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Abstract

Effective sparse representation of X-Ray medical images within the context of data
reduction is considered. The proposed framework is shown to render an enormous reduc-
tion in the cardinality of the data set required to represent this class of images at very
good quality. The goal is achieved by a) creating a dictionary of suitable elements for the
image decomposition in the wavelet domain and b) applying effective greedy strategies
for selecting the particular elements which enable the sparse decomposition of the wavelet
coefficients. The particularity of the approach is that it can be implemented at very com-
petitive processing time and low memory requirements.

1 Introduction

Within the field of medical imaging for diagnosis, radiology generates huge volumes of data in
the form of X-Ray images. Complying with archive provisions legislation, which may require
to store the patient’s data for up to ten years, represents a demanding burden for hospitals
and individual radiology practices. Additionally, the prompt distribution of remote radiology
reporting is one of the challenges in teleradiology. As stated in [1], these matters have led
several radiological societies to recommend to use irreversible (or ‘lossy’) compression “in a
manner that is visually imperceptible and/or without loss of diagnostic performance”.

At least for extensive use, the state of the art for lossy image compression are the JPEG
and JPEG2000 standards. Both techniques belong to the category of transformation coding,
because are based on a compression scheme that applies an invertible transformation as the
first step in the process. JPEG uses the Discrete Cosine Transform (DCT) for that purpose
and JPEG2000 the Discrete Wavelet Transform (DWT). Both transformations play the role of
reducing the non-negligible points in the transformed domain. The transformation we adopt
here for the same purpose is different in essence. Rather than transforming the data into an
array of the same dimensionality to disregard some points there, we expand the representation
domain and strive to achieve a sparse representation in the extended domain.

Apart from the perceived advantage of sparse representation for image processing applica-
tions, such as transformation coding, the emerging theory of compressive sensing has introduced
a strong reason to achieve sparsity. Within the compressive sensing structure the number of
measurements needed for accurate representation of a signal informational content decreases if
the sparsity of the representation improves [2–5].

1



This Communication presents a framework rendering high sparsity in the representation of
X-Ray medical images. This is achieved by:

(a) Creating a large redundant ‘dictionary’ of suitable elements for the image decomposition
in the wavelet domain.

(b) Applying effective strategies for selecting the particular elements which enable the sparse
decomposition of the wavelet coefficients.

The goal is to achieve high sparsity, with high quality reconstruction, at competitive processing
time. Comparison of the results arising from the proposed framework with those yielded by
the DCT or DWT approximations demonstrates a huge improvement in sparsity.

2 Sparse Image Representation

Let’s start by introducing some notational convention: bold face lower and upper cases are
used to represent one dimension (1D) and two dimension (2D) arrays, respectively. Standard
mathematical fonts indicate component, e.g., c ∈ RK is an array of real components, c(k), k =
1, . . . , K, and I ∈ RNx×Ny an array of real elements, I(i, j), i = 1, . . . , Nx, i = 1, . . . , Ny.

Restricting considerations to l-bit gray scale images, an image is represented by an array
I ∈ RNx×Ny the elements of which, called intensity pixels, are given by integer numbers from 0
to 2l-1.

Within the adopted framework for representations using dictionaries an image I ∈ RNx×Ny

is approximated by a linear decomposition of the form:

IK =
K∑
k=1

c(k)D`k , (1)

where each D`k is an element of RNx×Ny normalized to unity, called ‘atom’. The K-atoms
in (1) are selected from a redundant set called a dictionary. A sparse approximation of I is
an approximation of the form (1) such that the number of K-terms in the decomposition is
significantly smaller than N = NxNy.

The problem of how to select from a given dictionary the sparsest possible representation
of a signal is a NP-hard problem [6]. In practical applications one looks for ‘tractable sparse’
solutions. The mathematical methods which are used for this purpose are either based on the
minimization of the l1-norm [7, 8] or are greedy strategies which evolve by stepwise selection
of atoms from the dictionary [9–19]. Greedy strategies are better suited for practical applica-
tions. In particular, in this work we consider algorithms which have been shown effective for
approximating by partitioning [20,21].

2.1 Approximation of X-Ray medical images by partitioning

As will be illustrated in Sec.2.6, a characteristic of X-Ray medical images is that are frequently
sparse in the wavelet domain. Such images can be best approximated in that domain, even using
the classic DCT. Certainly, when the DCT approach is applied in the wavelet domain (what is
termed DCT-W in Sec.2.6) the sparsity results improve significantly upon those obtained when
the same approach is applied directly on the intensity image”. Approximations in the wavelet
domain entails to:

2



(i) Apply a wavelet transform to the image, i.e. to convert the intensity image I into a
transformed array U.

(ii) Approximate the array U.

(iii) Invert the approximated array to recover the approximated intensity image.

The effectiveness of our proposal is based on (a) the suitability of the proposed dictionary and
(b) the selection approach for approximating the transformed image by dividing it into small
blocks Uq, q = 1, . . . , Q, which we refer to as a ‘partition’ of the array U. Without loss of
generality the blocks are assumed to be square of size Nb × Nb. A graphical illustration of a
partition is given in Fig.1.

Figure 1: The first image is the X-Ray intensity array and the second one the magnitude of its 5 level
wavelet transform. The third image is the illustration of a partition in the wavelet domain.

We restrict the dictionary to be separable, i.e., a 2D dictionary D = {Di ∈ RNb×Nb}Mi=1,
which is obtained as the tensor product D = Dx ⊗ Dy of two 1D dictionaries Dx = {dx

n ∈
RNb}Mx

n=1 and Dy = {dy
m ∈ RNb}My

m=1, with MxMy = M . This represents an important saving in
storage. Indeed, instead of having to store a N2

b ×M array, only two arrays of size Nb ×Mx

and Nb ×My are to be stored. The reduction in computer memory requirements allows us to
work with large dictionaries.

For q = 1, . . . , Q every element Uq is approximated by an atomic decomposition as below:

Ukq
q =

kq∑
n=1

ckq ,q(n)dx
`x,qn

(dy

`
y,q
n

)T , (2)

where (dy

`
y,q
n

)T indicates the transpose of dy

`
y,q
n
∈ RNb and the index `

y,q
n is the element in the

set {1, 2, . . . ,Mm} corresponding to the label of the atom in the dictionary Dy contributing
to the n-th term in the approximation of the q-th block. The approximated array UK is the

result of assembling the approximated blocks, i.e., UK = Ĵ
Q

q=1U
kq
q , where K =

∑Q
q=1 kq and

Ĵ stands for the assembling operator, which reconstructs UK ∈ RNx×Ny from the Q disjoint
blocks U

kq
q ∈ RNb×Nb .

The Sparsity Ratio (SR) arising from the approximation is defined as

SR =
NxNy

K
=
QN2

b

K
.
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Our goal is to produce an effective high quality approximation with a high value of SR.
The quality of an image approximation is quantified by the Mean Structural SIMilarity

(MSSIM) index [22,23] and the classical Peak Signal-to-Noise Ratio (PSNR), calculated as

PSNR = 10 log10

(
(2l − 1)

2

MSE

)
, MSE =

‖I− IK‖2F
NxNy

,

where l is the number of bits used to represent the intensity of the pixels and ‖ · ‖2F indicates
the Frobenius norm induced by the Frobenius inner product, which for G1 ∈ RNx×Ny and
G2 ∈ RNx×Ny is defined as

〈G1,G2〉F =

Nx,Ny∑
i,j=1

G1(i, j)G2(i, j). (3)

Consequently,

‖G1‖2F =

Nx,Ny∑
i,j=1

|G1(i, j)|2. (4)

We aim at achieving high PSNR and MSSIM very close to one. The question then arises as
to how to decide on the number of atoms, kq, for approximating each block in the partition.
One possibility is to approximate each block totally independently of the other blocks and
up to a fixed tolerance error. This possibility has the advantage of enabling straightforward
parallelization with multiprocessors. Nevertheless, linking the approximation of all the blocks
through a global constraint on sparsity, or quality, usually amounts to improving sparsity
results [20, 21].

2.2 Effective greedy strategy for approximating by partitioning

The common step of the techniques we consider for constructing approximations of the form
(2) is the stepwise selection of atoms for each block q. On setting kq = 0 and R0

q = Uq at
iteration kq + 1 the algorithm selects the indices `x,qkq+1 and `y,qkq+1 as follows:

`x,qkq+1, `
y,q
kq+1 = arg max

n=1,...,Mx
m=1,...,My

∣∣∣〈dx
n,R

kq
q dy

m

〉
F

∣∣∣ , (5)

where R
kq
q = Uq −U

kq
q . For the calculation of R

kq
q we find the coefficients in (2) through the

orthogonal projection onto the subspace of selected atoms Vkq = span{dx
`x,qn

(dy
`y,qn

)T}kqn=1, which

is equivalent to the minimization of ‖Rkq
q ‖F . For the effective calculation of the projections we

may choose two different routes, depending on the size of the blocks in the partition.

i) Adaptive biorthogonalization of the selected atoms A
kq ,q
n = dx

`x,qn
(dy

`y,qn
)T ∈ RNb×Nb , n =

1, . . . , kq. This route gives rise to what is known as the Orthogonal Matching Pursuit
(OMP) approach [10]. Our implementation for separable dictionaries in 2D, termed
OMP2D [24], involves the orthogonalization and re-orthogonalization of the selected

atoms {Akq ,q
n }kqn=1, producing the orthogonal set {Wkq ,q

n ,∈ RNb×Nb}kqn=1, which allows for

an effective calculation of the set {Bkq ,q
n ∈ RNb×Nb}kqn=1. The elements of this set are

biorthogonal to the atoms {Akq ,q
n }kqn=1 and are used to compute the coefficients in (2) as

ckq ,qn =
〈
Bkq ,q

n , Iq
〉
F
. (6)
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ii) The Self Projected Matching Pursuit (SPMP) methodology [25], which uses the seminal
Matching Pursuit (MP) method [9] as a mean to calculate orthogonal projections.

The implementation details of the above described OMP2D method are given in [24] (Appendix
A). Such an implementation is very effective up to some block size. For larger blocks the use
of the SPMP method, which in 2D for a separable dictionary is referred to as SPMP2D [25],
is advised. Because it fully exploits the separability of dictionaries, the SPMP2D method is
less demanding in terms of computer memory even though theoretically equivalent to OMP2D.
Full details for its implementation are given in [25]. The algorithm to realize the self projection
step is sketched below.

Suppose that for approximating the block q the selection process has chosen kq linearly

independent atoms labeled by the pair of indices {`x,qn , `y,qn }
kq
n=1 and let Ũ be an atomic decom-

position of the form

Ũkq
q =

kq∑
n=1

aq(n)dx
`x,qn

(dy

`
y,q
n

)T , (7)

where the coefficients aq(n), n = 1, . . . , kq are arbitrary numbers. Every array Ũq ∈ RNb×Nb

can be expressed as
Ũq = Ũkq

q + R̃. (8)

For Ũ
kq
q to be the optimal representation of Ũq in Vkq = span{dx

`x,qn
(dy

`y,qn
)T}kqn=1, in the sense

of minimizing the norm of the residue R̃, it should be true that P̂Vkq
R̃ = 0. The SPMP2D

method fulfills this property by approximating R̃ in Vkq , via the MP method, and subtracting

that component from R̃. The next algorithm describes the procedure.

Iterative orthogonal projection

Given a set of previously selected atoms {dx
`x,qn

(dy
`y,qn

)T}kqn=1 set T0 = 0, R̃0 = R̃, j = 1 and at
each iteration apply the steps below:

• Select the pair of indices such that

`x,qj , `y,qj = arg max
n=1,...,kq
m=1,...,kq

∣∣∣〈dx
`x,qn
, R̃j−1dy

`y,qm

〉
F

∣∣∣ . (9)

• Compute:

t(j) =
〈
dx
`x,qj
, R̃j−1dy

`y,qj

〉
,

R̃j = R̃j−1 − t(j)dx
`x,qj

(dy
`y,qj

)T ,

Tj = Tj−1 + t(j)dx
`x,qj

(dy
`y,qj

)T .

• Set j ← j + 1 and repeat the process until for a given tolerance error ε the condition
‖Tj −Tj−1‖F < ε is reached.

The asymptotic exponential convergence of Tj → P̂Vkq
R̃ is proven in [26].
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2.3 Ranking blocks for the order in their approximation

Especially when an approximation by partitioning is realized in the wavelet domain, and the
image is sparse in that domain, it is convenient to impose a global condition on sparsity or
quality. This introduces a hierarchized sequence in which the blocks are approximated. The
procedure is termed Hierarchized Block Wise (HBW) implementation of greedy strategies [20,
21].

Assuming that `x,qkq+1 and `y,qkq+1, q = 1, . . . , Q are the indices resulting from (5), the block to
be approximated in the next iteration corresponds to the value q? such that

q? = arg max
q=1,...,Q

∣∣∣∣〈dx
`x,qkq+1

,Rkq
q dy

`y,qkq+1

〉∣∣∣∣ .
This implies an increment in complexity, with respect to the identical strategy without ranking
the blocks, of a factor KO(Q), with O(Q) accounting for the complexity’s order for finding
the maximum element of an array of length Q. As will be illustrated by the results in Table
1, the extra computational cost is in many cases compensated by the improvement of sparsity.
However, the storage requirement of the HBW-OMP2D approach is elevated. Notice that, in
the implementation of OMP2D discussed above, the HBW version needs to store at least the
orthogonal sets {Wkq ,q

n ,∈ RNb×Nb}kqn=1 for each of the blocks in the partition, only for the real-
ization of the orthogonal projection. An implementation of the same strategy, requiring much
less computer memory, realizes the orthogonal projection via the above iterative projection al-
gorithm. Such an approach is the HBW version of the SPMP2D method (HBW-SPMP2D) [26].

2.4 HBW Pruning

In this section we consider the downgrading of a given approximation when carried out in a
HBW manner. To this end, firstly the approximation of each block is realized, up to the same
tolerance error, totally independently of the other blocks. This leaves room for the possibility
of parallelization of the block approximation when multiprocessors are available. The outcome
of this stage is an approximation of the form (2) for every block q = 1, . . . , Q. The second
stage consists in slightly downgrading the approximation by pruning some of the coefficients
in the atomic decomposition of the blocks, in a HBW fashion. As mentioned in the previous
section, the HBW version of a greedy strategy for approximating by partitioning ranks the
blocks for their sequential approximation. The optimized way of downgrading an approxima-
tion in a HBW manner is termed HBW Backwards Optimized Orthogonal Matching Pursuit
(HBW-BOOMP) [21]. For large images this approach is demanding in terms of storage. A
method with less memory requirements, though not optimized, is termed HBW Backwards Self
Projected Matching pursuit (HBW-BSPMP) [26]. This method downgrades an approximation
by disregarding some coefficients in a HBW fashion. Given the approximation of a partition as
in (2), the HBW-BSPMP algorithm in 2D (HBW-BSPMP2D) iterates as follows:

1) For q = 1, . . . , Q select the ‘potential’ coefficient cq(jq) to be eliminated from the atomic
decomposition of every block q, according to the criterion:

jq = arg min
n=1,...,kq

|cq(n)|2. (10)

2) Select the block q� such that
q� = arg min

q=1,...,Q
|cq(jq)|2
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and downgrade the atomic decomposition of the block q� by removing the atoms cor-
responding to the indices `x,q

�

jq�
, `y,q

�

jq�
. This produces the additional residual component

cq
�
(jq

�
)dx

`x,q
�

jq
�

(dy

`y,q
�

jq
�

)T .

3) Approximate cq
�
(jq

�
)dx

`x,q
�

jq
�

(dy

`y,q
�

jq
�

)T in span{dx

`x,q
�

n
(dx

`x,q
�

n
)T}kq�n=1

n6=jq
�

using the projection algo-

rithm given in Sec. 2.2 to obtain

P̂Vkq

(
cq

�
(jq

�
)dx

`x,q
�

jq
�

(dy

`y,q
�

jq
�

)T
)

=

kq∑
i=1

t(i)dx

`x,q
�

n
(dy

`y,q
�

n

)T .

Update the coefficients in the atomic decomposition of the block q� as{
cq

�
(n)
}kq�
n=1
n 6=jq

�
←
{
cq

�
(n) + t(n)

}kq�
n=1
n6=jq

�
.

4) Shift the indices of the coefficients and atoms in the decomposition corresponding to the
block q�, to allow for the removal of the jq

�
-th term.

5) Set kq� ← kq� − 1 and check if the stopping criterion has been met.
Otherwise:

• Select a new potential coefficient to be removed from the atomic decomposition of
block q� using the same criterion as in 1), i.e.,

jq
� ← arg min

n=1,...kq�
|cq�(n)|2.

• Repeat steps 2) - 5).

2.5 Constructing suitable dictionaries for X-Ray medical images

The degree of success in achieving high sparsity using a dictionary approach, depends on the
suitability of the dictionary. One possibility to produce a ‘good’ dictionary is to learn it
from training data. In the last decade a number of techniques for learning dictionaries have
been proposed [27–32]. Most techniques, though, are not designed for learning large separable
dictionaries. In this work we propose a separable dictionary, which is very easy to construct
and allows us to achieve the goals of the paper. In line with previously proposed dictionaries
for sparse representation of other types of images [24,25], it is a mixed dictionary consisting of
two classes of sub-dictionaries of different nature:

I) The trigonometric dictionaries Dx
C and Dx

S, defined below,

Dx
C = {wc(n) cos

π(2i− 1)(n− 1)

2M
, i = 1, . . . , N}Mn=1

Dx
S = {ws(n) sin

π(2i− 1)(n)

2M
, i = 1, . . . , N}Mn=1,

where wc(n) and ws(n), n = 1, . . . ,M are normalization factors.
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II) The dictionary Dx
L, which is constructed by translation of the prototype atoms in Fig. 2.

Notice that those prototypes are ‘Hadamard-like’ atoms, but with support one, two, and
three. It is worth commenting that more important than the actual shape of these atoms
is their support and the combination with the trigonometric dictionary.

The mixed dictionary Dx is built as Dx = Dx
C ∪ Dx

S ∪ Dx
L and Dy = Dx. The concomitant 2D

dictionary, D = Dx ⊗ Dy, may be very large, but never needed as such. The graphs in Fig. 3
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Figure 2: Prototype atoms, which generate the dictionaries Dx
L by sequential translations of one

point. Each prototype is shown in a different color.
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Figure 3: Four different 2D atoms, dx
`i

(dy
`j

)T , with dx
`i

a member of Dx
C and dy

`j
a member of Dy

C (top

left graph), dx
`i

a member of Dx
L and dy

`j
a member of Dy

L (top right graph), dx
`i

a member of Dx
L and

dy
`j

a member of Dy
S (bottom left graph), dx

`i
a member of Dx

C and dy
`j

a member of Dy
L (bottom right

graph)

Remark 1: Let’s stress once again that, the approximation of X-Ray images is best realized
in the wavelet domain, specially for those images which are sparse in that domain. Once the
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approximation of the blocks is concluded, these are assembled to produce the approximated

array UK = Ĵ
Q

q=1U
kq
q . Finally, the inverse wavelet transform is applied to convert the array UK

into the approximation of the intensity image IK .

2.6 Numerical Examples

We illustrate now the suitability of the proposed mixed dictionary to produce high quality
approximations of the set of X-ray medical images shown in Fig. 4. This set of twenty images
is the Lukas 2D 8 bit medical image corpus, available on [33].

Figure 4: Lukas Corpus [33] listed in Table 1. First row: Hand1, Foot0, Head0, Knee1, Foot1. Second
row: Sinus0, Hand0, Head1, Knee0, Sinus1. Third row: Breast0, Breast1, Thorax0, Thorax1, Leg0.
Fourth row: Leg1, Pelvis1, Pelvis0, Spine1, Spine0.

The comparison is performed with respect to the SR achieved by nonlinear thresholding of the
DCT and DWT coefficients, respectively, to produce an approximation of the same quality.
The quality is set by requiring a value of MSSIM greater than 0.997, and fixing the PSNR as a
value for which the DWT approach produces the required MSSIM. The PSNR is more sensitive
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to small variations in the approximation than the MSSIM. By fixing the PSNR, at the values
given in Table 1, the equivalence of quality is ensured with respect to both measures. Certainly,
in its original size is not possible to distinguish the actual images from their approximations
with any of the approaches.

The first column of Table 1 lists the images in Fig. 4 and the second column their sizes.
The third column displays the value of PSNR. The forth, fifth and sixth columns correspond to
the SR obtained through the DWT, the DCT applied in the wavelet domain (DCT-W) and the
DCT applied in the intensity domain, respectively. The DWT approximation is calculated by
means of the Cohen-Daubechies-Feauveau 9/7 (CDF97) wavelet transform acting on the whole
image (using the waveletcdf97 MATLAB routine available on [34]) and reducing coefficients,
by iteratively thresholding. This produces the required quality in the pixel-intensity domain.
The DCT and DCT-W approximations are calculated by applying the DCT on a partition of
block size 8 × 8 and reducing coefficients in a HBW manner. This procedure and block size
yield the best sparsity results using DCT in both the intensity and the wavelet domain.

The images in Table 1 are ordered according to the SR achieved with the DWT approxi-
mation. The sparsest is the first image and the least sparse the last one.

The first step in the implementation of the dictionary approximation is to transform the
image, for which we use the waveletcdf97 function. For the images in the upper part of the
table (from Head1 to Breast0) the SR results rendered by this approach, for a partition of block
size 8× 8, strongly depend on the method used for the selection process. Because those images
are sparse in the wavelet domain, the ranking of the blocks for their approximation through
the HBW-OMP2D method yields significantly higher SR (ninth column) than the standard
application of OMP2D (seventh column). The processing time with both methods is very
competitive, considering that the results have been produced in a MATLAB environment using
C++ MEX files for the OMP2D and HBW-OMP2D routines. The times in seconds, given in
the eighth and tenth columns of Table 1, correspond to the average of five independent runs
with a single processor in a notebook Core i7 3520M, 4GB RAM. Notice that, due to the very
significant gain in the SR attained by the HBW-OMP2D method for the first eleven images, the
extra computational complexity introduced by this method does not add much computational
time.
The images in the lower part of Table 1 (from Breast1 to Spine0) are less sparse in the wavelet
domain, as indicated by the SR produced by the DWT approximation. Thus, even if the
dictionary method achieves, for all the images, a very significant gain in SR with respect to
the DWT and DCT approaches, the results corresponding to the OMP2D and HBW-OMP2D
methods are much closer than they are for the images in the upper part of the table. While
for the images in the upper part of the table is worth applying the HBW-OMP2D method, for
most of the images in the lower part of the table the difference is not significant.

All further results of SR will be presented by grouping the first eleven images (from Hand1

to Breast0) in a set, say U , and the remaining images (from Breast1 to Spine0) in a set L.
For the same quality as in Table 1, with the dictionary approach we also consider partitions
of block size 16 × 16 and 24 × 24. The points in the left graph of Fig. 5 represent the mean
value SR with respect to the images in the set U , vs block size 8× 8, 16× 16, and 24× 24. In
order to facilitate a visual comparison, the DCT and DWT results are simply repeated. They
correspond to the best result for the DWT, which occurs when each image is processed as a
whole, and the best result for DCT, which occurs for a partition of block size 8× 8.

Due to memory requirements, for the images in the set L and for the partition of block
of size 24 × 24 we can only implement HBW-SPMP2D. Hence, for consistency, the graphs in
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Image Size PSNR (dB) DWT DCT-W DCT OMP2D t (s) HBW t (s)

Hand1 2016×1248 48.1 30.0 26.4 20.0 39.0 3.7 72.6 4.3
Foot0 2240×1384 48.6 25.5 24.9 19.5 42.8 4.2 65.2 6.3
Head0 1856×1424 47.4 25.2 24.3 20.9 51.4 2.9 63.2 4.9
Knee1 2064×1280 48.0 22.7 23.0 17.0 37.1 5.4 59.8 6.0
Foot1 2328×952 48.1 19.3 19.6 14.2 32.4 6.3 49.6 4.8
Sinus0 1584×1408 47.1 18.9 18.6 13.4 31.6 4.3 47.0 5.2
Hand0 1984×1256 48.8 18.9 19.0 14.8 32.2 3.9 47.9 5.6
Head1 1552×1672 46.4 17.9 17.0 15.4 38.4 3.3 44.4 7.3
Knee0 2120×1272 49.1 17.4 17.8 14.2 33.2 3.9 45.9 6.5
Sinus1 1584×1408 45.8 17.2 17.2 12.4 29.5 3.7 43.4 5.1
Breast0 2216×1688 44.3 15.8 15.8 15.3 36.9 5.7 41.0 11.0

Breast1 2216×1648 44.3 11.4 11.6 11.2 28.5 6.6 29.7 15.4
Thorax0 1720×2048 44.1 10.6 11.0 9.7 25.1 6.9 27.4 15.7
Thorax1 1680×1696 43.4 10.3 10.8 9.5 25.4 4.8 27.1 11.8
Leg0 2120×808 48.9 8.2 8.4 8.4 21.2 3.2 22.3 7.2
Leg1 2120×616 49.2 5.8 6.1 5.9 15.1 3.7 15.4 5.5
Pelvis1 1600×1888 44.3 4.8 5.0 4.9 12.5 8.4 12.6 26.7
Pelvis0 1632×1904 44.4 4.7 5.0 4.7 12.4 8.4 12.7 26.7
Spine1 2096×848 47.0 3.5 3.7 3.6 9.3 6.3 9.4 13.9
Spine0 2128×824 47.4 2.9 3.0 2.9 7.7 7.1 7.7 16.3

Table 1: Comparison of the SR calculated by DWT, DCT in the wavelet domain (DCT-W),
DCT in the intensity domain and dictionary in the wavelet domain. The DCT-W, DCT and
dictionary approximations are carried out on a partition of 8 × 8 blocks. The values corre-
sponding to the dictionary are those obtained with the OMP2D method and its corresponding
HBW version. For all the approximations MSSIM ≥ 0.997.

Fig. 5 have been produced with the SPMP2D and HBW-SPMP2D methods. The red squares
correspond to the mean value SR obtained by SPMP2D and the green stars are those obtained
by HBW-SPMP2D. The blue triangles in the same graphs are the result of applying a combi-
nation of approaches. Firstly, each image is approximated block by block with SPMP2D up to
a PSNR 2% higher than the required PSNR. Subsequently, the approximation is downgraded
in a HBW fashion to produce the required global PSNR by means of the HBW-BSPMP2D
approach, as described in Sec. 2.4. The left graph of Fig. 5 corresponds to the the images in
the set U , and the difference between approaches is noticeable. On the contrary, as seen in the
right graph corresponding to the images in the set L, except for block size 8 × 8 all the three
methods yield equivalent results.

Remark 2: The numerical tests presented in this section lead to the following conclusions:

• Approximating the set of medical images in Fig. 4 using the proposed mixed dictionary
produces a very significant gain in the mean SR value, in relation to the one yielded by
traditional DCT and DWT approximations.

• The best compromise between sparsity and computational time is attained for a partition
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Figure 5: Mean SR vs block size Nb × Nb for the X-Ray images in Fig. 4. The green stars are the
values obtained with HBW-SPMP2D, the red squares with SPMP2D, and the blue triangles with
HBW-BSPMP2D. The dashed line represents the DWT results. The dash-dot line corresponds to the
results of the DCT in the wavelet domain (DCT-WT) and the continuous line to the results in the
intensity domain. The graph on the left corresponds to the images in the upper part of Table 1 (set
U) and the one on the right corresponds to the images in the lower part of that table (set L.)

of block size 16 × 16. The quantification of the relative gain in SR of one particular
approach, in relation to other, is given by the quantity:

G =
SRA − SRB

SRB

100%,

where SRB is the SR produced by the approach for which the gain is referred to. Ac-
cordingly, the mean value sparsity gain in relation to DWT results, including all the
twenty images in the set, is 142% with standard deviation of 18%. These results can be
obtained very effectively through the HBW-OMP2D method, if the images are sparse in
the wavelet domain. Otherwise, the OMP2D method is more effective because it pro-
duces faster equivalent results. Moreover, parallelization of block approximation with
multi-processors is straightforward.

• For blocks larger than 16× 16 the methods SPMP2D and HBW-SPMP2D (low memory
implementations of OMP2D and HBW-OMP2D respectively) may be required. However,
when the approximation is carried out in the wavelet domain blocks of size larger than
16× 16 do not improve sparsity in a significant way.

• For partitions of block of size 8×8, refining a OMP2D approximation by HBW-BSPMP2D
pruning is an option worth consideration, if the image is sparse in the wavelet domain.
The actual results vary according to how far the forward selection goes. The results
presented here correspond to a slight pruning which degrades the quality of the forward
approximation only 2%.

• Since the DWT is a fast approximation, it can be used as a tool to help decide the strategy
for approximating with dictionaries. If the fast DWT approximation gives a high SR (say
SR > 10 for the high quality reconstruction required in this context) then using the HBW
version of a pursuit strategy is strongly advised.
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Note: All the routines for implementation of the approximation methods and the script
for reproducing results have been made available on the website [35].

3 Conclusions

Sparse representation of X-Ray medical images in the context of data reduction has been
considered. The success of the framework is based on (a) the suitability of the proposed
dictionary and (b) the effectiveness of the algorithms for realizing the approximation. The
comparison with traditional approaches such as non linear approximations through DWT and
DCT redounds in a mean value gain of sparsity of up to 148% (for block size 16 × 16) which
is achieved at a very competitive time (11.4 secs per image) even when the implementations
are carried out in a small notebook within a MATLAB environment. The results are really
encouraging. We feel confident that the proposed framework will be of assistance to X-ray
image processing applications relying on data reduction. In particular, to exploit sparsity
for compression purposes two further points should be considered i)the quantization of the
coefficients involved in the image approximation and ii)the storage of the indices corresponding
to the atoms intervening in the approximation. This would allow to reduce the size of the
file needed for the recovery of the approximated image and produce what is normally termed
Compression Ratio. In order to facilitate further developments, as well as the reproduction of
the results in this paper, the implementation of all the algorithms has been made available on
a dedicated website [35].
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