for 1hr at 37 
degrees Celsius at 1:30 (64μM), 1:150 (320μM), protein: oxidant molar ratios. 
Relative abundance of modified to un-modified residues were calculated as a 
percentage and plotted alongside percentage phosphatase activity. n=3. Data 
analysed with Progenesis software. Ox= Oxidation. Chloro= Chlorination. DiOx = 
Dioxidation. TriOx = Trioxidation. Representative study. Modifications thresholded to 
p-value 0.05 using Progenesis software. 
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Figure 30. Select residues from functional proteomics of VHR upon oxidative 
treatment with sin-1 and in-gel digest of the major band corresponding to the 
molecular weight of the intact and active protein. Sin-1 treatment for 1hr at 37 
degrees Celsius at 1:10 (21μM), 1:75 (80μM), 1:150 (160μM), 1:300 (320 μM)  
protein: oxidant molar ratios. Relative abundance of modified to un-modified residues 
were calculated as a percentage and plotted alongside percentage phosphatase 
activity. Error bars = standard error. Unpaired t test *= 95% confidence interval, *** = 
99.9% confidence interval  NS = Not Significant (n=3).  
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3.4.5.2.1. Correlation of VHR activity and oxidative modifications via mediation 
modeling method  
 

Computational modeling of VHR activity and modifications was performed to model the 

mediation effect of modifications on activity. Sin-1 data was used for meditation 

modeling; sin-1 data had the most replicates and was generated via Mascot searches 

and manual XIC. The mediation modeling shows the potential mediation effect of any 

one modification on the gross activity measure from the OMFP phosphatase assay from 

an aliquot of the same protein treatment batch as was run on the LC-MS (Figure 31). It 

can be seen that Lys116 upon mediation modeling shows a potential effect of increasing 

VHR activity with a large positive potential effect size, and Tyr138 showing a potential 

effect with a large negative potential effect size. Met141 has a smaller comparative 

negative effect size in the mediation model, yet has a mean value that has lower bounds 

furthest into having a negative effect on activity in the model.  

 Computational mediation modeling of VHR modeling was performed with a model 

with 2 mediators, with percentage abundances of modifications modeled for the forward 

mediation effect of the first mediator on the second mediator, and the potential effect size 

of this forward effect as a total indirect effect, as a multivariate model (Table 8).  
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Figure 31. Mediation modeling for modified amino acids in VHR on 
phosphatase activity upon sin-1 treatment displaying inhibitory effects on 
activity. 95% confidence intervals displayed. Bootstrapping with N = 1000 random 
sample was used to calculate 95% confidence intervals. Diamonds represent mean 
value with bars displaying lower and upper bounds of potential effect size. Green 
diamonds are significant and red diamonds are non-significant. Y axis describes 
positive or negative mediation effect of modifications on phosphatase activity. * 
Lys116 modification predicted to increase VHR activity with large potential effect size. 
**Tyr138 regulatory residue modified with large potential effect size (n=10). 
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Mediation Effect Tested 

 (X mediates Y) 

Mediator I  Mediator II  Forward Effect of Mediator I 

on Mediator II 

(Minimum forward effect, 

Total magnitude of forward 

effect) 

(Mean mediation effect, Potential effect 

size) 

LYS70 Oxidation -> MET141 Oxidation -0.0, 8.2 0.1, 4.5 767.1, 66436.8 

TYR138 Oxidation -> MET141 Oxidation -0.2, 5.8 0.2, 3.5 738.2, 889.7 

LYS79 Oxidation -> TYR85 Nitration 54980.7, 60498.1 92204.2, 

95929.2 

548.2, 180277.6 

TYR138 Oxidation -> MET141 Oxidation 14.3, -2.09e14 0.1, 2.5 369.3, 560.3 

LYS116 Oxidation -> MET141 -0.1, 6.3 0.2, 2.6 246.7, 4292.9 

TYR138 Oxidation -> MET140 0.5, 2363.7 0.2, 1099.8 196.9, 206.6 

LYS116 Oxidation -> LYS151 -0.0, 33.7 -34.6, 0.1 186.1, 12616.7 

TYR138 Oxidation -> MET145 Oxidation -3.0, 0.0 0.0, 2.3 170.6, 565.2 

LYS116 Oxidation -> MET141 Oxidation -0.2, 7.0 0.1, 3.3 157.7, 3266.6 

LYS116 Oxidation -> MET140 Oxidation 42014.3, 42014.3 0.4, 1107.0 86.1, 1738.5 

HIS58 Oxidation -> MET69 Oxidation -57.9, 0.1 0.0, 16.5 65.8, 414.2 

HIS58 Oxidation -> TYR138 Nitration -2.7, 0.2 0.0, 2.9 50.2, 779.3 

LYS79 Oxidation -> LYS151 Oxidation 0.0, 222.2 -304.0, -0.0 47.4, 167917.8 

LYS79 Oxidation -> LYS89 Oxidation -28704.8, -28704.8 3104.7, 5132.1 39.9, 71035.7 

TYR138 Oxidation -> TYR138 Nitration 3.2, - 

6.2e16 

 

0.0, 2.8 38.6, 155.0 

TYR101 Oxidation -> MET141 Oxidation -0.0, 1.1 0.3, 1.6 38.2, 587.4 

HIS58 Oxidation -> MET141 Oxidation -0.2, 1.9 -0.0, 3.0 35.0, 636.3 

MET69 Dioxidation  -> HIS70 Oxidation -0.1, 0.1 0.0, 11.5 29.6, 23333.9 

HIS58 Oxidation -> MET141 Oxidation -0.1, 17.9 0.0, 3.9 26.2, 411.9 

TYR101 Oxidation -> MET141 Oxidation 24.1, 589.3 -0.1, 1.5 0.1, 1.8 

Table 8.  Multivariate mediation modelling for modified amino acids in VHR on 
phosphatase activity upon sin-1 treatment displaying inhibitory effects on activity 
The top 20 mediator combinations in terms of the magnitude displayed sorted by 
minimum forward effect, total magnitude of forward effect and total isolated mediator 
effects as the sum of the individual mediation effects of modification abundance on 
OMFP measured gross phosphatase activity. The magnitude of the forward effect is 
defined as the sum of the absolute values of the 99% confidence intervals. N =3, 
Resampling = 5000.  
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3.4.5.2.2. Search for modified and unmodified VHR active site nucleophilic residue 
and peptides 
 

The active site nucleophilic Cys124 had been detected only in a modified state and only 

upon oxidative treatment (Figure 27a, Figure 32). The active site nucleophilic Cys124 

peptides were searched for, including Cys124 in an unmodified, carbamidomethyl and 

modified state. VHR-GST treated with HOCl and sin-1 had yielded an instance in sin-1 

treated VHR digested with trypsin of a Cys124 trioxidation (Figure 32a.). Sin-1 and HOCl 

treatments, trypsin digest and corresponding Mascot and systematic de novo manual 

searches did not identify uncarbamidomethylated miscleaved VLVHCREGYSR peptide 

with unmodified Cys124. 

 The uncarbamidomethylated miscleaved Cys124 containing peptide was not 

present in the same sample as the modified miscleaved and tryptically digested peptides 

for calculation of relative abundances between modified and unmodified, and between 

residues, samples and treatments, nor was the uncarbamidomethylated miscleaved 

Cys124 containing peptide present in all other samples and replicates obtained apart 

from one (Table 9, Figure 32, Figure 33). 

 TNM treatment and subsequent Mascot search led to the identification of 

additional instances of Cys124 identification in only modified forms of dioxidation and 

trioxidation (Table 9, Figure 32, Appendix 12), within multiple peptides, including both 

miscleaved peptides and with additional oxidation and nitration modifications at the distal 

tyrosine of the nucleophilic Cys124-containing peptide (Figure 33b.). Figure 32a. and 

33b. y ions cover the Cys124, whereas Figure 32c. does not cover the y ions for Cys124. 

 A Mascot search with cysteine carbamidomethylation as a variable modification 

identified an unmodified, miscleaved instance of Cys124 in a single replicate of a single 

sample – which was subsequently verified via XIC and de novo sequencing (Table 9, 

Figure 32c, Figure 33.). This identification did not allow for relative quantification of 
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unmodified to modified active site residues to determine whether active site Cys124 

modification was correlated to enzymatic activity loss by OMFP assay. 

 Table 9 displays peptides predicted in silico via EXPASy Bioinformatics Resource 

Portal tools, peptides calculated manually that may be expected, and the peptides 

identified via LC-MS. The peptides predicted in silico without being miscleaved were not 

identified in samples. Manual analysis of TIC included scanning XICs for peptides 

predicted and expected, at appropriate charge states, across the TIC.  

 Figure 34 displays the de novo identification window for the mass-to-charge 

ratio and retention time identified by Mascot search as displayed in Peakview, where 

SRYGER in y ion sequence of VLVHCREGYSR was sequenced de novo with 

assistance from Doctor Karina Tveen-Jensen, giving a partial de novo sequencing of 

the unmodified, miscleaved, uncarbamidomethylated Cys124 active site peptide. 
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Peptide sequence Expected ion (m/z) Retention time (mins) Charge 

In silico tryptic digest  

VLVHCR 363.95 
 

Unknown 2 

VLVHC*R 392.7 
 

Unknown 2 

In silico GluC/AspN digest 

NGRVLVHCR 526.786 Unknown 2 

NGRVLVHC*R 541.786 Unknown 2 

Calculated and identified unmodified residues (additional to in silico tryptic digest) 

VLVHCREGYSR 440.2789 Unknown 2 

VLVHC*REGYSR 688.3342 Unknown 2 

Calculated and identified modified residues (additional to in silico tryptic digest) 

VLVHC(O3)R 387.7313 
 

Unknown 2 

VLVHC(O3)REGYSR 712.3327 

 
Unknown 2 

 

VLVHC(O3)REGY(O)SR 

 
691.9548 

 
Unknown 2 

 

Calculated and identified modified residues (additional to in silico GluC/AspN digest) 

NGRVLVHC(O3)R 

 
1079.0734 
 

Unknown 2 

Tryptic digest (Identified via Mascot)  

VLVHCREGYSR   440.2789 
 

19.36 
 

2 
 

VLVHC(O2)REGY(Nitro)SR    698.4565 
 

23.82 
 

2 

VLVHC(O3)REGY(Nitro)SR    706.4507 
 

26 
 

2 

VLVHC(O3)REGY(Nitro)SR    471.2828 
 

24.51 to 25.19 
 

3 

VLVHC(O2)R 
 

379.7315 
 

17.81 
 

2 

VLVHC(O3)R 
 

387.7313 
 

18.36 
 

2 

VLVHC(O3)REGY(O)SR 461.6081 
 

18.74 to 20.89 
 

3 

VLVHC(O3)REGY(O)SR 691.9548 
 

20.63 
 

2 

GluC/AspN digest (Identified via Mascot) 

NGRVLVHC(O3)R 1079.0734 Unknown 2 

Table 9. In silico digest, tryptic digest and GluC/AspN digest VHR peptides 
*=carbamidomethylated. 
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Figure 32. Representative Mascot output from identification of VHR active site 
Cys124 peptides 
a) Trioxidised Cys124 containing peptide b) Miscleaved Cys124 containing peptide with 
additional Tyr nitration c) Unmodified, miscleaved, uncarbamidomethylated Cys124 
containing peptide. Representative MS/MS spectrum and sequencing with ion tables. 
Bold typeface in the ion table indicates the first time a peptide match to a query appears 
in the report. Red typeface in the ion table indicates the highest scoring match to a 
particular query. n=>1000.  
 
 

 

 

 

 

 

 

c) 
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Figure 33. Extracted ion chromatography and spectra for identification of Cys124 
unmodified, uncarbamidomethylated peptide in Peakview 
Total ion chromatography and spectra from Peakview. 
 



- 173 

 
 Figure 34. De novo sequencing for identification of Cys124 unmodified, 
uncarbamidomethylated peptide in Peakview 
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After Mascot search and manual analysis of tryptic digests of VHR-GST, a targeted ion 

scanning method was performed to scan for ions of specific mass-to-charge ratios with 

optimised MS settings (see Methods). A series of ions were selected to be analysed via 

targeted scans, including control ions seen at high abundances between tryptic digest 

samples (Table 10), and samples were the active site had been seen were used - TNM 

1:1000 and untreated VHR, and a 1:1 1:1000 (VHR:TNM) to untreated mix. The results 

of the target scan were that the modified residues were identified; yet the unmodified 

Cys124 residues were not identified with manual de novo sequencing.  

 After a targeted scan approach was applied to the TNM treated tryptic digests, an 

alternate double digest approach was then attempted. Sequential AspN and GluC 

digests were performed on sin-1 treated VHR, at molar ratios that previously led to the 

identification of a trioxidised Cys124 peptide. The AspN and GluC digest did not identify 

the modified or unmodified Cys124 residues as present upon Mascot search or 

subsequent manual analysis of TIC and spectra, including searching for peptides 

predicted via in silico digests, previously identified or expected. 
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Target ion scanning method ions 

Peptide sequence Expected ion (m/z) Previously Identified 

retention time (mins) 

Charge 

VLVHCR 
 

363.95 
 

Unknown 2 

VLVHC*R 
 

392.7 
 

Unknown 2 

VLVHC(O3)R 
 

387.7313 
 

18.67 
 

2 

VLVHCREGYSR 
 

440.2789 
 

19.36 
 

2 

VLVHC*REGYSR 
 

688.3342 
 

Unknown 2 

VLVHC(O3)REGYSR 
 

712.3327 
 

Unknown 2 

VLVHC(O3)REGY(O)SR 
 

691.9548 
 

20.63  
 

2 

EIGPNDGFLAQLCQLNDR 
 

1001.7266 
 

43.61 
 

2 

EIGPNDGFLAQLC*QLNDR 
 

1030.7413 
 

46.04 to 46.93 
 

2 

EIGPNDGFLAQLC(O3)QLNDR 
 

1026.2285 
 

41.49 to 46.22 
 

2 

Table 10. Target scan method ion selection for search for VHR active site 
peptides 
*=carbamidomethylated.  
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3.5. Discussion 

 

3.5.1. Discussion of purification and expression of PTEN-GST and 

VHR-GST 

  

 In order to investigate how differences in oxidation states correlate to activity, 

aggregation and fragmentation for proteins of interest cells needed to be transformed, 

proteins expressed and purified in sufficient quantities, to a sufficient purity and 

quality. The protein produced per litre for PTEN-GST and VHR-GST was sufficient for 

activity assay, oxidation study and arraying and array probing needs.  PTEN-GST and 

VHR-GST fusion proteins were selected as model candidates to be expressed and 

purified because of their oxidation sensitive active sites, the role of PTEN in cell 

signalling and cell survival (Rodriguez & Huynh-Do, 2012), role of PTEN in cancer 

(Silva et al., 2008), previous evidence of PTEN active site proneness to oxidation 

(Covey et al. 2007; Pei et al., 2009; Yu et al., 2005) and inhibitors of PTEN active site 

(Rosivatz et al., 2006; Mak et al., 2010). VHR was selected due to involvement in 

EGFR signalling (Ishibashi et al. 1992) and role in cancer (Wang et al., 2011), yet 

VHR and PTEN dioxidation and trioxidation had not been studied with the present 

literature focusing on reversible oxidation (Kim et al., 2000; Lee et al., 2002). 

 There are additional bands in the fractions (Figure 12, 13), including bands that 

are directly below the bands identified as the protein of interest by MS; these may be 

incomplete expression products, co-purifying proteins, as could the additional bands, 

this was not confirmed with MS due to the size of band not accounting for differences 

in yield.   

 As a control for the potential oxidising effect of 1)sonication of samples and 2) 

use of SDS-PAGE, LC-MS data attained for untreated/native protein, demonstrated 

that sonication and SDS PAGE do not yield high abundances of oxidative 
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modifications (Table 4, Table 5, Figure 28, Figure 29, Appendix 9, Appendix 10, 

Appendix 11, Appendix 12). 

 PTEN-GST and VHR-GST purification and expression was performed as part of a 

knowledge transfer agreement with Imperial College London as part of the Proxomics 

Project, and the protocol used, including sonication and use of SDS-PAGE was not 

adapted so that results could be compared with collaborators and protein samples 

could be shared between collaborators.  

   

    3.5.2. Discussion of assaying enzymatic activity of PTEN-GST and VHR-GST       

    before and after filtration 

 

The OMFP enzymatic assay was optimised with regard to the amount of protein 

added to the assay wells. The specific activity of PTEN-GST produced is within the 

range of PTEN-GST specific activity (0.5-1.5 nMoles/min/mg protein) gained from 

different expressions calculated by Doctor Lok Hang Mak, Imperial College London 

(personal communication). Thus the phosphatases expressed gave expected activity 

levels. Note that PTEN activity appears lower than VHR due to low substrate 

specificity of OMFP for this enzyme when compared with PIP3 (Mak et al., 2010). 

Verrastro et al (2016) demonstrates a PTEN-GST specific activity of 0.57 nMoles 

OMF/min/mg protein, as a comparison of activity. 

 The OMFP assay would detect the total amount of activity of a known amount of 

protein, but did not resolve between inactivity of sub-populations and individual 

molecules of PTEN-GST that correspond to modification, aggregation or 

fragmentation.  

 A step to remove reducing agents was required for the quantification of the 

abundance, type and location of oxidative modifications for a particular molar ratio of 

oxidant added can be performed. It was necessary to remove reducing agents 
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because they would have reacted with the oxidant that was being added which would 

have meant would not know how much oxidant there was in treated samples. Mak et 

al (2010) also stores the expressed PTEN-GST fusion protein in reducing agents. 

 NAP5 column filtration was attempted as a method of buffer exchanging VHR-

GST (Figure 17). NAP5 column filtration inactivated PTEN-GST (Figure 18). Mak et al 

(2010) who assayed PTEN-GST with OMFP substrate did not require a reducing 

agent removal step as they were assessing PTEN inhibitor action rather than oxidant 

effect. Routine Bradford assays prior to and after column filtration ensured that protein 

was not being lost during filtration and reduced OMF production was due to loss of 

activity of PTEN. 

 The combination of PTEN-GST inactivation by NAP-5 column filtration, inability to 

detect the active site nucleophilic Cys124 by MS/MS, lower comparative protein 

expression yields than VHR, lower comparative OMFP activity compared to VHR 

were the reasons to not take PTEN forward for systematic for systematic detection of 

a larger range of modifications, calculation of the abundances of these modifications, 

and correlation of these modifications to OMFP activity. PTEN was taken forward to 

MS and initial oxidation as the first candidate based upon historic reasons in the 

collaboration with Imperial College. For PTEN data shown, this was from PTEN-GST 

batches, which were active (Figure 15) yet without corresponding OMFP assays of 

column filtered PTEN-GST, where removal of reducing agents would be required for 

molar ratio oxidant studies. Thus we focussed on VHR for optimising and developing 

a functional proteomics workflow, after getting results, learning and making needed 

conclusions and looking at potential lines of inquiry for within the timeframe.  
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3.5.3. Discussion of SDS-PAGE and Coomassie staining of oxidised PTEN-GST 

and VHR-GST 

 

 Multiple additional bands are present in both the control and oxidised PTEN-GST 

sample (Figure 19.).  The additional bands may be due to: I) incomplete/partial 

expression products II) protein backbone breaking and fragmentation III) oxidised 

protein that is preferentially oxidising at specific points having different electrophoretic 

properties IV) impurities from expression and purification process. Bands that appear 

at a higher molecular weight than PTEN-GST may be due to aggregation of protein 

due to oxidation or handling, or are incomplete protein expression productions and 

expression fragments of PTEN and/or GST.  

 Coomassie stained bands at the size appropriate to PTEN-GST or VHR-GST 

were excised. The rationale for this was that the majority of the peptides would be 

found in this band, and that peptides found in this band were more likely to be from 

the protein of interest. This band was also cut out so that the modifications that were 

present in intact protein could be analysed – these would be the modifications in the 

intact protein that may affect function and protein-protein interaction. Cutting out the 

gel band for PTEN-GST and VHR-GST selects against modifications that may be 

important in the formation of aggregates and fragments that aggregate. SDS-resistant 

protein aggregation behaviour has been demonstrated (Sagné et al., 1996), and 

Coomassie stained moieties that move more slowly through the SDS-PAGE gel is 

suggested of moieties being aggregates due to molecules being separated by mass 

as well as charge (Figure 19). 

 The effect sin-1 to create additional bands may have important roles in 

proteopathies such as Alzheimer’s disease, Parkinson’s disease, type 2 diabetes and 

other proteopathies; and offers an additional hypothetical mechanism for how 

oxidation, nitration and chlorination may be involved in the proteopathic mechanisms 
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of age-caused diseases and increases in morbidity, mortality and inability to maintain 

homeostatic capacity. Smith et al (1997) found protein nitration in neurons containing 

neurofibrillary tangles, which is an indicator of peroxynitrite involvement in Alzheimer’s 

disease and the sin-1 gel band patterns (Figure 19) could be suggestive of a 

mechanism in Alzheimer’s aggregate formation.  

 The decision to focus on the gel bands, rather than digest the whole SDS PAGE 

lane, was to determine which modifications occur to intact PTEN and VHR. Whereby 

modifications found would be more correlated or causal to the changes in activity 

seen or protein-interactions seen in the counterpart experiment with the same protein 

or same treatment regimen used. An assessment was also made to downgrade the 

priority of whole gel lane MS analysis as performing the XICs and de novo 

sequencing would have been inappropriate for the timescale, method and human 

resources available.  

  Importantly, although there was some loss of signal from densitometry of the 

whole gel lane for VHR (Figure 25., 26) the loss in densitometry signal from the lane 

is less than the loss in activity, and the protein appears to be still present in the gel 

lane if not in the excised major protein band. Therefore loss in activity (Figure 25., 26) 

does not appear to be due to loss of protein from the gel. 

  

3.5.4. Discussion of oxidative treatment of PTEN  

 

3.5.4.1. Discussion of the combinatorial bottom-up mass-

spectrometric analysis and phosphatase assays of oxidised PTEN  

 

The unique contribution to knowledge for PTEN is the identification of oxidations, 

nitrations and chlorinations previously uncharacterised. These were generated in vitro 

but may have relevance in vivo – as peroxynitrite and HOCl are biological oxidants 
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(Albrich et al., 1981; Harrison & Shultz, 1976; Spickett et al., 2006; Thomas, 1979; 

Waldow et al., 2004, ). The results may be of utility for designing PTEN and PTP 

inhibitors, and the functioning of PTEN and PTP inhibitors (Mak et al., 2010) in an 

oxidative environment. 

 Probably the most important amongst the unique contributions to knowledge is 

the discovery of the Cys71 non-nucleophilic active site cysteine trioxidation, which 

has been detected, sequence validated by de novo sequencing, and its abundance 

characterised for specific treatments. Cys71 is capable of forming a disulphide bond 

with Cys124 upon oxidative stress (Lee et al., 2002). Salmena et al (2008) 

demonstrate reversible inactivation of PTEN, yet if Cys71 di-oxidation or trioxidation 

were to occur in vivo this may disable the reversible oxidative inactivation of PTEN, 

and could keep PTEN in a constitutively active state where Cys124 was no-longer 

forming disulphide bonds with Cys71, which would be an interesting subject of future 

study.  

 The low abundance of the Cys71 oxidation present within the excised band 

fragment may be suggestive of Cys71 not having a major role in inactivation of intact 

PTEN (Table 6), unless biological regulation of PTEN through binding partners and 

intracellular concentrations of oxidant enhanced the production of trioxidised Cys71 

through altering access to the site and reaction kinetics, where changes in protein 

conformation on access to active site have been demonstrated (Świderek et al., 

2015). 

 The trioxidation of Cys71 may represent a form of oxidative damage from 

oxidative stress rather than reversible redox sensing in short time scales that includes 

chemically or biologically reversible reactions without the degradation of a protein – 

where the redox sensing is on the protein level, rather than redox sensing at a cellular 

locale or cellular level – if there were no possible biological reactions to reverse 

trioxidation in vivo.  
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 Discovery of the trioxidation of redox sensitive and redox sensing residues may 

lead to a wider understanding and utilisation of both the inter-relation between 

reversible oxidation and non-reversible oxidations, and how non-reversible oxidations 

may be part of oxidation sensing over longer timescales and at a level higher than the 

individual protein level. Trioxidation of the active site Cys71 may be adaptive and 

provide regulation at the signalling network level, or over long periods of time, rather 

than the individual protein level in addition to roles in oxidative stress and oxidative 

damage, or could be found to be reversible – posing a similar scientific enquiry as the 

enquiry into the regulatory effect and reversible nature of histone methylation as 

described by Bannister and Kouzarides (2005). 

 To obtain a higher sequence coverage than 70% for the most heavily oxidised 

samples for PTEN under treatment conditions (Figure 21), the follow may be of utility 

– increasing protein loaded onto an already heavily overloaded SDS PAGE gel, 

digesting protein from whole gel lane, and further optimisation of oxidant 

concentration, oxidant-to-protein molar ratio, pH and temperature and the use of 

alternative protein digestion enzymes, and non-gel based digests – to be able to 

detect all the appropriate residues and modifications. 

 This unique contribution to knowledge for PTEN in context of known PTMs, 

particularly phosphorylation and ubiquitination, and known PPIs adds to the 

knowledge base for PTEN which can be utilised during in silico therapy design, and 

could be of utility to appropriately build a list of PTEN-related biomarkers to search 

for, that may have association with cancer or age-related diseases. To elaborate, if 

peptide biomarkers related to PTEN are being searched for in vivo and not found, 

they may differ in masses due to the presence of the oxidative modifications herein 

identified. Thus being able to build a more comprehensive list of potential peptides to 

search for, may allow the complete in vivo search space to be queried, even if many 

modifications in the PTEN PTM list built for biomarker discovery do not occur in vivo 
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or are not related to the relevant clinical and health outcomes, searching for 

modifications found in vitro may assist finding the modification which do occur in vivo. 

Such a systematic analysis may have challenges regarding how many variable 

modifications to search for accurately, both during MS scans, and software searches, 

and thus may require appropriate sample sizes and automation of many variable 

modification searches..  

 Multiple new sites of oxidative modification have been identified, and validated in 

PTEN treated with the in vivo oxidants peroxynitrite and HOCl (Table 4., Table 5.). 

Oxidative modifications in the active site non-nucleophilic regulatory counterpart 

Cys71 as well as Tyr76 and Tyr46 have been identified which are spatially near to the 

PTEN active site (Figure 36, 37), although it has not been established experimentally 

or by molecular dynamics that Tyr47 and Tyr76 are near enough to affect 

phosphatase activity. Molecular dynamics would assist in modelling how close 

residues may move to each other, which could be cross-referenced with how close 

they may need to be in order to interact, which is demonstrated by Margreitter et al 

(2013). There is an overlap in residues oxidised between sin-1 and HOCl, however 

sin-1 oxidation caused a greater variety of modifications (Tables 4, and 5 and 

Appendices 8 and 9), the gel bands after oxidation were weaker (Figure 19.). 

 Additional studies would be required to confirm the relevance of the importance of 

non-reversible oxidation in vitro and in vivo applications, and will need to be repeated, 

supported and validated by additional mass-spectrometric techniques such as 

targeted mass spectrometry to provide greater accuracy validation. Note that the 

reason that singly oxidised Cys71 is not observed in the experiments utilising 

iodoacetamide and DTT is because of the reduction and alkylation steps of the 

digestion protocol that reduce cysteine disulphide bridges and add an adduct via 

carbamidomethylation.  
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 Increasing concentrations of sin-1 oxidation of PTEN showed an increase in the 

presence of particular modified residues according to oxidation concentration (Tables 

5 and 6, Appendices 8 and 9.), which may represent which residues may be more 

readily modified, or are more likely to be present at that concentration, in the band 

excised. Where other modifications associated with this concentration may be present 

outside the band excised. The existence of more readily modified residues for PTEN 

may include residues that have the higher chance of being modified that changes with 

concentration of oxidant – and may have evolved a sensitivity to oxidation, for 

functional reasons such as scavenging, active site regulation, conformational change, 

regulation by protein degradation or non-oxidative PTM interaction or PPI – and may 

be sensitive to specific levels of oxidation for variable functionality. These evolved 

functions may not PTEN specific, yet PTEN data demonstrating residues more readily 

modified and to a greater abundance (Tables 5 and 6, Appendices 8 and 9.), may add 

to the body of evidence for such mechanisms, and builds on the hypothesis of Levine 

et al (1996) who propose methionine residues in proteins to be an important 

antioxidant defence mechanism.  

 The limitation to sequence coverage of 70% or less for oxidised samples may 

limit the identification and quantification of all modified residues, in particular Cys124 

and parts of the C-terminal tail sequence, which includes phosphorylation sites and a 

PDZ binding domain. To speculate, oxidative modifications to the C-terminal 

sequence may be cause changes in activity, as phosphorylation of the C-terminal tail 

was shown by Bolduc et al (2013) to induce conformational change to a conformation 

closure with reduced catalytic activity. Bolduc et al (2013) speculate that the 

phosphorylated C-terminal tail may interact with the C2 domain for this conformational 

change to occur. Thus oxidation of the C2 domain or C-terminal tail, may be relevant 

for functional catalytic changes in PTEN. 
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 Multiple overlapping different sized peptides covering the same residues were 

seen following both sin-1 and HOCl in-gel digestion (Tables 5 and 6 and Appendices 

8 and 9.) indicating trypsin digest miscleavage. Miscleavage can occur due to 

incomplete digestion by trypsin, which may indicate sub-optimal trypsin concentration, 

peptide sequence (Šlechtová et al., 2015), or oxidative modifications may alter the 

structure of the trypsin cleavage site so it is no longer recognised by the digestive 

enzyme. 

 A comparative analysis of PTEN to the PTP VHR may yield insights into PTEN 

function, given the conserved features and function of VHR, both at a functional level 

including changes of conformation, translocation and Cys124 nucleophilic activity 

(Denu & Tanner, 1998). VHR has a Tyr138 residue that has been identified as 

involved in PPI with ZAP-70 through phosphorylation (Alonso et al. 2003), this residue 

has also been identified as oxidised and nitrated in vitro (Figure 28, Figure 29, Figure 

30). As PTEN has a corresponding Tyr and this has been found to be both oxidised 

and nitrated, the oxPTM of residue may also have functional, regulatory and PPI 

importance in PTEN. Literature evidence of the importance of Tyr138 and adjacent 

Gly139 includes Stumpf & Hertog (2016) and Leslie et al (2007), who demonstrate 

effects of Tyr138 mutants in vivo for vascular hyperbranching, and state that Tyr138 

mutation is selected for in the metastatic small cell lung cancer cell line NCI-H196. 

Due to Tyr138 involvement in cancer in PTEN, oxidation and nitration of this residue, 

peptide fragments pertaining to this residue, and other non-active site residues and 

their modifications, may be important for cancer therapeutic development and 

biomarker development. This analysis highlights the potential importance of 

comparative PTM omics, and for the parallel querying of multiple biomolecules. 

 Regarding the PTEN active site Cys124, as the VHR Cys124 has been detected 

as trioxidised (Figure 32), one may speculate that the PTEN Cys124 may also be 

capable of trioxidation, in vitro, in vivo and via intervention.  
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3.5.4.2. Discussion of domain regions of PTEN oxidised and nitrated 

by sin-1 and HOCl 

 

Mapping modifications to domain structure (Figure 36.) indicates that the 

phosphatase domain of PTEN is susceptible to modification. To speculate, 

phosphatase domain modifications may affect enzymatic activity of PTEN in vivo. 

There are multiple modifications in the C2 domain at M205, M225, M239, M270, Y316 

(Figure 35., Appendices 8.,9.) Bolduc et al (2013) suggest that the C2 domain may 

interact with the C-terminal tail for an activity modifying conformational change, thus 

the C2 domain modifications found may have an affect on conformational change. 

There is a modification of a tyrosine in the phosphorylation domain. To speculate, 

modification of Tyr336 may have additional in vivo importance as tyrosine 

phosphorylation of PTEN (Lu et al., 2003) and nitrotyrosine mimicking of 

phosphotyrosine (Mallozzi et al., 2001). Modifications in the C2 domain can also be 

important as it is a binding domain that also has auto-inhibition functionality 

(Odriozola et al., 2007). 
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Figure 35. Mapping of all residue modifications predicted by Mascot search 
from oxidation of PTEN by sin-1 and HOCl oxidation and nitration 
Phosphatase domain sequence 15-186, C2 domain sequence 186-403 and major 
phosphorylation sites 352-403. 
 

3.5.4.3. Discussion of oxidative and nitrative modifications in the 

context of crystal structure information for PTEN 

 

Mapping the modifications identified onto the crystal structure of PTEN (Figures 36., 

37.) allowed for the secondary and tertiary structure to be taken into account when 

assessing the putative effect of oxidative modifications on protein function, and to 

inform decision making as part of the screening process. Tyr46 and Tyr155 oxidation 

and nitration modifications were identified (Tables 5 and 6, Appendices 8 and 9.) are 

spatially situated near to the active site (Figure 36.) and they could have an affect on 

PTEN activity through a direct or in-direct action on the active site cysteines or the 

amino acids that form the active site cleft and create the physicochemical properties 

of the active site cleft. Note that the presence of Tyr46 on an unstructured sequence 
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that, to speculate, may have the ability and propensity to interact with the active site, 

where informatic and physical analysis may query this. Tyr76 is situated on an 

unstructured sequence region, where to speculate, modified Tyr76 may affect PPI as 

unstructured and loop regions may be involved in PPI due to their movement and 

varied conformations that they may take. Tyr138 appears to be an outwards facing 

residue on an α-helix, flanked by two α-helices that may constitute an α-helix domain. 

Tyr138 may be of relevance, due to VHR Tyr138 being involved in the 

phosphorylation-activation of VHR by ZAP-70. When the crystal structure of PTEN is 

cross-referenced, comparatively, with the crystal structure of VHR it can be seen that 

the α-helix Tyr138 is present on appears evolutionarily and structurally conserved, as 

does the potential α-helix domain, as well as the Tyr138 sequence and the ability for 

Tyr138 to be oxidised and nitrated in vitro. Tyr155 is situated on an α-helix and 

adjacent to an α-helix and β-sheet, in addition to being outwards facing, and thus 

modification of this residue, may alter the conformation, with regards to interact with 

the adjacent α-helix and β-sheet which may affect protein translocation, function, or 

affect PPI binding. Tyr225 is situated at the start of an unstructured region and thus 

may affect PPI through either a docking site or altering the movement and direction of 

movement of the unstructured region. Tyr336 is situated on an unstructured loop 

region, at the hinge of the loop, which may both directly affect a docking site for PPI 

and also the movement direction, movement range and vibrational frequency of the 

loop region, which may affect further complex formation and PPI. The Cys71, in 

addition to being a partner for Cys-Cys disulphide bridge formation with the 

nucleophilic Cys124 (Figure 37), is situated at the start of an unstructured region, 

which, may also affect the movement and shape of this region and thus PPI 

interactions and PTEN conformation. 
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Figure 36. Tyrosine modifications found in sin-1 oxidation of PTEN mapped 
onto PTEN crystal structure model 
Tyrosines identified as modified by Mascot search are highlighted in green on the 3D 
structure of PTEN (1D5R), Tyr46, Tyr76, Tyr138, Tyr155, Tyr225 and Tyr336. The 
structure is based on PTEN X-ray crystallography data (Lee et al., 1999) and 
displayed using UCSF Chimera (Pettersen et al., 2004). 
 

 

 

Figure 37. Cysteine modifications found in sin-1 oxidation of PTEN mapped 
onto PTEN crystal structure model 
The non-nucleophilic regulatory active site cysteine identified as modified by Mascot 
search is highlighted in green on the 3D structure of PTEN. The structure is based on 
PTEN X-ray crystallography data (1D5R) (Lee et al., 1999) and displayed using 
University of California San Francisco Chimera (Pettersen et al., 2004). 
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Without the identification of Cys124 with tryptic digests of treated and untreated 

PTEN, low protein expression and purification yields of PTEN and the lower OMFP 

phosphatase activity of PTEN both comparative to VHR and absolutely, the line of 

inquiry was pivoted towards VHR functional proteomics. Due to this pivoting of line of 

inquiry and the time constraints of manual analysis of XICs and de novo sequencing, 

the other modifications and residues apart from Cys71 were not analysed via a 

systematic analysis of all PTEN residues and their percentage abundances between 

treatments and treatment molarity ratios with PTEN. Additional replicates would be 

required for Progenesis automated analysis, and further PTEN study was assessed to 

be an alternate line of inquiry to the one taken to deliver a systematic functional 

oxidation analysis and correlate function to the oxidation of key residues involved in 

activity and regulation of function, which was performed using VHR. 

	

	

	

3.5.5. Discussion of oxidative treatment of VHR 

	
3.5.5.1. Discussion of the combinatorial bottom-up mass-

spectrometric analysis and phosphatase assays of oxidised VHR 

			 

This in vitro study is important for understanding the signalling of VHR and the 

potential for VHR in vivo to be oxidised upon damage from oxidative stress, 

inflammation and ageing. Having used a systematic, protein-wide approach to 

detected modifications in vitro, a novel, proof-of-principle workflow to quantify and 

visualise oxidative PTMs has been developed (Figure 28, Figure 29). A protein-wide, 

systematic functional oxidation analysis of a single protein also yielded multiple 

oxidised residues, which would be obvious targets to take forward for mutation 

analysis to determine whether the modifications seen may have an effect on OMFP 
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activity or on in vivo function, such as Leslie et al (2007) and Stumpf & Hertog (2016) 

demonstrate with PTEN as well as peptide ions to detect in in vivo samples using 

targeted mass spectrometry or multiple reaction monitoring.  

Di- and Tri-oxidation of the Cys124 active site nucleophilic residue of VHR is a 

novel finding (Appendices 10, 11, 12), which indicates that biologically irreversible 

oxidation is possible for the active site of VHR, which could have implications in 

pathology as an epigenetic and pathogenic event, given the involvement of VHR in 

diseases such as non-small cell lung cancer (Wang et al., 2011) and given that PTP 

active site modification can occur in cancer cells (Lou et al., 2008). Lou et al (2008) 

demonstrate reversible and irreversible oxidation of PTP1B in cancer cells from 

intrinsic reactive oxygen species production, and assess in cellulo oxidation of PTP 

active site in relationship to cancer via immunoprecipitation of PTP1B and mass 

spectrometry analysis of abundance ratios between oxidised and non-oxidised active 

site residues.  

The active site of VHR is comparatively less complex with regards to cysteine 

redox regulation (Denu et al., 1998; Yuvaniyama et al., 1996) than other PTPs, such 

as PTEN, as it has one active site nucleophilic cysteine without another local cysteine 

within 9Å with which to form a cysteine disulphide bridge, making intramolecular 

disulphide bridges improbable (Denu & Tanner, 1998).  

Lou et al (2008) discuss the finding of irreversibly oxidised PTP1B active site Cys 

in a cancer cell line as having potential for signalling, including their finding that the 

active site Cys of PTP1B was preferentially oxidised, showing some level of selectivity 

as may be the case with a regulatory mechanism or may promote cancer progression, 

unless this merely shows a susceptibility damage of PTP active site Cys in cancer 

cells with high levels of reactive oxygen species. 

The Cys124 residue was only detectable via TOF MS/MS due to the added mass 

of the modifications and a miscleavage event (Figure 32.), which may have been due 
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to the oxidation or nitration of a tyrosine on the Cys124-contining peptide interfering 

with the trypsin cleavage. Detecting the Cys124 peptide more frequently when it 

contains modifications (Appendices 10, 12) yet the peptide occurring at low 

abundances suggests an interaction between the phenomenon. Modifications are 

known to affect digestion such as methylation of lysine (Zee and Garcia, 2012). The 

trioxidised Cys124 was not seen in untreated controls suggesting that Cys124 

oxidation was not a result of handling and methods. The non-modified Cys124-

containing peptide was neither identified by Mascot®, via searching the XIC and 

spectra, or after both double digestion with an enzyme combination predicted in silico 

to yield an appropriate sized Cys124-containing peptide, or via a product ion scan of 

VHR for Cys124-containing peptides of varying cleavages, charge states and 

modifications. Although the Cys124 di- and tri-oxidation were identified, the 

abundance and relative abundance to other modifications is unconfirmed via ratios of 

modified to un-modified peptides due to the absence in reliable detection of the 

unoxidised control. A single instance in a single untreated control sample of an 

uncarbamidomethylated peptide was found for the cysteine of interest, which was not 

appropriate for the calculation of relative abundances. This information may be 

needed to assess the role of the active site Cys124 nucleophilic residue di- and tri-

oxidation in the loss of activity recorded (Figure 25a., 26a.), and whether the active 

site nucleophilic residue is responsible, in part, alone or to what degree in the loss of 

activity upon treatment, regardless of the computational modeling correlations to non-

nucleophilic residues (Figure 31.). To speculate further regarding the importance of 

Cys124 in the inactivation of VHR, VHR is known to form VHR-VHR dimers (Pavic et 

al, 2014) if this is still possible and favorable in vitro with GST tagged VHR, this points 

to the potential of non-nucleophilic residues in the activity reduction of VHR upon 

treatment with oxidants, by the action of modified residues to reduce or increase VHR 

dimerization, where VHR dimerization can reduce VHR activity (Pavic et al., 2014). 
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The identification of oxidation, chlorination and nitration of Tyr138  (Figures 28, 29, 

30; Appendices 11, 12) may merit further investigation of this residue due to Tyr138 

phosphorylation by ZAP-70 being involved in VHR activation (Alonso et al., 2003) and 

the mediator modeling indicating Tyr138 is a significant mediator between oxidant 

concentration and VHR phosphatase activity (Figure 31.), and given that nitrotyrosine 

is suggested to mimic phosphotyrosine (Mallozzi et al., 2001). 

Finding multiple modification classes, that of oxidation and nitration on the same 

residue of known functional importance (Alonso et al., 2003), also suggests the 

potential the possibility of competitive PTM processes in vitro and, to speculate, 

suggests the potential for interaction between multiple signalling pathways – oxidation, 

phosphorylation and nitration in vivo, given that Tyr138 is phosphorylated in vivo 

(Alonso et al., 2003). Evidence for interaction between PTM types has been 

suggested between phosphorylation and methionine oxidation for proximal 

methionines to serine, threonine and tyrosine (Rao et al., 2013), and also between 

phosphorylation and ubiquitination (Nguyen et al., 2013), yet these examples are of 

interactions between pathways and for a protein, not on the same residue. Chiarugi & 

Buricchi (2007) review the interaction of tyrosine phosphorylation and reversible 

oxidation and the potential opposite effects of these signalling pathways, and Mallozzi 

et al (2001) discuss potential for nitrotyrosine to mimic phosphorylation.  

Further research would need to be carried out to see whether oxidation and 

nitration of Tyr138 have an effect on activity, deactivate VHR, permanently activate it 

or affect VHR PPI. To support speculation regarding in vivo function, there is already 

precedent for this with the tumour suppressor signalling protein p53 where nitration of 

Tyr327 promotes p53 oligomerisation and activation (Yakovlev et al., 2010), which 

was nitrated with the NO donor diethyenetriamine.  

Activity of VHR upon sin-1 oxidation decreased to a similar percentage to multiple 

oxidations abundances- whereby, the level of abundance of particular modifications 
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are correlated with the level of activity loss. Multiple oxidations were present at a 

higher abundance percentage than the percentage loss of phosphatase activity. Thus, 

the abundance and activity measurements do not allow the resolving of which 

residues and modifications alone, or in concert, have a role in one or multiple 

mechanisms of inactivation or loss of activity of VHR. Without further investigation, 

further statistical modeling, and deletion analysis, the modifications which affect 

enzymatic activity are not readily discernable.  

Activity of VHR upon TNM oxidation of a comparable molar ratio to sin-1 produced 

a larger array of modified residues, as well as increased abundances, particularly for 

the Tyr101 and Cys171 residues, specifically Tyr101 nitration and Cys171 trioxidation. 

TNM treatment inactivated the enzymatic activity of VHR at all molar ratios of 

treatment used (Figure 26a.). TNM and TNM molar ratios used were rationally 

selected to generate levels of tyrosine nitration that would be discernible and 

statistically significant from the noise for their effect on PPI arrays, where effects may 

be linear and non-multiplicative. The TNM molar ratios were also selected after 

having performed the sin-1 and HOCl treatments noting the effects of these 

treatments on band loss, activity loss, and percentage abundances of the 

modifications identified via XIC, comparatively. In order to generate nitrations of the 

abundance intensity for PPI arrays protein loss, fragmentation and aggregation can 

be seen (Figure 26b.), therefore a strategy to separate sufficiently nitrated, intact VHR 

from both aggregates and fragments, to assess the effect of modified VHR with 

substantial nitration would be required. This in itself, may not be sufficient to identify 

and resolve the specific effects of specific tyrosine nitration, or whether those PPI 

identifications would be due to a phosphate mimicking or phosphate-analogous 

property. TNM modification provided the identification of the VHR active site 

nucleophilic residue, where there is reason to suggest that the additional modification 

to the Cys124-containing peptide was due to the abundance levels of modification 
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from the TNM, and the properties of TNM as an oxidant. Utilising compounds that do 

not exist without intervention in vivo such as TNM have utility, as their chemical 

properties have potential to investigate potential biological interactions. Comparative 

information regarding compounds found in vivo such as peroxynitrite and HOCl to 

TNM also provides some context as for the modifications found and the abundances 

they are found at, and allows the in vitro modification space of a protein to be more 

fully searched and mapped, as well as profiling the damage of a compound not found 

without intervention in biology with regards to its aggregates, fragments and 

modifications and peptides associated with this non-biological compound.  

Protein loss from the VHR-GST gel band (Figure 25b, 26b.) along with marked 

aggregation and fragmentation, including for treatment regimes that did not produce 

high abundances of modifications, does not enable the elucidation of what activity 

loss was due to the modifications, and what activity loss may be due to aggregation or 

fragmentation – although the result from the TNM densitometry and percentage 

OMFP activity (Figure 26a.), may suggest that as a larger decrease in activity is seen 

comparatively to the full lane densitometry and VHR-GST band densitometry, that the 

differences in activity may not be entirely correlated to the loss in band intensity.  

Between sin-1 and TNM treatment of VHR-GST similar fragmentation and 

aggregation patterns, and fragments and aggregates are observed (Figure 25b., 26b.) 

regarding the sizes and appearance of non-VHR-GST bands in the Coomassie 

stained gel. Where both sin-1 and TNM treatment of VHR-GST displays multiple 

higher-than-VHR-GST molecular weight bands at the entrance of the running gel, that 

is not present in the untreated, and also decreases in intensity upon increased 

treatments, following a trend of all bands decreasing in intensity. Comparatively 

between sin-1 and TNM the lower-than-VHR-GST molecular weight bands appear 

similar, and also display a reduction in intensity as treatment molar ratio increases 

(Figure 25b., 26b.).  
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Patterns of oxidation between residues, as the molar ratios increase, are, for 

some cases, non-linear which, to speculate, may suggest properties such as 

specificity, hyper-reactivity or conformational change of the protein (Figure 27, 28). 

The TOF MS/MS experiments performed suggest that tyrosine nitration, via sin-1 

and TNM are partially selective, with some residues having a higher relative 

abundance of modification than others – but against a background of additional 

tyrosine nitrations and tyrosine oxidations. TOF MS/MS and other methods that 

assess protein-wide, individual residue resolving modifications, are suitable for the 

assessment of treatment specificity and residue selectivity of oxidants. Further, the 

results of TNM and sin-1 treatment showing numerous oxidations, and only partially 

selective nitration, which would inform future experimental design, as TNM and sin-1 

have been previously characterised as selective nitrating agents, and the effects of 

TNM and sin-1 associated with the nitrating selectivity that was characterised without 

protein-wide, individual residue resolving. Whereby some of the functional differences 

observed upon tetranitromethane and sin-1 treatment, one could reasonably 

hypothesise is due to either modifications that are not presently searched for or due to 

multiple modifications.  

Peroxynitrite has been shown to react with thiols and nitrate tyrosines (Radi, 

2013), which confirms predictions from MS and analysis software. For a more 

selective nitration in order to selectively modify particular residues, it has been 

reported that electrochemical treatment (Kendall et al., 2001; Richards et al., 1994) 

has greater selectivity although additional validation may need to be done to 

investigate whether other methods are as selective as has been previously reported. 

Comparative analysis of treatments that was comprehensive would contain searches 

for all modifications known via a systematic use of multiple searches and error 

tolerant searches to search for all possible modifications and higher resolution and 
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accuracy MS, in addition to flagging un-identified ions and in silico prediction based 

on the masses of un-matched peptides. 

The systematic approach to mapping and quantifying protein modification that has 

been outlined imposed time constraints for a skilled operator. The ability of a skilled 

operator versus an automated analysis may be investigated to differentiate between 

medical classes of patients, and if and where a manual approach outperforms, and 

what the costs and risks of this are within the clinical pipeline and healthcare delivery. 

Taking into account the number of PTMs, treatments, treatment ratios, proteins and in 

vitro and in vivo sample types – a systematic functional analysis with relative 

quantifications may require automation at the bench top with liquid handling robots, 

an automated pipeline between predictive algorithms and raw data analysis programs, 

automated validation of peptides, automated relative quantification and modeling and 

data visualization software build into the pipeline downstream, with a focus on clinical 

development and outcomes.  

The modifications discovered for VHR (Figures 28, 29, 30; Appendices 10, 11, 12), 

independently of the availability of the active site modification abundance data, have 

potential value for modifying VHR at other residues of importance such as Tyr138, 

and as potential VHR-based peptides to search for in vivo that may be correlated or 

causative for that in vivo state. If the VHR active site peptide identification is a 

constraint, other VHR peptides may be an appropriate proxy as a biomarker. Other 

signalling proteins in the cell signalling pathways of interest could also be assessed 

as proteins to sequence via MS and points to intervene in, within the cell signalling 

pathways.  

In the context of VHR primary structure, and specific oxPTMs, modified resides 

were identified between Tyr38 and Cys171 (Figure 28., 29., 30; Appendices 10, 11, 

12). The range in number of modifications identified between sin-1, HOCl and TNM 

may have been influenced by the concentration and molar ratio of the treatment, 
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including peroxynitrite concentration over time via sin-1 generation, and that the HOCl 

data was analysed via Progenesis and thus was not manually searched for 

modifications and peptides that had been predicted and previously seen in other 

samples, as was implemented in the manual analysis. Proceeding along the VHR 

primary sequence Tyr38 oxidation, Tyr38 nitration, Pro49 oxidation and His58 

oxidation were identified at a <10% abundance with all sin-1 treatments implemented. 

For Tyr38 nitration, TNM treatments of over 1:150 produced dose dependent 

increases in TNM >1% with TNM 1:300 producing an abundance of >5%. HOCl 

treatment yielded Tyr38 chlorination identification, automated analysis of abundances 

identified <10% chlorination.  HOCl produced >10% oxidation at His58 for all 

treatment molar ratios. Met69 is the amino acid across the sin-1, TNM and HOCl 

treatment replicates to give a >10% modification, with Met69 dioxidation upon sin-1 

treatment of 1:300. The HOCl replicates show an increased Met69 dioxidation in the 

control of >10% with decreased Met69 dioxidation in treated, alongside an increase in 

Met69 oxidation in the HOCl treatment replicates. Along the primary sequence of VHR, 

His70 for both the sin-1 and TNM treatment replicates exhibits a pattern of low His70 

oxidation in the control, with dose-dependent decrease in sin-1 and <1% modification 

in TNM, followed by a spike at sin-1 1:300, and TNM 1:1000, displaying a pattern of 

decrease (including dose-dependent decrease) followed by a spike in modification 

abundance. This could be part of a larger pattern, and may be due to either 

competitive local scavenging and reaction with oxidants, may be due to initiation of 

oxidant requiring a local oxidation at a local residue, or a conformational change only 

present at the higher concentrations which increases oxidant access or alters local 

reaction kinetics. Tyr78 has low levels of oxidation, and low levels of nitration across 

the treatments and treatment molar ratios – as Tyr85 and Tyr101 are oxidised and 

nitrated – this points to sequence and conformation specific factor involvement at this 

residue. Lys79 modification levels are low in both sin-1 and TNM and the modification 
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was not identified in HOCl by Mascot and Progenesis analysis alone.  Tyr101 has 

<10% oxidation and nitration identified upon the sin-1 treatment molar ratios and 

replications performed, and <10% chlorination for the HOCl treatments. The TNM 

treatments performed, for Tyr101, yielded a dose-dependent, non-linear increase in 

Tyr101 nitration, reaching near-saturation of Tyr101 residues, and doing so 

preferentially versus Tyr101 oxidation. Lys116 has low levels of oxidation across sin-1, 

TNM and HOCl, with HOCl having increased Lys116 oxidation comparatively; noting 

that the HOCl untreated samples also have a baseline Lys116 oxidation higher than 

all the other treatments. Pro132 oxidation is not identified as modified in the sin-1 

treatment replicates, Pro132 oxidation is identified at <5% in the HOCl treatments and 

replicates, and the TNM treatments identifies Pro132 oxidation in the TNM 1:150 and 

TNM 1:1000 treatment samples at below <10%, with some dose-dependent features. 

Tyr138, the residue known to interact with ZAP-70 and involved in the activation of 

VHR, shows <1% oxidation in sin-1 treatments and replicates, with Tyr138 showing 

nitration in the sin-1 untreated control, and >10% nitration in the 1:75 sin-1 treatment. 

The Tyr138 nitration was not seen in the TNM untreated control so, to speculate, may 

have been artefactual, and may be due to the residues reactiveness to RNS. Met140 

oxidation in the sin-1 treatments and replicates takes a dose-dependent increase at 

<10% with the exception of the sin-1 1:300 samples. To speculate, the decrease in 

the sin-1 1:300 Met140 oxidation, given the linear and dose-dependent increase may 

be due to the reduced sequence coverage and reduced identification of peptides, and 

the reduced sample protein in the band cut out for MS analysis. Met140 dioxidation in 

sin-1 is <10% and variable between treatment molar ratios. Met140 oxidation in TNM 

displays some oxidation in the untreated control, similar to the sin-1 replicates, yet at 

increased abundance, with Met140 oxidation increasing dose-dependently until a 

plateau after TNM 1:75, which to speculate, may be due to another modification that 

occurs at this TNM 1:75 and after that changes VHR conformation and thus reducing 
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the availability of the VHR molecules Met140 to oxidation and further oxidation to 

methionine sulphone. In the HOCl treatments and replicates Met140 oxidation is 

higher in the untreated than the other treatments and controls, where the abundance 

is variable around ~40% across the treatments, showing a plateau and/or abundance-

limiting factor. Met140 dioxidation, whilst being <1%, excluding sin-1 1:10, exhibits an 

abundance of ~10% in the HOCl replicates including the untreated control, and this 

Met140 dioxidation abundance also exhibits a constancy or plateau feature, which 

may support speculation around a conformational change that may occur upon 

oxidation. Met141 oxidation follows a dose dependent increase across sin-1 molar 

ratios, and is also modified in the untreated, reaching a ~50% abundance at sin-1 

1:300. Upon TNM treatment, Met141 has a variable, plateaued modification profile at 

<50%, and HOCl Met141 oxidation also reaches a plateau at ~50%, this plateauing 

feature and maximum abundance between treatments and the range of molar ratios 

used, given the differences in oxidation treatment reaction mechanisms, may, to 

speculate, further suggest a structural-conformational change occurring. Met141 

dioxidation in sin-1 was identified in the untreated control, with a variable-function 

increase in the treated samples, with a peak abundance in sin-1 1:10 higher than all 

the recorded Met141 abundances. For sin-1, combining the Met141 oxidation and 

dioxidation there is a dose-dependent combined increase, alongside TNM. In both 

sin-1 and TNM 1:10 and 1:300 these treatments show higher peaks comparatively 

with regards to the other treatment ratios, to speculate, this may be due a property of 

the ratios used, or may indicate multiple distinct conformational changes that occur 

around these molar ratios between these treatments. Comparatively there is a 

general trend for Met141 oxidation to be increased compared to Met141 oxidation, 

and this is also true for Met141 dioxidation. Met140 and Met141 modifications, may, 

to speculate, affect ZAP-70 interaction with Tyr138, through potentially altering the 

local thermodynamic conditions or by being involved in Tyr138 modification.  
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Met145 was identified as oxidised in sin-1 with a dose dependent increase with a 

high starting percentage in the untreated control, which was the highest starting 

modification abundance across modifications for sin-1, and small increases in 

abundance, with Met145 dioxidation not being identified in the treatments and 

replicates. Met145 in TNM exhibits <10% modification, and does not exhibit the high 

abundance in the untreated control – however the abundances of Met oxidation 

across the VHR sequence – Met69, Met140, Met141 and Met145 do, when their 

abundances are combined, appear to show a trend for the basal level or opportunistic 

and artefactual level of methionine oxidation, which, to speculate, may point to the 

gross scavenging properties of methionine in VHR and gross artefactual oxidation in 

the experimental workflow used. HOCl treatments and identification via Mascot and 

Progenesis without searching the TIC manually for both peptides predicted in silico or 

seen in other samples, did not identify Met145 oxidation. Cys171 was found to be 

dioxidised at ~<1% for sin-1, TNM and HOCl, which, to speculate may be due to the 

dioxidation being further oxidised to trioxidation, and the stability of dioxidised 

cysteine. Sin-1 exhibited, for the treatments and replicates, <10% Cys171 trioxidation, 

TNM exhibited a low Cys171 trioxidation in the untreated, that was higher than the 

sin-1 or HOCl untreated control, with TNM treatment Cys171 trioxidation increasing to 

~75% at TNM 1:150. The abundance of Cys171 upon TNM treatment both 

demonstrates the capacity of TNM as an oxidant in addition to being a nitrating agent, 

displays the potential for high abundance cysteine modifications in VHR and in VHR 

following TNM treatment, and shows the sensitivity of this particular cysteine, Cys171 

which may have a regulatory role. 

From the perspective of the protein sequence of VHR, the limitations of identifying 

amino acid modifications leaves out information as to which amino acids are in the 

vicinity of other amino acids in the secondary and tertiary structure, which may have a 

role in altering the environment for reaction to oxidants, acting as a catalyst, and 
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which also may have a role in secondary oxidation from other amino acids in the 

secondary and tertiary structure. The crystal structure of VHR is available 

(Yuvaniyama et al., 1996) but a molecular dynamic study with the modifications found 

would need to be performed, and may be an area for future study.  Primary structure 

information, of identifying amino acids at a distal time-point to the modification 

process also does not query the order or reaction mechanism for the modification, or 

the changes in which amino acids may be in the appropriate range from the amino 

acid of interest when any secondary, tertiary and conformational changes occur. 

Some amino acid modifications, due to the characteristics of the peptides they are 

present on, the charge and polarity of the peptide and amino acid, may be less likely 

to be identified, and some modifications may have less unique characteristics to 

assist in validation – or may be present at levels that do not assist identification. In 

addition to Tyr138, to speculate, other tyrosines within VHR may also be involved in 

regulation of VHR activity and conformational change, and these may involve PTM 

competition and regulation dynamics between oxidation, nitration and phosphorylation. 

By comparative analysis to PTEN, and the mapping of PTEN PTMs, as a comparative 

PTP speculative analysis, lysine residues within VHR, may be relevant as these have 

been identified as modified in PTEN (Salmena et al., 2008) – and may have similar 

roles, particularly as VHR and PTEN have been identified as having translocated to 

the nucleus – this comparative PTM analysis may apply across residue types.  

The challenge to get relative-quantification and thus differential relative-

quantification data for VHR Cys124 may have importance for any biomarker approach 

that included a relative quantification of unmodified to modified Cys124 containing 

residues. The intensity of the signal and rarity of the peptide, in the data collected, 

may also pose challenges if the Cys124 peptide were to be utilised as a biomarker 

peptide.  
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 Alternative and additional avenues, that were close in scope and process to what 

was performed, were as follows: An extensive manual analysis of HOCl XIC, 

additional treatment concentrations optimising intactness and/or protein or co-

optimising intactness of protein and the abundances of Cys trioxidation and Tyr 

nitration, co-optimisation for selective nitration, nitration abundance and intactness of 

protein, H2O2 treatment of VHR, more extensive machine learning and computational 

modelling may be alternative and additional avenues of development.  The avenues 

of development taken were taken in context of both the multi-centre collaboration 

with Imperial College, and their development of active site cysteine inhibitors for 

PTPs, and in the potential of the discovery of the effect of oxPTMs upon protein 

function, both enzymatically and on PPIs.  

 The avenues that were taken that did not yield results or were deemed, from the 

experiments performed, ineffective were as follows: The in solution digestion of 

proteins, as this gave a lower sequence coverage, in addition to not allowing 

visualisation via Coomassie-stained SDS PAGE. The double digestion of VHR for the 

purpose of identification and relative quantification of the Cys124 active site peptides, 

for the elucidation of the modification state/s Cys124 takes, and specifically what 

modification states/s Cys124 takes in the context of functional proteomics and the 

corresponding phosphatase activity for a particular treatment regimen. The product 

ion scanning for the purpose of identification of the Cys124 after single enzyme and 

double enzyme digestion.  

 Modelling of the relationship between the percentage abundances of 

modifications relative to the relationship between the percentage OMFP phosphatase 

specific activity and molarity of the treatment yielded models of relationships for the 

effects of modified amino acids as single mediators of activity and the effects of 

modified amino acids were the effect of one mediator had a forward effect on the 

second mediator amino acid, as multivariate analysis. The single mediator model 
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gave significant mediation effects for Tyr38 (Ox), Pro49 (Ox), His58 (Ox), Met69 

(DiOx), His70 (Ox), Lys79 (Ox), Lys89 (Ox), Tyr101 (Nitro), Lys116 (Ox), Tyr138 

(Nitro), Met140 (Ox), Met141 (Ox), Met141 (DiOx), Met145 (Ox), and Cys171 (Ox). 

The mediation model may assist with prioritisation of screening and validation of 

amino acids for functional effects and for building predictive models for functional 

predictions (Figure 31). Multiple mediation effect modelling of amino acid 

modifications on OMFP phosphatase specific activity in relationship to molarity of 

treatment modelled many relationships above a 99% confidence level (Table 8). The 

multivariate modelling of multiple mediators gave the following relationships: A 

forward effect of Lys70 (Ox) on Met141 (Ox) had the largest forward effect, yet 

Met141 is on an α-helices with Lys70 being part of an unstructured loop region at a 

distal location.  The second largest forward effect was that of Tyr138 (Ox) on Met141 

(Ox), which may be of interest as both are located in an adjacent position on the 

same side of the same α-helices. Given the role of Tyr138 in ZAP-70 mediated VHR 

activity, a greater understanding of the oxidation dynamics of Tyr138 may be of utility 

with regards to the potential role of the environment of Tyr138 on Tyr138 regulation, 

and the role of oxidation in both regulation of phosphatase activity, phosphorylation 

and nitration of Tyr138.  To speculate, as there are 3 methionine residues (Met140, 

Met141, Met145), there may have been an evolutionary pressure for readily oxidised 

residues to be co-located with the regulatory Tyr138 residue. Lys79 (Ox) has the 

third largest forward effect in the model (Table 8) on Tyr85 (Nitro), which to speculate 

may be due to the dynamic, entropic, vibrational and flexible properties of the region, 

which is partially identified as an unstructured loop in the crystal structure, and 

partially a β-sheet flanked by unstructured regions. Tyr138 (Ox) also has a forward 

effect on Met140 (Ox) and Met145 (Ox) in addition to Met141 (Ox), which is located 

on the same α-helices, although Met140 (Ox) is on the other side of the α-helices, 

and Met145 (Ox) is in the unstructured sequence prior to the α-helices. Tyr138 (Ox) 
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has a forward effect on Tyr138 (Nitro), which to speculate may be of interest to 

understand and utilise the inter-relation between oxidation and nitration of Tyr138 for 

VHR activity, VHR phosphorylation and signalling pathway predictions and 

modulation. Met69 (Diox) also has a forward effect on His70 (Ox) the sequential 

residue in the multiple mediator model. To conclude, mediator modelling may direct 

further efforts regarding the elucidation and effective use of the relationships 

between amino acids, the mediator model also highlights that whilst some mediators 

have may have a low, negligible or non-significant mediation effect, they may 

mediate a forward effect in combination with a partner mediator.   

 The forward effects in the mediator model may be due to correlation due to 

advanced modification occurring at both residues at specific molarities, due to the 

direct effect of a residue on another residue by creating an environment for the 

modification of the second residue that is sequentially next to amino acid or adjacent 

to the amino acid in secondary or tertiary structure, or where a modification in the 

first residue may modify the secondary or tertiary structure which either exposes a 

residue to the reactant or creates an environment that increases the susceptibility to 

reaction.  

 Regarding biological validation – with the in vitro first approach, there are multiple 

avenues for biological validation – revolving around assessing which modifications 

occur during in vivo states, whether delivering modified protein or inhibiting residues 

modified has an in vivo effect that is relevant and valuable. Additional biological 

information on the VHR interactome was gathered to discover VHR PPI via in vitro 

protein-protein arrays and in cellula VHR co-immunoprecipitation, to create additional 

biological context.   

 The relevance of the systematic functional proteomics of PTEN and VHR 

oxPTMs to the body of work was for the treatment of samples that would be suitable 

for assessing the effects of oxPTM and specific oxPTMs in PTEN and VHR upon 
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PPI, through sample generation with the appropriate modifications, appropriate purity 

and intactness of the protein. PPI arrays may provide both a platform to query with 

protein modified with oxPTMs that had also been analysed via MS, and would also 

yield potential interactors to further screen and utilise in bespoke arrays to query the 

effects of the oxPTMs of the protein of interest against the interaction candidates – 

where sin-1 was first selected for PPI investigation, with a pivot in the line of inquiry 

to investigate TNM treatment prior to potential PPI investigation utilising TNM after 

results showed higher percentages tyrosine nitration, although these increases in 

tyrosine nitration were coupled with i) using a non-biological treatment and ii) 

substantial activity reductions that may be inappropriate for correlating activity 

changes to modifications, and these modifications to PPI interactions by correlation. 

Co-immunoprecipitation may provide a platform to discover potential interactors that 

are not present on a PPI array, and yield candidates for further study on bespoke 

arrays queried against protein samples with oxPTMs. As oxidations have been 

generated at levels that may be sufficient to query PPI arrays for differential signal 

intensity, in particular Tyr101 upon TNM treatments of 1:150, 1:300 and 1:1000 

molar ration, for nitration, Cys171 trioxidation upon HOCl treatments of 1:30 and 

TNM 1:10, 1:75, 1:150 and 1:300 and Tyr85 nitration from the TNM treatments of 

1:75, 1:150, 1:300 and sin-1 treatments of 1:75, 1:150 and 1:300. Challenges for 

these treatment samples analysed by MS would be similar to that of functional 

proteomics challenges when comparing MS to OMFP phosphatase assay, in that 

there are multiple amino acids and peptide regions not identified and multiple 

residues modified to large percentages, making the discernment between the effects 

of several modifications challenging without resolving the differences empirically or 

via modelling.  
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3.5.5.2. Discussion of domain regions of VHR oxidised and nitrated by sin-1, 

HOCl and tetranitromethane 

 

Multiple, novel in vitro oxidative modifications of VHR have been elucidated. The 

modifications have a distribution, this includes regions that are more heavily modified 

such as the regions between Tyr138-Cys171 and His58-Tyr78 indicative of hyper-

reactivity of the residues or specificity on the part of the oxidants (Figure 28, 29, 30). 

These modifications appear to fall within the major catalytic unit of VHR, with the 

residues His58-Tyr78 being on a putative β-domain, taking into account that the β-

sheets are parallel and not anti-parallel. The modifications in the Tyr138-Cys171 

appear to be within a α-domain consisting of 3 α-helices, with no modifications 

identified in the C-terminal tail region. To speculate, oxPTMs may alter the domain 

structure, domain-domain interaction, PPI, VHR-biomolecule interaction, VHR-

inhibitor interaction, catalytic function and complex formation through altering the 

distance between and angle of domains, altering whether a domain is formed from 

primary sequence and the distance and angles between domain regions and 

unstructured regions including unstructured loops. Evidence of nitrotyrosine oxPTM 

affecting protein function include Cassina et al (2000) who demonstrate tyrosine 

nitration inhibiting protein function via altering protein conformation and steric 

hindrance in Cytochrome c. There is also evidence of the effect of protein oxidation 

on protein interactome, including protein therapeutics, whereby methionine oxidation 

weakened binding to protein binding partners, which was assessed via surface 

plasmon resonance (Pan et al., 2009). 
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3.5.5.3. Discussion of oxidative and nitrative modifications in the context of 

crystal structure information for VHR 

 

 Mapping the modifications on the crystal structure of VHR (Figure 38, 39) may 

have utility for assessing the location, co-location and distribution between residues 

and treatments – taken alongside the informatic mediator modelling (Figure 31, Table 

8) represents an informatic, physical and chemical approach.  

 If the two outermost α-helices that flank the α-helices where the Tyr138 is 

situated were to alter their position in relationship to the Tyr138 α-helix this may alter 

ZAP-70 binding, Tyr138 phosphorylation and the binding specificity and interaction 

likelihood with ZAP-70, which on a cell signalling level, may downregulate ERK and 

the Raf/MEK/ERK pathway, and downregulate cell growth, angiogenesis, survival 

and cell motility. Modifications to the domains surrounding Tyr138 may, to speculate, 

affect the binding of a Tyr138 inhibitor. 
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Figure 38. Modifications found in sin-1 treatment of VHR mapped onto VHR 
crystal structure mode 
The non-nucleophilic regulatory active site cysteine identified as modified by Mascot 
search is highlighted in green on the 3D structure of VHR. The structure is based on 
VHR X-ray crystallography data (UniPROT, 1VHR)  and displayed using University of 
California San Francisco Chimera (Pettersen et al., 2004). a) VHR-GST untreated b) 
sin-1:VHR-GST 1:10 c) sin-1:VHR-GST 1:75 d) sin-1:VHR-GST 1:150 e) sin-1:VHR-
GST 1:300) Modified residues are coloured with Identified-24% as yellow, 25-49% as 
orange, 50-74% as orange-red and 75-100% as red; active site residues coloured and 
active site residue structure shown along with substrate. The percentage abundances 
of different modifications were aggregated for each residue. 

a) 
b) 

c) d) 

e) 
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Figure 39. Modifications found in HOCl treatment of VHR via automated 
analysis with Mascot and Progenesis mapped onto VHR crystal structure mode 
The non-nucleophilic regulatory active site cysteine identified as modified by Mascot 
search is highlighted in green on the 3D structure of VHR. The structure is based on 
VHR X-ray crystallography data (UniPROT, 1VHR)  and displayed using University of 
California San Francisco Chimera (Pettersen et al., 2004). a) VHR-GST untreated b) 
HOCl:VHR-GST 1:30 c) HOCl:VHR-GST. Modified residues are coloured with 
Identified-24% as yellow, 25-49% as orange, 50-74% as orange-red and 75-100% as 
red; active site residues coloured and active site residue structure shown along with 
substrate. The percentage abundances of different modifications were aggregated for 
each residue. Modifications were identified by Mascot search, and parsed to 
Progenesis for automated extracted ion chromatography.  
 
Figure 38 and Figure 39 map oxidative modifications at different residues, with their 

abundances (colour coded) across a range of oxidative treatment molar ratios. The 

unstructured loops of VHR appear locally to the active site cleft, and to speculate 

these may have importance for binding, where the residue most local to the active site 

is modified by both sin-1 and HOCl treatments over a range of concentrations (Figure 

38, 39.). Additional molecular modelling and biophysical analysis may be required for 

a) b) 

c) 
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validation of movement constraints of the loop region and any putative inhibitor or 

regulatory role. 

 To speculate, from analysis of the crystal structure there appears to be two 

tertiary putative domains, -a β-domain and α-domain - of VHR with the VHR active 

site residues situated at the nexus of two putative secondary structure domains – to 

speculate further – this differential and dual domain dynamic at both the secondary 

and tertiary level may aid regulation and be mechanistically explanatory as to how 

non-active site PPI and modifications may regulate the active site residue and active 

site cleft – where the one putative domain –contains the β-domain of four parallel β -

sheets and one anti-parallel β sheet and another putative domain with five α –helices. 

 

3.6. Conclusions on the novel discovery, workflow and process for functional 

proteomics of PTEN and VHR 

 

The advances in both the results from functional proteomics utilising TOF mass 

spectrometry, SDS PAGE and assaying of enzymatic activity, and understanding of 

the applications for and limitations of these techniques as part of a pre-clinical 

workflow and platform can be seen to have implications and potential for other 

proteins, omes, and clinical applications. In particular this research points to the 

building of screening lists to extract value from in vitro results for in vivo peptide and 

oxidation screening by way of building lists of candidates to search for in vivo (Table 

11, Appendices 8, 9, 10, 11, 12). This would not be an extrapolation of in vitro results 

to in vivo but a utilisation of in vitro and in silico techniques to search for in vivo 

peptides and oxidations where attempting to find in vivo peptides and oxidants of low 

abundance in mixed samples without a list of potential peptides and oxidants to scan 

or probe for, may be challenging depending on the technology used. For clinical 
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utility, additional workflows would be required, and would involve simplification and 

automation. 

 

Protein Number of residues 

identified as modified 
 

Number of types of 

modifications identified 
 

PTEN 10 6 

VHR 16 12 

    Table 11. Summary of residues identified as modified and number of types of     
modifications identified in PTEN and VHR  
 

 Operationally, non-sequenced PTEN and VHR regions including the active site 

residue, manual sequencing and XIC, non-robotic assaying and non-robotic pipeline 

were operational constraints to deliver the potential. Constraints on manual validation 

were considered prior to further investigation with computational modeling and 

selection of protein and peptide candidates for PPI investigation, and prior to 

incorporation in databases of modifications (Appendices 9., 10., 11., 12) and 

comparative analysis with protein crystal structures.  With automated XIC and an 

automated pipeline, more focus could be applied downstream with additional 

treatments, additional proteins, and in vivo samples.  

Future work to assess PTEN and VHR modifications in vivo would be an 

interesting next step, in addition to the understanding in vitro of the interactomes of 

PTEN and VHR, and how oxidation affects the interactomes of PTEN and VHR. 
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Chapter 4 

CX5R phosphatase arraying and 

array interactions 
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4.1. Introduction 

 

4.1.1.  Development of high resolution, low sample size antibody and protein pair 

arrays for protein interaction and oxidation studies   

 

To improve the reproducibility, resolution and sample requirements of protein-protein 

array technology the factors that are available for optimisation are the workflow, sample 

type and quality, and the technology used. To develop an understanding of oxidation on 

protein interaction, samples and reagents are required to be developed that are suitable 

for the robust detection and investigation within an array platform and workflow.  

 Technology to develop includes the delivery of sample and probing solution to the 

surface of the array without the introduction of artifacts that might obscure array spots 

and signal, produce false-positives.  

 Sample size can be reduced, which would be beneficial for performing multiple 

experiments with a limited sample and with absolute sample size limitations for health 

and regulation of the patient or size of sample needed to be produced. Considerations 

for sample size including having enough sample to cover the spots and array without 

evaporation leading to salt crystal formation and unequal probing. Sample size reduction 

may also give cost benefits for the use of expensive reagents.  

The aims of this research included developing arraying and array probing parameters 

and optimise them for studying protein-protein interactions with the Dynamic Bioarray 

biochip technology as well as optimise concentrations of arrayed and probing 

biomolecules. Dynamic Bioarray chips were tested versus the standard Lifterslip 

technologies for resolution and artifacts. Optimising the resolution and amounts of 

antibodies and proteins alongside the concentrations of the protein solution and arraying 

solution will be critical for proteins that have low binding affinity and to detect minor 

changes in protein-protein interaction. 
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Oxidised samples that were meaningful for testing specific hypotheses for oxidised 

protein-protein interactions may also be useful to develop. Considerations would include 

the mitigation or filtration of aggregates and fragments, in order for protein-protein 

interactions to be assessed for a specific protein and not an analysis of the fragments 

and aggregates of this protein, which would be testing different hypotheses. Utilising 

different oxidation treatments and profiling the modifications and modification 

abundances would also be a consideration for correlating specific modifications, 

modification signatures and modification abundance to protein-protein interaction 

signatures. Another consideration would be to be able to generate sufficient modification 

in residues of interest without aggregating or fragmenting the protein, whilst giving 

differences between samples that are detectable via a protein-protein array method. 

 

4.1.2.  Library array optimisation and screening for PTEN and VHR 

 

The high-throughput screening of protein libraries for interactors for proteins of interest 

PTEN and VHR may be utilisable for understanding signalling pathways, additional 

protein functions for therapeutic use for regenerative therapies, and for the designing 

and engineering of artificial cells for industry and biotechnology. Additional utilisation of 

protein library arrays may be to screen peptides versus proteins, including peptides with 

oxPTMs.  

Additional considerations for library array screening in addition to considerations for 

the improvement of protein-protein arrays in general are an increased focus on 

reproducibility and ability to extract value from the large-volume output, and to validate, 

perform complimentary experiments and act on information in a timely and effective 

manner for pre-clinical and clinical development. 
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4.2. Results 

 

4.2.1. Dynamic Bioarray chip versus Lifterslip library screenings 

 

 Collaborating with Dynamic Bioarray (Doctor Ekaterina McKenna) who 

manufactured the Dynamic Bioarray slide, the Dynamic Bioarray chip was tested versus 

the Lifterslip coverslip (Thermo fisher, UK). Both the Dynamic Bioarray chip and the 

Lifterslip coverslip are technologies for incubation of protein-protein arrays that ensure 

that liquid samples cover the array spots with a particular volume of sample across the 

duration of the incubation period. Lifterslip coverslips have been demonstrated for use 

for protein arrays, an example of which is Feijs et al (2013), and Dynamic Bioarray 

sought to improve the quality and reproducibility of array incubation and also reduce 

sample sizes with the Dynamic Bioarray chip.  

Prior to the optimisation of local spot conditions for arrays arrayed using the 

sciFLEXARRAYER and library array screening of Invitrogen ProtoArrays® for potential 

interactors and interaction dynamics, a comparison was performed the between array 

incubation technology – Lifterslip cover slips compared to Dynamic Bioarray chips. The 

comparison was performed with arrayed PTEN-GST, with primary and secondary 

antibody probing of the array (Figure 40d, Figure 40h).  

 The Dynamic Bioarray slide incubation displays some global non-uniformity, 

including at the edge of the slide and chip, and a spot intensity that is stronger than the 

Lifterslip for Figure 40 a) and e) with increased uniformity at the block level in 

comparison to Figure 40 e). Lifterslip incubation displays regions of stronger and weaker 

spot intensity and smearing artifacts, dark regions and non-uniformity at the block level 

(Figure 40.). The decision was made to take forward the Dynamic Bioarray slide for use 

with arrays spotted with the sciFLEXARRAYER and library array screening of Invitrogen 

ProtoArrays® 
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Figure 40. Anti-PTEN primary antibody and Alexafluor 647 conjugated secondary 
antibody probing 5μM PTEN-GST arrayed spots with Lifterslip™ and Dynamic 
Bioarray chip a) Fluorescence image of 4x12 array of 10x10 blocks incubated with 
Dynamic Bioarray chip b) Schematic of all blocks probed with 1:1000 anti-PTEN and 
1:1000 Alexafluor 647 conjugated antibodies incubated with Dynamic Bioarray chip c) 
Fluorescence image of exemplar 10x10 block incubated with Dynamic Bioarray chip d) 
Schematic detailed protein arrayed as a 10x10 block onto array substrate with 
SciFLEXARRAYER. Red = Alexafluor 647 conjugated secondary antibody 1:500, Aqua = 
PBS Yellow = 5% BSA in PBS, Green = 5μM PTEN-GST in PBS incubated with Dynamic 
Bioarray chip. e) Fluorescence image of 4x12 array of 10x10 blocks incubated with 
Lifterslip™ cover slip f) Schematic of all blocks probed with 1:1000 anti-PTEN and 
1:1000 Alexafluor 647 conjugated antibodies g) Fluorescence image of exemplar 10x10 
block incubated with Lifterslip™ cover slip h) Schematic detailed protein arrayed as a 
10x10 block onto array substrate with SciFLEXARRAYER. Red = Alexafluor 647 
conjugated secondary antibody 1:500, Aqua = PBS Yellow = 5% BSA in PBS, Green = 
5μM PTEN-GST in PBS incubated with Lifterslip™ cover slip. Scanned at 645nm, 5μm 
resolution, exemplar shown.  
 
 



- 218 

 

4.2.2. Optimisation of PTEN and VHR antibody and solution conditions for protein-

protein interaction arraying and probing using Dynamic Bioarray chip 

      

Optimisation and testing were performed to assess antibodies to PTEN, VHR and GST 

of the VHR-GST and PTEN-GST tagged constructs. The concentration of arrayed protein, 

probe protein, primary and secondary antibodies were tested, in addition to whether 

interactions were detectable, and how proteins and antibodies behaved as an arrayed 

solution and as a probe. Primary antibodies were tested via Western Blot to ascertain 

their capacity to bind to proteins of interest (Appendices 14).  

 PTEN-GST was arrayed at a range of concentrations (Figure 41.d.), and, with 

solution, antibodies, antibody concentrations, arrayer, slide, array and array reader 

configurations, 5μM had the highest signal without over-saturation (41.c.).  

 The protein probing concentration was also optimised, where 5μM VHR-GST, 

with solution, antibodies, antibody concentrations, arrayer, slide, array and array reader 

configurations had, with the anti-VHR antibody, had the highest signal without over-

saturation (42.f.). 

 Antibody-protein-antibody sandwich formation were screened for compatible 

antibody-protein-antibody combinations (Figure 43.) where, anti-VHR monoclonal, anti-

GST goat polyclonal 0.25mg/ml probed with 1μM VHR-GST, 1:500 anti-GST rabbit 

monoclonal and 1:1000 anti-rabbit Alexafluor 647 showed appropriate sandwich 

formation with the highest specificity out of the combinations screened. 

 With protein probing and antibody concentrations tested and optimised with 

SciFLEXARRAYER (Figure 43), could then proceed to probe Invitrogen Protoarrays with 

optimised proteins concentration and antibodies validated for work with protein-of-

interest and the array technology used. 
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Figure 41. Arraying range of PTEN-GST concentrations on Path substrate slide 
array with sciFLEXARRAYER, probing with PTEN-GST and antibodies  a) 
Fluorescence image of PATH slide Global view of 4x12 array of 10x10 blocks b) 
Schematic of all blocks probed with 1uM PTEN-GST then 1:500 anti-PTEN then 1:1000 
Alexafluor 647 conjugated antibodies c) Fluorescence image of exemplar 10x10 block d) 
Schematic detailed protein arrayed as a 10x10 block onto array substrate with 
SciFLEXARRAYER Red = Alexafluor 647 conjugated secondary antibody 1:250, Aqua = 
PBS Orange = BSA Lime green = 5μM PTEN-GST Purple = 1μM PTEN-GST Dark blue 
= 500nM PTEN-GST Green = 250nM PTEN-GST Dark red = 100nM PTEN-GST. 
Scanned at 645nm, 5μm resolution, 750 photomultiplier times (PMT), exemplar shown. 
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Figure 42. Anti-GST sandwich array probed with range of VHR-GST 
concentrations, anti-VHR primary antibody and Alexafluor 647 conjugated 
secondary antibodies a) Probed with 1μM VHR-GST b) Probed with 1μM VHR-GST 
and 1:500 anti-VHR c) Probed with 2.5μM VHR-GST d) Probed with 2.5μM VHR-GST 
and 1:500 anti-VHR e) Probed with 5μM VHR-GST f) Probed with 5μM anti-VHR and 
1:500 anti-VHR g) No VHR-GST, 1:500 anti-VHR h) No VHR-GST No primary antibody i) 
Light Red = Alexafluor conjugated secondary antibody 1:250, Aqua = PBS, Peach = 1μM 
VHR-GST, Dark Green = 2.5μM VHR-GST, Yellow = 5μM VHR-GST, Purple = 1μM 
PTPMT1, Lime Green = anti-GST 1:100, Lilac = anti-GST 1:50, Blue = anti-GST 1:25 
Orange = anti-GST 1:10. Scanned at 645nm, 5μm resolution, 750 photomultiplier times 
(PMT), 5μm resolution and 750 PMT, n=3, exemplar shown. 
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Figure 43. Anti-GST and anti-VHR sandwich array probed with VHR-GST, anti-VHR 
and anti-GST primary antibodies and Alexafluor 647 conjugated secondary 
antibodies a) Probed with 1μM VHR-GST, 1:50 Anti-VHR mouse monoclonal, 1:1000 
anti-mouse Alexafluor 647 b) Probed with 1μM VHR-GST, 1:500 anti-GST rabbit 
monoclonal and 1:1000 anti-rabbit Alexafluor 647 c) Probed with 1:50 anti-VHR, 1:1000 
anti-mouse Alexafluor 647 d) Probed with 1:500 anti-GST monoclonal rabbit and 1:1000 
anti-rabbit Alexafluor 647 e) Arrayed protein layout: Red = Alexafluor 647 conjugated 
anti-mouse secondary antibody 0.5mg/ml Aqua = Alexafluor 647 conjugated anti-rabbit 
secondary antibody 0.5mg/ml Peach = Alexafluor 647 conjugated anti-goat secondary 
antibody 0.5mg/ml Dark green = PBS Yellow = 1μM VHR-GST Purple = 1μM PTPMT1-
GST Light green = anti-VHR mouse monoclonal 0.5mg/ml Blue = anti-GST rabbit 
monoclonal 0.0033mg/ml Orange = anti-GST goat polyclonal 0.25mg/ml. Scanned at 
645nm, 5μm resolution and 550 photomultiplier times (PMT). n=3, exemplar shown. 
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4.2.3. Protein library array screening of VHR using Dynamic Bioarray chip 

 

Library protein-protein screening arrays for VHR-GST were performed using Dynamic 

Bioarray chip for sample probing and incubation. Array incubation technology had been 

selected after comparative analysis, VHR-GST had been optimised for probing 

concentration and primary and secondary antibody selection for the VHR-GST protein-

protein library-screening array. Invitrogen Human Protoarray® v5.0 were utilised for the 

protein-protein library array screening of VHR-GST. The Invitrogen Human Protoarray® 

v.5.0 contains over 9,000 human proteins printed in duplicate. The Protoarray proteins 

are produced from clones selected from Invitrogen’s Ultimate™ open reading frame 

collection. Proteins on the Protoarray chip are expressed as N-terminal GST fusion 

proteins and purified under non-denaturing conditions. Protoarray proteins are printed on 

nitrocellulose to preserve native protein structure and protein interactions identified with 

Protoarrays have been validated with in vitro and in vivo assays (Al-Mulla et al., 2011; 

Fenner et al., 2010; Tong et al., 2008). 

 VHR-GST protein-protein arrays were performed with control arrays for the 

interaction of the secondary antibody with fluorescent conjugate with the arrayed 

proteins, and the effect of the primary antibody and secondary antibody with conjugate 

fluorophore (Figure 44). Figure 44 shows global and block view of proteins from 

Protoarray for the purpose of demonstration of quality of probing at the level of the whole 

array slide and for protein spot pairs. The array signal spots were compared between 

secondary antibody only, primary and secondary antibody only and VHR-GST, primary 

and secondary antibody arrays, and spot signals that for the scanning wavelength and 

photomultiplier times (PMT) displayed a differential signal, these differential signals were 

compiled in a list of putative VHR interactors (Table 12). Putative VHR interactors in 

Table 12 were selected via manual spot inspection between replicates and controls.  

The list of putative VHR interactor candidates from the protein-protein library 

array screen (Table 12) was screened via protein analysis through evolutionary 
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relationships (PANTHER) modeling to assess the functions and roles of the putative 

VHR interactors, range of functions and roles of the putative VHR interactors and 

vicissitude and proportionality between the functions and roles (Figure 45.). 

After Protoarray library screening of VHR-GST a complimentary screening of 

VHR interactors in cellulo as an initial in vivo study via immunoprecipitation and MS (See 

Chapter 5)  
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Figure 44.  Protoarray protein-protein library screening of VHR-GST  
a) Global view of Protoarray slide primary antibody control probed with Alexafluor 647 
secondary antibody 0.5mg/ml b) Example block view of Protoarray slide primary 
antibody control probed with Alexafluor 647 secondary antibody 0.5mg/ml c) Global view 
of Protoarray slide no protein control probed with anti-VHR monoclonal antibody 1:50 
dilution of 1mg/ml in PBS and Alexafluor 647 secondary 0.5mg/ml d) Example block view 
of Protoarray slide no protein control probed with anti-VHR monoclonal antibody 1:50 
dilution of 1mg/ml in PBS and Alexafluor 647 secondary 0.5mg/ml e) Global view of 
Protoarray slide probed with VHR-GST 5μM, anti-VHR monoclonal antibody 1:50 dilution 
of 1mg/ml in PBS and Alexafluor 647 secondary 0.5mg/ml f) Example block view of 
Protoarray slide probed with VHR-GST 5μM, anti-VHR monoclonal antibody dilution of 
1mg/ml in PBS and Alexafluor 647 secondary 0.5mg/ml. Scanned at 645nm, 5μm 
resolution and 450 photomultiplier times (PMT). n=3., exemplar shown.  
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Protoarray® Position Potential Interactor Identification 

Block Row Column  Gene Name Gene Identifier 

2 16 5 SDF1A NM_199168.2 

5 13 1 GAGE7 NM_021123.1 

5 19 7 PSMA5 NM_002790.1 

6 9 21 CDK10 NM_003674.2 

6 12 9  IDI2 NM_033261.2 

7 4 17 TERF1 20810195 

8 8 5 PLOD3 NM_001084.2 

8 15 5  ASF1A NM_014034.1 

10 6 5 CSNK2A2 NM_001896.2 

10 13 17 PAIP2 12804590 

10 14 3 HSH2D NM_032855.1 

10 18 3 RPS28 NM_001031.4 

11 8 13 ZAP70 NM_207519.1 

12 12 21 USP2 34193195 

12 14 21 RAB33A NM_004794.1 

12 20 21 RAD1 NM_002853.2 

13 10 5  CCDC28A BC013019.1 

14 8 21 RGS3 NM_134427.1 

14 12 19 BC009010.1 14290483 

15 18 15 PAIP2A 25059069 

17 7 11 NDRG4 NM_020465.2 

17 2 15  KIAA1618 NM_020954.1 

19 7 17 LOC401052 NM_001008737.1 

19 13 1 GNL1 BC013959.1 

20 8 21 KIAA0859 NM_014955.2 

21 3 1 C8orf33 NM_023080.1 

21 9 13 C14orf131 NM_018335.2 

21 17 19 LMO4 NM_006769.2 

23 12 5 ASS1 NM_054012.1 
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23 7 19 SLC22A18AS BC030237.1 

24 21 5 ERP27 NM_152321.1 

26 16 5 CCL19 NM_006274.2 

28 16 1 IL4 NM_000589.2 

28 17 21 CAST NM_173060.1 

28 18 5 NM_001003704.1 NM_001003704.1 

28 19 5  CARD9 BC008877.2 

28 15 13 PTK6 NM_005975.2 

28 15 21 RPS6KA4 NM_001006944.1 

29 3 3 SPIRE1 BC016825.1 

30 18 7 SNAP NM_003826.1 

30 9 13 ALKBH7 NM_032306.2 

31 6 17 LCE3D NM_032563.1 

33 21 11 DTNA NM_032981.2 

33 7 11  SPRR4 NM_173080.1 

35 19 1 HMGN1 NM_004965.3 

35 6 17-18  USP28 BC065928.1 

35 8 21-22 GDPD5 NM_030792.4 

36 5 11 RLBP1 NM_000326.3 

36 7 7 EPB41L4A NM_022140.2 

37 9 13 C9orf72 NM_018325.1 

37 21 11 RCN2 NM_002902.1 

38 3 15 SAMD3 NM_152552.1 

38 6 11 ELOF1 NM_032377.2 

38 6 13 UBE2S BC004236.2 

38 14 3 DUSP3/VHR NM_004090.1 

39 14 9 TRIP6 BC002680.1 

40 3 13 SHOT1 NM_018330.2 

40 8 7 RASGRP2 NM_005825.2 

41 3 3 GAK BC008668.1 

41 15 11 12 SRrp35 NM_080743.2 

43 6 11 FLJ37078 NM_153043.3 



- 227 

43 7 3 RSBN1l NM_198467.1 

44 6 9 MTG1 BC026039.1 

45 8 19 VPS29 NM_016226.2 

45 12 21 PECR NM_018441.2 

46 2 21 MP1 BC031630.1 

46 10 3 STK17B NM_004226.1 

47 3 13 NARFL NM_022493.1 

47 14 9 FHL1 NM_001449.2 

47 16 5 6 PPARA BC000052.1 

47 21 15 ADAT3 NM_138422.1 

47 21 13-14 RNF135 NM_197939.1 

48 8 7 C7orf27 NM_152743.2 

48 12 17 RFC5 NM_007370.2 

48 13 11 NAPG BC001889.1 

48 17 17 LIMS2 NM_004987.3 

48 19 13 PGM3 NM_015599.1 

Table 12. Selected putative interactors from VHR-GST Protoarray protein-protein 
library array screening 
Systematic manual selection of proteins putative interactors utilising multiple blind 
manual analyses discounting proteins with spot signals in the controls. n=3 
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Figure 45. Protein analysis through evolutionary relationships of VHR-GST 
protein-protein Protoarray library screening of selected putative interactors 
Protein analysis through evolutionary relationships (PANTHER) analysis was performed 
(pantherdb.org) a) Pathways associated with protein-protein interactions with VHR-GST 
and proteins from Protoarray library screening and percentage ratios of associations 
between pathways b) Protein class associated with protein-protein interactions with 
VHR-GST and proteins from Protoarray library screening and percentage ratios of 
associations between protein classes c) Molecular functions associated with protein-
protein interactions with VHR-GST and proteins from Protoarray library screening and 
percentage ratios of associations between molecular functions d) Biological processes 
associated with protein-protein interactions with VHR-GST and proteins from Protoarray 
library screening and percentage ratios of associations between biological processes.  
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4.3. Discussion 

 

4.3.1. Discussion of technology selection and protocol optimisation for PTEN and 

VHR arraying and probing 

 

The comparison of the Dynamic Bioarray chip versus the Lifterslip (Figure 40.) displayed 

a range of artifacts between the two array slide incubation technologies. Artifacts may 

have been due to specific handling errors linked to the technology regarding both the 

incubation procedure and engaging and dis-engaging the array slide and substrate from 

the incubation technologies, whereby both the Dynamic Bioarray chip and Lifterslip could 

slide and smear samples when handled manually.  

The Dynamic Bioarray chip required appropriate activation of the hydrophilic-

hydrophobic surface (Figure 11). The Dynamic Bioarray chip may offer higher resolution, 

and increased regularity of incubation intra-block and inter-block, in addition to the low 

and adjustable liquid probing volume the technology offers.  

The arrayed protein, arrayed antibody and protein probes were optimised and 

screened for appropriate selection and forwarding down the pipeline for protein-protein 

library array probing (Figure 41., 42.,43.). Where optimisation was performed for VHR as 

this was the protein to be taken forward for protein-protein library screening with a 

replicate set of library arrays, due to VHR having higher activity than PTEN and larger 

protein expression yields and having performed a more extensive oxidative modification 

analysis on VHR. 

It was decided that the arraying would be conducted with Dynamic Bioarray 

technology to take forward to library array screening to find putative VHR interactors. 
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4.3.2. Discussion of the protein-protein array VHR interactome screening  

 

The unique, substantial and stand alone contribution to knowledge from the protein-

protein array library screening work were the VHR-GST protein-protein array spot signals 

and corresponding lists of putative VHR interactors (Figure 44., Table 13). The putative 

VHR interactors were analysed for involvement in phosphorylation and kinase pathways 

and involvement in pathways and functions related to mammalian VHR-knockout 

phenotype to assess the putative functions of the interactors under adaptive and 

maladaptive conditions, and for prioritising for validatory screening.   

 The sciFLEXARRAYER and Protoarray library protein-protein arrays (Figure 40., 

41., 42., 44.) were historically performed as optimisation and control experiments for an 

oxidised and nitrated protein interactome study, utilising VHR to screen for interactions 

that may be lost, altered or gained between cell signalling molecules and their interactors, 

and for functional correlation between interactions lost, altered and gained, with oxPTMs, 

oxPTM combinations, oxPTM abundances and oxPTM combination abundances. This 

direction was not carried forward as there were fragments and aggregates remaining in 

protein stock after treatment with oxidant and filtration attempts, which would render the 

samples unsuitable for protein-protein library array screening for the effect of intact 

proteins with oxPTMs on the interactome of a protein. The unfiltered treated protein with 

oxPTMs including states of fragmentation and aggregation, if arrayed, may have been 

similar to screening the effect of advanced oxidation end products (AOPP) on the cellular 

interactome and cellular signalling, which to speculate further, may elucidate the effect of 

AOPP on interactomes and cell signalling for errors and indications related to 

proteopathies and amyloidoses. AOPP have been demonstrated for use as a biomarker 

for monitoring oxidative stress in patients (Selmeci et al, 2005). The treatment molar 

concentrations and protein: treatment ratios that produced the fragments and aggregates 

were used in order to produce oxidation and nitration of amino acid side chains, both in 
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residues of interest, and to levels that may be distinguishable via fluorophore-tagged 

antibody array probing and imaging based on abundances of nitration observed in earlier 

experiments (Figure 28., 29). 

 The historic number of library arrays available and the variability between the 

replicate library arrays with regards to probing led to parts of the protein library array not 

having replicates. These areas were discounted from library array analysis. The manual 

probing and incubation of the array screening procedure was identified as a source of 

quality control risk that robotic procedure could mitigate, and manual screening was used 

due to historic shortage of arrays. False negatives and false positives may have been 

introduced through the probing and incubation procedure, presence of the GST tag, the 

antibodies utilised, incomplete optimisation and manual analysis. False coverage, the 

false-discovery rate (FDR) and false-positive rate (FPR) would be effected by procedural 

variation, GST tag, antibodies, manual analysis and historical numbers of replicate 

arrays.  

 VHR was found as a putative interactor on the array (Table 12), which is a 

confirmation of previous evidence of VHR dimerisation (Appendix 2), and ZAP-70, a 

known VHR interactor (Alonso et al., 2003) was also found (Table 12) as a putative 

potential interactor, which confirmed previous evidence via Invitrogen Protoarray 

technology and gave confidence to the arraying protocol.  Additional interactors of VHR 

(Appendix 2) were not identified as putative interactors via Invitrogen Protoarray. 

An initial literature search and database analysis was performed on the list of 

putative protein interactors (Table 12). Initial criteria for interest during literature search 

and database analysis were 1) Potential relationship to VHR knockout phenotype as 

assessed via the Mouse Genome Informatics database (www.informatics.jax.org, 

Skarnes et al., 2011) 2) Evidence of being phosphorylated 3) Evidence of involvement in 

kinase and phosphatase signalling pathways 4) Similarity to known VHR interactors 

(Appendix 2) and 5) Involvement in diseases of ageing and age-related pathology. 
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Peroxisome proliferator activated receptor alpha (PPARA) was identified as a 

putative interactor of potential interest due to PPARA involvement in fatty acid oxidation 

and transcriptional response to fasting which involves release of fatty acids from adipose 

tissue (Kersten et al., 1999). The VHR knockout phenotype reported abnormal adipose 

tissue phenotype and abnormal growth/size/body phenotype, and as such PPARA and 

VHR may be involved in a signalling pathway that regulates adipose tissue function. 

Additionally PPARA is also a target of phosphorylation by mitogen-activated kinase ERK 

(Burns et al., 2007), which is a substrate for VHR (Todd et al, 1999). Also note that there 

are a large amount of the putative interactors involved in metabolic processes as 

identified by PANTHER analysis (Figure 45). 

 Thyroid hormone receptor interactor 6 (TRIP6) was identified as a 

putative interactor of potential interest due to the role of the thyroid on growth rate 

(Symczynska et al., 2010), and the role of thyroid hormone receptors in visceral 

adiposity in mice (Liu et al., 2003), which may be associated with the VHR knockout 

phenotype reported abnormal adipose tissue phenotype and abnormal growth/size/body 

phenotype. TRIP6 also undergoes tyrosine phosphorylation (Lai et al, 2005) and is a 

signalling component of the ERK pathway (Li et al., 2005). TRIP6 also interacts with 

receptor interacting protein 2, which is involved in adaptive immune responses and 

inflammation (Li et al., 2005) where abnormal immune function was listed as in the VHR 

mouse knockout.  

Calpastatin was identified as a putative interactor of potential interest due to 

calpastatin’s role in inhibition of motor neuron death (Rao et al., 2016), where nervous 

system abnormalities were reported in the VHR mouse knockout phenotype. Chen et al 

(2010) also demonstrate that calpastatin and phosphorylated ERK may collaborate to 

promote the generation of a constitutively active androgen receptor in prostate cancer, 

where ERKs are substrates for VHR (Todd et al., 1999). 
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 As a comparative and validatory analysis to the library array screening, co-

immunoprecipitation of VHR with cellular contents was to be performed.  

 

4.4. Conclusions for optimisation and development of arraying technologies for 

the investigation of oxidised protein-protein interactions and protein-protein 

library screenings of VHR 

 

The Dynamic Bioarray hydrophilic-hydrophobic chips point to the potential of 

chips for further miniaturisation and parallelisation of screening technologies, liquid 

handing and reaction chambers and the range of uses these may have. 

Protein-protein library array screening for functional interactome screening may yield 

results for proteins that may not be present or detectable via co-immunoprecipitation 

and downstream techniques from co-immunoprecipitation such as MS analysis. 

Arraying, array probing and incubation and array analysis workflow would benefit from 

full robotic automation.   

 The library array screening of VHR added to the putative interactors list for VHR 

to develop knowledge of VHR, signalling pathways and cellular interactome. The 

putative interactors would need to be validated, and PPARA, TRIP6 and calpastatin may 

be priority candidates. 
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Chapter 5 

VHR immunoprecipitation with 

mass spectrometric analysis 
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5.1. Introduction 

5.1.1. Comparative analysis, discovery and validation of protein-protein 

interactors of VHR  

 

To further investigate the protein-protein interactome of VHR in a in cellula context, 

and also to compare to in vitro protein-protein array library screening – co-

immunoprecipitation may be appropriate. Co-/immunoprecipitation using a cell line 

offers advantages that it has a different and may have a possibly more 

comprehensive or alternate set of proteins to interact with than the 9,000+ proteins on 

the Protoarray. It may offer the advantage of screening for tertiary and additional 

interactors that are not direct interactors – this modifies what hypothesis is being 

questioned and what questions can be asked of the data. Immunoprecipitation 

coupled to MS offers an automated in silico identification of interactors. In cellula 

analysis may yield an interactome more homologous to the H. sapiens in vivo VHR 

interactome than the in vitro protoarray library interactome, taking into account the 

considerations that 1) the cell line is immortalised, 2) that the proteins over-

expressed, with a tag, 3) the presence of plasmid constructs in the cell and 4) 

potential effects of transfection and transfection reagents on the interactome present 

at the timepoint of experimentation. Limitations of co/-immunoprecipitation and 

protein-protein array as comparative and combinatorial methods revolve around the 

validation of the interactor or relevant effect of interactor for pre-clinical or pre-clinical 

utility or efficacy. Patient outcomes and presence and absence of binary outcomes for 

clinical and biotechnological processes may be kept in view to assess validation 

studies. 

 The aims of this research were to explore the protein-protein interactors of VHR, 

with which to compare to the literature, expand fundamental knowledge of the protein 
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of study, and identify proteins to further explore protein-protein interactions with after 

exploratory studies. In order to explore the interactome and advance scientific 

knowledge – the interactome would be identified via immunoprecipitation 

experiments. Interactomes with the complimentary array library screenings and 

immunoprecipitation would be compared and validated via this second technique 

linked to semi-quantitative MS.  
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 5.2. Results 

 

5.2.1. Transfection of HCT116 cells with VHR-Flag  

 

HCT116 cells were transfected with pcDNA3.1-VHR-Flag after ligation and 

transformation as part of an artificial over-expression system (see Methods). A range 

of amounts of pcDNA3.1-VHR-Flag DNA were screened for affects on protein content 

(Figure 46) and transfection success (Figure 48). 35μg from screening experiments 

(Figure 46) displayed larger protein yields than higher concentrations of 52.5μg and 

70μg. Western Blot of transfected cell lysates for Flag tag with anti-flag antibody 

(Figure 47) was performed with successful binding of anti-flag antibody to moiety in 

lysate.  
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Figure 46. Coomassie staining of HCT116 cells transfected with range of 
quantity of pcDNA3.1-VHR-Flag  
HCT116 cells grown with DMEM supplemented with 10% fetal calf serum (FCS) after 
reaching 70% confluence had 35μg, 52.5μg, 70μg pcDNA3.1-VHR-Flag in 1.5ml Opti-
MEM® with 225μl Lipofectamine 2000 added to the cells with 9mls Opti-MEM®. Cells 
had DMEM medium minus FCS prior to addition of DNA and transfection reagent. 
Cells were incubated for 30min at room temperature. 5hr post-incubation medium was 
removed from cells and replaced with DMEM supplemented with 10% FCS. Cells 
where harvested for lysis and staining by removing media, washing with PBS then 
applying NP-40 lysis buffer 1%, NaCl 150mM, Tris-Cl 50mM, pH 8 for 20min prior to 
centrifugation at 20,000G, 40C. Exemplar shown. 
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Figure 47. Western blot of transfection of HCT116 cells with pcDNA3.1-VHR- 
Flag 35μg of pcDNA3.1-VHR-Flag.  225μl Lipofectamine 2000. Anti-flag monoclonal 
primary antibody 1:1000. R1-3 = Transfection replicates. n=3. 
 

5.2.2. Immunoprecipitation of VHR interactors 

 

HCT116 cells were transfected with pcDNA3.1-VHR-Flag and then 

immunoprecipitated with Dynabeads® with anti-VHR antibody bound. The following 

lysate bound to the beads was loaded onto a SDS PAGE gel, stained with Coomassie 

blue stain and the whole gel lane was cut out into similar sized pieces for LC-MS 

analysis (Appendices 15). Controls used for immunoprecipitation were HCT116 cells 

transfected with pcDNA3.1 minus VHR-Flag, control cell lysates were used for 

immunoprecipitation and MS, where putative interactors that were found in empty 

vector control and experimental were removed from Table 13. 

 

5.2.2.1. Mass spectrometric and in silico analysis of VHR interactors  

 

Following immunoprecipitation of VHR-Flag with anti-VHR antibody, Dynabead and 

moieties bound to VHR-Flag from the HCT116 cells expressing the VHR-Flag from 

the pcDNA3.1-VHR-Flag construct, and from negative control cells with the pcDNA3.1 

plasmid minus the VHR-Flag construct, and subsequent loading of the co-

immunoprecipitated moieties onto a SDS PAGE gel, Coomassie staining – the gel 

 
  R1    R2     R3        

~25KDa 
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lane was cut into similar sized pieces, underwent trypsin digestion and LC-MS was 

performed.  

The LC-MS sample data from each gel piece (see Appendices 15 for gel slicing) 

was analysed in silico via Progenesis, where all of the gel lane and all bands were 

sliced and taken forward for in-gel digestion. Results from all horizontal slices from 

replicates for each gel slice were combined in analysis. Potential interactors from 

each horizontal gel slice replicate set where combined along with averaging of the 

Exponentially Modified Protein Abundance (emPAI) confidence modeling score, whilst 

recording numbers of replicates identified in (Table 13). Potential interactors were 

found in multiple replicates (Table 13), with no set overlap with the Protoarray library 

screening of VHR-GST performed (Table 12).  

 

Potential Interactor Identification  
Number of 

replicates 

identified in  

Average emPAI between 

replicates Accession number Gene Name 

S10A9_HUMAN CAGB 2 0.26 

H33_HUMAN H3F3A 2 0.22 

MUCL1_HUMAN MUCL1 2 0.38 

LTOR4_HUMAN LAMTOR4 2 0.32 

K1644_HUMAN KIAA1644 2 0.15 

ZFAN3_HUMAN ZFAND3 2 0.13 

ERMP1_HUMAN ERMP1 2 0.03 

CC135_HUMAN CCDC135 2 0.03 

ARG28_HUMAN ARHGEF28 2 0.02 

FUZZY_HUMAN FUZ 4 0.07 

LIPA2_HUMAN PPFIA2 2 0.02 

MYLK3_HUMAN MYLK3 2 0.04 

INTU_HUMAN INTU 2 0.03 

TRIB3_HUMAN TRIB3 2 0.08 

MAP6_HUMAN MAP6 2 0.04 
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PININ_HUMAN PNN 2 0.04 

ATS1_HUMAN ADAMTS1 2 0.03 

KCC1B_HUMAN PNCK 2 0.09 

TNR16_HUMAN NGFR 2 0.07 

SPOT1_HUMAN SPANXA2-OT1 2 0.26 

WDR6_HUMAN WDR6 2 0.03 

CO4A4_HUMAN COL4A4 4 0.02 

TRDMT_HUMAN TRDMT1 2 0.07 

APR_HUMAN PMAIP1 2 0.59 

TSP3_HUMAN THBS3 4 0.03 

CJ068_HUMAN C10orf68 2 0.05 

RET_HUMAN RET 4 0.03 

ABC3D_HUMAN APOBEC3D 2 0.07 

DNMT1_HUMAN DNMT1 1 0.02 

CS045_HUMAN C19orf45 1 0.06 

RB22A_HUMAN RAB22A 1 0.15 

NBPFL_HUMAN NBPF21 4 0.05 

SCFD1_HUMAN SCFD1 2 0.05 

5NT3B_HUMAN NT5C3B 2 0.1 

CROL3_HUMAN H7BZ55 2 0.01 

DNMBP_HUMAN DNMBP 3 0.02 

PDZD2_HUMAN PDZD2 2 0.01 

TM63A_HUMAN TMEM63A 2 0.04 

K1C14_HUMAN KRT14 2 0.36 

NDKA_HUMAN NDKA 2 0.43 

RS23_HUMAN RPS23 2 0.21 

COF1_HUMAN CFL1 2 0.39 

RS20_HUMAN RPS20 2 0.25 

RL12_HUMAN RPL12 2 0.19 

PPIA_HUMAN PPIA 2 0.67 

CH60_HUMAN HSPD1 2 0.05 

RS15_HUMAN RPS15 2 0.2 
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TBA3E_HUMAN TUBA3E 2 0.07 

RL34_HUMAN RPL34 2 0.25 

CC110_HUMAN CCDC110 3 0.03 

TBB4A_HUMAN TUBB4A 3 0.07 

IL25_HUMAN IL25 2 0.16 

PDS5B_HUMAN PDS5B 2 0.02 

MED13_HUMAN MED13 2 0.01 

RL35_HUMAN RPL35 2 0.23 

DESI2_HUMAN DESI2 4 0.16 

PDE11_HUMAN PDE11A 2 0.03 

HS74L_HUMAN HSPA4L 2 0.03 

VAPA_HUMAN VAPA 2 0.12 

CHD5_HUMAN CHD5 2 0.01 

RS17L_HUMAN RPS17L 2 0.22 

RWDD3_HUMAN RWDD3 2 0.11 

MAP1S_HUMAN MAP1S 2 0.03 

GTDC2_HUMAN POMGNT2 2 0.05 

ADAM2_HUMAN ADAM2 2 0.04 

GUAD_HUMAN GDA 2 0.06 

MARK4_HUMAN MARK4 2 0.04 

GBRR3_HUMAN GABRR3 4 0.06 

ANR11_HUMAN ANKRD11 4 0.01 

DOCK9_HUMAN DOCK9 4 0.01 

PAK4_HUMAN PAK4 2 0.05 

HMCN1_HUMAN HMCN1 2 0.01 

SMBT1_HUMAN SFMBT1 2 0.03 

PRCC_HUMAN PRCC 2 0.06 

F161A_HUMAN FAM161A 2 0.04 

PCD18_HUMAN PCDH18 2 0.03 

BBS10_HUMAN BBS10 4 0.04 

RBM22_HUMAN RBM22 3 0.07 

RPGP1_HUMAN RAP1GAP 2 0.04 



- 244 

PXK_HUMAN PXK 2 0.05 

OSGI1_HUMAN OSGIN1 2 0.05 

GRIN1_HUMAN GPRIN1 2 0.03 

CJ071_HUMAN C10orf71 2 0.02 

CORA1_HUMAN COL27A1 2 0.02 

KI13B_HUMAN KIF13B 2 0.02 

GVIN1_HUMAN GVINP1 2 0.01 

KPRB_HUMAN PRPSAP2 2 0.08 

LGMN_HUMAN LGMN 2 0.07 

FINC_HUMAN FN1 2 0.01 

AKAP2_HUMAN AKAP2 2 0.03 

TCOF_HUMAN TCOF1 2 0.02 

PSMD1_HUMAN PSMD1 2 0.03 

BRE1B_HUMAN RNF40 2 0.03 

NOM1_HUMAN NOM1 4 0.03 

OSBL3_HUMAN OSBPL3 2 0.03 

LDHA_HUMAN LDHA 2 0.19 

H3C_HUMAN H3F3C 2 0.22 

LDHB_HUMAN LDHB 2 0.09 

KV116_HUMAN P01608 2 0.29 

TBA1A_HUMAN TUBA1A 2 0.06 

ANXA5_HUMAN ANXA5 2 0.09 

SPOC1_HUMAN SPOCD1 2 0.02 

BANK1_HUMAN BANK1 2 0.04 

RIMS3_HUMAN RIMS3 2 0.1 

NSUN4_HUMAN NSUN4 2 0.08 

ADNP_HUMAN ADNP 2 0.03 

HCN3_HUMAN HCN3 2 0.04 

KIF27_HUMAN KIF27 2 0.02 

DRD1_HUMAN DRD1 2 0.07 

TTC37_HUMAN TTC37 2 0.02 

SEN34_HUMAN TSEN34 2 0.1 
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PGFRA_HUMAN  PDGFRA 2 0.03 

CTU1_HUMAN CTU1 2 0.09 

PLCB4_HUMAN PLCB4 2 0.02 

TRPM3_HUMAN TRPM3 2 0.02 

IP3KA_HUMAN ITPKA 2 0.06 

APC1_HUMAN ANAPC1 2 0.01 

MOGT3_HUMAN MOGAT3 2 0.08 

MAGI2_HUMAN MAGI2 2 0.02 

IRX6_HUMAN IRX6 2 0.07 

OTUD4_HUMAN OTUD4 2 0.03 

NDRG1_HUMAN NDRG1 2 0.08 

LCE2A_HUMAN LCE2A 2 0.28 

FANCI_HUMAN FANCI 2 0.02 

RREB1_HUMAN RREB1 2 0.02 

ZN268_HUMAN ZNF268 2 0.03 

ATL1_HUMAN ADAMTSL1 2 0.02 

ZN473_HUMAN ZNF473 2 0.03 

Table 13. Putative interactors from VHR-Flag Dynabead-anti-VHR antibody 
immunoprecipitation from HCT116 cell screening using LC-MS and Progenesis 
analysis. n=6.  

 

5.3. Discussion 

 

5.3.1. Discussion of transfection of HCT116 cells with VHR-Flag 

 

Transfection of HCT116 cells with pcDNA3.1-VHR-Flag was performed (Figure 48). 

HCT116 cells were used for historic reasons regarding collaboration with Imperial 

College London. Transfection DNA amount optimisation showed more intense 

staining with the least DNA used in the range (35μg) of DNA amounts screened, to 

speculate, this may be due to higher DNA concentrations being toxic or leading to 

toxic protein expression levels.  
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5.3.2. Discussion of immunoprecipitation of VHR interactors 

 

The immunoprecipitation of VHR interactors and subsequent LC-MS analysis gave a 

list of putative VHR-Flag interactor proteins. Additional potential benefit of in cellulo 

approaches over protein array library screening is the potential proteins present in the 

cells. It may be difficult to speculate as to whether the proteins were bound by the 

protein of interest, bound to the Dynabeads, or in the case of the over-expression 

system or proteins in the library array, are within the actual interactome of a particular 

intact cell during health and disease. Current VHR interactors, even interactors 

obtained from in vivo sources (Appendix 2) may not represent the actual interactome 

of VHR during health and disease, only what interacts with VHR from a lysate of cells 

or other biological sample. 

 The interactomes of the VHR-GST library array and VHR-Flag 

immunoprecipitation were non-overlapping (Table 12., 13.). To speculate, the VHR-

GST library array may have included GST interactors and interactors of the VHR-GST 

moiety that are unique to VHR-GST over VHR and GST alone.  

An initial literature search and database analysis was performed on the list of 

putative protein interactors from the immunoprecipitation and MS (Table 13). Initial 

criteria for interest during literature search and database analysis were 1) Potential 

relationship to VHR knockout phenotype as assessed via the Mouse Genome 

Informatics database (www.informatics.jax.org, Skarnes et al., 2011) 2) Evidence of 

being phosphorylated 3) Evidence of involvement in kinase and phosphatase signalling 

pathways, 4) Similarity to known VHR interactors (Appendix 2), 5) The number of 

replicates of immunoprecipitation was identified in and emPAI score and 6) Involvement 

in diseases of ageing and age-related pathology. 

 S100 calcium binding protein A9 (S100A9) was identified as a putative 

interactor of potential interest due to involvement in immune function as a pro-
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inflammatory molecule expressed in neutrophils and monocytes (Simard et al., 2010), 

where abnormal immune function is noted in the VHR knockout mouse. S100A9 was 

also shown to induce phosphorylation of MAPKs, ERK1 and ERK2, p38 and JNK 

(Simard et al., 2010), where ERK is a substrate of VHR and VHR has been shown to 

inactivate JNKs (Denu et al., 1999; Jacob et al., 2002; Todd et al., 1999). 

Neuroblastoma breakpoint family 21 (NBPF21) was identified as a putative 

interactor of potential interest due to the number of replicates it was found in and 

because the NBPF family has a highly conserved domain of unknown function 

(Vandepoele et al., 2005) and little is known about NBPF21, thus taking this candidate 

forward may provide an opportunity to discover the function of this protein family. 

Late endosomal/lysosomal adaptor and mitogen-activated protein kinase and 

mammalian target of rapamycin (mTOR) activator/regulator (LAMTOR) complex adaptor 

molecule 2 (LAMTOR2) was identified as a putative interactor of potential interest as it 

mediates the activation of ERK, which is a substrate of VHR (Todd et al., 1999). The 

mTOR pathway and the rapamycin compound are involved in the extension of maximum 

lifespan in a mammalian system, Ehninger et al (2014) states that this extension of 

mammalian maximum lifespan may be due to cancer suppression. 

The VHR-Flag interactors may have included proteins interacting with the 

combination of the Dynabeads and VHR-Flag that would not bind to VHR-Flag, VHR 

or Dynabeads alone, or interact with VHR-Flag over VHR. Literature evidence for 

resin and beads having their own interactors includes Rees et al (2015) who 

demonstrate the proteins that bind non-specifically to resins from DT40 chicken B-cell 

line, which include high abundance proteins that may mask lower abundance proteins.  

 The decision to select the Flag tag over the GST fusion protein for VHR was 

made as the Flag tag is a short peptide, smaller than GST where the aim was to 

reduce non-VHR interactions. The flag tag has been used for immunoprecipitation 
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and subsequent MS including for the von Hippel-Lindau gene component of a 

ubiquitin ligase complex (Lai et al., 2011).  

 Putative interactors were, on mode, found in 2 replicates out of 6 (Table 13). Due 

to putative interactors being found in a variable amount of replicates, taking into 

account the mode of putative interactors being found in 2 replicates, the average 

emPAI confidence given by Progenesis was utilised as an interim confidence indicator.  

 

5.4. Conclusion of immunoprecipitation and mass spectrometric VHR 

interactome discovery and protein-protein array comparative analysis 

 

To conclude, the interactomic analysis of VHR via immunoprecipitation and protein-

protein array library screening has yielded sets of putative interactors including 

proteins with kinase activity and phosphorylation. The putative interactors will require 

additional validation, where validation may include 1) that the proteins can interact, 2) 

proteins do interact under the state required, 3) interact appropriately under the state 

required for the output and outcomes required and 4) that the efficacy of this 

interaction and outcome occurs in the range of states and/or patients required. Thus 

validation type and degree requires directions and desired outcomes to be considered.  

High-throughput screening methods of array libraries, and immunoprecipitation 

LC-MS of over-expressed protein in cellulo in cell lines distinct from patients allow for 

fundamentally different applications and cover a different sub-set/interactome of the 

hyper-interactome of VHR, where the hyper-interactome is defined as all moieties that 

can interact with VHR, where all other interactomes must specify the limits of the sub-

set/interactome including cell types, gene expression, cell state and all relevant 

factors. The fundamentally different applications include discovery of unique signalling 

pathway networks and signalling pathway interactions, novel interactors that may not 

have a signalling or enzymatic function, and interactors from the hyper-interactome 
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that may not interact over the range of states VHR or the cell containing VHR usually 

takes, yet could be manipulated to take for the purposes of biological engineering.  

High-throughput screening methods, to speculate, with regards to interactomics, 

offer starting at the hyper-interactome rather than selection of proteins in or related to 

known signalling pathway networks. Regarding screening of the hyper-interactome 

with the inclusion of PTMs, including oxPTMs, the potential may include discovery of 

unique signalling pathway networks and signalling pathway interactions, novel 

interactors that may not have a signalling or enzymatic function or role in health or 

disease, and interactors from the hyper-interactome that may not interact over the 

range of states VHR or the cell containing VHR usually takes, yet could be 

manipulated to take via a therapeutic intervention related to the existence of causation 

of the PTMs. 

The immunoprecipitation may have been improved upon utilising primary cells 

such as diploid fibroblasts, old versus young fibroblasts and treated fibroblasts, for 

screening VHR interactors, and additional controls including multiple cell lines, 

multiple plasmids, alternate transfection protocol, control cells not transfected, and 

controls for proteins that bind to the beads rather than the protein-of-interest. 

Over-expression models may exhibit non-overlapping interactomes with the 

interactome of a protein under the non-overexpressed interactome states it can take, 

due to over-expression models being artificial systems. Over-expression models, may 

offer additional information regarding moieties that may interact with the protein of 

interest that could be useful, and thus could give insight into the design of 

therapeutics though knowledge about the interaction properties of a protein for what it 

may interact with, and types of moieties it may interact with and their properties. 

A major challenge of immunoprecipitation using lysate is the potential for non-

specific binding partners and partners binding to the beads, as shown by Rees et al 

(2015) who show that 367 proteins bind the bead resins used, which accounts for 
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1.16% of the proteome of the chicken B-cell DT40 cells used, including highly 

abundant proteins.  

To conclude, although over-expression systems are artificial, and non-specific 

binding is known to occur, immunoprecipitation offers the potential to identify protein 

interactors that may not be present on protein library arrays, including indirect binding 

partners.  

Future work might include immunoprecipitation of proteins from lysate from cells 

after the application of oxidative stress, validation of interactors including S100A9, 

NBPF21 and LAMTOR2.  
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6. Discussion 

 

6.1. Summary of Oxidation of VHR and PTEN results  

 

Contained within this unique contribution is evidence that can enable us to consider 

more maturely the speed and throughput limitations of de novo sequencing and 

systematic mapping, the capacity for relevance of starting with in vitro techniques for 

biomarker discovery rather than directly sampling healthy young and diseased 

individuals, the selectivity of oxidising and nitrating agents and the potentially 

functional role of non-active site oxidations and more potential ways to modulate VHR 

and PTEN function.   

 The aim of this research was to reveal unique information in the proteome and for 

a particular protein show that it is possible to profile the oxidative and nitrative 

modifications of it, with de novo validation, and to discover what that looks like, 

regarding stochasticity, selectivity, characteristic signatures and make statistical 

predictions as to the functional proteomic effects of those modifications utilising 

appropriate mathematical modelling. This would be towards leveraging unique data in 

the proteome to be able to make more informed and prioritised decisions about the 

limitations and advantages of proteomics for biomarker discovery, drug design and to 

more pragmatically ask questions about what proteomic data we need to make 

decisions about care, therapy and health using omics approaches – and what protein 

oxPTMs can add to omic and multiomic approaches.   

 The identification of the nitration and oxidation of the VHR ZAP-70 interacting 

(Alonso et al., 2003) amino acid residue Tyr138 (Figure 28., 29., 30., Appendices 10., 

11., 12) highlighted the potential for competitive PTM, therapeutic competitive PTM 

and phosphorylation mimics (Mallozzi et al., 2013) involved in cell signalling pathway 

network interactions and identification of the VHR Cys124 nucleophilic acid 
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trioxidation highlights the potential of multiple oxidations of VHR and CX5R 

phophatases to be modified with the oxPTM property profile of trioxidation.  Although 

it is not clear what the consequences of nitration mimicking phosphorylation in vivo 

may be or whether the Tyr138 residue is competitively nitrated or oxidised in vivo, 

which would require additional study. 

 

6.2. Summary of nitration, chlorination and oxidation reagent results  

 

Searching for multiple known modifications across the available primary sequence 

demonstrates the empirical specificity of peroxynitrite as generated by sin-1, HOCl 

and TNM under specific conditions is the primary contribution to knowledge regarding 

nitration, chlorination and oxidation of proteins (Figures 29., 30., Appendices 8., 9., 

10., 11., 12) including the variability of specificity and the range of residues and 

modification types associated within those specific conditions. The peptide and 

modification identification and specificity creates a corpus of knowledge and datasets 

regarding oxPTM profiles. This data may lead to utility for future experimental design, 

optimisation of nitrating, chlorinating and oxidising agents having profiled PTMs 

generated under specific conditions, systematically, with specific appreciation of the 

inputs, outputs and correlations of such experimental systems. 

.  

6.3. Summary of interactome results  

 

The interactomics screening of VHR via library array screening and 

immunoprecipitation yielded an array of uniquely identified putative interactors 

(Table12.,13) not previously found, were previously found interactors are listed in 

Appendix 2, of which VHR and ZAP-70 were identified in by library array screening.  

Potential interactors found may have important functional roles in health and disease, 
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and validation of the interactors in vivo, and assessing their functional relevance in 

vivo would require additional study. 

 The combination of library array screening and immunoprecipitation with LC-MS 

offers a combinational high-throughput approach that may be appropriate for 

diagnostics and to be of an appropriate speed to the identification of modifications 

and analysis of enzymatic function, and to identify interactors not identified via other 

methods (Appendix 2). 

 

6.4. Justification of methods  

 

6.4.1 Treatments 

 

6.4.1.1. Advantages of treatments 

 

The advantages of the treatments used included that peroxynitrite has been 

investigated in vivo and associated with age-caused errors, damage and symptoms 

(Radi et al, 1991; Alvarez & Radi, 2003). The sin-1-caused modifications in vitro may 

translate to in vivo as those modifications occurring in age-caused diseases and 

oxidative stress that occur as a consequence of being alive from timepoint x to 

timepoint y.  

 An advantage of HOCl was that HOCl is involved in the myeloperoxidase 

response to bacterial infection, and thus the sub-set of modifications found could 

intersect with the sub-set of modifications caused by inflammation and the 

myeloperoxidase response to bacterial infection (Thomas, 1979).  

 An advantage of utilising TNM was that it yielded both higher abundance 

oxPTMs, it also generated multiple modifications and peptides not seen with HOCl or 

sin-1. An advantage of utilising multiple treatments is to screen a larger sub-set of 
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possible modifications of the protein of interest to find modifications that may be of 

clinical value.  

 

6.4.1.2. Limitations of treatments  

 

The limitations of sin-1 treatment included low comparative nitration compared to 

TNM, and sin-1 being a peroxynitrite generator and thus being an indirect model of 

peroxynitrite treatment. For modeling the effect of peroxynitrite oxidative damage on 

signalling proteins, the generation by sin-1 may produce a particular treatment effect 

given the rate of peroxynitrite generation as the concentration of protein to sin-1 molar 

ratio and concentration would differ including not being as high concentration and 

molar ratio of oxidising agent at the beginning of the reaction. Sin-1 treatment differs 

from peroxynitrite treatment, peroxynitrite in vivo and sin-1 in vivo, and this then 

creates a differing, potentially overlapping, set of hypotheses that can be tested by 

sin-1 in vitro. Sin-1 presented challenges to generating sufficient nitration abundance 

for PPI study via protein-protein array, in the intact-protein bands for PTEN and VHR.  

 The limitations of HOCl treatment for the study of the effect of HOCl on the 

activity of intact-yet-modified protein come from a property of HOCl to induce 

backbone cleavage and give high relative yields of protein fragments, and to 

speculate, potentially aggregates of fragments and aggregates with fragments, 

compared to intact-yet-modified protein. This limitation may suggest in vivo 

fragmentation and aggregate formation via HOCl, yet poses a challenge for the use of 

HOCl to assess the effect of oxidation on intact proteins. 

HOCl in the context of the treatment molar ratios and concentrations used, gave 

low yields of modification abundance for chlorination, this meant that at the 

concentrations used, HOCl presented challenges for generating intact-yet-modified 

protein with sufficient chlorination abundance for PPI study via protein-protein array. 
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This does not however imply that HOCl is irrelevant to in vivo interaction, as HOCl 

may have a role in protein interaction of aggregates, or in vivo microenvironment 

kinetics and concentrations of HOCl may generate alternate modification abundances 

and likelihoods. HOCl has a limitation when comparing the treatment to that of sin-1 

as, in addition to the different mechanism of action to compare, sin-1 and HOCl also 

produce different molar ratios and concentrations of oxidant, that are not equivalent 

for corresponding HOCl versus sin-1 and TNM molar ratios and concentrations – in 

terms of modifications produced, abundances, activity level differences and fragments 

and aggregates produced.  

The limitations of TNM were that TNM, at the concentrations and molar ratios 

used, inactivated VHR, thus being unable to correlate specific modifications to 

specific decreases in enzymatic activity. To produce levels of tyrosine nitration 

predicted to be suitable for PPI protein-protein arrays TNM treatment also produced 

high yields of fragments and aggregates, which was a limitation for TNM and a 

challenge for PPI protein-protein arrays of intact-yet-modified protein filtered of 

aggregates.  

A limitation of the treatments involves the oxidant titration, concentration, molar 

ratio and conditions, where, to speculate, the titration, concentration, molar ratios and 

conditions are not appropriate as an in vivo comparison, and in vivo empirical studies 

would be required for this.  

The limitation of assessing a limited number of molar ratios, concentrations and 

treatments meant that clinically and therapeutically important modifications may still 

be available to be discovered via in vitro approaches alongside in vivo approaches, 

and may add to fundamental knowledge about PTEN, VHR, HOCl, TNM, sin-1, 

ageing, inflammation and oxidative stress that may have clinical relevance and value. 

 For generating modified peptides, oxidative treatments in vitro where the residues 

modified, the ratios of abundances and the off-site modifications are not controlled is 
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inappropriate for screening the effects of a single molecule type, or as part of a 

process to create a reproducible biologic product. Screening of synthetic modified 

proteins and the usage of targeted and specific modification techniques would be 

required to be developed and implemented if this avenue was assessed to be 

valuable for clinical outcomes.  

For assessing the oxPTMs, and PPIs associated and correlated with oxPTMs in 

vivo during specific health states in specific patients, appropriate patient samples, 

handled appropriately, from the appropriate patient cell populations would be required.  

For delivering an oxidative payload to specific molecules and cells, small molecule 

oxidising agents may be inappropriate. 

Challenges may include altering relative fragment-to-modification and aggregate-

to-modification levels, and screening a larger and wider number of treatments and 

molar ratios in a time-efficient manner. A particular sub-challenge would be to create 

time-efficient iterations of the workflow through treatment, through assessment of 

what modifications, aggregates and fragments are produced and their abundances.  

 

6.4.1.2. Quality of treatments in thesis 

 

Treatments in the thesis were repeated, with new stocks of oxidants created for each 

repeat. Some variability can be expected between treatment concentrations and 

molar ratios, and this variability would stack with variability of protein concentration, 

repeats and statistics were used to minimise and control the effect of variability. 

 HOCl was measured prior to experimentation, for its concentration, as HOCl 

degrades. Stocks of sin-1 and TNM were made up freshly prior to experimentation.  

 Additional technical repeats for each treatment stock and treatment reaction, for 

each and between each MS run would also be required to improve the quality of the 

treatments. 
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6.4.2. Mass spectrometry 

 

6.4.2.1. Advantages of mass spectrometry for functional proteomics of 

oxidative modifications  

 

 In-gel digest for MS samples offers advantages of being able to visualise via 

Coomassie staining changes in protein band intensity, and protein fragmentation and 

aggregation. The usage of SDS-PAGE for in-gel digest did not appear, given 

oxidation occurrences and abundances in controls, appear to oxidise protein samples.  

Excision of bands from gels for in-gel digest offers several technical advantages. I) 

Any impurities, contaminants that are have a different electrophoretic property to the 

protein of interest are discarded from MS analysis. II) In-gel digestion increases the 

efficiency of the trypsin digestion due to the matrix gel structure and effective trypsin 

concentration III) Differences in the way proteins run on a gel gives additional 

information that not detected via in-solution digestion such as changes in mass-to-

charge ratio IV) The full complement of protein biomolecules included in the 

phosphatase assay are not represented in the mass-spectrometric data unless entire 

gel lane is excised.  

Mass spectrometric techniques to identify specific PTMs have advantages over 

immunostaining, immunohistological or fluorescence reporter assay techniques – 

whereby particular PTMs can be correlated and modeled to corresponding activities 

and functions. The systematic approach further highlights the complexity of oxidation 

signatures and what is not detected using immunostaining, immunohistological or 

fluorescence reporter assay procedures. 

ESI LC-MS offers advantages for quantitative analysis, high-throughput and 

automation potential which may be appropriate for mapping the roles and extracting 
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the value of oxPTMs, given the range of oxPTMs, proteins and abundances possible 

in the protein-oxidation landscape. ESI LC-MS may also have the throughput 

appropriate for a clinical environment (Chen et al., 2012). 

 

6.4.2.2. Limitations of mass spectrometry for functional proteomics of oxidative 

modifications  

 

 The disadvantages of SDS-PAGE, Coomassie staining and gel band excision for 

MS analysis are that if a high level of oxidation is required for abundant modification, 

in order to elicit changes in the proxome and interactome of the protein of interest, the 

more oxidant added, the less protein of interest in an identifiable band. Additionally by 

selecting a band, this selects against modified protein of interest that have attained 

different electrophoretic properties post-oxidation. Additional disadvantages of in-gel 

digest include contamination with keratins and trypsin autolysis products. 

 Limitations of mass spectrometric analysis of peptides for functional proteomics 

include the limitation of assessing multiple peptides as a population. MS/MS does not 

elucidate which peptides came from a single protein molecule, and thus which 

modifications are correlated or causal for other modifications on the same molecule 

and functional effects, and only detects peptides and modifications that are pooled 

from multiple proteins and multiple cells, where multiple cells are used. A certain 

oxPTM sub-set may yield specific functional changes – including novel PPI, increases 

in activity or novel decreases in activity and novel conformations – these will be 

undiscoverable via a peptide-only approach linked to functional assays and arrays 

that assess gross and mean functionality.  

 Limitations include the range of mass-to-charge ratios detected via MS – with 

small and large peptides not being detected, in addition to particular peptides without 
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sufficient charge. Additional limitations with MS are that MS detects all proteins 

including contaminants. 

 Limitations in the Progenesis software were the order in which Progenesis 

searches were performed to search for multiple modification types, increases the 

potential for misidentification of modifications, and misallocation of masses. 

 Samples that were heavily modified, as part of the treatment, in-gel digest, LC-

MS workflow had lower sequence coverage and lower p-values and less modified and 

unmodified peptides covered, which has limitations for comparative analysis of MS 

results including XICs of oxPTM abundance. This limitation may also point to the 

limitation of the LC-MS TOF ABSCIEX 5600, Mascot and Progenesis to detect 

sequence coverage and oxPTMs, in a label-free approach, in a purified sample of a 

single protein – for the systematic screening of oxPTMs for a protein and their relative 

abundances between samples and treatments. 

 Mascot searches were used as initial data processing protocol in order to I) 

Determine the identity of the proteins in the sample (protein of interest, contaminants) 

II) Assess the sequence coverage of the sample (how much of the protein sequence 

could be detected in QTOF). III) Assess if and which peptides and amino acids were 

oxidatively modified by treatment.  Effort was taken to combine modifications in 

groups that would minimise misclassification – such as testing different groupings and 

combining the modifications that Mascot mistakes for each other in the same group. 

Searching for more modifications in one set can decrease accuracy. Searching for 

modifications in groups still includes the limitation that some modifications are 

classified differently when searched together or apart, such as multiple types of 

oxidation of different residues on the same peptide – if the sequencing cannot 

accurately predict which residue the modification is on within the peptide.  

 Error tolerant searches showed more erroneous predictions of modification that 

had a low probability of existing in the sample due to being unrelated to the sample or 
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oxidant type, thus increasing noise and false positives, and also force fitting raw data 

to fit modifications in the Mascot database, error tolerant search provides a 

methodological approach to reduce bias in the data analysis process. This limitation 

may be offset by an alterative verification method such as heavy isotope labelled 

modification reagents.  

 All Mascot search results are dependent on the quality of the MS/MS method, 

calibration of the QTOF, concentration of the protein, length of the MS/MS method, 

number of ions detected, the size of the ions and the quality and completeness of the 

enzymatic digest. 

 The step of analysing the raw data for the abundance of the modification is 

critical to both determining the functional effect of that modification by comparing to 

OMFP activity assays, but also for method development to create a oxidising 

treatment that oxidises protein enough that the protein-protein binding interaction for 

that protein changes.  

 

6.4.2.3. Quality of mass spectrometry in thesis 

 

The mass spectrometric procedures performed were done so in a manner where 

calibration, operator vigilance, error-rate checking and manual validation were 

implemented and maintained. Manual validation, for some samples, were possible 

was re-screened via automated software, and important residues were re-sequenced 

by additional stakeholders from the Oxidative Stress Group, Aston University.  

 Sample consistency may have been improved, as some samples where run on 

separate days and MS runs – due to either time-availability of the MS resources and 

the uptime limitations of the LC-MS bespoke setup. To improve quality control, 

instruments were calibrated between runs, and where possible samples were run on 

the same day, and on the same gel.  
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 TIC, as can be seen from Figure 20, shows an intensity sufficient to detect many 

modifications, with high ion scores in Mascot and to be de novo sequenced. Figure 20 

shows an exemplar run of capturing the peptide ions within the run that correspond to 

the sizes of peptides.  

 Samples and batches were run strategically including ensuring the sorting of  

samples in order of least oxidised, and run samples in one batch with a single 

calibration, where this would be appropriate without calibration drift over an extended 

batch run. Excess sample was generated in order that samples could be re-ran and 

also further investigated.  

 Blanks were ran at the start of batches and between sample sets to reduce 

cross-contamination. Samples were stored at -200C prior to running, and time-in-

storage was minimised via a LC-MS booking system. 

 The LC-MS system was regularly visited for maintenance and software upgrade 

over the time-course of running the MS experiments to ensure and improve the quality 

of the LC-MS system and the improve system consistency.  

 Where appropriate, training was given, and analysis was analysed by Professor 

Andrew Pitt, Doctor Karina Tveen-Jensen and Doctor Ana Reis to ensure quality.  
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6.4.3. Protein arrays 

 

6.4.3.1. Advantages of protein arrays 

 

Protein-protein arrays deliver the following advantages: Protein-protein arrays query 

the direct and single interactions between proteins, when contrasted with co-

immunoprecipitation studies whereby the method may also screen for indirect 

interactors that interact via other cellular moieties, and as part of biomolecule and 

protein complexes. Protein-protein library arrays, excluding the variability of spotting 

between arrays by a single manufacturer, can be screened and validated at multiple 

geographic locations. Protein-protein arrays also have advantages for miniaturisation, 

automation and chip-based microfluidic workflows.  

 

6.4.3.2. Limitations of protein arrays 

 

Protein tertiary properties provide challenges for accurate spotting and meaningful 

spot-to-spot comparisons between different proteins given their conformation, size, 

binding properties and solubilities.  

 Protein library arrays contain a limited number of proteins and do not represent 

the protein complexes and protein-biomolecule complexes that occur in vivo, with 

regards to folding, PTMs, conformations, and the aggregates and fragments that may 

occur and have relevance for health states.  

 Constraints in protein-solubilisation versus protein-activity versus detection limits 

versus may pose challenges in protein-protein array protocol optimisation. Detection 

limits versus experimental variation in protein spotting and concentrations of spots 

between proteins versus abundance of modifications may also be a constraint and 

challenge.  
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 Manual probing of arrays, utilising Dynamic Bioarrays or Lifterslips™ may 

introduce experimental variation that may be a constraint regarding array quality and 

statistical validation. An integrated, automated, enclosed solution may be a way to 

introduce greater reproducibility within a geographical location and between locations 

and time-points – and reduce or remove risk and manual error whilst created a 

solution that is of clinical quality for both pre-clinical and clinical deployment. 

 For the assessment of oxPTMs on PPI a limitation of arrays of industry 

purchased protein libraries, may be that the batch of protein arrayed on the library has 

not been analysed for oxPTMs, and cannot be readily assessed for oxPTMs from 

opportunistic oxidation from storage and during the workflow.  

 The cost of protein-protein libraries arrays provides a challenge to protein-protein 

arrays versus comparative technologies, including cost-per-use.  

 Antibody based techniques have the limitation that antibody specificity is variable 

and antibody non-specific binding to proteins and primary antibodies poses 

challenges – this antibody specificity and limit of known antibody targets may be 

compounded by oxPTMs and novel workflows.  

   

6.4.3.3. Quality of protein arrays in thesis 

 

The quality of protein-protein arrays performed was constrained from a limited 

number of library arrays in stock and procurable and reduced by the introduction of 

artefacts by the manual probing process. The combination of the constraint on array 

replicate number and the consequences of introduced artefacts from the manual 

probing process made statistical and automated analysis of the arrays untenable – 

leading to a manual validation of the protein-protein array libraries, hence a challenge 

for providing statistical significance.  
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6.4.4. Immunoprecipitation 

 

6.4.4.1. Advantages of immunoprecipitation 

 

The advantages of co-immunoprecipitation for PPI discover are that the proteins 

discovered are from a sample and thus cover the range of proteins present in a 

particular sample lysate. Co-immunoprecipitation also offers high-throughput analysis 

via MS-coupled co-immunoprecipitation, which offers an identification of many 

proteins, were generating and purchasing antibodies for all proteins may be 

untenable, and nanopore technology may be inappropriate.   

 

6.4.4.2. Limitations of immunoprecipitation 

 

Limitations of co-immunoprecipitation include non-specificity of antibodies, where 

antibodies may find PPI for proteins other than the protein of interest. The beads 

utilised may also have their own interactors, and these would need to be differentiated 

from the PPIs for the protein of interest. Co-immunoprecipitation with downstream 

Western blotting has limitations based on antibody size versus size of protein 

interactors of interest, antibody non-specificity and cost, scalability and throughput 

constraints and challenges, and automation constraints – making immunoblotting 

untenable for pre-clinical and clinical multi-omic multi-marker discovery, screening 

and diagnostics; MS-coupled-immunoprecipitation with automated robotic co-

immunoprecipitation and automated software analysis of proteins and PTMs may 

overcome challenges. 
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6.4.4.3. Quality of immunoprecipitation in thesis 

 

Co-immunoprecipitation was performed on lysed samples directly following sample 

lysis to minimise changes in protein conformation, PTM and/or PPI, which might occur 

during storage or prolonged processing.  

 

6.4.5. Modelling  

 

The standard modelling methods included standard error and standard deviation, the t 

test inbuilt p-value significance and probability scores in the software packages of 

Mascot and Progenesis, and collaboration with Doctor Alexis Boukouvalas using 

mediator statistics.  

 Mediator analysis was implemented due to the shape of the oxPTM MS XIC 

abundances, upon recommendation of Doctor Alexis Boukouvalas, which had a 

comparatively low n versus intra-sample variable number. It also allowed multivariate 

analysis on comparatively low n versus intra-sample variable number. 

 

6.4.6. Justification of methods: Conclusions 

 

To conclude the overarching theme of the justification of methods is focused on 

resolution, quality and throughput – where limitations are focused on how to improve 

resolution, quality and throughput further through robotic and artificial intelligence 

automation. Thus future method workflows may from the outset be designed 

strategically as to deliver appropriate improvements in resolution, quality and 

throughput that fully robotic and fully automated workflows may offer.  
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6.5. What are valuable factors in systematic functional proteomics of oxidation 

in protein tyrosine phosphatases? 

 

Broadly, valuable factors in systematic functional proteomics of oxidation in protein 

tyrosine phosphatases include identification, sequence coverage, quality and 

validation.  

Factors that one may wish to identify include 1) Identification of which modifications 

are present, 2) which modifications are functionally linked to a health state, which 

modifications are correlated to a health state, 3) which modifications are predictive of 

the occurrence of a future health state, 4) which modifications are detectable in vivo, 

5) which modifications are therapeutically amenable via therapies acting directly on 

the modification, 6) therapies acting on the protein of interest, 7) therapies acting on 

the cell with the protein of interest with the modification of interest, and  8) therapies 

acting on the organ of interest. The results herein describe a potential systematisation 

of in vitro study with which to start to approach these factors of interest, with further in 

vivo study, whereby it may be of value to have pre-identified which residues may be 

modified and what peptides to search for in a targeted search in vivo to improve 

detection capability in vivo. 

 With regards to PTPs finding 1) which PTPs are modified with oxPTMs in a 

health state of interest, 2) which oxPTMs in PTPs are correlated to health states of 

interest, 3) which oxPTMs in PTPs are predictive of future health states, 4) which PTP 

oxPTMs are detectible in vivo, 5) which oxPTMs in PTPs are therapeutically 

amenable at the oxPTM level, PTP level, and at the level of cells, tissues and organs 

containing PTPs with oxPTMs are factors of interest. The relevance and priority of 

PTP oxPTM identification may be determined empirically and/or via informatic 

analysis of available datasets including literature databases as datasets, which may 

be accurately extrapolated to in vivo outcomes. 
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 Sequence coverage may be a valuable factor – and is linked to both identification 

and quality of proteomics via MS as a class of protein-sequencing-based approaches. 

Whereby sequence coverage allows questions to be asked regarding the context 

which the PTP oxPTM appears in, which may assist in assessing the functional 

relevance of those PTP oxPTM upon covering the sequence of a single protein, or 

sub-set of proteins from a part of a cell, or selected sub-set of cells. Sequence 

coverage may not be valuable if PTP oxPTMs or other modifications or peptides have 

can be identified reliably with untargeted, targeted, labelled or unlabelled methods.  

 For asking questions about a particular oxPTM in a PTP, having full sequence 

coverage including residues of known functional importance has value. For 

approaches based on measuring the function of a population of PTP molecules 

sampled from a patient – full sequence coverage of the PTP would ensure that all 

oxPTMs could be identified and thus the relationship between the function and all 

modifications present could be elucidated.   

 Automation is a valuable factor in functional proteomics. Omic strategies were 

enabled by automated and high-throughput technology, and increased automation 

may deliver the full value of omics. For a given use-case, it may be empirically 

determined as to whether an automated identification of protein and PTMs identifies 

modifications and how, and when the approach out-performs manual analysis.  

 Automation potential for parts of a workflow and value chain around oxPTMs and 

PTP functional proteomics may include I) Automation of sample sorting and treatment 

II) Automation of digestion protocol in solution III) Automation of assaying IV) 

Automation of loading digested samples to LC-MS V) Automated in silico digests and 

automated building of targeted scanning protocols to search for modified peptides VI) 

Automated data conversion, modification identification, statistics and differential and 

multivariate analysis VII) Automated uploading of data and meta-data to online 

database. This may require an online-liquid handling robot setup and an automated 
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software workflow. Specifically for OxPTMs in PTPs this may allow the empirical 

search and multivariate modelling of a larger area of the PTP oxPTM space, and to 

increase statistical power and discover a larger number of sequence-function 

correlations and also may increase predictive power as to what to take forward to the 

next phase of pre-clinical validation, and such workflow innovation may translate to a 

clinical setting. Specifically, with larger datasets, automation, and greater statistical 

power – non-active site modifications contributing to functional differences, rare 

events, interactions between multiple residues, multiple residues altering functionality 

may also be identified.  

 An automation-first, and full-automation strategy, may be valuable, to automated 

everything that may be automated at every stage of the life science and healthcare 

workflow, supply chain and value chain – from investment and funding, through pre-

clinical workflows in sample collection, sample handling and processing, screening, 

modelling, analysis, data and information sharing, and integrated downstream clinical 

trials, and automated preventative healthcare and health screening, with automated 

robotic surgery for regenerative and prosthetic medicine to produce exponential gains 

in health and longevity for value-based medicine.  

  

6.6. Clinical potential for PTEN and VHR oxidative proteomics  

 

PTEN and VHR are cellular signalling proteins that can undergo PTM including 

oxPTM, have the potential to act a signal or part of a signal or model that may be 

utilised in personalised diagnostics and personalised medicine. Evidence for this 

comes from residues in PTEN and VHR being mutated in cancer, including Tyr138 

which was found to be mutated in a cancer cell line (Stumpf & Hertog, 2016), where 

these residues being found to be modified by oxPTM in this thesis. The role of PTEN 

and VHR molecules in a diagnostic or at point of inhibition in cellular signalling may 
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rely on both the empirical drug screening and effective signalling pathway 

intervention, abundance of signalling molecules, expression of those signalling 

molecules in the cells of interest related to the health state, and the amenability of the 

PTEN and VHR molecules to diagnostic tests given its molecular characteristics that 

may affect identification, and cost of the diagnostic. How many PTEN and VHR 

molecules in vivo are required to be modified in a health state, versus how many are 

required for identification of the molecules-of-interest for the diagnostic may be a 

factor. PTEN has shown, that one of its active site amino acids, Cys71, can be 

modified with a biologically long-term modification, trioxidised cysteine, alongside 

VHR being modified at active site nucleophilic Cys124, and this may be one class of 

modifications-of-interest to search for in an automation-first informatics-led approach. 

Additional modification-regions of interest that may be searched for in a screening 

and diagnostic dataset, utilising PTEN as an example, and utilising the oxPTM 

functional proteomics to inform the drug screening may be to search for modification 

of the domains and regions of known interest, residues with evidence of modification, 

such as the phosphatase domain, C2 domain and area of major phosphorylation sites 

and residues known to be phosphorylated and ubiquitinylated, and also search for 

long-term modifications whose reversal biologically and chemically is unfavourable 

entropically and has a low likelihood, which may last through processing and have a 

lower likelihood of being introduced as an artefact. Label and hypothesis free 

functional proteomics linked multi-omics may also be utilised in drug screening of cell 

signalling pathway modifying drugs. To speculate, for PTEN, disease state samples, 

and priority samples to perform drug screenings for disease-modifying effects in, of 

which MS and oxPTMs may be a part of a multi-omic approach, may be samples from 

neuropathies and neurological cancer, given the role of PTEN in cancer (Li, 1997; 

Steck et al., 1997) and neuroregeneration (Liu et al., 2010). To speculate, PTEN may 

be druggable at the protein level, and utilising MS to understand the PTEN PTMs in 
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the PTEN-associated disease states, or PTEN-modifiable disease states may be of 

interest – knowledge of PTEN PTMs may have utility in this process, to assess the 

PTMs involvement in effectiveness of therapy, mimicking their role, delivering PTM 

payloads to PTEN, competing with PTM PTEN and competition with PTEN PTM 

processes. To speculate, neuro-geroprotective and neuroregenerative therapies to 

address neuropathy, brain trauma and time-dependent neural cell loss, may utilise the 

role of PTEN in neural growth and neuroregeneration (Liu et al., 2010), including 

small molecule approaches and gene and cell therapy approaches to 

neurodegeneration and neurological cancers, as part of a multi-candidate, multi-omic 

assessment. To speculate further, for health states of interest, specifically the CNS 

which is cannot be replaced through transplants or artificial systems in the same way 

as every other tissue and organ, MS and proteomics may have utility to focus further 

upstream of PTEN in the signalling pathway, including the extracellular signals that 

interact with the PTEN pathways, and to focus on more readily accessible patient 

samples for the brain, such as cerebrospinal fluid (CSF). Lehtinen et al (2011) show 

that Pten and Protein associated with Lin 7 have opposing roles in the localisation of 

the insulin growth factor receptor 1 to the apical, ventricular domain of the cerebral 

cortex progenitor cells, and that CSF-based signalling activities including insulin 

growth factor 2 has an effect on cerebral cortex proliferation via Pten regulation. In 

this way, MS and proteomics of CSF for upstream proteins and extracellular proteins 

at distal and more accessible locations may be strategic with regards to developing 

diagnostics and pathway-modifying disease-preventing and disease-modifying 

therapeutics, which may include an assessment of the PTM and oxPTM state of these 

upstream and distal samples and proteins.  

 For VHR, disease state samples, and priority samples to perform drug screenings 

for disease-modifying effects in, of which MS and oxPTMs may be a part of a multi-

omic approach, may include samples related to neuropathies and neurodegeneration, 
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given the PPI with NEUROD1 (see Appendices 2) and potential role in neurogenic 

differentiation. PTEN and VHR may also have utility and potential druggability in non-

neuronal geroprotection and non-neuronal cancers, including cell signalling-modifying 

compounds. The PTEN and VHR oxPTMs found are part of a class of potential 

targets, and further understanding the oxPTMs of proteins may lead to additional 

efficacy and specificity of drugs and more specific, effective biologic drugs that target 

oxPTMs or contain oxPTMs, in biologic drugs with oxPTMs may have different 

biological half-lives and toxicities.  

 

6.7. Future paths 

 

Future paths may include working on the strategy and experimental design, starting 

with patients and outcomes that need to create for patients and other healthcare 

value chain stakeholders, and then reverse engineering a workflow and to 

appropriately gather enough of the appropriate in vivo samples. This is non-trivial on 

multiple accounts – the first being that de novo validation of PTMs is time consuming 

and impractical for pre-clinical and clinical settings, if indeed it is even needed when 

peptide identification, in silico prediction and statistical correlation of peptides may 

suffice given an approach that starts with clinically relevant patient samples, with 

appropriate statistics and population data. 

 Starting with in vitro work may contain biases and assumptions and be at risk of 

not fitting into a clinical translation workflow and not finding clinically relevant peptides 

and modifications and could its effectiveness as a strategy that is clinically relevant, 

competitive, economically valuable use of scientists, machine time and funding within 

a fixed time frame should be carefully considered and acted upon. 

 Starting with a relevant sample and seeing what one can and cannot see in that 

particular sample and what one can and cannot use as a biomarker or drug target 
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could be a direct approach along the critical path to health and longevity outcomes to 

consider. If there are no biomarkers or drug targets identifiable with regards to the 

statistical and repeatability constraints needed for clinical practice or drug 

development, then more targeted approaches could be performed using in silico 

predictions of expected peptides, literature searches, fractionation and antibody 

enrichment experiments and potential stratification and bifurcation of health or 

disease states by peptide or PTM.  If specific peptides or PTMs are useful, this 

research could then lead to new diagnostic and prognostic test development, deeper 

understanding of disease processes and mechanisms, as part of a timely and anti-

fragile value chain and workflow to generate pre-clinical leads to feed into a clinical 

pipeline.  

 Western blots of the SDS-PAGE gels containing oxidised protein to check for 

aggregates and fragments may add utility, as an additional technique for 

determination of action of oxidants on proteins of interest. 

 More replicates and higher resolution experiments could be performed including 

determining the functional importance of the modifications. This could include more 

oxidation replicates and treatment regimes, and even synthetic proteins with specific 

PTMs, as and when the technology and funding is available to do this if it is deemed 

critical. Co-immunoprecipitation may also be performed on stressed and ageing cells. 

 To validate the VHR putative interactions additional VHR array screenings, co-

immunoprecipitations with statistical analysis and bespoke arrays with the interactors 

as both probe and arrayed protein. To explore the relevance of that interaction for 

drug design and in vivo occurrence, in vivo relevance and in vivo relevance to the 

health and longevity outcomes that you need, knockout mice and patient samples 

may be needed.  

 Samples that may have utility screening with high mass accuracy MS and PTM 

analysis including oxPTMs could be stem cells for stem cell differentiation method 
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development and quality control, organ printing quality control, space radiation risk 

analysis and mitigation and profiling of young and calorie restricted individuals so you 

had proteomic baselines for therapies to return individuals to. By applying high-

resolution oxidative modification mapping as part of a multi-omics workflow in key 

areas such as space exploration, regenerative medicine to rejuvenate or replace 

ageing cells and tissues to develop personalised and preventative medicines – the 

technologies detailed within could be more fully realised to create the future outcomes 

for individuals and our species that we may want. 

 Much of the work contained within could have been performed at over 10X the 

speed with an automated thermal oxidation device linked to HPLC and MS with 

automated modification detection and statistical analysis. A careful questioning of the 

value of manual validation, bespoke methodology, methodology that introduces 

multiple stages and types of human error and bias, non-linkage of research from 

clinical workstreams and outcomes and the utilisation and current role and efficiency 

of pre-clinical academic research, with inflexible projects funded and designed from 

the top down that are not sufficiently linked to patient outcomes for health and 

longevity in a reasonable timeframe, or making full use of the innovation and dynamic 

capacity of talent. 

 Manual validation needs to be questioned as manual validation of PTMs, apart 

from in select instances of pre-clinical research, is not practical and scalable to a 

healthcare solution. A careful focus on prognostic capability and false discovery rates 

from the beginning in pre-clinical research might allow for more full utilisation of all 

academic resources, capacity and capability. There may also exist scenarios whereby 

bespoke analysis and manual validation can be afforded, when linked to health 

outcomes for personalised medical healthcare for confounding cases or high value 

clients – rather than something implemented from the start by fiat.  
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 By critically questioning the research, alternative options, the wider context of the 

research – asking what future research we can do becomes a wider and more useful 

question as to what we can do, together, to utilise the knowledge, people and 

resources available for health and longevity outcomes.  
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     Appendices 

p53  (Biogrid, Salmena et al., 2008) 
Myosin V (van Diepen et al., 2009) 
Myosin based transport (van Diepen et al., 2009) 
PAR-3 PDZ domain containing protein (Leslie et al., 2009) 
NHERF PDZ domain containing protein (MINT, Leslie et al., 2009; Takahashi et al., 
2006) 
MAGI PDZ domain containing protein (Leslie et al. 2009) 
MSP58 binding to phosphorylated Thr 366 (Leslie et al., 2009) 
Myosin V C-terminal tail binding (Leslie et al., 2009) 
Peroxiredoxin 1 (Prdx-1) c-terminal tail binding (Leslie et al., 2009) 
P-Rex-2 c-terminal tail binding (Leslie et al., 2009) 
Myosin V - Pict-1 – P-Rex-2 complex binding to c-terminal (Leslie et al., 2009) 
Pict-1 c-terminal binding (Okahara et al, 2004; Leslie et al., 2009) 
GSK3 c-terminal tail phosphorylation (Leslie et al., 2009) 
CK2 c-terminal tail phosophorylation (Leslie et al., 2009) 
XIAP (Van Themsche et al., 2009) 
FAK (KEGG, Tamura et al., 1997; Leslie et al., 2009; Salmena et al., 2008) 
MAST205 interaction via PDZ domain (Wu et al., 2000; Leslie et al., 2009) 
DLG interaction via PDZ domain (Disks large homolog 1) (InterAct, APDI, Adey et 
al., 2000) 
RAK (FRK) ( InterAct, Leslie et al, 2009; Yim et al., 2009) 
5-HT2C receptor (Ji et al., 2006) 
Beta-catenin (Vogelmann et al., 2005) 
PTEN (Vazquez et al, 2000; Shen et al., 2007) 
PTEN auto-dephosphorylation (Vazquez et al., 2000) 
PAR-3 - PIP2 – Apical membrane complex (Shewan et al., 2011) 
NM-II (Pramanik et al., 2009) 
WWP2 (Maddika et al., 2011) 
Ubiquitin protein (Salmena et al., 2008) 
PCAF (Salmena et al., 2008) 
p300/CPB (Salmena et al., 2008) 
MAGI 2 (IntAct, GST Pulldown, Beta-galactosidase, anti tag coip, yeast, simian, in 
vitro) (Valiente et al, 2005; Salmena et al, 2008) 
CENP-C (Salmena et al., 2008) 
MVP Major vault protein (BioGRID, APID, Salmena et al., 2008) 
Ran nuclear membrane active transporter (Salmena et al., 2008) 
MVP nuclear membrane active transporter (Salmena et al., 2008) 
MAST1 mouse ( IntACT, pull down, in vitro, yeast, beta-galactosidase, protein kinase 
assay, in vitro, Valiente et al, 2005) 
SCG1 (Secretogranin1, CHGB) (InterAc, two hybrid screening, yeast, Stelz et al., 
2005) 
APC4(InterAct, Human prostate adenocarcinoma, anti tag coip, Song et al., 2011) 
APC5 (InterAct, Human prostate adenocarcinoma, anti tag coip, Song et al., 2011) 
APC7 (InterAct, Human prostate adenocarcinoma, anti tag coip, Song et al., 2011) 
CDC27 (InterAct, Human prostate adenocarcinoma, anti tag coip, Song et al., 2011) 
ANG (Ribonuclease 5, Angiogenin) (InterAct, two hybrid pooling, Stelzl et al., 2005) 
Zn72D (InterAct, yeast two hybrid, Giot et al., 2003) 
UTP14A (U3 small nucleolar RNA-associated protein 14 homolog A) (InterAct, two 
hybrid pooling, Stelzl et al., 2005) 
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MAGI 3 (Membrane-associated guanylate kinase inverted 3) (Pull down) (Valiente et 
al, 2005; InterAct) 
Smurf2 (lumier) (InterAct, Narimatsu et al., 2009) 
Cenpc1 (Centromere autoantigen C) (InterAct, anti bait coip, Shen et al., 2007) 
Epac (Yeast two hybrid) (InterAct, Giot et al, 2003) 
COPS6 (COP9 signalosome complex subunit 6) ( InterAct,2 hybrid pooling, Stelzl et 
al., 2005) 
PPP1CA (Serine/threonine-protein phosphatase PP1-alpha catalytic subunit) 
(antibody array) (Flores-Delgado G et al, 2007; InterAct) 
alsD; GBAA_0867; BAS0824; BA_0867 (Bacterial protein) (Two hybrid pooling) 
(Dyer et al, 2010; InterAct) 
HBA1; HBA2; Hemoglobin alpha chain (Two hybrid pooling, yeast) (Stelzl et al, 
2005; IntAct) 
Heat shock 70 kDa protein 5; HSPA5; GRP78; Endoplasmic reticulum lumenal 
Ca(2+)-binding protein grp78 (Co-sedimentation, H460 cells) (Shu et al, 2007, 
InterAct) 
SLC9A3R2 (solute carrier family 9 (sodium/hydrogen exchanger) (STRING-db.org, 
association, Takahashi et al., 2006) 
SLC9A3R1 ((solute carrier family 9 (sodium/hydrogen exchanger) (STRING-db.org)  
PTK2; protein tyrosine kinase 2 (STRING-db.org) 
STAT5A, STAT5: Signal transducer and activator of transcription 5A (PIPs prediction 
>12.5 score) 
CRKL: Crk-like protein  (PIPs prediction >12.5 score) 
EEF1G, EF1G, PRO1608: Elongation factor 1-gamma  (PIPs prediction >12.5 score) 
STAT5B: Signal transducer and activator of transcription 5B  (PIPs prediction >12.5 
score) 
NRHF2 (APID, MINT) 
MAST2 (Mouse) (APID, IntAct) 
MAST3 (APID, IntAct) 
STK11 (Serine/threonine-protein kinase 11) (APID, HPRD) 
(AR) Androgen receptor (BioGRID, APID) 
Casein kinase II subunit alpha (APID, BioGRID) 
Alpha 2 globin variant (MINT: APID) 
PDGFR Beta (Beta-type platelet-derived growth factor receptor) (MINT) 
Paxillin (PXN) (Zinc ion binding, ROS response, signalling complex assembly) 
(BioGRID, APID) 
Estrogen receptor (ESR/ESR1) (BioGRID, APID) 
Ubiquitin-conjugating enzyme E2 L3 (UB2L3) (BioGRID,  APID) 
SUMO-conjugating enzyme (UBC9) (BioGRID, APID) 
Caveolin-1 (Cav1) (BioGRID, BIND, APID) 
Membrane-associated guanylate kinase-related 3 (Q9HBC4) (BIND, APID) 
ROCK1 (Rho-associated protein kinase 1) (BIND, APID) 
Glioma tumor suppressor candidate region gene 2 protein (p60/GSCR2) (BIND, 
APID) 
GLTSCR2 (APID; Okahara et al., 2004) 
NIRF (UniProt, antibody array) 
CHGB (SPIKE, direct interaction, Stelzl., 2005) 
FRK (SPIKE, association, Yim., 2009) 
SP1 (SPIKE, direct interaction, Kang-Park., 2003) 
HSPA5 (SPIKE, association, Shu., 2008) 
NEDD4 (SPIKE, direct interaction, Yim., 2009) 
PREX2 (SPIKE, direct interaction, Fine., 2009) 
AR (SPIKE, association, Lin., 2004) 
RPS3A (Reactome, experimental knowledge based, Wu et al., 2010) 
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RB1CC1 (Reactome, experimental knowledge based, Wu et al., 2010) 
PIP4K2B (Reactome, experimental knowledge based, Wu et al., 2010) 
PIK3CB (Reactome, experimental knowledge based, Wu et al., 2010) 
SYNJ1 (Reactome, experimental knowledge based, Wu et al., 2010) 
CDIPT (Reactome, experimental knowledge based, Wu et al., 2010) 
INPP5D (Reactome, experimental knowledge based, Wu et al., 2010) 
ITGB1 (Reactome, experimental knowledge based, Wu et al., 2010) 
INPP4B (Reactome, experimental knowledge based, Wu et al., 2010) 
PLCB1 (Reactome, experimental knowledge based, Wu et al., 2010) 
PREX1 (Reactome, experimental knowledge based, Wu et al., 2010) 
GAB1 (Reactome, experimental knowledge based, Wu et al., 2010) 
VAV1 (Reactome, experimental knowledge based, Wu et al., 2010) 
RNF51 (MINT, anti tag coimmunoprecipitation, Fan et al., 2009) 
PXN (irefindex, Haier and Nicolson., 2002) 
AKT3  (Reactome, experimental knowledge based, Wu et al., 2010) 
DKFZ (Reactome, experimental knowledge based, Wu et al., 2010) 
INPP4A (Reactome, experimental knowledge based, Wu et al., 2010) 
PI4KB (Reactome, experimental knowledge based, Wu et al., 2010) 
PLCG2 (Reactome, experimental knowledge based, Wu et al., 2010) 
PIK3CD  (Reactome, experimental knowledge based, Wu et al., 2010) 
CYTH2  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIK3C3  (Reactome, experimental knowledge based, Wu et al., 2010) 
PDPK1  (Reactome, experimental knowledge based, Wu et al., 2010) 
SHC1  (Reactome, experimental knowledge based, Wu et al., 2010) 
AKT1  (Reactome, experimental knowledge based, Wu et al., 2010) 
PTPMT1  (Reactome, experimental knowledge based, Wu et al., 2010) 
CD79B  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIP5K3  (Reactome, experimental knowledge based, Wu et al., 2010) 
PI4KA  (Reactome, experimental knowledge based, Wu et al., 2010) 
BCR  (Reactome, experimental knowledge based, Wu et al., 2010) 
PLCB3  (Reactome, experimental knowledge based, Wu et al., 2010) 
PDPK2  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIK3C2A  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIK3C2G  (Reactome, experimental knowledge based, Wu et al., 2010) 
OCRL  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIP5K1C  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIK3C2B  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIP5K1A  (Reactome, experimental knowledge based, Wu et al., 2010) 
HRAS  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIP4K2A  (Reactome, experimental knowledge based, Wu et al., 2010) 
AKT2  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIK3CG  (Reactome, experimental knowledge based, Wu et al., 2010) 
GRB2  (Reactome, experimental knowledge based, Wu et al., 2010) 
SYNJ2  (Reactome, experimental knowledge based, Wu et al., 2010) 
PLCZ1  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIK3R3  (Reactome, experimental knowledge based, Wu et al., 2010) 
PLCD4  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIK3R1  (Reactome, experimental knowledge based, Wu et al., 2010) 
INPP5E  (Reactome, experimental knowledge based, Wu et al., 2010) 
PLCE1  (Reactome, experimental knowledge based, Wu et al., 2010) 
PLCB4  (Reactome, experimental knowledge based, Wu et al., 2010) 
PLCD3  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIP4K2C  (Reactome, experimental knowledge based, Wu et al., 2010) 
PIP5K1B  (Reactome, experimental knowledge based, Wu et al., 2010) 
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EGR1  (Reactome, experimental knowledge based, Wu et al., 2010) 
HDLG-1 (BIND) 

Appendix 1. PTEN protein-protein interactors 
Proteins annotated with database searched, technique to discover interactor, and 
corresponding publication. 
 

   
MAPK1 (MINT database) 
MAPK3 (MINT database, Todd et al., 1999) 
CASK (IntAct database, two hybrid assay) 
HLA-B (IntAct database, Spike, anti-bait coimmunoprecipitation, mass spectrometry, 
Ewing et al., 2007) 
MCC (IntAct database, Ewing et al., 2007) 
NEUROD1 (IntAct database, two hybrid assay) 
BNIP3L (IntAct database, two hybrid assay) 
FGF7 (Spike, coimmunoprecipitation, Rual et al., 2005; Ishibashi et al., 1992) 
SYK (Spike, biochemical, Alonso et al., 2003) 
ZAP70 (Spike, biochemical Alonso et al., 2003) 
EGFR (APID, Ishibashi et al., 1992) 
STAT1 (APID, in vivo, Najarro et al., 2001) 
EGF (APID, Ishibashi et al., 1992) 
PDGFA (APID, Ishibashi et al., 1992) 
MAP2K2 (APID, Todd et al., 1999) 
ERBB1 (Biogrid, Ishibashi et al., 1992) 
ERK (Biogrid, Todd et al., 1999) 

Appendix 2. VHR protein-protein interactors 
Proteins annotated with database searched, technique to discover interactor, and 
corresponding publication. 
 

>pGEX-6P-1 (NotI/BamHI)-pGEX-4T-1-PTEN (BamHI/NotI) (circular) 
AATGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTCAC
ACAGGAAACAGTATTCATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGCAACCCAC
TCGACTTCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGA
TAAATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATTGATGGT
GATGTTAAATTAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACAACATGTTGGGT
GGTTGTCCAAAAGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATACGG
TGTTTCGAGAATTGCATATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCT
GAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAACC
CATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGGATG
CGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGTACTTGAA
ATCCAGCAAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGACCATC
CTCCAAAATCGGATCTGGTTCCGCGTGGATCCCCGGAATTCACAGCCATCATCAAAGAGATCGTTA
GCAGAAACAAAAGGAGATATCAAGAGGATGGATTCGACTTAGACTTGACCTATATTTATCCAAACAT
TATTGCTATGGGATTTCCTGCAGAAAGACTTGAAGGCGTATACAGGAACAATATTGATGATGTAGTA
AGGTTTTTGGATTCAAAGCATAAAAACCATTACAAGATATACAATCTTTGTGCTGAAAGACATTATGA
CACCGCCAAATTTAATTGCAGAGTTGCACAATATCCTTTTGAAGACCATAACCCACCACAGCTAGAA
CTTATCAAACCCTTTTGTGAAGATCTTGACCAATGGCTAAGTGAAGATGACAATCATGTTGCAGCAAT
TCACTGTAAAGCTGGAAAGGGACGAACTGGTGTAATGATATGTGCATATTTATTACATCGGGGCAAA
TTTTTAAAGGCACAAGAGGCCCTAGATTTCTATGGGGAAGTAAGGACCAGAGACAAAAAGGGAGTA
ACTATTCCCAGTCAGAGGCGCTATGTGTATTATTATAGCTACCTGTTAAAGAATCATCTGGATTATAG
ACCAGTGGCACTGTTGTTTCACAAGATGATGTTTGAAACTATTCCAATGTTCAGTGGCGGAACTTGC
AATCCTCAGTTTGTGGTCTGCCAGCTAAAGGTGAAGATATATTCCTCCAATTCAGGACCCACACGAC
GGGAAGACAAGTTCATGTACTTTGAGTTCCCTCAGCCGTTACCTGTGTGTGGTGATATCAAAGTAGA
GTTCTTCCACAAACAGAACAAGATGCTAAAAAAGGACAAAATGTTTCACTTTTGGGTAAATACATTCT
TCATACCAGGACCAGAGGAAACCTCAGAAAAAGTAGAAAATGGAAGTCTATGTGATCAAGAAATCGA
TAGCATTTGCAGTATAGAGCGTGCAGATAATGACAAGGAATATCTAGTACTTACTTTAACAAAAAATG
ATCTTGACAAAGCAAATAAAGACAAAGCCAACCGATACTTTTCTCCAAATTTTAAGGTGAAGCTGTAC
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TTCACAAAAACAGTAGAGGAGCCGTCAAATCCAGAGGCTAGCAGTTCAACTTCTGTAACACCAGATG
TTAGTGACAATGAACCTGATCATTATAGATATTCTGACACCACTGACTCTGATCCAGAGAATGAACCT
TTTGATGAAGATCAGCATACACAAATTACAAAAGTCTGACTCGAGCGGCCGCATCGTGACTGACTGA
CGATCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGG
TCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTT
GGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATAATTCTTGAAGA
CGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTC
AGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATA
TGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGT
ATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCA
GAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTG
GATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTT
TTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCC
GCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGG
CATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTT
CTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACT
CGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATG
CCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGC
AACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGG
CTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCAC
TGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG
ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCA
AGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATC
CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGT
AGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAA
AACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAAC
TGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTC
AAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG
GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGG
GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATAC
CTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGT
AAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTT
ATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGC
GGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGC
TCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTG
ATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCG
CCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAAATTCCGACACCATCG
AATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGA
ATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCG
CGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGG
AGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCG
TTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCG
ATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCG
GCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAG
GATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGA
CACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGC
ATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCT
GGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTG
GAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATG
CTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGT
TGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTA
ACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCT
CAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTG
GCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAG
GTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGC
ACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTC
ACACAGGAAACAGCTATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGG
AAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAG
CGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGC
CTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATA
CTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTAACCTA
TCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTT
AATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTGGAATTACGT
TATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATGGCTGT
GCAGGTCGTAAATCACTGCATAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTT
GCGCCGACATCATAACGGTTCTGGCAAATATTCTGA 
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Appendix 3. pGEX-4T-1-PTEN plasmid construct 
Contains PTEN as a GST fusion protein with a linker sequence that includes a 
thrombin cleavage sequence. The GST sequence (artificial sequence; Accession 
number ACF75943) is in bold. The PTEN sequence (mammalian; NP_001003192.1) 
is in italics. The linker sequences thrombin site is underlined. 
 

>pGEX-4T-1 (SalI/BamHI)-VHR PCR product RS (BamHI/SalI) (circular) 
CTCGAGCGGCCGCATCGTGACTGACTGACGATCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAAC
CTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAA
GCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTA
GCGATAGCGGAGTGTATAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAA
TGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCT
ATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTT
CAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGC
GGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAG
TTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCC
CCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTT
GACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCA
CCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCA
TGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT
TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCAT
ACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAAC
TGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCA
GGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAG
CGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATC
TACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCA
CTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCAT
TTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAG
TTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCT
GCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAA
GAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTC
TAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCT
AATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACG
ATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGG
AGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCG
AAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGA
GCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGT
CGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTA
CGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGA
TAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA
GTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTAT
TTCACACCGCATAAATTCCGACACCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGC
CCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTAT
GCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACG
CGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTG
GCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAA
ATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAA
CGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCT
GATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCG
GCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTAC
GCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATT
AAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAG
CCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTG
AATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGC
GCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAA
GACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCA
GCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCT
CACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCG
ATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATT
AATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTG
TGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGGATTCACTGGC
CGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACAT
CCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGC
AGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCT
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GGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGA
TGCGCCCATCTACACCAACGTAACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAAT
CCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGA
ATTATTTTTGATGGCGTTGGAATTACGTTATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGC
AGCCATCGGAAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCATAATTCGTGTCGCTCAAGG
CGCACTCCCGTTCTGGATAATGTTTTTTGCGCCGACATCATAACGGTTCTGGCAAATATTCTGAAATG
AGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTCACACAG
GAAACAGTATTCATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGCAACCCACTCGACT
TCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGATAAATGGC
GAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATTGATGGTGATGTTAAAT
TAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACAACATGTTGGGTGGTTGTCCAAA
AGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATACGGTGTTTCGAGAATT
GCATATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAAT
GTTCGAAGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAACCCATCCTGACTTCATGTT
GTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGGATGCGTTCCCAAAATTAGTTT
GTTTTAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGTACTTGAAATCCAGCAAGTATATAGCA
TGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGACCATCCTCCAAAATCGGATCTGGTT
CCGCGTGGATCCATGTCGGGCTCGTTCGAGCTCTCGGTGCAGGATCTCAACGACCTGCTCTCGGAC
GGCAGCGGCTGCTACAGCCTCCCGAGCCAGCCCTGCAACGAGGTCACCCCGCGGATCTACGTGGG
CAACGCGTCTGTGGCTCAGGACATCCCCAAGCTGCAGAAACTAGGCATCACCCATGTGCTGAACGC
GGCTGAGGGCAGGTCCTTCATGCACGTCAACACCAATGCCAACTTCTACAAGGACTCCGGCATCAC
ATACCTGGGCATCAAGGCCAACGACACACAGGAGTTCAACCTCAGCGCTTACTTTGAAAGGGCTGC
CGACTTCATTGACCAGGCTTTGGCTCAAAAGAATGGCCGGGTGCTCGTCCACTGCCGGGAAGGTTA
TAGCCGCTCCCCAACGCTAGTTATCGCCTACCTCATGATGCGGCAGAAGATGGACGTCAAGTCTGC
CCTGAGCATCGTGAGGCAGAACCGTGAGATCGGCCCCAACGATGGCTTCCTGGCCCAGCTCTGCCA
GCTCAATGACAGACTAGCCAAGGAGG GAAGTTGAAACCCTAGGTCGA 
Appendix 4. pGEX-4T-1-VHR plasmid construct 
Contains VHR as a GST fusion protein with a linker sequence that includes a 
thrombin cleavage sequence.  
 

>gi|61358507|gb|AAX41578.1| phosphatase and tensin-like [synthetic construct] 
MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHRNHYKIYNLCA
ERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLLH
RGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGT
CNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFF
IPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTKNDLDKANKDKANRYFSPNFKVKLYFTKT
VEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQITKV 
Appendix 5. PTEN amino acid sequence  
 
>gi|194580258|gb|ACF75943.1| glutathione-S-transferase affinity tag [Cloning vector 
pAW8_GST]MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGD
VKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMFE
DRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQ
GWQATFGGGDHPPKSDLVPR 
Appendix 6. GST affinity tag amino acid sequence  
GST protein sequence encoded in pGEX-4T-1-PTEN and VHR. Plasmid sequence 
analysed on NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), using Blastx. 
Displayed as FASTA formatted.  

 
 
 

 
  
PGM commands:  
;Initialize all Analyst synchronisation properties to 0.                      
ReadyToRun = 0                      
DoInject = 0                      
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InjectResponse = 0                      
Sampler.TempCtrl = On                      
Sampler.Temperature.Nominal = 10.0 [°C]                      
Sampler.Temperature.LowerLimit = 4.0 [°C]                      
Sampler.Temperature.UpperLimit = 45.0 [°C]                      
Sampler.ReadyTempDelta = 10.0 [°C]                      
ColumnOven.TempCtrl = On                      
ColumnOven.Temperature.Nominal = 30.0 [°C]                      
ColumnOven.Temperature.LowerLimit = 5.0 [°C]                      
ColumnOven.Temperature.UpperLimit = 85.0 [°C]                      
ColumnOven.ReadyTempDelta = 5.0 [°C]                      
;Column_1.ActiveColumn = No                      
;Column_2.ActiveColumn = No                      
LoadingPump.Pressure.LowerLimit = 0 [bar]                      
LoadingPump.Pressure.UpperLimit = 350 [bar]                      
LoadingPump.MaximumFlowRampDown = 3 [µl/min²]                      
LoadingPump.MaximumFlowRampUp = 3 [µl/min²]                      
LoadingPump.%A.Equate = "%A"                      
LoadingPump.%B.Equate = "%B"                      
LoadingPump.%C.Equate = "%C"                      
MicroPump.Pressure.LowerLimit = 0 [bar]                      
MicroPump.Pressure.UpperLimit = 295 [bar]                      
; MasterPressure.LowerLimit = 0 [bar]                      
; MasterPressure.UpperLimit = 350 [bar]                      
MicroPump.MaximumFlowRampDown = 3 [µl/min²]                      
MicroPump.MaximumFlowRampUp = 3 [µl/min²]                      
MicroPump.%A.Equate = "%A"                      
MicroPump.%B.Equate = "%B"                      
MicroPump.%C.Equate = "%C"                      
AnalystMinVolume = 0.001 [µl]                      
AnalystDefaultVolume = 10.000 [µl]                      
AnalystMaxVolume = 25.000 [µl]                      
DrawSpeed = 300 [nl/s]                      
DrawDelay = 5000 [ms]                      
DispSpeed = 1000 [nl/s]                      
DispenseDelay = 2000 [ms]                      
WasteSpeed = 4000 [nl/s]                      
WashSpeed = 4000 [nl/s]                      
LoopWashFactor = 2.000                      
SampleHeight = 4.000 [mm]                      
PunctureDepth = 7.000 [mm]                      
WashVolume = 200.000 [µl]                      
; SyncWithPump = On                      
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RinseBetweenReinjections = No                      
LowDispersionMode = Off                      
InjectMode = UserProg                      
ReagentAVial= R1                      
ReagentBVial= GA11                      
ReagentCVial= GB11                      
ReagentDVial= GC11                      
; UdpInjectValve Position=Load                      
LoadingPump_Pressure.Step = Auto                      
LoadingPump_Pressure.Average = On                      
; MicroPump_MasterPressure.Step = Auto                      
; MicroPump_MasterPressure.Average = On                      
ColumnOven_Temp.Step = Auto                      
ColumnOven_Temp.Average = On                      
; ColumnPressure.Step = Auto                      
; ColumnPressure.Average = On                      
ColumnOven_FC_BridgeFlow.Step = Auto                      
ColumnOven_FC_BridgeFlow.Average = On                      
ColumnOven_FC_Stepper.Step = Auto                      
ColumnOven_FC_Stepper.Average = On                      
LoadingPump.Flow = 30 [µl/min]                      
LoadingPump.%B = 0.0 [%]                      
LoadingPump.%C = 0.0 [%]                      
LoadingPump.Curve = 5                      
ValveLeft = 10_1                      
PrepVial= R1                      
UdpInjectValve Position=Load                      
UdpSyringeValve Position=Needle                      
UdpDraw From=ReagentAVial, Volume=5.000, 
SyringeSpeed=GlobalSpeed, SampleHeight=GlobalHeight                      
UdpMixWait Duration=5                      
UdpDraw From=ReagentAVial, Volume=0.000, 
SyringeSpeed=GlobalSpeed, SampleHeight=GlobalHeight                      
UdpDispense To=Waste, Volume=5.000, SyringeSpeed=GlobalSpeed, 
SampleHeight=GlobalHeight                      
UdpDraw From=SampleVial, Volume=10.000, 
SyringeSpeed=GlobalSpeed, SampleHeight=GlobalHeight                      
UdpMixWait Duration=5                      
UdpDraw From=SampleVial, Volume=0.000, 
SyringeSpeed=GlobalSpeed, SampleHeight=GlobalHeight                      
UdpDraw From=ReagentAVial, Volume=1.400, 
SyringeSpeed=GlobalSpeed, SampleHeight=GlobalHeight                      
UdpMixWait Duration=5                      
UdpDraw From=ReagentAVial, Volume=0.000, 
SyringeSpeed=GlobalSpeed, SampleHeight=GlobalHeight                      
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UdpInjectValve Position=Inject                      
UdpInjectMarker                      
UdpMixNeedleWash Volume=100.000                      
0.000 Wait ColumnOven.Ready and Sampler.Ready                      
;Chromeleon sets this property to signal to Analyst that it is ready to start 
a run.                      
ReadyToRun = 1                      
;Analyst sets this property to start the injection.                      
Wait DoInject                      
MicroPump.Flow = 0.2 [µl/min]                      
MicroPump.%B = 2.0 [%]                      
MicroPump.%C = 0.0 [%]                      
Wait ColumnOven.Ready and Sampler.Ready                      
Inject                      
LoadingPump_Pressure.AcqOn                      
; MicroPump_MasterPressure.AcqOn                      
ColumnOven_Temp.AcqOn                      
; ColumnPressure.AcqOn                      
ColumnOven_FC_BridgeFlow.AcqOn                      
ColumnOven_FC_Stepper.AcqOn                      
;Chromeleon sets this property to signal the injection to Analyst.                      
InjectResponse = 1                      
;Depending on your system configuration it might be necessary to 
manually insert                      
;a "Relay" command below in order to send the start signal to the MS.                      
;Typical syntaxes:                      
;Pump_Relay_1.Closed Duration = 2.00                      
;UM3PUMP_Relay1.On Duration = 2.00                      
MicroPump.Flow = 0.200 [µl/min]                      
MicroPump.%B = 2.0 [%]                      
MicroPump.%C = 0.0 [%]                      
0.100 MS_Start.State On                      
0.200 MS_Start.State Off                      
4.000 MicroPump.Flow = 0.2 [µl/min]                      
MicroPump.%B = 2.0 [%]                      
MicroPump.%C = 0.0 [%]                      
ValveLeft = 1_2                      
49.000 MicroPump.Flow = 0.2 [µl/min]                      
MicroPump.%B = 45.0 [%]                      
MicroPump.%C = 0.0 [%]                      
50.000 MicroPump.Flow = 0.2 [µl/min]                      
MicroPump.%B = 90.0 [%]                      
MicroPump.%C = 0.0 [%]                      
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54.000 MicroPump.Flow = 0.2 [µl/min]                      
MicroPump.%B = 90.0 [%]                      
MicroPump.%C = 0.0 [%]                      
55.000 MicroPump.Flow = 0.2 [µl/min]                      
MicroPump.%B = 2.0 [%]                      
MicroPump.%C = 0.0 [%]                      
64.000 ValveLeft = 10_1                      
65.000 LoadingPump_Pressure.AcqOff                      
; MicroPump_MasterPressure.AcqOff                      
ColumnOven_Temp.AcqOff                      
; ColumnPressure.AcqOff                      
ColumnOven_FC_BridgeFlow.AcqOff                      
ColumnOven_FC_Stepper.AcqOff                      
MicroPump.Flow = 0.2 [µl/min]                      
MicroPump.%B = 2.0 [%]                      
MicroPump.%C = 0.0 [%]                      
InjectResponse = 0                      
End                      
Appendix 7. Analyst MS chromatography method  

 
 
Non-treated negative control PTEN, 1hr at 370C 

Peptide Peptide 
sequence 

 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (min) 

Sequence 
coverage (%) 

67-80 K.IYNL
CAERH
YDTAK.
F 
 

577.094
4 

C5, Diox 
(C) 

13 25,26 48 

67-80 K.IYNL
CAERH
YDTAK.
F 
 

582.424
7 

C5, Triox 
(C) 

65 25.35 48 

67-80 K.IYNL
CAERH
YDTAK.
F 
 

541.872
8 
 

Y2, Nitro 
(Y) 

19 25.67 48 

67-80 K.IYNL
CAERH
YDTAK.
F 
 

542.392 
 

Y2, Nitro 
(Y) 

29 25.67 48 

129-
142 

K.GRT
GVMIC
AYLLH
R.G 

564.419
2 
 

Y10, Nitro 
(Y) 

24 27.54 48 
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129-
142 

K.GRT
GVMIC
AYLLH
R.G 
 

564.419
6 
 

Y10, Nitro 
(Y) 

26 28.05 48 

148-
159 

K.AQE
ALDFY
GEVR.
T 

721.519
7 
 

Y8, Nitro 
(Y) 

52 30.08 48 

75:1 Sin-1:PTEN, 1hr at 370C treated PTEN  
Peptide Peptide 

sequence 
 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (min) 

Sequence 
coverage (%) 

42-55 R.LEGV
YRNNI
DDVVR
.F 
 

560.104
7 
 

Y5, Ox (Y) 22 26.22 47 

42-55 R.LEGV
YRNNI
DDVVR
.F 
 

560.105
4 
 

Y5, Ox (Y) 32 26.91 47 

67-74 K.YINL
CAER.
H 

515.372
2 

C5, Triox 
(C) 

47 27.4 47 

67-80  K.IYNL
CAERH
YDTAK.
F 

582.424
2 

C5, Triox 
(C) 

49 25.17 47 

129-
142 

K.GRT
GVMIC
AYLLH
R.G 
 

564.418
4 
 

Y10, Nitro 
(Y) 

19 27.35 47 

129-
142 

K.GRT
GVMIC
AYLLH
R.G 
 

564.420
3 
 

Y10, Nitro 
(Y) 

25 27.9 47 

131-
142 

R.TGV
MICAY
LLHR.G 
 

725.567
4 
 

M4, Ox (M) 29 29.91 47 

148-
159 

K.AQE
ALDFY
GEVR.
T 
 

707.529
8 
 

Y8, Ox (Y) 52 28.7 47 

148-
159 

K.AQE
ALDFY
GEVR.
T 
 

707.530
1 
 

Y8, Ox (Y) 51 28.12 47 

148-
159 

K.AQE
ALDFY
GEVR.
T 

707.533
5 
 

Y8, Ox (Y) 49 29.24 47 



- 331 

 
148-
159 

K.AQE
ALDFY
GEVR.
T 
 

722.030
6 
 

Y8, Nitro 
(Y) 

38 32.29 47 

222-
233 

K.VKIY
SSNSG
PTR.R 
 

442.344 
 

Y4, Ox (Y) 47 21.74 47 

150:1 Sin-1:PTEN, 1hr at 370C treated PTEN 
Peptide Peptide 

sequence 
 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time 
(mins) 

Sequence 
coverage 
(%) 

42-55 R.LEGV
YRNNI
DDVVR
.F 
 

560.103
9 
 

Y5, Ox (Y) 34 26.21 
 

55 

67-80 K.IYNL
CAERH
YDTAK.
F 

582.493 C5, Triox 
(C) 

36 25.21 56 

67-80 K.IYNL
CAERH
YDTAK.
F 

596.425
2 

C5, Diox 
(C) 

13 25.37 56 

75-84 R.HYD
TAKFN
CR.V 
 

452.975
1 
 

Y2, Nitro 
(Y) 

25 22.66 
 

55 

129-
142 

K.GRT
GVMIC
AYLLH
R.G 
 

564.419
1 
 

Y10, Nitro 
(Y) 

30 27.35 
 

55 

129-
142 

K.GRT
GVMIC
AYLLH
R.G 
 

564.421 
 

Y10, Nitro 
(Y) 

18 27.87 
 

55 

131-
142 

R.TGV
MICAY
LLHR.G 
 

725.573
6 
 

M4, Ox (M) 32 29.9 
 

55 

131-
142 

R.TGV
MICAY
LLHRG
K.F 

 

545.764
3 
 

M4, Ox (M) 24 27.92 
 

55 

148-
159 

K.AQE
ALDFY
GEVR.
T 
 

707.529
3 
 

Y8, Ox (Y) 68 28.66 
 

55 

148-
159 

K.AQE
ALDFY
GEVR.
T 

707.530
5 
 

Y8, Ox (Y) 64 28.11 
 

55 



- 332 

 
148-
159 

K.AQE
ALDFY
GEVR.
T 
 

722.033 
 

Y8, Nitro 
(Y) 

57 32.3 
 

55 

222-
233 

K.VKIY
SSNSG
PTR.R 
 

442.342
9 
 

Y4, Ox (Y) 43 21.77 55 

224-
233 

K.IYSS
NSGPT
R.R 
 

563.907
1 
 

Y2, Nitro 
(Y) 

24 22.18 
 

55 

224-
234 

K.IYSS
NSGPT
RR.E 
 

418.302
3 
 

Y2, Ox (Y) 18 34.68 
 

55 

235-
254 

R.EDKF
MYFEF
PQPLP
VCDIK.
V 
 

826.287
4 
 

M5, Ox (M) 27 33.85 
 

55 

333-
342 

K.ANR
YFSPN
FK.V 
 

420.648
9 
 

Y4, Ox (Y) 18 24.61 
 

55 

336-
342 

R.YFSP
NFK.V 
 

474.336
7 
 

Y1, Nitro 
(Y) 

32 28.64 
 

55 

Appendix 8. Oxidative modifications observed in tryptic peptides of PTEN by 
MS/MS with collisionally-induced decomposition after validatory sequencing of 
b and y series ions from 75:1 and 150:1 SIN-1 oxidation and incubation at 370C 
for 1 hour Mascot search for Nitro (Y), Ox (Y), Ox (M), Ox (H), Ox (W). The letter 
designation followed by a number denotes the one letter amino acid code and the 
sequence of the predicted modified residue within the peptide fragment. Ox = 
oxidation, Nitro = nitration, Diox = Dioxidation, Triox = Trioxidation. 
 
30:1 HOCl:PTEN, 1hr at RT treated PTEN 

Peptide Peptide 
sequence 

 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

67-74 K.IYNL
CAER.
H 

507.369
1 

C5, Diox 
(C) 

16 27.29 70 

67-80 K.IYNL
CAERH
YDTAK.
F 

577.090
3 

C5, Triox 
(C) 

20 25.29 70 

67-80 K.IYNC
AERHY
DTAK.F 

582.423
5 

C5, Triox 
(C) 

58 25.37 70 

131-
142 

R.TGV
MICAY
LLHR.G 
 

489.369
3 
 

M4, Ox 
(M); Y8 Ox 
(Y) 

22 31.71 69 

198- K.MMF 947.026 M8, Ox (M) 40 35.05 69 



- 333 

221 ETIPMF
SGGTC
NPQFV
VCQLK
.V 
 

9 
 

314-
327 

K.EYLV
LTLTK
NDLDK.
A 
 

567.444
6 
 

Y2, Chloro 
(Y) 

16 30.2 69 

300:1 HOCl:PTEN, 1hr at RT treated PTEN 
Peptide Peptide 

sequence 
 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

67-74 K.IYNL
CAER.
H 

515.372
3 

C5, Triox 
(C) 

38 27.54 54 

67-74 K.IYNL
CAER.
H 

515.372
3 

C5, Triox 
(C) 

14 28.13 54 

67-80 K.IYNC
AERHY
DTAK.F 

577.088
5 

C5, Triox 
(C) 

12 25.30 54 

129-
142 

K.GRT
GVMIC
AYLLH
R.G 
 

555.100
9 
 

M6, Ox (M) 63 28.18 
 

63 

131-
144 

R.TGV
MICAY
LLHRG
K.F  
 

545.765
2 
 

M4, Ox (M) 54 28.1 
 

63 

174-
183 

R.YVYY
YSYLL
K.N 
 

481.335
8 
 

Y4, Chloro 
(Y), Y5, Ox 
(Y), Y6, Ox 
(Y) 

17 0.08 
 

63 

224-
234 

K.IYSS
NSGPT
RR.E 
 

418.634
8 
 

Y2, Ox (Y) 6 35.4 
 

63 

235-
254 

R.EDKF
MYFEF
PQPLP
VCDIK.
V 

 

826.287
9 
 

M5, Ox (M) 26 34.04 
 

63 

270-
289 

K.MFH
FWVNT
FFIPGP
EETSE
K.V 
 

820.610
5 
 

M1, Ox (M) 31 35.4 
 

63 

Appendix 9. Oxidative modifications observed in tryptic peptides of PTEN by 
MS/MS with collisionally-induced decomposition after validatory sequencing of 
b and y series ions from 1:30 and 1:300 molar ratio HOCl oxidation and 
incubation at room temperature for 1 hour 
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Mascot search for Chloro (Y), Dichloro (Y), Ox (Y), Ox (M), Ox (H) Ox (W). The letter 
designation followed by a number denotes the one letter amino acid code and the 
sequence of the predicted modified residue within the peptide fragment. Ox = 
oxidation, Chloro = chlorination. 
 

Non-treated negative control VHR, 1hr at 370C 
Peptide Peptide 

sequence 
 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGNA
SVAQDIP
K.L 746.0486 Ox(Y) Y2 25 30.65 to 31.34 74 

37-50 

R.IYVGNA
SVAQDIP
K.L 746.0486 Ox(P) P13 33 30.65 68 

37-50 

R.IYVGNA
SVAQDIP
K.L 753.5638 DiOx(Y) Y 2 20 30.78 to 31.47 68 

67-79 

R.SFMHV
NTNANFY
K.D 530.3302 Ox(M) M3 20 27.88 to 28.58 67-79 

67-79 

R.SFMHV
NTNANFY
K.D 794.8926 

Oxidation 
(M3) 55 21.44 61 

67-79 

R.SFMHV
NTNANFY
K.D 794.8926 Ox H (H4) 46 21.4 59 

67-79 

R.SFMHV
NTNANFY
K.D 530.3302 Ox(H) H4 19 27.88 to 28.58 68 

67-79 

R.SFMHV
NTNANFY
K.D 803.037 DiOx(M) M3 37 27.16 to 28.14 68 

67-79 

R.SFMHV
NTNANFY
K.D 811.0351 

DiOx(M) M3, 
Ox(H) H4 36 33.68 68 

67-89 

R.SFMHV
NTNANFY
KDSGItYL
GIK.A 879.6446 Ox(H) H4 79 33.39 68 

67-89 

R.SFMHV
NTNANFY
KDSGItYL
GIK.A 879.6446 Ox(M) M3 84 33.39 74 

90-104 

K.ANDTQ
EFNLSAY
FER.A 617.3846 Nitro(Y) Y12 37 43.27 74 

90-104 

K.ANDTQ
EFNLSAY
FER.A 925.63 Nitro(Y) Y12 70 42.39 to 44.03 74 

120-125 
R.VLVHCR
.E 379.732 DiOx (C) C5 22 19.88 to 21.53 74 

126-142 

R.EGYSR
SPTLVIAY
LMMR.Q 668.4649 Ox(M) M15 36 40.55 74 

131-142 
R.SPTLVIA
YLMMR.Q 470.9315 

Oxidation 
(M11) 50 35.95 61 
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131-142 
R.SPTLVIA
YLMMR.Q 470.9796 Ox (M) M10 72 42.22 74 

131-142 
R.SPTLVIA
YLMMR.Q 476.2651 

Oxidation 
(M10, M11) 55 32.28 61 

131-142 
R.SPTLVIA
YLMMR.Q 713.9027 

Oxidation 
(M10, M11) 68 32.19 61 

131-142 
R.SPTLVIA
YLMMR.Q 476.2651 

Dioxidation 
(M11) 47 32.41 61 

131-142 
R.SPTLVIA
YLMMR.Q 713.9027 

Dioxidation 
(M11) 43 32.19 59 

131-142 

R.SPTLVI
AYLMMR.
Q 476.3109 

2 Ox (M) M10, 
M11 34 38.44 to 39.11 74 

131-142 

R.SPTLVI
AYLMMR.
Q 476.3109 DiOx(M) M11 32 38.44 to 39.11 68 

131-142 

R.SPTLVI
AYLMMRQ
K.M 561.8775 DiOx(M) M11 21 51.05 to 51.76 68 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 679.1241 DiOx (C) C13 8 43.78 74 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 1018.2431 DiOx (C) C13 36 41.54 to 44.51 74 

10:1 Sin-1:VHR, 1hr at 370C treated VHR 
Peptide Peptide 

sequence 
 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.9217 OxY (Y2) 43 26.03 65 

37-50 

R.IYVGNA
SVAQDIP
K.L 497.8427 Nitro(Y) Y2 10 31.94 67 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.9217 Ox (P) P13 48 25.15 59 

54-66 

K.LGITHV
LNAAEGR.
S 683.8897 Ox(H) H5 89 29.71 59 

54-66 

K.LGITHV
LNAAEGR.
S 456.2868 Ox(H) H5 28 28.69 65 

67-79 

R.SFMHV
NTNANFY
K.D 530.289 Ox (M) M3 78 24.67 to 26.8 67 

67-79 

R.SFMHV
NTNANFY
K.D 794.9396 Ox (M) M3 88 25.09 to 26.13 67 

67-79 

R.SFMHV
NTNANFY
K.D 535.313 

Ox (M) M3, 
Ox(Y) Y12 10 23.84 67 

67-79 

R.SFMHV
NTNANFY
K.D 530.289 Ox(H) H4 71 24.67 to 26.80 65 

67-79 

R.SFMHV
NTNANFY
K.D 794.9396 Ox(H) H4 58 25.09 to 26.13 65 
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67-79 

R.SFMHV
NTNANFY
K.D 535.313 DiOx(M) M3 7 23.84 65 

67-79 

R.SFMHV
NTNANFY
K.D 802.938 DiOx(M) M3 57 33.34 65 

80-89 
K.DSGITY
LGIK.A 541.3064 Ox (Y) Y6 44 29.68 to 30.50 67 

90-104 

K.ANDTQ
EFNLSAY
FER.A 911.0036 Ox(Y) Y12 26 38.09 67 

105-116 

R.AADFID
QALAGK.
N 653.8918 OX(K) K12 39 29.72 65 

131-142 

R.SPTLVI
AYLMMR.
Q 470.9605 Ox (M) M11 55 

42.14 tto 
42.48 67 

131-142 

R.SPTLVI
AYLMMR.
Q 705.9457 Ox (M) M10 75 40.29 to 40.99 67 

131-142 

R.SPTLVI
AYLMMR.
Q 470.9664 Ox (M) M10 71 40.41 to 40.74 67 

131-142 

R.SPTLVI
AYLMMR.
Q 705.9479 Ox (M) M11 88 42.06 to 43.44 67 

131-142 

R.SPTLVI
AYLMMR.
Q 476.2901 

2 Ox (M) M10, 
M11 41 38.05 67 

131-142 

R.SPTLVI
AYLMMR.
Q 713.945 

2 Ox (M) M10, 
M11 63 38.43 to 38.72 67 

131-142 

R.SPTLVI
AYLMMR.
Q 476.2901 DiOx(M) M11 29 38.05 65 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 679.0529 DiOx (C) C13 24 42.64 to 43.44 67 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 1018.0963 DiOx (C) C13 50 42.68 to 43.69 67 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 1026.0189 

TriOx(C) 
(C13) 81 37.1 65 

75:1 Sin-1:VHR, 1hr at 370C treated VHR 
Peptide Peptide 

sequence 
 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGNA
SVAQDIP
K.L 746.0488 Ox(Y) Y2 58 28.52 to 31.38 75 

37-50 

R.IYVGNA
SVAQDIP
K.L 497.8705 Ox(Y) Y2 12 30.75 75 

37-50 

R.IYVGNA
SVAQDIP
K.L 754.0565 

Ox(P) P13, 
Ox(K) K14 55 30.87 68 

37-50 
R.IYVGNA
SVAQDIP 745.9633 Ox(P) P13 42 29.26 to 30.77 63 
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K.L 

51-66 

K.LQKLGI
THVLNAA
EGR.S 579.4155 Ox(K) K3 23 29.46 68 

54-66 

K.LGITHV
LNAAEGR.
S 456.2855 Ox(H) H5 23 29.3 63 

54-66 

K.LGITHV
LNAAEGR.
S 684.013 Ox(H) H5 34 27.68 to 29.38 68 

67-79 

R.SFMHV
NTNANFY
K.D 794.5534 Ox (M) M3 31 32.75 to 33.73 75 

67-79 

R.SFMHV
NTNANFY
K.D 530.328 Ox (M) M3 66 26.73 to 28.81 75 

67-79 

R.SFMHV
NTNANFY
K.D 794.5534 Ox(H) H4 40 32.75 to 33.73 68 

67-79 

R.SFMHV
NTNANFY
K.D 530.3284 Ox(H) H4 56 26.73 to 28.81 68 

67-79 

R.SFMHV
NTNANFY
K.D 795.038 DiOx(M) M3 46 27.55 68 

67-79 

R.SFMHV
NTNANFY
K.D 535.3365 DiOx(M) M3 53 27.59 to 29.46 68 

67-79 

R.SFMHV
NTNANFY
K.D 810.5724 

DiOx(M) M3, 
Ox(H) H4 31 29.38 68 

67-89 

R.SFMHV
NTNANFY
KDSGItYL
GIK.A 879.6483 Ox (M) M3 100 33.77 75 

67-89 

R.SFMHV
NTNANFY
KDSGItYL
GIK.A 889.3165 Nitro(Y) Y12 21 39.06 75 

67-89 

R.SFMHV
NTNANFY
KDSGItYL
GIK.A 879.6483 Ox(H) H4 93 33.77 68 

80-89 
K.DSGITY
LGIK.A 541.8832 Ox (Y) Y6 52 28.47 75 

80-89 
K.DSGITY
LGIK.A 541.8832 Ox (K) K10 24 28.47 68 

80-89 
K.DSGITY
LGIK.A 555.833 Nitro (Y) Y6 33 34.51 to 38 67 

105-116 

R.AADFID
QALAGK.
N 653.8914 Ox(K) K12 48 34.26 63 

90-104 

K.ANDTQ
EFNLSAY
FER.A 607.2947 Ox(Y) Y12 9 35.76 67 

90-104 

K.ANDTQ
EFNLSAY
FER.A 911.0033 Ox(Y) Y12 105 34.13 67 

90-104 K.ANDTQ 617.3297 Nitro(Y) Y12 59 42.14 to 42.27 67 
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EFNLSAY
FER.A 

90-104 

K.ANDTQ
EFNLSAY
FER.A 925.5024 Nitro(Y) Y12 114 42.1 67 

105-116 

R.AADFID
QALAQK.
N 653.8914 Ox(K) K12 48 34.26 63 

120-125 
R.VLVHCR
.E 379.7307 DiOx (C) C5 16 20.87 to 21.59 75 

126-142 

R.EGYSR
SPTLVIAY
LMMR.Q 673.8308 

2 Ox(M) M15, 
M16 9 41.75 75 

131-142 
R.SPTLVIA
YLMMR.Q 470.9797 Ox (M) M10 63 42.58 72 

131-142 
R.SPTLVIA
YLMMR.Q 470.9831 Ox (M) M11 75 44.41 to 45.17 72 

131-142 
R.SPTLVIA
YLMMR.Q 760.019 Ox (M) M11 56 43.45 to 48.88 72 

131-142 
R.SPTLVIA
YLMMR.Q 760.0218 Ox (M) M10 63 41.38 to 42.75 72 

131-142 
R.SPTLVIA
YLMMR.Q 476.3145 

2 Ox (M) M10, 
M11 57 40.2 72 

131-142 
R.SPTLVIA
YLMMR.Q 714.0106 

Ox (M) M10, 
Ox(Y) Y8 22 43.9 72 

131-142 
R.SPTLVIA
YLMMR.Q 714.0234 

2 Ox (M) M10, 
M11 63 40.45 to 41.8 72 

131-142 
R.SPTLVIA
YLMMR.Q 721.5072 

2 Ox (M) M10, 
M11, Ox(Y) 
Y8 19 35.43 72 

131-142 
R.SPTLVIA
YLMMR.Q 476.3145 DiOx(M) M11 39 40.2 72 

131-142 
R.SPTLVIA
YLMMR.Q 714.0106 DiOx(Y) Y8 9 43.9 72 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 1018.2469 DiOx (C) C13 39 42.34 to 44.39 75 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 1026.2541 TriOx (C) C13 52 41.84 to 42.72 75 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 783.2153 TriOx (C) C13 17 35.87 75 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 1038.7724 Ox(P) P4 47 38.97 68 

150:1 Sin-1:VHR, 1hr at 370C treated VHR 
Peptide Peptide 

sequence 
 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.9069 HydroxyY (Y2) 70 25.76 61 

37-50 

R.IYVGNA
SVAQDIP
K.L 497.8123 HydroxyY (Y2) 20 24.98 61 

37-50 

R.IYVGNA
SVAQDIP
K.L 507.2714 NitroY (Y2) 63 27.57 61 
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37-50 

R.IYVGNA
SVAQDIP
K.L 760.4047 NitroY (Y2) 20 27.53 61 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.966 Ox(P) P13 48 29.15 to 31.91 64 

37-50 

R.IYVGNA
SVAQDIP
K.L 502.7737 DiOx(Y) 10 30.07 to 30.74 64 

54-66 

K.LGITHV
LNAAEGR.
S 684.007 Ox(H) H5 74 36.22 to 37.02 67 

67-79 

R.SFMHV
NTNANFY
K.D 794.8835 

Oxidation 
(M3) 46 21.61 61 

67-79 

R.SFMHV
NTNANFY
K.D 794.8835 Ox (H) H4 40 21.57 57 

67-79 

R.SFMHV
NTNANFY
K.D 803.0463 

Ox (M) M3, 
Ox(Y) Y12 16 25.94 68 

67-79 

R.SFMHV
NTNANFY
K.D 817.5461 

Ox (M) M3, 
Nitro(Y) Y12 81 30.44 68 

67-79 

R.SFMHV
NTNANFY
K.D 802.5747 DiOx(M) M3 19 27.55 to 28.22 67 

67-79 

R.SFMHV
NTNANFY
K.D 535.6619 DiOx(M) M3 17 26.66 to 28.18 67 

80-89 
K.DSGITY
LGIK.A 541.7987 HydroxyY (Y6) 56 26.43 61 

80-89 
K.DSGITY
LGIK.A 556.295 NitroY (Y6) 69 31.77 61 

80-89 
K.DSGITY
LGIK.A 541.7987 Ox(K) K 10 27 26.43 57 

105-116 
R.AARIDQ
LAQK.N 653.4587 Ox(K) K12 13 34.58 to 36.68 67 

90-104 

K.ANDTQ
EFNLSAY
FER.A 911.0023 Ox(Y) Y12 86 33.77 64 

90-104 

K.ANDTQ
EFNLSAY
FER.A 608.0025 Ox(Y) Y12 46 39.05 64 

90-104 

K.ANDTQ
EFNLSAY
FER.A 617.3273 Nitro(Y) Y12 67 41.9 to 41.98 64 

90-104 

K.ANDTQ
EFNLSAY
FER.A 925.5 Nitro(Y) Y12 82 41.85 64 

105-116 
R.AADFID
QALAQK.k 653.8991 Ox (K) K12 28 29.65 64 

105-119 

R.AADFID
QALAQKN
GR.V 817.5784 Ox(K) K12 74 36.51 67 

131-142 
R.SPTLVIA
YLMMR.Q 470.9269 HydroxyY (Y8) 20 36.33 61 

131-142 
R.SPTLVIA
YLMMR.Q 705.8895 HydroxyY (Y8) 28 36.03 61 
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131-142 
R.SPTLVIA
YLMMR.Q 470.9269 

Oxidation 
(M11) 68 36.33 61 

131-142 
R.SPTLVIA
YLMMR.Q 705.8895 

Oxidation 
(M11) 70 36.03 61 

131-142 
R.SPTLVIA
YLMMR.Q 476.2597 

2 Oxidations 
(M10, M11) 39 32.23 61 

131-142 
R.SPTLVIA
YLMMR.Q 713.8904 

2 Oxidations 
(M10, M11) 59 32.44 61 

131-142 
R.SPTLVIA
YLMMR.Q 470.9281 

Oxidation 
(M10) 23 34.51 61 

131-142 
R.SPTLVIA
YLMMR.Q 705.8895 

Oxidation 
(M10) 38 34.42 61 

131-142 
R.SPTLVIA
YLMMR.Q 476.2597 DiOx(M) M11 36 32.23 57 

131-142 
R.SPTLVIA
YLMMR.Q 713.8893 DiOx(M) M11 44 32.44 57 

131-142 
R.SPTLVIA
YLMMR.Q 714.0191 

Ox (M) M10, 
Ox(Y) Y8 27 37.66 68 

131-142 
R.SPTLVIA
YLMMR.Q 714.0201 

Ox (M) M10, 
Ox(Y) Y8 30 40.21 to 41.57 68 

131-142 
R.SPTLVIA
YLMMR.Q 728.5211 

Ox (M) M11, 
Nitro(Y) Y8 20 45.23 to 45.90 68 

131-142 
R.SPTLVIA
YLMMR.Q 491.3152 

2 Ox (M) M10, 
M11, Nitro (Y) 
Y8 21 42.41 68 

131-142 
R.SPTLVIA
YLMMR.Q 722.4588 

Ox(Y), Y8, 2 
Ox (M) M10, 
M11 20 38.24 64 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 684.3761 TriOx (C) C13 13 42.68 64 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 1026.0884 TriOx (C) C13 71 41.73 64 

300:1 Sin-1:VHR, 1hr at 370C treated VHR 
Peptide Peptide 

sequence 
 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.9035 HydroxyY (Y2) 80 26.17 61 

497.3117 Ox(Y) Y2 18 30.34 68 497.3117 Ox(Y) Y2 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.9035 Ox(P) P13 20 26.17 57 

37-50 

R.IYVGNA
SVAQDIP
K.L 761.7457 

Ox(P) P13, 
DiOx (Y2) 17 31.6 57 

37-50 

R.IYVGNA
SVAQDIP
K.L 507.2703 NitroY (Y2) 71 27.7 61 

37-50 

R.IYVGNA
SVAQDIP
K.L 760.4011 NitroY (Y2) 100 27.58 61 

54-66 

K.LGITHV
LNAAEGR.
S 456.286 Ox(H) H5 28 25.54 67 

54-66 K.LGITHV 683.9368 Ox(H) H5 94 35.44 67 
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LNAAEGR.
S 

67-79 

R.SFMHV
NTNANFY
K.D 794.9394 Ox (M) M3 88 26.05 to 28.52 68 

67-79 

R.SFMHV
NTNANFY
K.D 530.6166 Ox (M) M3 64 25.75 to 30.96 68 

67-79 

R.SFMHV
NTNANFY
K.D 817.4315 

Nitro(Y), Y12, 
Ox (M) M3 61 29.23 68 

67-79 

R.SFMHV
NTNANFY
K.D 794.9394 Ox(H) H4 57 26.05 to 28.52 67 

67-79 

R.SFMHV
NTNANFY
K.D 535.6244 DiOx(M)M3 40 27.08 67 

67-79 

R.SFMHV
NTNANFY
K.D 802.9344 DiOx(M)M3 45 27.13 to 27.21 67 

67-89 

R.SFMHV
NTNANFY
KDSGItYL
GIK.A 879.5208 Ox (M) M3 80 33.41 68 

67-89 

R.SFMHV
NTNANFY
KDSGItYL
GIK.A 888.5208 Nitro(Y), Y12 36 37.01 68 

67-89 

R.SFMHV
NTNANFY
KDSGItYL
GIK.A 879.5208 Ox(H) H4 72 33.41 67 

80-89 
K.DSGITY
LGIK.A 541.7947 Ox(K) K10 21 26.38 57 

80-89 
K.DSGITY
LGIK.A 541.834 Ox (Y) Y6 45 32.03 68 

80-89 
K.DSGITY
LGIK.A 556.3305 Nitro (Y) Y6 41 35.65 to 38.52 68 

90-104 

K.ANDTQ
EFNLSAY
FER.A 911.0033 Ox(Y) Y12 88 35.56 68 

90-104 

K.ANDTQ
EFNLSAY
FER.A 617.3277 Nitro(Y) Y12 76 42.22 to 42.51 68 

90-104 

K.ANDTQ
EFNLSAY
FER.A 925.5013 Nitro(Y) Y12 91 42.18 to 43.13 68 

105-116 

R.AADFID
QALAQK.
N 653.8947 Ox(K) K12 6 35.1 to 35.77 67 

131-142 
R.SPTLVIA
YLMMR.Q 470.9577 Ox (M) M11 65 43.38 to 44.49 68 

131-142 
R.SPTLVIA
YLMMR.Q 470.9613 Ox (M) M10 72 40.98 to 44.06 68 

131-142 
R.SPTLVIA
YLMMR.Q 750.9458 Ox (M) M11 73 40.86 to 45.2 68 

131-142 
R.SPTLVIA
YLMMR.Q 476.2904 

2 Ox (M) M10, 
M11 56 38.43 to 39.48 68 

131-142 R.SPTLVIA 713.9408 2 Ox (M) M10, 56 42.39 68 
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YLMMR.Q M11 

131-142 
R.SPTLVIA
YLMMR.Q 721.9343 

Ox(Y), Y8, 2 
Ox (M) M10, 
M11 25 39.73 68 

131-142 
R.SPTLVIA
YLMMR.Q 728.4381 

Nitro(Y), Y8, 
Ox (M) M11 57 44.23 68 

131-142 
R.SPTLVIA
YLMMR.Q 491.2885 

Nitro(Y), Y8, 2 
Ox (M) M10, 
M11 40 41.35 to 41.43 68 

131-142 
R.SPTLVIA
YLMMR.Q 736.4376 

Nitro(Y), Y8, 2 
Ox (M) M10, 
M11 20 41.19 68 

131-142 
R.SPTLVIA
YLMMR.Q 476.2904 DiOx(M) M11 42 38.43 to 39.48 67 

131-142 
R.SPTLVIA
YLMMR.Q 713.94 DiOx(M) M11 57 42.39 67 

145-155 
K.MDVKS
ALSIVR.Q 618.3947 Ox(M) M1 29 33.94 68 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 679.0528 DiOx (C) C13 16 43.22 to 43.34 68 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 1026.0914 TriOx (C) C13 51 42.1 to 43.01 68 

Appendices 10. Oxidative modifications observed in tryptic peptides of VHR by 
MS/MS with collisionally-induced decomposition after validatory sequencing of b 
and y series ions from 10:1, 75:1, 150:1 and 300:1 molar ratio sin-1 oxidation and 
incubation at 370C for 1 hour 
Mascot search for Ox (Y), Ox (M), Ox (H) Ox (W), Nitro (Y), DiOx (C), TriOx (C), Ox (K), 
Ox (P). The letter designation followed by a number denotes the one letter amino acid 
code and the sequence of the predicted modified residue within the peptide fragment. 
Ox = oxidation, Nitro = nitration, Diox = Dioxidation, Triox = Trioxidation. 

 

30:1 HOCl:VHR, 1hr at RT treated VHR 
Peptide Peptide 

sequence 
 

Observed 
ion (m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 
 

R.IYVGN
ASVAQDI
PK.L 
 

503.5933 
 

ChloroY (Y2) 
 

47 27.26 
 

62 
 

37-50 

R.IYVGN
ASVAQDI
PK.L 745.4635 Ox(Y) Y2 82 30.1 to 31.48 70 

37-50 
 

R.IYVGN
ASVAQDI
PK.L 
 

755.3817 
 

ChloroY (Y2) 
 

59 
 

29.47 
 

62 
 

67-79 
 

R.SFMHV
NTNANF
YK.D 
 

794.8718 
 

Oxidation 
(M3) 
 

68 
 

21.69 
 

67 

67-79 
 

R.SFMHV
NTNANF
YK.D 

802.874 
 

Oxidation 
(M3) 
 

56 
 

22.04 
 

67 
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67-79 

R.SFMHV
NTNANF
YK.D 812.4242 

Ox (M) M3, 
Chloro(Y) 
Y12 21 29.06 70 

80-89 
K.DSGIT
YLGIK.A 541.8361 Ox (Y) Y6 16 33.73 70 

80-89 
K.DSGIT
YLGIK.A 550.8214 

Chloro (Y) 
Y6 12 36.39 70 

90-104 
 

K.ANDTQ
EFNLSAY
FER.A 
 

613.6055 
 

ChloroY 
(Y12) 
 

48 
 

35.52 
 

62 
 

90-104 

K.ANDTQ
EFNLSAY
FER.A 608.0064 Ox(Y) Y12 51 39.62 70 

90-104 

K.ANDTQ
EFNLSAY
FER.A 919.9903 

Chloro(Y) 
Y12 28 41.51 70 

120-130 

R.VLVHC
REGYSR.
S 467.5794 

TriOx (C) C5, 
Chloro(Y) Y9 14 22.48 120-130 

131-142 
 

R.SPTLVI
AYLMMR.
Q 
 

705.8883 
 

Oxidation 
(M11) 
 

70 
 

34.7 
 

67 
 

131-142 
 

R.SPTLVI
AYLMMR.
Q 
 

705.8883 
 

Oxidation 
(M10) 
 

75 
 

34.74 
 

67 
 

131-142 
 

R.SPTLVI
AYLMMR.
Q 
 

470.9262 
 

Oxidation 
(M11) 
 

70 
 

36.32 
 

67 
 

131-142 
 

R.SPTLVI
AYLMMR.
Q 
 

470.9252 
 

Oxidation 
(M10) 
 

23 
 

34.6 
 

67 
 

131-142 

R.SPTLVI
AYLMMR.
Q 3 

Oxidation 
(M10, M11) 

476.255
6 33.08 67 

131-142 

R.SPTLVI
AYLMMR.
Q 2 

Oxidation 
(M10 or M11) 713.883 32.1 67 

131-142 

R.SPTLVI
AYLMMR.
Q 3 

Oxidation 
(M10, M11) 

713.886
2 33.45 67 

131-142 

R.SPTLVI
AYLMMR.
Q 3 

Oxidation 
and 
Dioxidation 
(M10 
oxidation, 
M11 
Dioxidation) 

481.587
3 33.41 67 

131-142 

R.SPTLVI
AYLMMR.
Q 3 

Oxidation 
and 
Dioxidation 
(M10 or M11 
yet not 
identified 

721.882
9 33.16 67 
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which 
residue 
dioxidised) 

159-176 

R.EIGPN
DGFLAQ
LCQLND
R.L 679.0555 DiOx (C) C13 27 43.07 70 

159-176 
 

R.EIGPN
DGFLAQ
LCQLND
R.L 
 

1017.997 
 

DioxC (C13) 
 

26 
 

37.69 
 

62 
 

159-176 
 

R.EIGPN
DGFLAQ
LCQLND
R.L 
 

684.3314 
 

TriOxC (C13) 
 

69 
 

34.4 
 

62 
 

159-176 
 

R.EIGPN
DGFLAQ
LCQLND
R.L 
 

1025.996
9 
 

TriOxC (C13) 
 

95 
 

95 
 

62 
 
 

150:1 HOCl:VHR, 1hr at RT treated VHR 
Peptide Peptide 

sequence 
 

Observe
d ion 
(m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGN
ASVAQDI
PK.L 754.8874 ChloroY (Y2) 105 27.25 52 

67-79 

R.SFMHV
NTNANF
YK.D 794.8718 

Oxidation 
(M3) 59 21.28 59 

67-79 

R.SFMHV
NTNANF
YK.D 535.5827 

Dioxidation 
(M3) 48 21.96 59 

131-142 

R.SPTLVI
AYLMMR.
Q 470.9237 

Oxidation 
(M11) 56 35.96 59 

131-142 

R.SPTLVI
AYLMMR.
Q 705.885 

Oxidation 
(M10) 76 34.36 59 

131-142 

R.SPTLVI
AYLMMR.
Q 476.2517 

Oxidation 
(M10, M11) 49 32.55 59 

131-142 

R.SPTLVI
AYLMMR.
Q 713.884 

Oxidation 
(M10, M11) 57 32.03 59 

131-142 

R.SPTLVI
AYLMMR.
Q 476.2591 

Dioxidation 
(M11) 44 32.46 59 

159-176 

R.EIGPN
DGFLAQ
LCQLND
R.L 684.3306 TriOxC (C13) 66 36.66 52 

300:1 HOCl:VHR, 1hr at RT treated VHR 
Peptide Peptide 

sequence 
 

Observe
d ion 
(m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

67-79 R.SFMHV 530.2463 Oxidation 62 21.14 57 
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NTNANF
YK.D 

(M3) 

67-79 

R.SFMHV
NTNANF
YK.D 795.4354 Ox (M) M3 31 

27.33 to 
27.49 63 

131-142 

R.SPTLVI
AYLMMR.
Q 470.9563 Ox (M) M10 75 

41.27 to 
41.57 63 

131-142 

R.SPTLVI
AYLMMR.
Q 705.9454 Ox (M) M11 78 41.23 63 

131-142 

R.SPTLVI
AYLMMR.
Q 476.2535 

2 Oxidation 
(M10, M11) 46 32.31 57 

131-142 

R.SPTLVI
AYLMMR.
Q 713.8787 

2 Oxidation 
(M10, M11) 53 32.46 57 

Appendices 11. Oxidative modifications observed in tryptic peptides of VHR by 
MS/MS with collisionally-induced decomposition after validatory sequencing of b 
and y series ions from 30:1, 150:1 and 300:1 molar ratio HOCl oxidation and 
incubation at room temperature for 1 hour  
Mascot search for Chloro (Y), Ox (Y), Ox (M), DiOx (M) Ox (H) Ox (W). The letter 
designation followed by a number denotes the one letter amino acid code and the 
sequence of the predicted modified residue within the peptide fragment. Ox = oxidation, 
Chloro = chlorination, Diox = Dioxidation, Triox = Trioxidation. 
 

10:1 Tetronitromethane:VHR, 1hr at 370C treated VHR 
Peptide Peptide 

sequence 
 

Observe
d ion 
(m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGNA
SVAQDIP
K.L 497.3394 Ox(Y) Y2 35 

31.32 to 
32.74 76 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.5139 Ox(Y) Y2 36 

34.05 to 
34.78 76 

37-50 

R.IYVGNA
SVAQDIP
K.L 497.3394 Ox (K) K14 15 

31.32 to 
32.74 71 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 944.7171 Nitro(Y) Y2 14 

34.65 to 
38.43 76 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 930.1933 Ox (K) K14 26 36.6 71 

54-66 

K.LGITHV
LNAAEGR.
S 683.487 Ox (H) H5 22 30.59 71 

54-66 

K.LGITHV
LNAAEGR.
S 456.3033 Ox (H) H5 32 28.69 71 

67-79 

R.SFMHV
NTNANFY
K.D 795.0195 Ox(M) M3 82 

27.25 to 
29.42 76 

67-79 R.SFMHV 795.0195 Ox (H) H4 52 27.25 to 71 
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NTNANFY
K.D 

29.42 

67-79 

R.SFMHV
NTNANFY
K.D 535.3181 DiOx (M) M3 54 28.53 71 

67-79 

R.SFMHV
NTNANFY
K.D 803.0222 DiOx (M) M3 61 28.57 71 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 879.6212 Ox(M) M3 101 34.9 to 36.97 76 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 879.6212 Ox (H) H4 81 34.9 to 36.97 71 

80-89 
K.DSGITY
LGIK.A 542.1587 Nitro(Y) Y6 19 34.57 76 

90-104 

K.ANDTQ
EFNLSAY
FER.A 617.3711 Nitro(Y) Y12 44 43.81 76 

90-104 

K.ANDTQ
EFNLSAY
FER.A 925.6143 Nitro(Y) Y12 78 43.6 76 

105-119 

R.AADFID
QALAQKN
GR.V 545.2466 Ox (K) K12 5 32.91 71 

120-125 
R.VLVHCR
.E 379.7315 DiOx© C5 20 17.81 76 

120-125 

R.VLVHCR
EGGYSR.
SE 

699 (mod 
+ 
70.9663) 

Phospho (C) 
C5 48 24.31 76 

126-142 

R.EGYSR
SPTLVIAY
LMMR.Q 668.466 Ox(M) M16 11 40.56 76 

131-142 
R.SPTLVIA
YLMMR.Q 705.5268 Ox (M) M10 53 

45.92 to 
49.99 76 

131-142 
R.SPTLVIA
YLMMR.Q 470.9776 Ox (M) M10 68 43.14 76 

131-142 
R.SPTLVIA
YLMMR.Q 470.9803 Ox (M) M11 66 

44.44 to 
46.46 76 

131-142 
R.SPTLVIA
YLMMR.Q 706.0075 Ox (M) M11 80 41.1 to 45.24 76 

131-142 
R.SPTLVIA
YLMMR.Q 714.0071 

2 Ox (M) 
M10, M11 45 

40.75 to 
41.43 76 

131-142 
R.SPTLVIA
YLMMR.Q 721.5211 

2 Ox (M) 
M10, M11, 
Ox(Y) Y8 8 

41.35 to 
42.02 76 

131-142 
R.SPTLVIA
YLMMR.Q 705.5268 Ox (P) P2 6 

45.92 to 
49.99 71 

131-142 
R.SPTLVIA
YLMMR.Q 470.9802 Ox (P) P2 36 47.86 71 

131-142 
R.SPTLVIA
YLMMR.Q 714.0071 

DiOx (M) 
M11 34 

40.75 to 
41.43 71 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 

1216.866
5 DiOx (C)C16 11 41.8 76 
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156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 811.8874 DiOx (C) C16 29 

40.22 to 
42.47 76 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 

1224.855
3 

TriOx (C) 
C16 48 

39.30 to 
40.01 76 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 817.2292 

TriOx (C) 
C16 76 

38.97 to 
39.67 76 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 679.1109 DiOx (C) C13 16 

44.19 to 
45.54 76 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 

1018.214
9 DiOx (C) C13 35 

43.77 to 
45.79 76 

159-179 

R.EIGPND
GFLAQLC
QLNDRLA
K.E 

1174.363
4 DiOx (C) C13 9 43.81 76 

159-179 

R.EIGPND
GFLAQLC
QLNDRLA
K.E 788.5582 

TriOx (C) 
C13 12 42.85 76 

75:1 Tetronitromethane:VHR, 1hr at 370C treated VHR 
Peptide Peptide 

sequence 
 

Observe
d ion 
(m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.503 Ox(Y) Y2 22 29.34 37-50 

37-50 

R.IYVGNA
SVAQDIP
K.L 497.6695 Ox(Y) Y2 33 

30.79 to 
32.13 37-50 

37-50 

R.IYVGNA
SVAQDIP
K.L 760.5409 Nitro(Y) Y2 66 31.5 37-50 

37-50 

R.IYVGNA
SVAQDIP
K.L 507.661 Nitro(Y) Y2 39 

33.65 to 
34.52 37-50 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 630.4659 Nitro(Y) Y2 15 34.15 37-53 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 930.2122 Ox (K) K14 16 

35.62 to 
36.33 37-53 

54-66 

K.LGITHV
LNAAEGR.
S 456.3028 Ox (H) H5 38 

27.95 to 
28.67 54-66 

54-66 

K.LGITHV
LNAAEGR.
S 684.0011 Ox (H) H5 19 28.71 54-66 

67-79 

R.SFMHV
NTNANFY
K.D 530.3206 Ox(M) M3 24 30.22 67-79 

67-79 
R.SFMHV
NTNANFY 795.0254 Ox(M) M3 75 26.5 o 28.63 67-79 
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K.D 

67-79 

R.SFMHV
NTNANFY
K.D 535.3966 

Ox(M) M3 
Ox(Y) Y12 14 26.46 67-79 

67-79 

R.SFMHV
NTNANFY
K.D 530.3206 Ox (H) H4 22 26.5 to 28.63 67-79 

67-79 

R.SFMHV
NTNANFY
K.D 795.0254 Ox (H) H4 49 

26.50 to 
28.63 67-79 

67-79 

R.SFMHV
NTNANFY
K.D 535.3418 DiOx (M) M3 28 27.62 67-79 

67-79 

R.SFMHV
NTNANFY
K.D 803.0302 DiOx (M) M3 47 31.5 67-79 

67-79 

R.SFMHV
NTNANFY
K.D 811.0243 

DiOx (M) M3, 
Ox (H) H4 39 28.75 67-79 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 879.6251 Ox(M) M3 83 33.98 to 36.2 67-89 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 879.6251 Ox (H) H4 65 28.75 67-89 

80-89 
K.DSGITY
LGIK.A 541.867 Ox(Y) Y6 22 31.87 80-89 

80-89 
K.DSGITY
LGIK.A 556.3704 Nitro(Y) Y6 53 

36.41 to 
38.43 80-89 

90-104 

K.ANDTQ
EFNLSAY
FER.A 617.3766 Nitro(Y) Y12 59 

42.89 to 
44.31 90-104 

90-104 

K.ANDTQ
EFNLSAY
FER.A 925.6042 Nitro(Y) Y12 74 47.02 90-104 

120-130 
R.VLVHCR
EGYSR.S 706.4477 

TriOx© C5, 
Nitro(Y) Y5 57 23.37 120-130 

131-142 
R.SPTLVIA
YLMMR.Q 470.9802 Ox (M) M11 31 

46.64 to 
47.48 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 470.9802 Ox (M) M10 72 

41.71 to 
42.39 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 706.0089 Ox (M) M11 64 41.79 to 50.6 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 706.0089 Ox (M) M10 61 59.59 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 476.3124 

2 Ox (M) 
M10, M11 35 

39.31 to 
39.48 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 714.0082 

Ox(Y) Y8, 
Ox(M) M11 22 44.02 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 714.0104 

2 Ox (M) 
M10, M11 62 

39.81 to 
41.16 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 720.5111 Nitro(Y) Y8 58 

48.83 to 
49.52 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 728.5089 

Nitro(Y) Y8, 
Ox(M) M11 40 45.5 to 46.19 131-142 

131-142 R.SPTLVIA 470.9802 Ox (P) P2 56 46.64 to 131-142 
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YLMMR.Q 47.48 

131-142 
R.SPTLVIA
YLMMR.Q 476.3124 Di(Ox) M11 23 

39.31 to 
39.48 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 714.0082 Di(Ox) M10 54 45.5 131-142 

131-142 
R.SPTLVIA
YLMMR.Q 714.0104 Di(Ox) M11 46 

39.81 to 
41.16 131-142 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 1225.391 

TriOx (C) 
C16 57 37.72 156-176 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 678.782 DiOx (C) C13 30 44.07 159-176 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 

1018.223
8 DiOx (C) C13 40 

42.85 to 
44.19 159-176 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 

1026.227
4 

TriOx (C) 
C13 56 49.13 to 49.8 159-176 

159-179 

R.EIGPND
GFLAQLC
QLNDRLA
K.E 788.2349 

TriOx (C) 
C13 78 

42.31 to 
43.01 159-179 

150:1 Tetronitromethane:VHR, 1hr at 370C treated VHR 
Peptide Peptide 

sequence 
 

Observe
d ion 
(m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.5458 Ox(Y) Y2 66 30.33 76 

37-50 

R.IYVGNA
SVAQDIP
K.L 760.5461 Nitro(Y) Y2 100 

34.17 to 
34.87 76 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 620.4367 Ox(Y) Y2 8 33.47 76 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 620.4367 Ox (P) P13 41 33.47 68 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 620.447 Ox (K) K14 23 

36.37 to 
37.07 68 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 930.7104 Ox (P) P13 23 36.2 to 37.03 68 

54-66 

K.LGITHV
LNAAEGR.
S 456.3046 Ox (H) H5 43 29.71 68 

54-66 

K.LGITHV
LNAAEGR.
S 684.0027 Ox (H) H5 27 29.75 68 

67-79 

R.SFMHV
NTNANFY
K.D 530.3252 Ox(M) M3 36 29.22 76 

67-79 

R.SFMHV
NTNANFY
K.D 795.0267 Ox(M) M3 55 27.25 to 28.6 76 
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67-79 

R.SFMHV
NTNANFY
K.D 530.3252 Ox (H) H4 35 29.22 68 

67-79 

R.SFMHV
NTNANFY
K.D 795.0267 Ox (H) H4 38 27.25 to 28.6 68 

67-79 

R.SFMHV
NTNANFY
K.D 535.6535 DiOx (M) M3 53 28.64 68 

67-79 

R.SFMHV
NTNANFY
K.D 803.0278 DiOx (M) M3 65 

34.42 to 
35.26 68 

67-79 

R.SFMHV
NTNANFY
K.D 811.0261 

DiOx (M) M3, 
Ox (H) H4 48 35.13 68 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 884.9601 

Ox(M) M3 
Ox(Y) Y12 8 

39.45 to 
40.13 76 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 889.2998 Nitro(Y) Y12 105 38.91 76 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 884.9601 DiOx (M) M3 31 

39.45 to 
40.13 68 

67-79 

R.SFMHV
NTNANFY
K.D 811.0328 

Diox(M) M3 
+ Ox(F) F2  60 35.13 76 

80-89 
K.DSGITY
LGIK.A 541.8686 Ox(Y) Y6 46 35.08 76 

80-89 
K.DSGITY
LGIK.A 541.8686 Ox (K) K10 25 35.08 68 

90-104 

K.ANDTQ
EFNLSAY
FER.A 911.1135 Ox(Y) Y12 53 37.97 76 

90-104 

K.ANDTQ
EFNLSAY
FER.A 617.3798 Nitro(Y) Y12 68 43.34 76 

90-104 

K.ANDTQ
EFNLSAY
FER.A 925.6198 Nitro(Y) Y12 86 47.45 76 

120-125 
R.VLVHCR
.E 387.7313 TriOx (C) C5 43 18.36 76 

120-130 
R.VLVHCR
EGYSR.S 461.6081 

TriOx (C) C5, 
Ox(Y) Y5 25 

18.74 to 
20.89 76 

120-130 
R.VLVHCR
EGYSR.S 691.9548 

TriOx (C) C5, 
Ox(Y) Y5 72 20.63 76 

120-130 
R.VLVHCR
EGYSR.S 698.4565 

DiOx(C) C5, 
Nitro(Y) Y5 21 23.82 76 

120-130 
R.VLVHCR
EGYSR.S 471.2775 

TriOx(C) 
C5,Nitro(Y) 
Y5 41 

23.39 to 
24.07 76 

126-142 

R.EGYSR
SPtLVIAYL
MMR.Q 

1002.259
5 Ox(M) M16 8 41.95 76 

131-142 
R.SPTLVIA
YLMMR.Q 470.9821 Ox (M) M10 75 

42.17 to 
42.84 76 
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131-142 
R.SPTLVIA
YLMMR.Q 470.9839 Ox (M) M11 49 

44.26 to 
46.31 76 

131-142 
R.SPTLVIA
YLMMR.Q 706.0135 Ox (M) M10 78 

41.61 to 
48.49 76 

131-142 
R.SPTLVIA
YLMMR.Q 706.0158 Ox (M) M11 58 40.3 76 

131-142 
R.SPTLVIA
YLMMR.Q 476.3182 

2 Ox (M) 
M10, M11 46 40.04 76 

131-142 
R.SPTLVIA
YLMMR.Q 714.0152 

2 Ox (M) 
M10, M11 58 40.3 76 

131-142 
R.SPTLVIA
YLMMR.Q 720.5154 Nitro(Y) Y8 43 49 to 49.84 76 

131-142 
R.SPTLVIA
YLMMR.Q 728.5173 

Nitro(Y) Y8, 
Ox(M) M11 29 

45.92 to 
46.61 76 

131-142 
R.SPTLVIA
YLMMR.Q 476.3182 DiOx(M) M11 33 40.04 68 

131-142 
R.SPTLVIA
YLMMR.Q 714.0152 DiOx(M) M11 46 40.3 68 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 

1216.888
6 DiOx (C) C16 20 41.44 76 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 811.8887 DiOx (C) C16 61 39.92 76 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 816.9085 

TriOx (C) 
C16 35 41.44 76 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 

1225.404
7 

TriOx (C) 
C16 96 

39.35 to 
39.04 76 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 679.1176 DiOx (C) C13 23 49.21 76 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 1018.224 DiOx (C) C13 30 43.8 to 45.28 76 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 684.4545 

TriOx (C) 
C13 71 47.28 76 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 

1025.228
5 

TriOx (C) 
C13 64 

42.88 to 
50.72 76 

159-179 

R.EIGPND
GFLAQLC
QLNDRLA
K.E 

1182.396
1 

TriOx (C) 
C13 96 

41.87 to 
42.59 76 

159-179 

R.EIGPND
GFLAQLC
QLNDRLA
K.E 788.7406 

TriOx (C) 
C13 8 

43.09 to 
43.76 76 

300:1 Tetronitromethane:VHR, 1hr at 370C treated VHR 
Peptide Peptide 

sequence 
 

Observe
d ion 
(m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 
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37-50 

R.IYVGNA
SVAQDIP
K.L 745.4805 Ox(Y) Y2 107 

31.93 to 
33.31 74 

37-50 

R.IYVGNA
SVAQDIP
K.L 497.339 Ox(Y) Y2 70 

30.46 to 
33.22 74 

37-50 

R.IYVGNA
SVAQDIP
K.L 507.3298 Nitro (Y) Y2 48 35.52 74 

37-50 

R.IYVGNA
SVAQDIP
K.L 760.549 Nitro (Y) Y2 24 38.75 74 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 930.7202 Ox (K) K14 9 37.31 67 

54-66 

K.LGITHV
LNAAEGR.
S 456.3141 Ox (H) H5 39 29.69 67 

54-66 

K.LGITHV
LNAAEGR.
S 684.005 Ox (H) H5 40 31.32 67 

67-79 

R.SFMHV
NTNANFY
K.D 794.5256 Ox(Y)12 50 30.63 74 

67-79 

R.SFMHV
NTNANFY
K.D 539.9919 Nitro (Y)12 13 35.81 74 

67-79 

R.SFMHV
NTNANFY
K.D 809.5334 Nitro (Y)12 64 33.35 to 35.4 74 

67-79 

R.SFMHV
NTNANFY
K.D 545.3334 

Nitro (Y)12, 
Ox(M) M3 39 31.79 74 

67-79 

R.SFMHV
NTNANFY
K.D 817.5354 

Nitro (Y)12, 
Ox(M) M3 80 31.24 74 

67-79 

R.SFMHV
NTNANFY
K.D 794.5256 Ox (K) K13 38 30.63 67 

67-79 

R.SFMHV
NTNANFY
K.D 803.0336 DiOx(M) M3 64 28.99 67 

67-79 

R.SFMHV
NTNANFY
K.D 811.0369 

DiOx(M) M3 
+ Ox (H) H4 36 

29.61 to 
31.16 67 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 879.6364 Nitro (Y)12 58 

35.07 to 
35.77 74 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 889.1187 Nitro (Y)12 47 

37.98 to 
40.07 74 

80-89 
K.DSGITY
LGIK.A 555.873 Nitro(Y) Y6 8 

35.15 to 
42.99 74 

90-104 

K.ANDTQ
EFNLSAY
FER.A 911.1316 Ox(Y) Y12 104 35.85 74 

90-104 K.ANDTQ 617.3768 Nitro(Y) Y12 73 43.48 74 
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EFNLSAY
FER.A 

90-104 

K.ANDTQ
EFNLSAY
FER.A 925.6223 Nitro(Y) Y12 49 

45.52 to 
47.59 74 

120-125 
R.VLVHCR
.E 387.7308 TriOx(C) C5 33 18.67 74 

120-130 
R.VLVHCR
EGYSR.S 461.6106 

TriOx(C) C5, 
Ox(Y) Y5 32 

19.76 to 
21.79 74 

120-130 
R.VLVHCR
EGYSR.S 691.9613 

TriOx(C) C5, 
Ox(Y) Y5 50 21.75 74 

120-130 
R.VLVHCR
EGYSR.S 706.4587 

TriOx(C) C5, 
Nitro(Y) Y5 65 

24.38 to 
25.09 74 

131-142 
R.SPTLVIA
YLMMR.Q 470.9812 Ox (M) M10 68 42.7 74 

131-142 
R.SPTLVIA
YLMMR.Q 470.9823 Ox (M) M11 30 45.82 74 

131-142 
R.SPTLVIA
YLMMR.Q 706.0144 Ox (M) M11 60 

41.45 to 
47.63 74 

131-142 
R.SPTLVIA
YLMMR.Q 476.3144 

2 Ox (M) 
M10, M11 58 40.75 74 

131-142 
R.SPTLVIA
YLMMR.Q 714.0161 

2 Ox (M) 
M10, M11 52 40.58 74 

131-142 
R.SPTLVIA
YLMMR.Q 480.6482 Nitro (Y) Y8 52 49.02 74 

131-142 
R.SPTLVIA
YLMMR.Q 720.5199 Nitro (Y) Y8 47 49.2 to 49.91 74 

131-142 
R.SPTLVIA
YLMMR.Q 728.5207 

Nitro (Y) Y8, 
Ox(M) M11 53 46.2 to 46.87 74 

131-142 
R.SPTLVIA
YLMMR.Q 491.3153 

Nitro (Y) Y8, 
Ox (M) M11, 
Ox(M) M10 38 42.99 74 

131-142 
R.SPTLVIA
YLMMR.Q 736.5229 

Nitro (Y) Y8, 
Ox (M) M11, 
Ox(M) M10 20 42.9 74 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 

1216.893
4 DiOx (C) C16 15 42.04 74 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 817.2357 

TriOx (C) 
C16 11 

41.79 to 
42.46 74 

156-176 

R.QNREIG
PNDGFLA
WLCQLND
R.L 

1225.454
7 

TriOx (C) 
C16 68 

39.04 to 
39.74 74 

1000:1 Tetronitromethane:VHR, 1hr at 370C treated VHR 
Peptide Peptide 

sequence 
 

Observe
d ion 
(m/z) 

Modification Ion 
score 

Retention 
Time (mins) 

Sequence 
coverage (%) 

37-50 

R.IYVGNA
SVAQDIP
K.L 497.3403 Ox(Y) Y2 56 30.67 to 32.8 75 

37-50 

R.IYVGNA
SVAQDIP
K.L 745.5213 Ox(Y) Y2 73 45.1 to 45.99 75 

37-50 R.IYVGNA 507.3396 Nitro (Y) Y2 70 34.16 to 75 
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SVAQDIP
K.L 

35.57 

37-50 

R.IYVGNA
SVAQDIP
K.L 760.5537 Nitro (Y) Y2 53 42.1 75 

37-53 

R.IYVGNA
SVAQDIP
KLQK.L 944.7182 Nitro (Y) Y2 26 

36.07 to 
38.26 75 

54-66 

K.LGITHV
LNAAEGR.
S 683.4822 Ox (H) H5 52 37.29 68 

54-66 

K.LGITHV
LNAAEGR.
S 456.3094 Ox (H) H5 28 29.88 68 

67-79 

R.SFMHV
NTNANFY
K.D 530.3266 Ox(M) M3 55 27.65 75 

67-79 

R.SFMHV
NTNANFY
K.D 795.0319 Ox(Y)Y12 21 30.71 to 32.3 75 

67-79 

R.SFMHV
NTNANFY
K.D 539.9928 Nitro (Y) Y12 50 35.3 to 35.9 75 

67-79 

R.SFMHV
NTNANFY
K.D 545.3298 

Nitro (Y) 
Y12, Ox(M) 
M3 70 31.38 to 33.7 75 

67-79 

R.SFMHV
NTNANFY
K.D 817.5486 

Nitro (Y) 
Y12, Ox(M) 
M3 61 31.34 75 

67-79 

R.SFMHV
NTNANFY
K.D 530.3266 Ox (H) H4 58 

27.65 to 
29.68 68 

67-79 

R.SFMHV
NTNANFY
K.D 795.0319 Ox (K) K13 5 

30.71 to 
32.30 68 

67-79 

R.SFMHV
NTNANFY
K.D 803.0388 DiOx (M) M3 67 35.62 68 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 879.6492 Ox(M) M3 62 

35.15 to 
35.82 75 

67-89 

R.SFMHV
NTNANFY
KDSGiTYL
GIK.A 889.3151 Nitro (Y)12 56 38.9 to 40.25 75 

80-89 
K.DSGITY
LGIK.A 361.2293 Ox(Y) Y6 22 33.83 75 

80-89 
K.DSGITY
LGIK.A 541.8816 Ox(Y) Y6 20 

30.71 to 
31.38 75 

80-89 
K.DSGITY
LGIK.A 556.3677 Nitro (Y) Y6 65 39.07 75 

 

R.AADFID
QALAQKN
GR.V 

825.5633 
(mod + 
31.9357) DiOx(K) K12 61 36.11 75 

90-104 

K.ANDTQ
EFNLSAY
FER.A 911.1196 Ox(Y) Y12 64 

41.22 to 
41.93 75 

90-104 K.ANDTQ 617.3918 Nitro(Y) Y12 77 43.96 to 75 
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EFNLSAY
FER.A 

47.61 

90-104 

K.ANDTQ
EFNLSAY
FER.A 925.6301 Nitro(Y) Y12 72 41.76 75 

120-125 
R.VLVHCR
.E 387.7319 TriOx(C) C5 43 18.97 75 

120-130 
R.VLVHCR
EGYSR.S 461.6114 

TriOx(C) C5, 
Ox(Y) Y5 24 

20.79 to 
21.64 75 

120-130 
R.VLVHCR
EGYSR.S 691.9611 

TriOx(C) C5, 
Ox(Y) Y5 62 21.9 75 

120-130 
R.VLVHCR
EGYSR.S 706.506 

TriOx(C) C5, 
Nitro(Y) Y5 39 

24.49 to 
25.88 75 

120-130 
R.VLVHCR
EGYSR.S 

722.4612 
(mod 
+31.9898) 

DiOx (R) R6 
TriOx(C) C5, 
Nitro(Y) Y5 52 29.88 75 

131-142 
R.SPTLVIA
YLMMR.Q 470.6315 Ox (M) M10 37 43.63 75 

131-142 
R.SPTLVIA
YLMMR.Q 470.9828 Ox (M) M11 47 

45.27 to 
45.95 75 

131-142 
R.SPTLVIA
YLMMR.Q 706.0182 Ox (M) M11 56 

46.52 to 
47.22 75 

131-142 
R.SPTLVIA
YLMMR.Q 706.0237 Ox (M) M10 65 

41.63 to 
43.03 75 

131-142 
R.SPTLVIA
YLMMR.Q 476.3161 

2 Ox (M) 
M10, M11 52 40.76 75 

131-142 
R.SPTLVIA
YLMMR.Q 714.0056 

Ox(Y) Y8, Ox 
(M) M11 23 37.62 75 

131-142 
R.SPTLVIA
YLMMR.Q 714.0247 

2 Ox (M) 
M10, M11 53 40.68 75 

131-142 
R.SPTLVIA
YLMMR.Q 480.6517 Nitro(Y) Y8 62 

49.01 to 
49.86 75 

131-142 
R.SPTLVIA
YLMMR.Q 720.5133 Nitro(Y) Y8 48 

49.27 to 
50.63 75 

131-142 
R.SPTLVIA
YLMMR.Q 485.9838 

Nitro(Y) Y8, 
Ox(M) M11 60 

46.03 to 
46.73 75 

131-142 
R.SPTLVIA
YLMMR.Q 728.5238 

Nitro(Y) Y8, 
Ox(M) M11 56 

45.99 to 
47.47 75 

131-142 
R.SPTLVIA
YLMMR.Q 491.3158 

Ox(Y) Y8, 2 
Ox (M) M10, 
M11 63 43.12 75 

131-142 
R.SPTLVIA
YLMMR.Q 736.5164 

Ox(Y) Y8, 2 
Ox (M) M10, 
M11 19 44.05 75 

131-144 

R.SPTLVIA
YLMMRQK
.M 576.9005 

Ox(Y) Y8, 2 
Ox (M) M10, 
M11 29 52.55 75 

131-142 
R.SPTLVIA
YLMMR.Q 706.0182 Ox (P) P2 18 

46.52 to 
47.22 68 

131-142 
R.SPTLVIA
YLMMR.Q 476.3161 DiOx(M) M11 31 45.9 68 

131-142 
R.SPTLVIA
YLMMR.Q 714.0056 DiOx(M) M11 20 37.62 68 

131-144 

R.SPTLVIA
YLMMRQK
.M 745.5213 

DiOx (M) 
M11, DiOx 
(M) M10, 
DiOx (Y) Y8 10 

45.10 to 
45.99 68 

159-176 R.EIGPND 1017.732 DiOx (C) C13 10 41.43 to 75 
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GFLAQLC
QLNDR.L 

5 44.43 

159-176 

R.EIGPND
GFLAQLC
QLNDR.L 

1025.755
3 

TriOx (C) 
C13 79 47.65 75 

Appendices 12. Oxidative modifications observed in tryptic peptides of VHR by 
MS/MS with collisionally-induced decomposition after validatory sequencing of b 
and y series ions from 10:1, 75:1, 150:1, 300:1 and 1000:1 molar ratio 
tetranitromethane oxidation and incubation at 370C temperature for 1 hour 
Mascot search for TriOx(C), DiOx(C), Ox(Y), DiOx(Y), Ox (M), DiOx(M), Nitro(W), 
Nitro(Y), Ox(K), Ox(P),  Ox (H), Ox (W), DiOx (W) and Error Tolerant Search. The letter 
designation followed by a number denotes the one letter amino acid code and the 
sequence of the predicted modified residue within the peptide fragment. Ox = oxidation, 
Nitro = nitration, Diox = Dioxidation, Triox = Trioxidation. 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendices 13. Excision of protein from SDS PAGE post Coomassie staining from 
HOCl treated VHR  
White boxes denote method for excision parameters for scalpel excision and boxes for 
calculating densitometry. Exemplar shown. 
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Appendices 14. Western blot tests of anti-GST, anti-PTPMT1 and anti-VHR primary 
and secondary antibodies conjugated to horseradish peroxidase  vs. PTPMT1-
GST and VHR-GST purified samples. 2ug of sample PTPMT1-GST and VHR-GST 
purified with glutathione column. Samples in A, B and C are from same purification and 
from same sample preparation a) PTPMT1-GST and VHR-GST probed with anti-GST 
primary antibody and anti-rabbit horseradish peroxidase conjugated secondary b) 
PTPMT1-GST and VHR-GST probed with anti-PTPMT1 primary antibody and anti-
mouse horseradish peroxidase conjugated secondary c) PTPMT1-GST and VHR-GST 
probed with anti-VHR primary antibody and anti-mouse horseradish peroxidase 
conjugated secondary. 

 

 

 

 

 

 

 

 
 

Appendices 15. Excision of protein from SDS PAGE post Coomassie  
staining from HCT116 cells transfected with pcDNA3.1-VHR-Flag for LC-MS, 
Mascot and Progenesis analysis  
White boxes denote method for excision parameters for scalpel excision. R1-3 = 
Transfection replicates of pcDNA3.1-VHR-Flag. Cntrl = pcDNA3.1 empty vector control. 
n = 6 

Cntrl R1 R2 R3 




