Accepted Manuscript

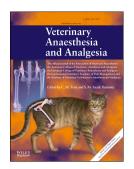
Ultrasound-guided thoracic paravertebral block: Cadaveric study in foxes (Vulpes vulpes)

Paolo Monticelli, Ian Jones, Jaime Viscasillas

PII: \$1467-2987(17)30143-5

DOI: 10.1016/j.vaa.2016.06.007

Reference: VAA 131


To appear in: Veterinary Anaesthesia and Analgesia

Received Date: 5 February 2016

Revised Date: 17 May 2016 Accepted Date: 28 June 2016

Please cite this article as: Monticelli P, Jones I, Viscasillas J, Ultrasound-guided thoracic paravertebral block: Cadaveric study in foxes (Vulpes vulpes), *Veterinary Anaesthesia and Analgesia* (2017), doi: 10.1016/j.vaa.2016.06.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 SHORT COMMUNICATION 2 Ultrasound-guided thoracic paravertebral block: Cadaveric study in foxes (Vulpes 3 vulpes) 4 Paolo Monticelli*, Ian Jones⁺ & Jaime Viscasillas^{*} 5 6 * Anaesthesia Department, Veterinary Clinical Science, The Royal Veterinary College, 7 Hatfield, UK ⁺Diagnostic Imaging Department, Veterinary Clinical Science, The Royal Veterinary College, 8 9 Hatfield, UK 10 Corresponding author: Paolo Monticelli, Anaesthesia Department, Veterinary Clinical 11 Science, The Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7AL, UK. Email: 12 13 pmonticelli@rvc.ac.uk 14 Running head: US-guided thoracic paravertebral block

15

10	Abstract
17	Objective To describe an ultrasound guided thoracic paravertebral block in canidae.
18	Study design Prospective experimental cadaveric study.
19	Animals Twelve thawed fox cadavers
20	Material and methods A 15 MHz linear transducer was used to visualise the paravertebral
21	space at the level of the fifth thoracic vertebrae. Iohexol (300 mg mL ⁻¹) at 0.2 mL Kg ⁻¹ was
22	injected into the right and left paravertebral spaces under ultrasound guidance using a Tuohy
23	needle. The needle was advanced in a lateral to medial direction using an in-plane technique.
24	Injections were performed by two operators, each performing twelve injections in six fox
25	cadavers. A thoracic computed tomography was then performed and evaluated by a single
26	operator. The following features were recorded; paravertebral contrast location (yes/no),
27	length of contrast column (number of intercostal spaces), location of contrast relative to the
28	fifth thoracic vertebrae (cranial/caudal/mixed), epidural contrast contamination (yes/no),
29	pleural contrast contamination (yes/no) and mediastinal contrast contamination (yes/no).
30	Results All the injections resulted in paravertebral contrast distribution (24/24). The mean
31	length of the contrast column was five intercostal spaces. Contrast spread was caudal to the
32	injection site in 54% (7/24), cranial in 29% (4/24) and mixed in 17% (3/24). Pleural
33	contamination was observed in 50% (12/24) on injections; respectively 42% (10/24) and 4%
34	(1/24) of the injections resulted in mediastinal and epidural contamination.
35	Conclusions and clinical relevance Injection of the paravertebral space in canidae is possible
36	using the technique described. Possible complications include epidural, pleural and
37	mediastinal contamination. To establish clinical efficacy and safety of this technique, further
38	studies are required.
39	
40	Keywords block, local anaesthesia, paravertebral, thoracic, ultrasound
41	

42	Introduction

The thoracic paravertebral space (TPVS) is a wedge shaped space located on either side of the
vertebral column. The TPVS is filled with adipose tissue that contains the intercostal nerve,
intercostal vessels and the sympathetic trunk (Krediet et al. 2015). The parietal pleura forms
the anterolateral boundary. The vertebral body, the intervertebral disc and the intervertebral
foramen form the base. The transverse process and the superior costotransverse ligament form
the posterior boundary. The endothoracic fascia lies between the parietal pleura anteriorly and
the superior costotransverse ligament posteriorly and is attached to the periostium of the
vertebral body (Karmakar & Ho 2007).
The endothoracic fascia divides the TPVS into two compartments: an anterior compartment
(or extrapleural) and a posterior compartment (also called subendothoracic). The sympathetic
ganglion is contained in the anterior compartment. The spinal nerve is positioned in the
posterior compartment. The spinal nerves are segmented into small bundles within the TPVS
which make them accessible to local anaesthetic solution injected into the TPVS. Thoracic
paravertebral (TPVB) involves injecting local anaesthetic alongside the thoracic vertebra
close to where the spinal nerves emerge from the intervertebral foramen (Karmakar & Ho
2007). Ipsilateral somatic and sympathetic nerve blockade are achieved with the TPVB. In
human medicine the main indications for TPVB include breast, thoracic surgery and pain
management following thoracic trauma and thoracotomies (Karmakar & Ho 2007). The
ultrasound-guided TPVB is a well validated technique in human medicine (Krediet et at 2015)
while it has not previously described in veterinary patients.
The aim of this descriptive study was to investigate the ultrasound anatomy and a technique to
approach to the in canidae patients, define the distribution of the contrast within the TPVS
and recognise potential complications.

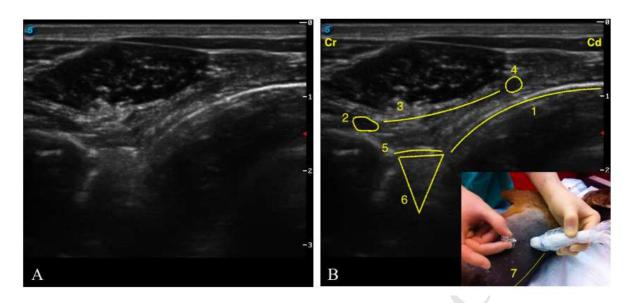
Materials and Methods

68	Twelve thawed fox (vulpes vulpes) cadavers were included in the study. Cadaver foxes were
69	donated by an independent, pest eradication company in accordance with local RVC Ethical
70	approval, (URN 2015 1417).
71	Cadavers were 5.0 ± 1.4 kg with a body condition score between 3 and 4 out of 9 on the
72	World Small Animal Veterinary Association Global Nutrition Committee scale. The TPVBs
73	were performed using a S9v Sonoscape ultrasound machine with a 15MHz linear transducer
74	(Sonoscape, China). Injections were performed by two operators (PM, JV), each operator
75	performing twelve injections in six cadavers.
76	
77	Cadavers were positioned in lateral recumbency with the targeted paravertebral space
78	positioned uppermost. The thoracic region was clipped and ultrasonographic gel (Blue
79	ultrasound gel; Henleys Medical, UK) was applied to the skin. The transducer was placed in a
80	transverse orientation adjacent to the dorsal spinous process of the fifth thoracic vertebrae.
81	The transverse process and rib of the fifth thoracic vertebrae were identified and the
82	transducer moved caudally in order to locate the TPVS. The transducer was then positioned
83	parallel to the neck of the rib, oblique to the TPVS (Fig. 1). The TPVS appeared as a wedge-
84	shaped hypoechoic area with hyperechoic boudaries dorsally (intercostal membrane) and
85	ventrally (pleural membrane) (Fig. 1). An epidural 20-gauge, 50 mm Tuohy needle (Pebax
86	catheter, Vygon France) was used for the injections. The needle was advanced into the TPVS
87	in a lateral to medial direction using an in-plane technique. The bevel of the needle was
88	orientated away from the pleura. A decrease in resistance was felt as the needle penetrated the
89	internal intercostal membrane, passing into the TPVS. This was often accompanied by a
90	popping sensation. In order to simulate the antemortem technique, aspiration was performed
91	to help avoid intravascular injection. Ioexol (300 mg mL ⁻¹) at 0.2 mL Kg-1(Omnipaque 300,
92	GE Healthcare, Germany) was injected into the right and left paravertebral spaces at the level
93	of the fifth thoracic vertebrae over a 30 second period. Visualization of movement of the

94	pleural membrane during injection was recorded for each subject (yes/no). After rotating the
95	cadaver onto the other side, the technique was repeated on the contralateral side. A thoracic
96	computed tomography (CT) scan was then performed with the cadaver in sternal recumbency
97	All scans were obtained using a 16-slice MDCT scanner (MX 8000 IDT, Philips Medical
98	Systems, Cleveland, USA). The CT settings were: helical acquisition, slice thickness 3mm,
99	image reconstruction interval 1.5mm, helical pitch 0.688, tube rotation time 0.75s, x-ray tube
100	current 150 mAs, x-ray tube potential 120kVp, matrix 512x512 and medium frequency ('soft
101	tissue') reconstruction algorithm. Scans were performed in a cranial to caudal direction.
102	Images were evaluated using "Bone" windowing (window level 300 window width 1500).
103	The CT scans were reviewed by a single operator (IJ). The following features were recorded;
104	paravertebral contrast location (yes/no), length of contrast column (number of intercostal
105	segments), location of contrast relative to the fifth thoracic vertebrae (cranial/caudal/mixed),
106	pattern of contrast spread (linear/intercostal/cloud) epidural contrast contamination (yes/no),
107	pleural contrast contamination (yes/no), mediastinal contrast contamination (yes/no), contrast
108	contamination of other areas (yes/no).
109	Data was analysed with IBM SPSS Statistic for Windows 21.0 (IBM Corp., NY, USA).
110	Normality was assessed using the Shapiro-Wilk test. Descriptive statistics were used. Means
111	and standard deviations are reported for parametric data.
112	Results
113	Movement of the pleural membrane was observed during 100% (24/24) of injections. All
114	injections (24/24) resulted in identification of contrast within the paravertebral space. Linear
115	spread was observed in all subjects (24/24). In 42% (10/24) of subjects, spread was
116	considered to be both linear and intercostal.
117	The mean length of the contrast column was 5.0 ± 1.5 intercostal segments. Contrast spread
118	was caudal to the fifth thoracic vertebrae in 54% (13/24), cranial in 29% (7/24) and mixed in
119	17% (4/24). Half of the injections (12/24) resulted in pleural contamination, 42% (10/24) in

120	mediastinal contamination and 8% (2/24) in epidural contamination. Contamination of other
121	areas was found following 8 % (2/24) of injections, namely the cranial vena cava and right
122	atrium.
123	Discussion
124	Various techniques (blind, neurostimulation or ultrasound guided) have been described for
125	TPVB in human anaesthesia (Naja et al. 2004; Cowie et al. 2010; Marhofer et al. 2013). A
126	neurostimulator-guided TPVB has been described in dogs where needle placement was
127	verified by twitching of the intercostal muscles (Portela et al. 2012). This technique was
128	successful in 75% of subjects (Portela et al. 2012). Contrast was identified within the TPVS in
129	100% of foxes using the ultrasound guided technique described here; therefore we suggest
130	that US guided TPVB may be a superior technique.
131	The in-plane technique described allows direct visualization of the needle during its
132	advancement. This is essential as penetration of the intervertebral foramen is a possible
133	complication. The choice of needle is an important consideration. Tuohy needles provide
134	more resistance and thus enhanced perception of tissue firmness. Fifty millimetre needles
135	were most suitable for the foxes used in this study. Short needles may not reach the target
136	while long needles increase the risk of damaging deeper tissues and are more difficult to use.
137	Linear spread was observed after all injections but in 42% of the cases, it was also associated
138	with an intercostal one. A linear pattern of spread may be related to distribution of contrast in
139	the anterior compartment of the TVPS. This would result in blockade of the sympathetic
140	ganglion only. An intercostal spread may be related to distribution of contrast within the
141	posterior compartment. However, we cannot confirm this and further studies are required to
142	investigate the clinical significance of different patterns of distribution (Naja et al. 2004).
143	Previous investigators (Portela et al. 2012) obtained different results. They observed mostly
144	cloud-like rather than linear spread. This difference may have resulted from the technique
145	used to assess the correct position of the needle. Portela and others (2012) identified the

146	TPVS using electro-location and it is plausible to hypothesise that their injections were
147	performed after stimulating the intercostal nerve that is located in the posterior compartment.
148	This is supported by other researchers (Naja et al. 2004), who observed that injections into the
149	posterior compartment were more likely to result in a cloud-like type of spread.
150	The length of the contrast column within the TPVS was 5.0 ± 1.5 intercostal spaces. This is
151	comparable to previous reports in humans (Cowie et al. 2010; Marhofer et al. 2013). Our
152	findings also support the large variation in the distribution of the contrast found in human
153	patients. (Karmakar & Ho 2007; Marhofer et al. 2013). However, it is difficult to predict the
154	relationship between regional spreading of contrast in vitro and the clinical efficacy of
155	injectate in vivo. In most humans, regional local anaesthesia extends beyond the anatomical
156	distribution of the contrast (Marhofer et al. 2013). Therefore, it is not possible to predict
157	potential clinical efficacy based on the regional contrast distribution in cadavers.
158	Contamination of structures other than the TPVS was common using the technique described.
159	Mediastinal contamination occurred following 42% of injections. In humans, mediastinal
160	contamination has never been reported using the technique described. Mediastinal
161	contamination may have occurred because of the close anatomical relationship between the
162	TPVS, the mediastinum and unavoidable post mortem tissue degeneration.
163	Pleural contamination occurred following 50% of injections, which is much higher than that
164	reported in humans (Karmakar & Ho 2007). Tearing of the pleural membrane may lead to
165	leakage of contrast into the pleural space, potentially reducing the efficacy of the injected
166	pharmaceutical (Komatsu et al. 2015). We oriented the bevel of the Tuohy needle tip away
167	from the pleura in an attempt to reduce the risk of penetration (Komatsu et al. 2015).
168	Penetration of the pleural membrane was not observed during any injection using the
169	technique described. As cadaver specimens were used, it is also possible that pleural
170	contamination may have occurred secondary to post mortem change. When the pleura is


171	punctured, current guidelines are to change intercostal space and repeat the block (Komatsu et
172	al. 2015).
173	Contamination of the epidural space following TPVB has been reported in both dogs and
174	humans (Purcell-Jones et al. 1989; Cowie et al. 2010; Portela et al. 2012). The previously
175	described techniques resulted in epidural contamination following 15% of injections (Portela
176	et al. 2012). In humans, the incidence of epidural contamination may be as high as 70%
177	(Purcell-Jones et al. 1989; Cowie et al. 2010). Only 8% of injections resulted in epidural
178	contamination using the technique described. The use of ultrasound to guide needle placement
179	may have reduced the incidence of epidural spreading.
180	Contamination of the caudal vena cava occurred following 8% of injections using the
181	technique described Contamination of the systemic venous system has been reported in
182	humans (Purcell-Jones et al. 1989). The internal vertebral venous plexus lies adjacent to the
183	paravertebral space. Blood passes from the internal vertebral venous plexus to the azygos vein
184	and finally into the right atrium (Specchi et al. 2014). Injection of contrast into the internal
185	vertebral venous plexus may have resulted in contamination of the cranial vena cava and right
186	atrium. This finding could represent a major concern because of the intravenous toxicity of
187	local anaesthetics. We were not able to prevent intravascular injection of contrast in our
188	cadaver specimens. In live animals we would recommend aspirating prior to injection of local
189	anaesthetic to check for possible intravascular needle placement. The technique was
190	performed by two operators which may have introduces methodological bias as the study was
191	not designed to evaluate differences between operators.
192	Injections were performed on both sides in each subject prior to CT examination. It was
193	therefore impossible to evaluate potential contralateral spreading of the contrast column
194	(Karmakar & Ho 2007). The technique described here was performed in foxes. Domestic
195	dogs (Canis lupus familiaris) and foxes (Vulpus vulpes) are of the same Family (Canidae). To
196	the authors' knowledge, no comparative anatomical studies addressing differences between

197	the fox and dog have been performed. The authors are aware that this limitation may limit the
198	potential application of the technique in dogs. However, we suggest that the gross anatomy
199	and ultrasonographic appearance of the TPVS is similar in foxes and dogs and therefore
200	further studies are justified to evaluated the use of this technique in dogs.
201	Conclusion
202	Ultrasound-guided TPVB is possible in canidae. The described technique may be suitable for
203	use in the domestic dog. Further studies are needed to evaluate this technique in clinical
204	situations.
205	Acknowledgements
206	The authors declare no conflict of interest
207	Authors' contributions
208	PM and JV: performed the US-guided thoracic paravertebral blocks; IJ: performed the CT
209	scans and interpreted the images. All the authors contributed to the elaboration of the
210	manuscript.
211	References
212	Cowie B, McGlade D, Ivanusic J et al. (2010) Ultrasound-guided thoracic paravertebral
213	blockade: A cadaveric study. Anesth Analg 110, 1735-1739.
214	Karmakar MK, Kwok WH, Kew J (2000) Thoracic paravertebral block: radiological evidence
215	of contralateral spread anterior to the vertebral bodies. Br J Anaesth. 84, 263-265.
216	Karmakar MK, Ho AM (2007) Thoracic & lumbar paravertebral block. In: Textbook of
217	Regional anaesthesia and acute pain management, Admir Hadzic (ed.) Ed. Mc Graw
218	Hill Medical pp. 583-597.
219	Komatsu T, Sowa T, Kino A et al. (2015) The importance of pleural integrity for effective
220	and safe thoracic paravertebral block: a retrospective comparative study on

221	postoperative pain control by paravertebral block. Interact Cardiovasc Thorac Surg 20,
222	296-299.
223	Krediet AC, Moayeri N, van Geffen G et al. (2015) Different approaches to ultrasound-guided
224	thoracic paravertebral block. Anesthesiology 123, 459-474.
225	Marhofer D, Marhofer P, Kettner SC et al. (2013) Magnetic resonance imaging analysis of the
226	spread of local anesthetic solution after ultrasound-guided lateral thoracic paravertebral
227	blockade: a volunteer study. Anesthesiology 118, 1106-1112.
228	Naja MZ, Ziade MF, Rajab ME et al. (2004) Varying anatomical injection points within the
229	thoracic paravertebral space: effect on spread of solution and nerve blockade.
230	Anaesthesia 59, 459-463.
231	Portela DA, Otero PE, Sclocco M et al. (2012) Anatomical and radiological study of the
232	thoracic paravertebral space in dogs: iohexol distribution pattern and use of the nerve
233	stimulator. Vet Anaesth Analg 39, 398-408.
234	Purcell-Jones G, Pither CE, Justins DM (1989) Paravertebral somatic nerve block: A clinical,
235	radiographic, and computed tomographic study in chronic pain patients. Anesth Analg
236	68, 32-39.
237	Specchi S, D'Anjou MA, Carmel E.N et al. (2014) Computed tomographic characteristics of
238	collateral venous pathways in dogs with caudal vena cava obstruction. Vet Radiol
239	Ultrasound 55, 531-538.
240	

241	Figure 1 This picture represents a fox cavader A. Ultrasonographic appearance of the thoraci-
242	paravertebral space (TPVS). B. Ultrasonographic landmarks for the TPVS block. Cr, Cranial
243	Cd, Caudal; 1, pleura; 2, transverse process of the fifth vertebra; 3, costotransverse ligament;
244	4, fifth rib; 5, internal intercostal membrane; 6, paravertebral space; 7, spine. The picture on
245	the right side represents the fox in lateral recumbency with the positioning of the ultrasound
246	transducer.

247

