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Abstract

Cost is one of the problems for wider adoption afvAnced Driver Assistance
Systems (ADAS) in China. The objective of this eesl project is to develop a
low-cost ADAS by the shared use of motion vecti¥'¢) from a H.264/AVC video
encoder that was originally designed for video rdicw only. There were few studies
on the use of MVs from video encoders on a movilafgrm for moving object
detection. The main contribution of this reseachhie novel algorithm proposed to
address the problems of moving object detectionnwh®/s from a H.264/AVC
encoder are used. It is suitable for mass-produteghicle devices as it combines
with MV based moving object detection in order @duce the cost and complexity of
the system, and provides the recording functiordefault without extra cost. The
estimated cost of the proposed system is 50% Idten that making use of the
optical flow approach.

To reduce the area of region of interest and toaucfor the real-time computation
requirement, a new block based region growth algariis used for the road region
detection. To account for the small amplitude andtéd precision of H.264/AVC
MVs on relatively slow moving objects, the detentitask separates the region of
interest into relatively fast and relatively slowegd regions by examining the
amplitude of MVs, the position of focus of expams@nd the result of road region
detection.

Relatively slow moving objects are detected andki&d by the use of generic
horizontal and vertical contours of rear-view védsc This method has addressed the
problem of H.264/AVC encoders that possess limpegtision and erroneous motion
vectors for relatively slow moving objects and met near the focus of expansion.

Relatively fast moving objects are detected by a-$tage approach. It includes a
Hypothesis Generation (HG) and a Hypothesis Vatiion (HV) stage. This approach
addresses the problem that the H.264/AVC MVs aregged for coding efficiency

rather than for minimising motion error of objeciBhe HG stage will report a

potential moving object based on clustering thaglgarallax residuals satisfying the
constraints set out in the algorithm. The HV wirify the existence of the moving

object based on the temporal consistency of ifglatement in successive frames.

The test results show that the vehicle detectitamgher than 90% which is on a par
to methods proposed by other authors, and the c@atipu cost is low enough to
achieve the real-time performance requirement.

An invention patent, one international journal paged two international conference
papers have been either published or accepted,irstpalae originality of the work in
this project. One international journal paper soalnder preparation.
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1 Introduction

1.1 Research Objective

Cost is one of the problems for wider adoption ofvAnced Driver Assistance System
(ADAS) in China (Lu and Wevers et al., 2010). Thigeative of this research project is
to develop a low-cost ADAS by the shared use ofionmowvectors (MVs) from a

H.264/AVC video encoder that was originally desigjrier video recording only. Since
MVs from H.264/AVC video encoders are readily a@hlé without extra computational
cost, successful utilisation of these MVs for mgvimbject detection can simplify the

system design, enabling an ADAS with video recaydimction by default.

The development of this ADAS, targeting low-costl @mplicity, bundling with video

recording function by default, aims to address @ewiadoption in China where the price
of cars is mostly budgetary (CarNewsChina.com, 20drad the demand for higher level
of road safety is growing (Zhang and Zhang, 20T0g system will also be suitable for
mass-produced consumer market, and for being aseithér countries by optimising the

system to meet the regulatory requirements in mdiffecountries.

1.2 Advanced Driver Assistance System

ADAS has been employed in many automobiles to tassigers for improved road
safety. It aims to help drivers recognise potelytilazardous situations. It detects
objects surrounding the vehicle and gives warnitgsalert the driver of potential
hazards. Some systems can take over the vehicteotfnom the driver, managing the
vehicle to decelerate or change direction for smh prevention. In this connection,
many algorithms and techniques have been develtpe#cognise objects such as

vehicles, motorcycles, pedestrian and cyclists.



ADAS can be divided into Forward Collision Warni8gstem (FCWS), Lane Departure
Warning System (LDWS), Pedestrian Detection and nivigr System (PDWS), and

Blind-Spot Detection and Warning System (BSDW).

Figure 1-1 shows a typical FCWS where a forwardiog camera is mounted at the
windshield inside the car compartment. The FCW&atstthe vehicle at the front and
estimates the distance to the vehicle. If the dis#tao the vehicles is so small that the
response time of the driver may not be able to garexollision from happening, as
illustrated in Figure 1-1(b), warning is issuedthg system to alert the driver for proper

actions.

Figure 1-1: Forward Collision Warning System (FCW@) Forward looking camera installed in a
vehicle, monitoring the relative location of therit vehicle. (b) Warning signal is issued to allet
driver when the distance between the vehiclesaslose.

For LDWS, its hardware is similar or even identid¢al that of FCWS where a
forward-looking camera is also mounted at the whineld inside the car compartment.
Figure 1-2 illustrates how LDWS works. Sequence i(tjde Figure 1-2 shows the
front-side-looking mounting position of the camextithe windshield inside the car

compartment. As depicted in sequence (2), drivamg$ can be clearly captured with the



front-side-looking camera. The LDWS detects theidg lane marking from the image
captured by the forward-looking camera. It monitthrs lateral distance of the vehicle
from lane markings appearing on both sides of tlael r When the vehicle approaches to
one side of the lane markings and is going to defpam the current driving lane,
warnings with audible or haptic signal as showsequence (3) is issued to the driver.
The driver then responds to the warning signal perdorms corrective actions so that

the car stays safely in the current driving lane.

Figure 1-2: lllustration of LDWS. (1) A forward l&img camera monitoring the driving lanes. (2)
Capture image from the forward looking cameraT{3 instance with warning signal output to notify
the driver when the vehicle is cutting the driviage. (4) Vehicle driving back to the designatattka

after the driver has corrected the driving path.
(source: http://fr.wikipedia.org/wiki/Fichier:LanBeparture_Warning.jpg)

PDWS can use the same hardware for LDWS and FCWf&nWiedestrians are moving
laterally relative to vehicles, the relative moviggeed of the pedestrians is significant
and is potentially fatal. PDWS aims to inform thever of potential collision with

pedestrians so as to reduce the severity of adsid&mce the size of pedestrians is
small comparing to the size of vehicles, pedestricem hardly be detected when they
are far away from the camera. Figure 1-3 showssit® of a pedestrian, marked with a
red triangle, appeared in the image at a distah@)m from the camera. The system

detects pedestrians and estimates the distanbe teehicle. It also estimates the moving



path of the pedestrian relative to the vehiclehd relative moving path will result in a
collision within a predefined time, say two secqgniti® system will issue a warning to

alert the driver for proper actions to preventdbeident.

>
.
m

Figure 1-3: A pedestrian at 60m away from the Mehicarked with a red triangle.

BSDWS operates in the same principle as FCWS. Tiferehce is that there are two
cameras for BSDWS. They are mounted to both sidea wehicle, known as the
blind-spot zones, to monitor the areas that theedrcannot see. Figure 1-4 shows a
BSDWS with cameras mounted to the two wing mirr&ach camera is responsible for
monitoring one blind-spot zone of the driver. Tlygstem monitors if objects appear in
the blind spot zones shaded in blue and brown grei 1-4. When there is an object
detected, warnings or indication will be issuedhdtify the driver. An indicator will turn
on in the wing mirror to notify the driver of thegsence of an object at the blind spot

Zone.

There are different sensors used in ADAS, such ia®W, Infrared, Radar, Lidar and
Ultrasound. Radar, Lidar and Ultrasound sensorsisually referred to as active sensors.

This is because they detect objects by sensingehdited signals. An infrared sensor is



a special camera sensor which senses the thermathsm of the scene rather than the
visible spectrum. The research in this project wascentrated on monocular vision
based ADAS mainly because of the cost and vetyatli the vision sensor. One
forward looking camera can be used for multiplections, such as FCWS, LDWS and
PDWS, whereas the use of an active sensor will teedmbine with a vision sensor to

deliver all these functions.

BLIS Slindspot Information Systom

Figure 1-4: Blind Spot Detection and Warning Syst&B8DWS). Cameras installed at the wing mirrors
looking backward, covering the areas that are asilyeseen by the driver.
(Source: http://images.businessweek.com/ss/06/@8fddsource/2.htm)

1.3 ADAS Products in the Market

Table 1-1 shows a comparison of typical ADAS prddun the retail market. It shows
functions equipped with these products, and theeeltidd processors that were used.
The retail price was referenced from popular welssisuch as Amazon, Ebay and
Taobao. Mobileye is one of the earliest suppli¢r&DAS. It also supplies ADAS to car
makers in addition to that in the retail marketmékes use of its proprietary EyeQ2
processor to perform the processing tasks for Iewarture Warning (LDW), Forward
Collision Warning (FCW) and Pedestrian Detection riifeg (PDW). The EyeQ2
processor was designed with highly parallelisedhigecture for real-time image

processing applications, enabling it to processgemftames in parallel for different



recognition tasks. AiDriving ADAS Al is a producbin China, it made use of a DSP
for handling image processing task, and an ARM dha&sebedded processor with video
encoding function for handling the video recordiagk. Papago P3 is a product from
Taiwan, it made use of a System-on-chip for bottesirecording and image processing.
The processor clock speed for ADAS Al and Papagad3around 700MHz. Although
the clock speed of the EyeQ2 processor is only 332Mts multi-core customised
design enables it to perform all the image proocgsdiasks, including the more

demanding pedestrian detection and warning (PDWitfan.

In order to understand the limitations of embedgedcessors, the performance
benchmark of typical embedded processors used daktime image processing is
shown in Table 1-2. CoreMark is a benchmark for etded systems developed by an

industry alliance EEMBChtp://www.eembc.org The performance of an Intel Pentium

Dual-Core E5300 processor which was used in a dpstamputer for the development
of this project, and an Intel i3-3217UE processerenvincluded in the table to show the

performance differences between embedded procemsdrdesktop processors.

As seen from the table, modern embedded processerstill running slower than an
Intel E5300 that was launched to the market in 200%articular, the benchmark for
DM3730 from Texas Instruments (TI), which has anM\Rortex A8 core and a DSP,

was reported with the use of its processor corg.onl

In addition, the benchmark for AM57xx from TI wasported with the use of its DSP
core only. The use of both the ARM and DSP cores DM3730 is expected to achieve
a benchmark of around 6073, which is still sloweant an Intel E5300 processor.
However, with code optimisation and fast image pssmg library for running on the
DSP, it is expected that a System-on-Chip (SoCh wpierformance similar to the

DM3730 is able to fulfil the real-time processiragjuirements for an ADAS.



Table 1-1: ADAS Product Comparison

Product Market price| Functions Processor
Mobileye CS-270 US$729 MLDW Proprietary EyeQ2 SoC
MFCW @332MHz
- MPDW Five Vision Computing
. - Engines
Three Vector Microcode
Processor
Two floating point
MIPS34K CPU
AiDriving ADAS Al US$1000 MLDW TI DSP @650MHz
MFCW | One ARM 32-bit CPU
MVideo
Recording
Papago P3 US$335 MLDW Ambarella SoC @700MHz
MFCW One ARM 32-bit CPU
MVideo One Image DSP
Recording | One Video DSP

Table 1-2: Processor Performance Comparison

Pr ocessor Clock Speed | CoreMark | CoreMark/MHz
nVidia Tegra 2 1GHz 5866.39 5.87

T1 DM3730 Cortex A8 Core 1GHz 2530 2.53

TI AM57xx C66x DSP 750MHz 3543.26 4.72

Intel Pentium Dual-Core E5300 2.6GHz 8885.30 3.42

Intel i3-3217UE 1.6MHz 24231 1541




1.4 Industrial Requirements and Constraints

Since the performance and memory resources of etededrocessors are still lower
than that of desktop processors, the major constran selecting an embedded
processor is to fulfil the real-time computationden tight memory and computational
resources, and is able to achieve the cost targkenergy efficiency to be competitive
in the market. Since the Consumer Electronics makevell as the Automotive market
are highly competitive, the embedded processoctwsldor ADAS applications must be
highly cost effective. Achieving all of these caastts is difficult for demanding

computer vision applications. Nevertheless, thengtaive requirements were defined

at the beginning of this project with reference awailable system-on-chips in the

market.
Table 1-3: Quantitative industrial requirements aadstraints
Constraints Description
1 | Processor Use Off-the-Shelf embedded processatérayon-chip
2 | Clock Speed Should be below 2GHz in view of thelaldity of
embedded system-on-chip in the market
3 | Camera resolution 1280 x 720 or better, with 3th&ra per second
4 | Embedded memory| 1GB or below, DDR3 or DDR4 RAM
5 | Power consumption| Should be less than 10W
6 | Cost Main component cost should be less than US$150




1.5 Statement of Originality

There were new ideas generated and new algoriteveslaped during the research and

development of this project. The originality incésdthe following items:

1. An original integrated approach to the shared-ukemotion vectors from the
H.264/AVC encoder for moving object detection, dadpaof running in real-time
with performance on a par with other state-of-theapproaches proposed by other
authors, targeting for application to an Advancei/& Assistance System. This
approach comprises of dividing the detection islatively slow and relatively fast
moving objects, block based road region growthiore@f interest reduction using
amplitudes of motion vectors and road region infation, detection of relatively
slow moving objects based on generic line featudesection of relatively fast
moving objects based on planar parallax residuails, also tracking of detected
objects using image projection information and dayitatemplate matching for

relatively slow and relatively fast objects respesdy.

2. A novel approach to address the problems of mowingct detection due to the
limited precision of motion vectors from a typi¢&l264/AVC encoder for relatively
slow moving objects especially those near the famuexpansion. This approach
comprises of dividing the regions of interest iateas for detecting relatively slow

and relatively fast moving objects according todh&plitudes of motion vectors.

3. A novel approach to address the problem of movibgat detection due to the
erroneous motion vectors from a typical H.264/AViic@der caused by the coding
efficiency optimised motion estimation process. sThapproach comprises of
hypothesis generation according to the amplitudesction and location of ego
motion compensated planar parallax residuals, dad hypothesis verification

according to the dynamic template matching evabnati

4. The division of regions of interest into regions felatively slow and relatively fast
moving objects detection is making use of the atugé of MVs, position of the

focus of expansion and the result of road regideal®n..



5. An original algorithm for relatively fast moving et detection by using planar
parallax residual and the associated filtering ahaktering techniques using

amplitude, position and direction constraints.

6. An original algorithm for relatively slow moving et detection by locating the
darkest area in the image making use of a gray kweshold obtained from the
road region detection algorithm, and followed bg ttetection and refinement of

generic line features.

7. An original algorithm for the tracking of relatiyelslow moving objects by the
expansion of the bounding rectangle of the foungeaband refinement of the

boundaries by horizontal and vertical projectioages.

8. An original algorithm for the tracking of relatiyelfast moving objects by
dynamically updating the template for comparisoffofeed by simple template

matching technique.

9. An original algorithm for the road region detectiby block based region growth
technique, with dynamic update of the intensityhaf road for comparison.

10.Incorporation of a six-degree-of-freedom inertiadnsor to assist accurate

estimation of ego motion and focus of expansion.

11.A novel camera calibration procedure that is desigto simplify the camera

installation process, targeting for mass productievices.

1.6 Organisation of Chapters

This report is organised as follows: Chapter 2hes literature review. It reports the key
findings of that lead to the research directiontlué project. Chapter 3 reports the
proposed algorithm framework, which is the majart pé the research and development
of this project. Chapter 4 reports the test andluaw®n results of the proposed
algorithm framework. Chapter 5 reports the actgtithat have been done for
commercialising the R&D results. Chapter 6 repdhs patents and peer-reviewed

papers that have been published or accepted. Chamiaborates further development
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that can be carried out in the future. Chapter &es outline of future research and
development direction. Chapter 9 is the outlinduother works for commercialisation.

Chapter 10 is the conclusion for this researchgetoChapter 11 is the references.

1.7 Chapter Summary

This Chapter introduced the objective of this pcojehich is the development of a
low-cost ADAS. It also briefly introduced the foumajor functions of ADAS which

include Forward Collision Warning System (FCWS)néaDeparture Warning System
(LDWS), Pedestrian Detection and Warning SystemW&), and Blind-Spot Detection
and Warning System (BSDW). Moreover, the contenicttire of this report, and the

originality of this study were also described fasier reference by the readers.

In the next Chapter, a literature review on vidi@sed ADAS is presented.
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2 Literature Review

The literature review has been concentrated onntdobies related to vision based
ADAS because of the cost and versatility of cansasors. For instance, the video
output of a forward looking camera can be usedbfuth lane detection and moving
object detection. Different kinds of detection calso be done with different image
processing algorithms. Vision based ADAS works ipbst fcapturing the camera image,
followed by image processing of regions of interestraction and feature recognition.
When certain patterns or features of objects inrttage are recognised, decision on the
level of severity will be performed by the processid there is potential danger, a
warning signal is output to draw the driver’s atiem. The patterns and objects that are
of interest for the ADAS application are drivingnés, vehicles at the front and at both

sides of the car.

2.1 Lane Detection

Since lane markings are flatly painted on the roasion based detection of lanes
usually relies on the contrast difference betwéenlane markings and the road surface.
There have been some well know projects that dpeelanethods for lane detection
algorithms in the past decades, such as AURORA r{Gired Jochem et al., 1995),
GOLD (Bertozzi and Broggi, 1998) and TFALDA (Yim @rSe-young, 2003). A

comprehensive review has been done by McCall ef28l06) for methods proposed
before 2005. Most of the lane detection algorithmglve lane feature extraction,

outlier rejection and tracking.

For feature extraction, edges of lane markingsoaeeof the most significant features to

extract (Kluge and Lakshmanan, 1995, Li and Zhedra).e2004, Wang and Teoh et al.,
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2004, Chapuis and Aufrere et al., 2002, Wang anceBal., 2008). The edge extraction
can be noisy if the lane markings are not clearfrkad on the road, or the threshold
used for extraction is not determined appropriat8lgo, if the edge extraction is done
on a greyscale image, there is a chance that theseaf coloured road markings, such as
those painted in yellow or red, cannot be extractedectly. This is because the contrast
of coloured road markings is relatively low in gsegle images. To overcome this
problem, some edge extraction methods made usenté sransformations on the colour
image to improve the contrast for extraction (Changd Jeng et al., 2006, Sun and Tsai
et al., 2006). To reduce the false extraction o lmarkings, there have been attempts
using the intensity change pattern of dark-brigiatkdof lane markings to filter falsely

detected edges (Bertozzi and Broggi, 1998, lenglamel et al., 2003).

For lane detection, the algorithm to identify laresthe road after initial lane feature
extraction include the Hough Transform (Li and Zipest al., 2004), lane curvature
modelling (Wang and Teoh et al., 2004, Li and Faba@l., 2015) and probabilistic
estimation (Kluge and Lakshmanan, 1995, Liu and §vtter et al., 2013). Therefore,
successful detection of lanes is heavily dependanthe feature extraction algorithm.
Some algorithms make use of the Inverse Perspedaeping (IPM) technique to
obtain a bird’s eye view image from the originaptaed image (Muad and Hussain et
al., 2004, Sehestedt and Kodagoda et al., 200guré&i2-1(a) shows a typical image
captured on the road. Figure 2-1(b) shows the spomding bird’s eye view image
transformed from Figure 2-1(a) using the IPM tegaei As seen from Figure 2-1(b),
both the lane markings and texts on the road becdeer straight lines. This can
facilitate simpler method for recognition by sinfping the edge extraction and
detection method since all road markings can beexted to straight line segments with

uniform width. However, the conversion to bird’'seeyiew image requires high

13



computational cost or dedicated hardware to achreaétime performance. It is not

suitable for off-the-shelf microprocessors wheredhare for fast perspective transform

is not available.

Figure 2-1: (a) Normal captured image. (b) The’'bisye view image transformed from (a) using IPM
technique

For lane tracking after detection, the most popalgorithms used are Kalman Filter
(Kosecka and Blasi et al., 1998, Lim and Seng ¢t28l09) and Particle Filter (Wang
and Bai et al., 2008, Apostoloff and Zelinsky, 2D@bth the Kalman Filter and Particle
Filter are recursive state estimators making us®afes filter. Bayes Filtering is a
method for predicting and updating the state ofymadhical system from measurable
information. Kalman Filters are designed for estin@linear systems with Gaussian
noise. Some modified Kalman Filters, such as Ex@¢dndalman Filter and Unscented
Kalman Filter, are derived to estimate non-lingatems. Kalman Filters are parametric,

requiring a mathematical model to describe the Weha of the system.

Particle Filter performs the estimation by a setaidom points known as patrticles.
Each particle contains a set of state variablekestribe the system. It can represent any

systems with complex models. No exact represemtatioghe system model is required.
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However, Particle Filter demands higher computai@ost because of the larger set of

state variables required to describe the system.

Although there are commercially available systenthsas AutoVue (Bendix, 2015) and
Mobileye LDW (Mobileye, 2015), lane detection iglstin active research topic as there
are still so many challenges to further enhancebiity. For instance, the effect of
shadows during day time and the high dynamic lightionditions during night time are

still challenging to vision based lane detectiorthds.

2.2 Vehicle Detection

There have been many methods proposed for vehatiectibn in the past decades
(Sivaraman and Trivedi, 2013). These methods carclassified as feature based,

statistical based and optical-flow based methods.

For the feature based method, vehicles can betddtbased on prior knowledge to their
characteristics. For instance, the left-right syrtrioal characteristics of vehicles can be
used as one of the features for vehicle detecBenause most vehicles look rectangular
from the front and rear, the edges and corner®bicles are also frequently used as the
clues for vehicle detection (Broggi and Cerri et 2004, Du and Papanikolopoulos,
1997, Kuehnle, 1991, Kuo and Pai et al., 2011,dnd Zheng et al., 2005, Zielke and
Brauckmann et al.,, 1992). Detection methods thalyae the shadow underneath a
vehicle have also been proposed (Tzomakas andr5d&l88, Manuel Ibarra Arenado

and Juan Maria Perez Oria et al., 2014).

For statistical based approaches, feature extradb@sed on Haar (Haselhoff and
Kummert, 2009, Yong and Zhang et al., 2011, Chartg@ho, 2010) and Histogram of
Oriented Gradients (HOG) (Mao and Xie et al., 20%araman and Trivedi, 2010)

have been reported. They combine with the useatistal training algorithms such as
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Adaboost (Freund and Schapire, 1997) and Suppato¥&achine (SVM) (Cortes and
Vapnik, 1995) to generate the classifiers for higke-positive and low false-positive
detection rates. In the hope of increasing the-pastive detection rate and decreasing
false-positive rate, there has been a trend fongusinline learning, allowing new
samples taken to be added to the classifiers @ivan and Trivedi, 2010, Chang and
Cho, 2010). But the problem with online learnindghe validity of samples collected. It
is difficult to determine automatically if the salep collected are true-positive samples

or true-negative samples without human interpretati

Both the feature based and statistical based agipesarequire prior knowledge on the
characteristics of the objects to be detected. détection involves identifying both
rear-view vehicles and vehicles on the road vievandifferent perspectives. There are
different characteristics appearing on the vehitddse detected when they are viewed at
angles. Therefore, multiple sets of features otissizal models are required for
detecting vehicles viewing differently. This im@ia@dditional computation for each set

of features or models for improved detection.

Other techniques have been reported that can supptehe vehicle detection tasks. For
instance, Optical Flow algorithms can be used ffemintiate moving objects from the
background. The direction of movement of pixeldhe consecutively captured image
sequence is known as Optical Flow. By identifyilg features of clustered moving
pixels in the image sequence, moving vehicles eaddbected by applying feature based
technigues. However, the ego motion of the cameeals to be evaluated for extracting
the true ground motion vectors instead of thosatiked to the moving camera. Some
research activities have been reported on the @iseptical flow for ego motion
estimation and moving object detection (Giachett &ampani et al., 1998, Klappstein

and Stein et al., 2006).
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In addition, the disparity of objects from the eaptd images of stereo cameras is able to
provide important depth information for object rgndion. Therefore the use of stereo
images for object detection is able to combine witfier feature extraction techniques
such as optical flow, symmetry and / or statisticaining for object detection (Bertozzi
and Broggi, 1998, El Ansari and Stéphane et all020oulminet and Bertozzi et al.,

2006).

The problem with stereo vision is the highly demagdcalibration process. The two
cameras need to be calibrated so that the epijpodalies on the same horizontal axis in
the images captured by both cameras. There areasy oncertainties that may affect
the calibration result for Stereo cameras installad vehicles are affected by

uncontrollable parameters such as shocks, vibmtoi even collisions may drastically
affect calibration. Although a monocular cameraaisot simpler, it also requires a
good calibration for accurate estimation of physiparameters of detected objects.
The refinement of calibration process opens up remsgarch opportunity to research on
how stereo cameras can be setup quickly and retheempact of environmental

factors.

2.3 Generic Moving Object Detection

The vehicle detection algorithms mentioned in Sect2.2 are used specifically for
detecting vehicles. Another consideration for vishaetection is that drivers may not be
interested to recognise vehicles that are not paany trouble to them. In contrast, they
are required to know if there is any object thaymase danger to them and to be alerted
early enough to mitigate the situation. Therefotke methods on generic (or
non-parametric) moving object detection with a mgvobserver (i.e. the camera) have

been reported in this Chapter.

17



Moving objection detection methods are commonlydusesurveillance systems with
cameras mounted to fixed positions. When the cansefixed, the simplest idea for

detecting moving objects is simply by frame diffeceg (Jung and Sukhatme, 2004).
However, for cameras mounted to automobiles, theyenwith vehicles’ translational

and rotational motions. Many techniques for fixeameras are not applicable to
situations with moving cameras. For the case witho&ing camera, the ego-motion of
the camera has to be estimated for compensationdier to estimate the ground truth

motion of the independently moving object.

For a monocular camera setup, the movements opamtkently moving objects that
appear in the screen are composed of both thaingroruth motions and the ego motion
of the camera. Also, a Monocular camera lacks #mhdinformation, the distance and
moving speed of independently moving objects caly be recovered by the use of

algorithms.

To detect an independently moving object, the mmotiectors after ego motion
compensation in the scene are examined. The twa comsmonly used methods for
monocular vision are planar parallax violation (hetti and Campani et al., 1998,
Baehring and Simon et al., 2005) and flow fieldlargiterion (Pauwels and Van Hulle,
2004, Clauss and Bayerl et al., 2006). Klappstaoh Stein et al. (2006) have developed
a method called Two-View constraint. This methodedes the optical flow field
irregularity using positive depth constraint andsipee height constraint. However,
these constraints are referring to the differentedhe measured motion field to the
expected motion field of a static object when tlaenera is moving. Therefore, the
Two-View constraints can also be regarded as plpagallax violation detection. The
flow field angle criterion detects the angle of thew field vector to the focus of

expansion (FOE). FOE is the point where objecthéscene are apparently emerging
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from when the camera is moving. If the angle igéarthan a threshold to the expected

flow field due to ego-motion, a moving object idetded.

2.3.1 Planar Parallax Method

The relationship of a point on the World coordisadéd it corresponding point on the
screen can be represented by the planar parallagrasn shown in Figure 2-2
(Baehring and Simon et al., 2005). The green piariee camera plane at the current
frame at timeT;, the red plane is the camera plane at the preViaose at timeT;.;, Py,

is a point above the ground plapeand p, are the projected point &, on the image
planes at timd@,; andT; respectively, PlG and PZG are the points on the ground plane
due to P, when viewing by camera &, and C; respectively, p,, is the point

virtually projected to the image planeTat due to PS on the ground plane. Since the

image contains no depth information, the point €gpondence between points in the
screen in successive frames is estimated by asgutiman these points are lying on the
ground plane. By knowing the camera translation estdtion between successive
frames, a ground plane homography matrix can bmatsd. This planar homography

matrix is only able to identify the point correspence of the projected poire®on

the ground plane top,; on the screen in the previous frame, rather thartrue point

correspondence gt in the previous frame.
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Figure 2-2: Planar parallax diagram

Therefore, there is a difference @f = p,; — p, in the estimation which is known as

planar parallax residual (Baehring and Simon ¢t28l05). By evaluating the amount

of planar parallax residual, moving objects camécted.

2.3.2 Optical Flow versus H.264/AVC Motion Vector

Optical flow is one of the essential algorithms fi@oving object detection. It estimates

the velocity of movement of a brightness patterannimage pair.

The earliest methods for optical flow evaluatiorreveriginally developed by Horn and
Schunck (1981) and Lucas and Kanade (1981). The hasumptions for optical flow
are brightness constancy, spatial coherence andooramn persistence. These
assumptions result in a set of equations relativgyintensity gradients of pixels in
successive frames. The resulting optical flow fiewh be solved by minimising the
cost function involved. Optical flow is pixel basedmputation. It is computationally
expensive to embedded systems. Studies show taDagital Signal Processor is

required for real-time optical flow evaluation (Zilgpand Gao et al., 2014).
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Motion vectors (MVs) in H.264/AVC video encodingeadetermined by minimising
the cost functionJ) that essentially consists of a distortion tei») é&nd a rate term
(R), as shown in Equation (2.1)is known as the Rate Distortion Optimisation (RDO)
cost. The distortion ternD)) is the matching function that is usually evaldaby the
Sum of Absolute Difference (SAD) with formula shownEquation (2.2), whergis

the signal from the original videa,is the signal from the coded vides) x By is the

block size for the evaluationm=(m, m)T is the motion vector (MV).

J=D+AR (2.1)
Bx By

SAD(s ¢m)=> Y| $xy- €x m ¥ (22)

x=1 y=1

Each MV in a H.264/AVC video encoder representinaage block of variable size of
either 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, or 4x4petading on the decision of the
motion estimation algorithm (Chiu and Siu, 2010ptMn vectors are generated when
a motion estimation algorithm is run during videnceding. The motion vectors
represent the displacement of blocks between ssiveeffames. The goal of motion
estimation in H.264 video compression is to achiegh quality video with the lowest
possible bit rate by correlating the patterns mphst video frames to the current video
frame. So, if the motion vectors directly availalilem motion estimation for video
compression are used for moving object detectloretwill be many outliers that need

to be eliminated before accurate moving objectalete can be performed.

Motion estimation is highly computationally experesi(Chan and Siu, 2001). To
reduce the computational cost for finding the beatch, there have been studies on
many fast search algorithms. There is a set ofreate software publicly available
from Heinrich Hertz institute (HHI 2012) that is mmonly used for educational
purposes and for benchmarking among different impl&ation approaches of

researchers. In addition to the generic full seaatdorithm that searches for the
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minimum sum of absolute difference (SAD) value dlesthe search window, three fast
search algorithms, namely Uneven Multi-Hexagon e#uMHexgonS) (Chen et al.
2002), Simplified Hexagon Search (SHS) (Yi et @02) and Enhanced Predictive
Zonal Search (EPZS) (Tourapis and Tourapis 2008)iacluded in the reference
software. These fast search algorithms mainly caapof three steps, namely the

initial predictor selection, adaptive early terntina, and prediction refinement.

The initial predictor selection stage selects a predictor among a set of predictors
that are potentially giving good estimation resultstead of examining all possible
positions in a search window to determine the hmedictor, these fast search
algorithms only examine a smaller set of positiaosording to some temporal and / or

spatial constraints.

In the adaptive early termination stage, the M\tdeas terminated by examining the
distortion evaluated by SAD. If it is smaller tharthreshold determined by minimum

distortion values of previously examined blocks, g&arch can be terminated.

In the prediction refinement stage, the MV is refirby searching for the best predictor
with a search pattern around the best predictog.sBarch pattern is designed to reduce
the chance of being trapped in a local minimum, anctduce the number of required

search for computation efficiency.

With a fixed video frame rate of small frame-torfra interval, optical flow can also be
estimated by the block matching approach, suclhasused in the motion estimation
process in the H.264/AVC encoder (Davis and Katwdlg 1995, Chi and Tran et al.,
2007). The optical flow can simply be estimatedtiiy motion vector divided by the

time interval between successive frames.
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The equivalence of motion estimation by the bloakehing and optical flow methods
implies that the MVs for video coding can be used rhioving object detection and
vice versa. However, the ultimate goal of the us®¥s in the video encoder is to
achieve the best coding efficiency possible. Thaultant MVs do not guarantee to
represent the true motion of objects in the sc&hey are therefore noisy for moving
object detection. It is a challenging task to make of such noisy motion information
for moving object detection. Also, the video codimgst be executed in real time for
encoding live video without frame loss or reduceairfe rate. This implies that the
moving object detection algorithm for use with Mivem H.264/AVC video encoding
must be highly efficient to allow completion withthe duration between successive

frames.

2.3.3 Ego Motion Estimation

Since both the observer vehicle and other objectddtection are moving on the road,
the MVs obtained from the H.264/AVC encoder arerdmult of motions of both the

observer vehicle and the objects on the road. Theement of the observer, also
known as ego motion, has to be compensated inapeied image sequence so that
the actual motion of objects relative to the growath be obtained. This process is

known as ego motion compensation.

For image based ego-motion estimation, feature tpoirom the captured image
sequence are tracked to find the corresponding fleld which is known as optical
flow. Selected flow fields between two successimages can be used to estimate the
planar homography matrix or the Fundamental mabexween the two images. A

motion model that transforms the motions in the 8gace to the captured 2-D image

is described by the homography matrix. For a sqiadfit correspondencep -
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between two images, the Fundamental mdtroan be represented by Equation (2.3).
And for each point correspondenge ~ [, it satisfies Equation (2.4). Alternatively,

for each point correspondencgs ~ [ on a plane (such as the road plane) between
two images, it satisfies Equation (2.5), wheres the planar homography matrix of the

plane in the two images.

fu fo fi
F=fy fp fa (2:3)
fa fo fa
p’xFp =0 (2.4)
pl' = Hn (2.5)

The Perspective model with eight parameters is rtost sophisticated model to
account for both rotational and translational mogata of objects in any direction (Su
and Sun et al., 2005). For accurate ego-motiormesiton, the Perspective model
should be applied to account for movements of abjecall directions with change of

depth.

As summarised by Derpanis (2006), optical flowraation methods can be classified
as Direct Matching Methods (Horn and Weldon Jr,8S&ein and Mano et al., 2000,
Ke and Kanade, 2003), Differential Methods (198381, Bruhn and Weickert et al.,
2005, Weickert and Schnorr, 2001, Liu and Hongletl®98) and Frequency Based
Methods (Langer and Mann, 2003, Huang and Cherg)189nong these methods, the
Direct Matching Methods (Horn and Weldon Jr, 198&in and Mano et al., 2000, Ke
and Kanade, 2003) make use of a sum of squareereatife (SSD) cost function to
estimate the ego motion parameters. This methairgar to the motion estimation

algorithm used in the H.264/AVC encoder. But thestcéunction used in the

H.264/AVC encoder is a Rate-Distortion function &yand and Sullivan et al., 2003)
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that involves Sum of Absolute Difference (SAD) ks tost function and the parameter

related to the resulting encoding efficiency.

To estimate the Fundamental MatRxor the homography matrid, a set of points in
the image are selected to fit into Equation (2.4)(225). This set of equations are used
for the minimisation of a cost function so that gfaameters in the matrix or H can
be determined (Wang and Cai et al., 2012). Thecgefeof feature points is crucially
important to the accuracy of the estimated Fundsémhematrix and homography matrix.
Feature points extraction methods using Harris e1(1988), “SURF” (Bay and
Tuytelaars et al., 2006), “FAST” (Rosten and Drurmeha2006), “BRIEF” and “SIFT”
(Lowe, 2004), have been used by many authors &dufe points extraction (Xiagiong
and Xiangning et al., 2011, Nedevschi and Golbaal.eR009, del-Blanco and Garcia
et al., 2009, Scaramuzza and Siegwart, 2008). TRE feature detector have proven
to be a method robust to scale, rotation and ilhaton variations (Heinly and Dunn et
al., 2012). Comparing with more recent methods saicBURF and ORB (Rublee and
Rabaud et al.,, 2011), SIFT has been proven to behnmore computationally

expensive (Rublee and Rabaud et al., 2011).

For application to Advanced Driver Assistance Systethe moving camera results in
perspective changes of objects in the scene. Tlamcehof having photometric
variation is also high because of the rapid chasfgeaffic and road conditions. The
scene change due to rotation is relatively smaltesithe degree of rotation is limited
by the inclinations of roads and the cornering dpetthe vehicle. Therefore, the
feature point computation method should be robusicale and photometric variation.
It should be computationally efficient as well abust to small rotations. According to

the comparison done by Heinly and Dunn et al. (200RB is able to fulfil the
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requirements with computation time of an order @gmtude faster than SIFT under

environments with stable illumination.

2.4 H.264/AVC Motion Vector Overview

MVs are generated when a motion estimation (MEbpratigm is run during the video
encoding process. The MVs represent the displaceonfenbjects between successive
frames. The goal of ME in video compression isdbieve the “best” quality video with
the lowest possible bit rate by correlating thetgrats in the past video frames to the
current video frame. MVs are therefore not necdgseepresenting the movement of

objects in the video stream.

In addition to the eight variable block sizes rawggirom 4x4 to 16x16 samples shown in
Figure 2-3, there is a special mode called “SKI/Pich is used with 16x16 macroblock
size where the motion estimation need not be pmddr The identification of
macroblock using SKIP mode can reduce the computdime for finding suitable
mode and MV without degrading the video coding genfance (Zeng and Cai et al.,

2009).

16x16 16x8 8x16 8x8 8x4 4x8 4x4

mode mode mode
=5 =6 =7

mode =1 mode =2 mode =3 mode =4

< Up layer
]

Figure 2-3: Block size for motion estimation. Prinanacro-block size is mode 1 at 16x16. Smaller
partitions from 16x8 down to 4x4 are possible aditway to the decision of the motion estimation
algorithm.

The H.264/AVC standard allows each captured imageet encoded as an “I”, “P” or

“B” frame. An “I” frame is an intra-coded image.dan be decoded without referencing

to other frames and is regarded as the least casipte frame. A “B” frame is known
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as a bi-predictive frame that contains both imagd difference data. It can take
multiple frames from previous or next frames agnmafice. A “P” frame is known as a
predicted frame or a delta frame. It contains thésNhat represent changes in the image
from its previous frame up to a quarter pixel psgm. The proposed system developed

in this project only uses the MVs from P-framesrfwving object detection.

An evaluation of MVs using the open-source H.264¢Asbftware JM18.4 (JVT, 2012)
on some sample sequences was conducted. 20 frammes fbur Daimler image
sequences (Vaudrey and Rabe et al., 2008) weretaglor H.264/AVC encoding. The
Daimler image sequence name referred in this refodidaws the file name of the
sequence used by Vaudrey et al.. Four image segsienamely “Construction site”,

“Crazy Turn Left”, “Dancing Light” and “Intern oniBe”, were used for evaluation.

2.4.1 Bitrate Comparison

The four video sequences shown were encoded WRR iPame structure in Baseline
profile. Each video sequence was encoded with -imwde within P-frame enabled
and disabled respectively. Also, three differenttioro search algorithms, namely
Full-Search (FS), Un-Symmetric-Hexagon (UMH), anch&nced Predictive Zonal
Search (EPZS), for encoding were used for each ovidequence. Disabling
intra-mode can make sure that there are MVs fomaltroblocks. It provides more

information for motion computation.

From the statistical output of the encoder, it feasd that the average bits per frame
of the video sequence can increase significantti mitra-mode disabled, as detailed
in Table 2-1. For instance, the Construction Sgqugnce has average bitrate of
2,287.21 and 3,041.92 kb/s when intra-mode is edabhd disabled respectively

using Full-Search algorithm. The difference is 88.0Also, the difference in the
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average signal to noise ratio (SNR) of the Y congmbris less than 0.5dB for the
same video sequence using different search algomthd different mode. This result
indicates that intra mode can effectively reduce lifirate of the encoded sequence.
The loss in video quality when using different sbaalgorithm is small.

Table 2-1: Average bitrate of video sequences imitfa mode enabled and disabled. The video seqaence
were encoded with H.264 Baseline Profile with dif@ motion search algorithm

Bitrate Motion Search Algorithm (H.264 Baseline Profile)
Sequence Mode | (kb/s)
Full-search UM Hexagon EPZS
| Slice 197.11 197.11 197.11
Intra-on P Slice 2089.89 2216.46 2137.77
B Slice 0.00 0.00 0.00
Total 2287.21 2413.78 2335.09
Construction SNR Y (dB) 37.60 37.62 37.59
site | Slice 197.11 197.11 197.11
Intra-off P Slice 2844.60 2814.96 2593.80
B Slice 0.00 0.00 0.00
Total 3041.92 3012.28 2791.12
SNR Y (dB) 37.51 37.49 37.48
| Slice 84.75 84.75 84.75
Intra-on P Slice 582.36 665.44 594.95
B Slice 0.00 0.00 0.00
Total 667.32 750.40 679.91
Crazy Turn SNR Y (dB) 40.95 40.81 40.91
Left | Slice 84.75 84.75 84.75
Intra-off P Slice 630.41 859.95 646.94
B Slice 0.00 0.00 0.00
Total 715.37 944.91 731.90
SNR Y (dB) 40.87 40.56 40.74
| Slice 94.61 94.61 94.61
Intra-on P Slice 808.23 886.27 832.26
B Slice 0.00 0.00 0.00
Total 903.05 981.09 927.08
Dancing SNR Y (dB) 38.50 38.49 38.47
Light | Slice 94.61 94.61 94.61
Intra-off P Slice 1058.33 1180.74 960.85
B Slice 0.00 0.00 0.00
Total 1153.15 1275.56 1055.67
SNR Y (dB) 38.46 38.36 38.32
| Slice 68.03 68.03 68.03
Intra-on P Slice 304.02 315.85 308.73
B Slice 0.00 0.00 0.00
Total 372.26 384.09 376.97
Intern On SNR Y (dB) 41.70 41.60 41.61
Bike | Slice 68.03 68.03 68.03
Intra-off P Slice 330.35 341.11 336.24
B Slice 0.00 0.00 0.00
Total 398.59 409.35 404.48
SNR Y (dB) 41.67 41.44 41.48
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With the use of H.264/AVC Baseline Profile, theserio B-frame in the encoded
sequence. When the four video sequences were ehosdey Main Profile with Intra
mode enabled, and with one B-frame inserted betvwe&enP-frames, the resulting
frame sequence was IBPB. The average bit rate Aiiflé@e shown in Table 2-2. All
the four video sequences show a lower averagadivdah small loss of SNR when
Intra mode is enabled. While the SNR losses asetlen 0.5dB for all sequences, the
average bitrate is reduced by at least 14%. Thexefor low bitrate H.264/AVC
video encoding, the intra-mode and B-frame insersioould be enabled.

Table 2-2: Average bitrate of video sequences initfa mode enabled. The video sequences were
encoded with H.264/AVC Baseline Profile and Maiofile with EPZS search algorithm

Search Algorithm
Sequence EPZS @ H.264| EPZS @ H.264
Main Profile Baseline Profile
| Slice Bitrate (kb/s) 199.97 197.11
Construction P Sl_ice B_itrate (kb/s 1292.30 2137.77
site B Slice Bitrate (kb/s 437.63 0.00
Total Bitrate (kb/s) 1930.12 2335.09
SNR Y (dB) 37.04 37.59
| Slice Bitrate (kb/s) 139.34 84.75
Crazy Tumn P Sl_ice B_itrate (kb/s 104.95 594.95
Left B Slice B_ltrate (kb/s 2.51 0.00
Total Bitrate (kb/s) 247.02 679.91
SNR Y (dB) 39.66 40.91
| Slice Bitrate (kb/s) 96.42 94.61
P Slice Bitrate (kb/s 615.71 832.26
Dancing Light | B Slice Bitrate (kb/s 94.67 0.00
Total Bitrate (kb/s) 807.02 927.08
SNRY (dB) 38.19 38.47
| Slice Bitrate (kb/s) 69.16 68.03
P Slice Bitrate (kb/s 213.62 308.73
Intern On Bike | B Slice Bitrate (kb/s 37.93 0.00
Total Bitrate (kb/s) 320.93 376.97
SNRY (dB) 41.43 41.61

2.4.2 Evaluation of Motion Vector

The MVs around the moving objects in the selectathés are examined. Figure 2-4
and Figure 2-5 show the MVs of macroblocks in th@4/AVC encoded video

streams. Green grid lines in the images in Figaregshe macroblock boundaries. The
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amplitude and direction of motion vectors for eatdicroblock are represented by the
length of the green line from the centre of eacltnoialock. There are macroblocks
shown with either green or red boundaries, reptasgmmacroblocks encoded in

inter-frame or intra-frame mode respectively.

For Construction Site and Intern on Bike video ssupes, the observing vehicle is
moving on a straight flat road. It is expected timaist of the MVs of macroblocks for
static objects should apparently be emerging from drea near the centre of the
image. However, as observed from Figure 2-4(b) Biglre 2-5(h) for the two
sequences mentioned, there were many MV outligrgipg irregularly, especially on
the road region where the texture was weak. Siheeptimary goal of the motion
estimation algorithm for H.264/AVC encoder is tauee the amount of information
between successive frames, the resulting motiontokecare not necessarily
representing the true motion of the object. Wheradicular macroblock has a weak
texture, there is the aperture problem (Trucco ¥edri, 1998) resulting in the
deviation of MVs from the true motion. Also, theacige in lighting conditions and
the Rate-Distortion parameter will affect the blogiatching result of the motion

estimation algorithm, leading to estimation error.
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Sequence Motion Search Algorithm (H.264 Baselirdil)
Full-search UM Hexagon EPZS

(a)
Construction
site
(Intra-on)

(b)

Construction|™
site

(Intra-off)

(€)
Crazy Turn
Left
(Intra-on)

(d)
Crazy Turn
Left

(Intra-off)

Figure 2-4: An overview of H.264 encoded snapshof ovideo sequences. Each video sequence is
encoded with intra-mode on and off, using threéedi#int motion search algorithms. The red and green
boxes shown in each encoded snapshot are macrgbleckoded in intra-mode and inter-mode
respectively. The green lines shown at each maac&bindicates the amplitude and direction of the

motion vector.
It is also noticed that the road surface usuallg hasmooth texture. The motion
estimation algorithm will simply use SKIP mode tpresent the motion of these
macroblocks. This is erroneous to the true motitthoagh it does not affect the

coding efficiency significantly.
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@ |
Dancing
Light
(Intra-on)

® |

Dancing

Light
(Intra-off)

(9)

Intern On|
Bike
(Intra-on)

(h)
Intern On|
Bike
(Intra-off)

Figure 2-5: An overview of H.264 encoded snapshi@nother 2 video sequences. Each video sequence is
encoded with intra-mode on and off, using threéediint motion search algorithms. The red and green
boxes shown in each encoded snapshot are macrst#ackded in intra-mode and inter-mode
respectively. The green lines shown at each maac&hhdicates the amplitude and direction of the
motion vector.

When examining more closely to the areas near ¢héches at the front as shown in
Figure 2-6 and Figure 2-7, it was found that thedenased for encoding a particular
macroblock was not necessarily the same when diffenotion estimation algorithm

was used. When the vehicle at the front is far afmaym the camera, its size in the
image is smaller. Also, since the relative moti@tmeen the camera and the vehicle
at the front is smaller than that between the caraad background stationary objects,
the encoder tends to encode the area of the freimiche with larger macroblocks,

such as 16x16, 8x16 and 16x8. For the Crazy Tufndeguence shown in Figure 2-4,
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there are more MVs around the vehicle at the fdust to smaller partitions were used
to represent the motion of the vehicle relativen® movement of the camera. Some
of the macroblocks of relative slow moving objectn possibly be encoded in
Intra-mode, leading to a loss of motion informatwinthe moving object. When an
object is far away from the camera, the numbentdrimode encoded macroblocks

may be too small to determine whether it is a mgwhbject, or is a static object.

Sequence Motion Search Algorithm

Full-search UM Hexagon EPZS
(a) = i
Constructig = ; _ s

n site 2l rhisfisell diliis _ ? e
(Intra-on) -

® |== :
Constructio = N = . . : -

n site ; st i il
(Intra-off)

(©)
Crazy Turn
Left
(Intra-on)

(d)
Crazy Turn
Left
(Intra-off)

Figure 2-6: Macroblocks and encoding mode for déffé Daimler video sequences. Sequence
Construction site shows small number of macrobldackspresent the movement of front vehicles.
Sequence Crazy Turn Left shows MVs due to thetleft action of the subject vehicle.
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Figure 2-7: Macroblocks and encoding mode for défifé Daimler video sequences. Dancing Light and
Intern On Bike sequences show small number of ndacks to represent the movement of the front
vehicles.

One of the important observations was that the M¥ar the focus of expansion (FOE)
and on relatively slow moving objects are small antiprecise. Again, FOE is the point
where objects in the scene are apparently emeffgong when the camera is moving.

This observation is summarised in the Section 2.4.3

FOE is different from the principal point as wed #he vanishing point of the camera.
The Principal point refers to the point in the camecreen that corresponds to the
optical axis of the camera. Vanishing point carrdgarded as the point in the camera
screen where two physical parallel lines, suchhasrailway, are merged due to the

perspective view of the camera. The vanishing pwirthe same as the principal point
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when the camera is installed with zero rotationagles. FOE is the same as the
vanishing point when the camera is moving in stralme along theZ-axis. Assuming
the camera is installed with zero rotational angllee difference between FOE and the
vanishing point (or the principal point in this eagan be expressed as Equation (2.6)
(Trucco and Verri, 1998), wherg( yo) is the FOE, &,cy) is the principal pointf is the
focal length of the camera/x and V, are the velocities of the camera Xa and

Z-direction respectively.

% =GtV IV,

2.6
Yo=C,+V, 1V, (26

2.4.3 MVs Near FOE and on Relatively Slow Moving Ob jects

Figure 2-8 shows an image overlaid with two conseedrames with frame interval of
0.33 seconds. Red lines in the image show the MVsadure points found by Shi and
Tomasi method (1994). Green lines in the image sHwmvideal optical flow field
emerging from the FOE. Most of the MVs shown arenfiiog to the FOE although
there are outliers due to the independently movetgcle at the front and feature point

tracking errors.

Another observation on the image shown in Figugi2-that the MVs near the edges
of the image have a relatively large amplitude carag to those near the centre of the
image. Consider the independently moving vehiclehat front near the FOE with

relatively slow speed to the observing cameraathplitudes of MVs near the FOE are
small. It is difficult to distinguish whether the\l'8 are the result of far static objects or

the relative slow speed moving vehicle near the FOE
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Figure 2-8: Image showing two overlaid consecutimages. Red lines show the optical flow field
found by generic KLT feature point tracking algbnit. Green lines show the virtual optical flow field
emerging from a point known as the FOE.

The MVs obtained by the Shi and Tomasi method lxa&tihg point vectors, whereas
those obtained by H.264/AVC encoders are fixed tpaiith up to a quarter pixel
precision. Given the limited precision of MVs ofethH.264/AVC encoder, the
amplitudes of MVs of relatively slow moving objectspecially those near the FOE, are
indistinguishable from the MVs of static objectshiS observation is obvious in the
“Intern-on-Bike sequence” where a P-frame encodedenshot is shown in Figure 2-9.
Some of the MVs of macroblocks on the road and dlosv relative speed moving
vehicle are highlighted with red stars and redlegcThese MVs have the same or small
amplitude difference. It is not possible to distirglh the moving object and static

regions by examining the MVs alone.
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Frame 13 [Dec 12]

* MV = (-0.25, 0.5)
* MV = (-0.5, 0.5)

Figure 2-9: Selected MVs near the FOE on the roaldom the slow relative speed moving vehicle. The
amplitude of MVs is either identical or has smatfifedence, making it difficult to distinguish mowgn
objects and static regions.

2.5 Road Region Detection

The detection of both lane markings and moving abjen the road can result in false
detections due to various reasons such as falsebgnised edge features, texts on the
road, unreliable MVs from the H.264/AVC encoder dhd chance of having regions

with similarities to the features of moving vehgle

The ever-changing scenarios on the road make laoh detection and moving object
detection a challenging task. Knowing that the idieation of road regions can help

reduce the region of interest (ROI) for both lae¢edtion and moving object detection,
and that the relatively uniform colour and textuoésoad surfaces can provide a more
generic set of features for recognition. The roagian detection algorithm needs to
handle situations with different objects on thedrol is also desirable to suppress the
road detection error due to variations of illumioatcaused by shadows and reflections.

It must also be computationally efficient for reiahe applications.
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For monocular vision based road detection algosthtine road colour is the preferred
feature to be analysed (He and Wang et al., 200tgrR and Graf et al., 2008, Tan and

Hong et al., 2006, Sotelo and Rodriguez et al.4200

For colour analysis, the popular colour space useckd-green-blue (RGB) (He and
Wang et al., 2004, Tan and Hong et al., 2006) @&-d$aturation-intensity (HSI) (Rotaru
and Graf et al., 2008, Sotelo and Rodriguez e28D4). Since the HSI colour space has
separate colour and light intensity componentsyethe less influence on colour
recognition caused by the lighting variations otassive images (Ikonomakis and
Plataniotis et al., 2000). However, the colour espntation in HSI colour space is
unreliable if the intensity component is too lowhefefore the colour analysis in dark
and shadowed areas in an image is not satisfaGdwgrez and x et al., 2011). For the
use of RGB colour space for road region detecttbere have been studies on the
classification of road model by edge detection pacspective transformation (He and
Wang et al., 2004), histogram of the colour spasiegugreen and blue channel only
(Tan and Hong et al., 2006), illumination modelling a mixture of Gaussian models
(Lee and Crane, 2006, Ramstrom and Christenserh) 28@amstrom et al. have also
reported a method with the combined use of diffecatour spaces, road shape models
and multiple mixture of Gaussian models for impwvead region detection on roads
with no marking (Ramstrom and Christensen, 2005)weéi{er, how the number of
Gaussians is selected and how the road modelsasheudefined are trade-off questions
for achieving good performance against differemidroonditions versus the computation

cost.

Also, based on the study on shadow removal by éterdposition of an image into two
separate images representing the variation inataftee and the variation in illumination

(Finlayson and Hordley et al., 2006), Alvarez et @011) proposed a method that
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combined the use of such shadow removal technigdeaalikelihood-based classifier
using the normalised histogram of road region atbttom part of the image in the HSI
colour space. Similar to the shadow removal algoritproposed by Finlayson et al.
(2006), Alvarez et al.’s method requires a camatdi@tion procedure to estimate the
“direction of illuminant variation”. Alvarez et &. method reported a computation time
of 600ms for images of resolution 640x480 using MLAB code, and an estimated

computation time of 40ms if the code were impleradnh C++.

Nevertheless, all the methods proposed had cagbsunsatisfactory road detection
results. These cases include images with shadoves;exposure, under-exposure, as
well as interferences due to lane markings and weotrroads. The ability of computing

the road region in real-time remains a challenge.

2.6 Practical Implications

Recently, there have been many aftermarket proguotuced with a forward looking
camera known as “Car Camera’. They are mountetdomMindshield for recording the
environment during driving for security issues. oexamples of these Car Cameras are
shown in Figure 2-10. These products are capabpedbrming real-time H.264/AVC
video recording to the SD-card inserted into then@as with resolution ranging from

640x480 (VGA) to 1920x1080 (HD).

For ADAS, a camera is also required to be mouretthé windshield. Instead of video
recording, image processing algorithms are exectaedbjects and lane detection.

Warning signal will be issued to alert the drivertbe potential hazard.

39



Figure 2-10: Example of Aftermarket Car Camerapafal (b) Built-in Infrared LEDs for night time
illumination. (c) Inclined angle to fit more tiglitto the windshield. (d) Movable lens for easiemeaa
adjustment (source: http://www.hktdc.com).

One of the possible improvements for Car Camerak ADAS is the shared-use of
motion vectors for both video encoding and movitgeot detection. With the optical
flow evaluation being replaced by the ME functiomni the video encoder, any
additional computation induced by moving objectedgbn can be reduced. This implies
that the functions of Car Cameras can be enrichgd ADAS functions without

significantly increasing the hardware cost.

Although there have been studies on the recogniiomoving object on a moving
platform by using optical flow, there have been f&wdies on moving object detection

on a moving platform using motion vectors (MVs)rr¢he video encoder.

According to a paper that discussed the markettragegiies of Chinese automotive
brands (Yan and Xu 2012), the image of Chinesenantive brands are weak. Even
though the Chinese auto brands are moving upwatketenanufacture of more luxury
cars, Advanced Driver Assistance Systems such a¥&@nd FCWS are still lacking.

Chinese automotive brands are still facing higtsguee on the cost and the provision of
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feature rich functions to compete in the China raarkhe idea of shared-use of motion
vectors for video coding and moving object detetitan be one of the approaches to
provide feature-rich ADAS function at a lower costcording to Zhang et al. (2014), at
least one Digital Signal Processor is requiredréai-time optical flow evaluation. It is
estimated that 30% of the hardware cost can bedshwe to the elimination of a Digital

Signal Processor for optical flow evaluation.

2.7 Research Focus

With the literature review performed, it was fouhdt the algorithms and techniques for

object detection for ADAS application and for videmding are advancing rapidly.

There have been studies on feature based vehidetid® methods. These methods are
able to achieve a high true-positive detection. fdtavever, each viewing perspective of
the vehicle requires a set of feature and clasdibiesuccessful detection. This implies
that a larger number of samples is required fanitng the classifier for each viewing
perspective. Also, there is an additional compaieti cost for detecting vehicles at each
additional perspective, implying increasing hardsvaosts to cope with the additional

detection.

In this regard, the non-parametric moving objededi&on based on the use of optical
flow fields is favourable for its capability on @etion without prior knowledge of those
objects. However, the high computational cost fptiaal flow field and ego-motion

estimation using the optical flow results is unfarable for real-time embedded

applications.
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Another observation is on the problem and companaticost for ego-motion estimation
based on optical flow fields. The ego-motion par@rseare required to be evaluated
frame-by-frame so that ego-motion compensationbeadone in each successive frame.
These methods also require reliable flow fieldsrfreuccessive frames on static objects
or road surfaces. The availability of these floelds can be a problem in case that the
image is occupied mostly by moving objects, or tiare is significant change in the
lighting conditions. Therefore, the research digetis to make use of on-board inertial
sensors to estimate the ego-motion parametersetitaggto more reliable ego-motion

estimation and offload the computational resoufaaa the embedded processor.

On the other hand, it is observed that the motientars from a H.264/AVC video
encoder may be able to replace optical flow fid@@dsnon-parametric moving detection.
H.264/AVC video encoders are widely used in consupr@ducts and are readily

available from off-the-shelf semiconductor chips.

Although there have been studies in making use atfam vectors of the H.264/AVC
video stream for moving object detection in theadlr side, it was found that there are
few studies related to combining the algorithms AAS and video coding in the
encoder side so that more resources of the embetd=dprocessor can be shared
without a significant impact on the video codindgiaéncy and object detection

accuracy.

The block diagram shown in Figure 2-11 illustraties ADAS and H.264/AVC video

recorder 2-in-1 system with shared use of functitaacks. It shows the shared motion
estimation function and the shared motion vectBss.sharing the motion estimation
block, the most time consuming and processor demgnuart of the system can be

combined. Successful combination gives a significaving in computational cost to
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achieve real-time performance. This also meangaifsiant saving in the hardware

cost.

H.264 encoder

o |E|tstream

+ A | Entropy | | output
'\‘)7”’ Transform }—»IQuantlzmion’—m

Frame store
(ref. frame)

Lane '. Moving object |— ——————————————— J
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object
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Figure 2-11: ADAS and H.264/AVC video encoding 2tisystem with shared functional blocks. The
block diagram shows the motion estimation and nmotiector functional blocks are shared for the use
of video coding and moving object detection.

Therefore, the research focus was to combine thé&omovector estimation for

H.264/AVC video encoding and moving object detattibhe technical challenge was
on the research and development of suitable algositto perform both moving object
detection and video coding functions in real-tinffdhe resulting system required a
balanced performance of moving object detectiodewicoding efficiency and video

quality.
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2.8 Chapter Summary

This Chapter has reviewed the methods commonly @sedehicle detection. These
methods can be classified as feature based, ®altiftased and optical-flow based
methods. It has also described the problems with ube of H.264/AVC MVs for
moving object detection. In particular, the MVsrrdd.264/AVC coding have limited
precision of up to 1/4 pixel only, and the amplagadon relatively slow speed moving
objects are small, leading to large ego motion camsption error. Also, the design goal
of the motion estimation algorithm for H.264/AVCdeio coding is for the best possible
video compression rather than the accuracy of mewtsof objects. All these problems
hindered the use of the MVs from a H.264/AVC encdde moving object detection on

a moving platform.

This Chapter also covered literature review on rieples associated to MV based
moving object detection. This includes planar gaxa¢valuation, ego motion estimation
and road region detection. Based on the literatewvew performed, it is confirmed that
there can be more in-depth research on the shaeduMVs from a H.264/AVC

encoder for moving object detection, leading tordeearch focus of this project.
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3 Algorithm Framework

Based on the literature review and a series of raxats, an algorithm framework for
moving object detection with the shared use of Mksn a H.264/AVC encoder is
proposed. Figure 3-1 shows the major functionakchkdoof the proposed algorithm

framework.

The inputs to the system consist of a camera w#ix-alegree-of-freedom inertial sensor
mounted directly to the camera sensor board, aedvéhicle speed signal from the
vehicle speed sensor. They output dynamic parameteich include the 3-axis rotation
angle, acceleration and angular speed, as weheasedhicle speed. The vehicle speed
sensor outputs square pulses when the vehiclevsnnorhe number of square pulses is
proportional to the moving speed of the vehicleeSehdynamic parameters are used for
ego motion estimation and FOE estimation. By the ofinertial sensors and speed
sensors for ego motion estimation, uncertaintiegh&nquantity and quality of good
feature points for image based ego motion estimaan be eliminated. The

computation cost can also be reduced significantly.

The camera captures successive colour imagesnfeéadlithe H.264/AVC encoder for
video recording. During the encoding process, M¥&s generated. The colour images
are also used for road region detection. The redulbad region detection is used for
reducing the region of interest (ROI) for movinghidte detection so that the
computation can be achieved in a shorter time.R@¢is further reduced by using the
results from MV output and FOE estimation. By radgahe ROI, the computation time

can be reduced as only the areas that potential tmaving objects will be processed.

The proposed algorithm has divided the moving dbj@tto two categories; relatively

fast and relatively slow moving objects respectiv®ifferent algorithms are proposed

45



to detect moving objects in these two categoridss Bpproach is to supplement the
erroneous and imprecise MVs on relatively slow mgvobjects, so that the detection
rate of these objects can be guaranteed. In then rieee, those objects that move
relatively fast can be taken care of by the redyifast speed moving object detection
algorithm. After successful detection of movingeatts, a tracking algorithm is applied

to reduce the frame-to-frame computation time.

'\Jjﬁ
\‘A\I?; . Vehicle speed sensor
) _Lﬂ E] ‘
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- Speed,
3-axis angular speed, Ego-motion
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inertial sensor Focus of Expansion ego-motion Fast relative speed
Estimation compensation mowng object detection
‘ I Id
—
colour Image H.264/AVC —»L MV output region of interest (ROI)
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Figure 3-1: Major functional blocks of the proposdgdorithm framework
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3.1 System Preparation

3.1.1 Configuration for Video Encoder

The proposed algorithm framework requires MVs franH.264/AVC encoder. The
JM18.4 open-source encoder (JVT, 2012) was chasemabdification to output the

required MVs.

Since the MVs may have different block size, itniere convenient to unify the block
size that each MV is representing. Off-the-shedi-tene H.264/AVC encoders usually
sacrifice the minimum block size for motion estimoatto 8x8 (Tl, 2015a, Freescale,
2015) rather than the minimum 4x4 block size spatiin H.264/AVC encoder, the
block size of each MV was set to 8x8 during thisjget. That is, mode 5, 6 and 7
shown in Figure 2-3 are disabled. With these maliksbled, the block size of MVs in
a frame will have the size of 8x8, 8x16, 16x8 a®a16. Those MVs of block size
larger 8x8 were regarded as multiple blocks of §iz& with the same MV value, as

illustrated in Figure 3-2.

one 16x16 foura; two 16x8 g foura} two 8x16 foura}s;
—> [ =5 | ] —> [
- =N N :L * TN
(a) (b) (c)

Figure 3-2: Transforming MV for different block sizo represent the same block size of 8x8
During the motion estimation stage, the MVs werpogted with block size of 8x8 for
each inter-frame encoding process. Since blocksdmttin SKIP mode may represent
weak texture blocks with small relative motion, M8 these blocks were marked

when SKIP mode was used.

The desired video frame rate is 30 frames per sedqfps) or above due to the

persistence of vision of human eyes. The time walebetween successive frames is
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therefore 33ms. This time interval is too shortgige sufficiently large MVs for
moving objects on the road, especially those ratgtislow moving objects. Therefore,
the time interval between frames for motion estiaratvas increased by inserting one
B-frame between every two P-frames. Consequentlg, time interval between
P-frames for MV output was 66ms, whereas the vidame rate was kept unchanged

at 30fps. So, the resulting frame sequence is IBfeBRideo encoding.

3.1.2 Camera Calibration

The objects appearing in the screen are requireeé telated to their physical locations
so that the size and distance of these objects bmrestimated for detection
confirmation. Therefore, the camera needs to béresdd to relate the screen

coordinates to the physical World coordinates.
3.1.2.1 Definition of the Coordinate Systems

Figure 3-3 illustrates the definitions of World cdmates, camera coordinates, and
screen coordinates. All the coordinate systems @ght-handed. The World

coordinatesV is with theX-, Y- andZ-axis shown on the ground plane. The camera
coordinate<C is with Xc-, Y& andZc-axis and there is a transformation from the World

coordinate system to the camera coordinate systémretationR, and translatio,.

The rotation about th&-, Y- and Z-axis is shown asf,, €,, and &, respectively.

The positive direction is defined as having clod®vrotation when looking from the

origin of the respective axis.
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C camera coordinates

Ground plane

Figure 3-3: lllustration of World coordinates, cameoordinates, and screen coordinates. There are
RotationRwand TranslatiorTw from the World coordinates to the camera coorémathe screen
coordinates start from the top left corner of aage.

The parameters describing the camera calibraticlude the intrinsic parameters and
extrinsic parameters. Intrinsic parameters refetht® focal length, pixel size of the

camera sensor, and the coordinates of the prinpiat. Extrinsic parameters refer to

the height of the camera above the ground plarteh §8,), yaw (6,) and row §,)

angles of the camera coordinates with respectagitbund plane.

Since there is only one camera in the system, épthdinformation or the distance
between an object and the camera cannot be obtaiivedtly from the two
dimensional screen coordinates of the image. ldstdee distance of an object is
estimated by the trigonometric calculation witherehce to a flat surface, such as the
ground plane. Figure 3-4 shows a camera with noo4zich angle .. The vanishing
point on the screen can be regarded as the mepging of two parallel lines running
along theZ-axis direction. If the pitch, roll and yaw anglefsthe camera are all zero,
the optical axis is passing through the principaihp and aligning with the vanishing

point.
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Figure 3-4: Camera with non-zero pitch an@. The vanishing point on the screen is not aligwitd
the optical axis.

For a point PW:[XW Y, ZN]T on the World coordinates, the corresponding point
on the camera coordinates B =[x Yy, z] . p*=[x v, 1 is the
corresponding point on the screen coordinates. rEt@ionship betweenP, and

p°can be expressed as Equation (3.1).

=[x % z] =R(B-TD 3.1
The relationship betweemp® and p° can be expressed as Equation (3.2), wKese

the intrinsic matrix of the camera. Therefore, Homm (3.3) can be derived by
substituting Equation (3.1) to (3.2).
=[x v, 4 =Kp (3.2)
=[x % J =KR(R-T) (3:3)
Equation (3.3) can further be written to Equati8m), where = -R, T, and [R, | {]is

the 3x4 matrix representing the rotation and traremh of the camera relative to the

World coordinates.[RN | t] is known as the extrinsic matrix of the camera.

s _ T _ T
=[x v I =KRIX Y Z 1 (3.4)
The Intrinsic matrixK is shown in Equation (3.5), wheré, and f  are the focal

length of the camera along tkeandy-axis respectively,c, and c, are the principal

points of the camera along tkeandy-axis respectively.
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K={0 f =c (3.5)

The extrinsic matriceR,, andT,, are shown in Equation (3.6) and (3.7) respectively

whereR,, R, andR; are the 83 rotational matrices aboit-axis, Y-axis, and Z-axis

respectively, 8, 6,, and g, represent the pitch angle about kaxis, yaw angle

about theY-axis, and the roll angle about tAeaxis respectivelyh is the height of the
camera above the ground pladds the horizontal distance along tAeaxis between
the camera and the origin of the ground plane. Withoss of generality, the distance
offsetd along the Z-axis between the World coordinatestarccamera coordinates is

set to zero.

1 0 0 [ co®), 0 sif,|[ co8 - s,
=0 cosf, - sirg, 0 1 O Sif, cad (
|0 sing, co¥, || - si®, O co8 0 0 !
1 0 0 ][ cod, cef, -cod, sird, si, (3.6)
=0 cosf, - sirg, sing, coY, 0
0 sing, cod, ||-sing coy, siH, sid, co8,
co, co, - ¢, s, s@,

=|cO,s6,+s0,9, @, cf,cd,-9 9, 8, -9 €,
56,56,-¢6, 6, @, 6,8+ & $ 8, &8,
, Where cand s denote cosirmad sine functions respectively

T,=[0 -h df
(3.7)
=[o -h o ford=0

One point to note is that Equation (3.4) can bemgen as Equation (3.8), where the

3x4 matrix with elemeng; is the result ofK[RN t]. Consider the case witfi,=0,

meaning that the corresponding coordinates arehergtound level, thex@ matrix
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with elements; can be re-written to ax3 matrix shown in Equation (3.9). Equation
(3.9) relates a point on the ground level in therd/@oordinates to a point on the
screen. Sinc® is a X3 matrix, it can be inverted td™ so that a point in the screen
can be related to a point on the ground surfadbanworld coordinates, as shown in

Equation (3.10).

; & Sy By Gy )
[Xs Ys 1] Tl &1 & &g az4[ X Y 4 ]] (3.8)
8y 8y 8y Gy

la, a, a, a, i
a, & a &% 0 7 1
a;, Ay Ay

8, a3 a4,
|81 Q3 Ay
8 833 8y

M[X, z, 1
[X, Zz, I =m7[x vy, (3.10)

x v, 1

(3.9)

BN X

3.1.2.2 Calibration Method

There have been many camera calibration algorithraposed. There are algorithms
trying to estimate the camera parameters by 3-[@reete objects (Tsai, 1987,
Heikkila, 2000), 2-D planar objects (Zhang, 200Qicthese, 2005) and even 1-D
objects (Zhang, 2004). Also, there have been atent@ estimate the camera
parameters by methods known as auto-calibratiorsedt-calibration (Civera and
Davison et al., 2012, Mitsunaga and Nayar, 199M§\end Zhang et al., 2010, Pernek
and Hajder, 2010). These auto-calibration methaoystd use feature points from
un-calibrated objects from multiple scenes. Autlibcation methods require reliable
feature points to get satisfactory results. Thegpuneement cannot be guaranteed in the

ever-changing environment on the road for autonecadipplication.
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The method proposed by Zhang (2000) is one of tlustnpopular calibration

algorithms. It uses a planar checker board thatbeaprepared by simply printing the
pattern on a paper. The checker board is then mesén front of a camera in different
orientations for capturing multiple images. Sinbe thecker board is a planar object,
the algorithm always assumes all the identifieduespoints has zero value in one of

the axes, such &%, of the World coordinates.

Therefore, Equation (3.4) can be simplified to Hopra (3.11), where; andr, are the

first and second column of tiR, matrix in Equation (3.4), andd =K[r, r, t] is

known as the planar homography matrix. By substiguall identified feature points in
the screen and World coordinates in each view teagn (3.11)H can be estimated
from the over-determined system by least-squanenggation method.

T T

[Xs ys l] :K[rl r2 t][xw YW 1]
: (3.11)
=H[X, Y, 1

In order to minimise the computational burden dueamera installation problems, the

camera was installed so that the rotation anglegbenextrinsic matrix were all zero.

Otherwise, sine and cosine calculations in theimsitr matrix would introduce

additional computational cost to the system, himderthe real-time performance.

Zhang’s camera calibration method can only helerd@ne the intrinsic and extrinsic

parameters of the camera after installation, itsdoet provide a method directly for

camera installation. Therefore, a new camera iiasiah method is proposed.

The camera module used in this project was desigvidtda six-degree-of-freedom
inertial sensor on-board, meaning that the pitoh,and yaw angles of the camera can
be measured accurately. The pitch and roll angldings from the inertial sensor are

used during the camera installation so that thehpaind roll angle are zero. The yaw
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angle of the camera with respect to the vehicleylmahnot be determined by the yaw

angle reading, an external checker pattern wastaseisure the proper installation.

Step 1: Focal Length Estimation

The focal length was estimated before the camesaingtalled into the vehicle. This is
because the distance of the camera to a definedtabjdifficult to measure after it is
installed in a vehicle. Figure 3-5 shows the sétupestimating the focal lengths of the
camera. It includes a checker board pattern pgntin a large piece of paper, an
up-right sign board, a laser distance checker an@ arogram for capturing the image
from the camera. The distance between the up-fogis#rd and the camera was
measured by a laser distance checker. The disw@iffeeence of the camera to the
left-side of the up-right board should be closehat to the right-side of the up-right
board. This made sure that the up-right board iskewed to either side of the camera,

minimising the distance measurement error.

Figure 3-5: Calibration Setup for focal lengthgtad intrinsic parameter of the camera

A simple pin-hole camera model was used for theéadce estimation. Figure 3-6

shows the pin-hole camera model with screen coateénshown in red, and the World
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coordinates shown in blue. The green line in Figdu&b) represents the location of
the camera, with focal lengtHfrom the origin. For a poirR,, in the World coordinates
[Xw Yo Za]", its corresponding poirgs in the screen coordinates at s f]' can be
estimated by the simple trigopnometry. The relatgmss expressed in Equation (3.12),
where €,cy) are the principal point of the camera, indicatthgt there is an offset
between the screen coordinates and the World auatei. The principal poing{c) is
assumed to be at the centre of the screen.

)(S = fXXW/ ZW+ CX
Y=Y,/ Z,+ ¢

image plane

image plane Yw v

(@) (b)

Figure 3-6: Simple pin-hole camera model. (a) O#fin of camera coordinates system and the screen
coordinates system. (b) Viewing fraxaaxis to the origin with the green line represegtime image
plane

For the checker pattern on the up-right board, sbeeen coordinates of the three
control points A, B and C, shown in Figure 3-7, evenitially selected manually via the
computer program. The sub-pixel corner of eachcssdepoint is found by searching
around the selected point with a search window ipé $x5. According to the
geometrical relationship of a simple camera moithel focal length$, andf, can then
be evaluated by Equation (3.13), wh¥geandHq are the distances in number of pixels
between control point A and C, and A and B respebtj Da, andDyc are the physical

distance between the control point A and B, andché @ respectively.

w (3.13)
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physical
distance Dab |¢

Hd in pixel

Control point A Control point B
(Ua, va) (ub, vb)

physical
distance Dac
Vd in pixel

Control point C
(Uc, vc)

(@) (b)

Figure 3-7: Checker pattern on the up-right boéayiPhysical dimension of the checker pattern. (b)
Coordinates and distance between control pointsimber of pixels.

After the focal length$, andf, were estimated. More control points could be $etec
to check against the value fpfandfy. If the deviation between these sets of values was

small, the values df andfy were accepted.

Step 2: Finding the Centre Line

To physically install the camera to the vehiclehwitero rotation angles, a simple
method that makes use of the centre line of thécleels proposed. Referring to Figure
3-9, A and A are the locations of two easily identifiable peitthat are symmetric
about the centre lined- They can be the corners between the front burapdrthe
front quarter panels or the left and right corradrthe engine hood near the head lamps,
or similar identifiable points, as illustrated img&re 3-8. These points are chosen to
minimise potential miss-location arising from thacartainty of featured locations

influencing the calibration result.
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Figure 3-8: lllustration of good symmetric positioior symmetric geometrical line construction for

camera calibration. The square boxes shown orethand right side of the vehicle indicate example
locations for good symmetrical geometrical line stouction.

With reference to Figure 3-9, the checker bannes wlace on the ground without
initially being aligned to the centre ling lof the vehicle. This was because the centre
line was not known until the markers,BCc and I were identified. Two non-elastic
ropes of equal length are used to make two straig@tsegments from Ato Bc and
from Ag to B¢ respectively. The meeting point Bf these two lines is marked with a
pin. The banner was moved so that the pin coultixieel to a corner of the checkers,

such as at fon the banner.

Figure 3-9: lllustration of alignment markings the centre line for camera installation. The banwién
checker pattern is not aligned to the centre limid the centre line is found.

Another pair of ropes of equal length that was &ntpan the length from Ato Bc
was used to mark the pin poing.GSince the lengths of these two ropes were thesam
the pin point G should lie on the same line.LThe banner was moved again so that

the pin point G is fixed at a position along the ling bn the banner. Similarly, pin
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point Dc was marked with another pair of ropes and the &apasition was refined so
that all the three identified pin pointg,BCc and I are fixed on the straight line.L
After this procedure, the line;lwas aligned with the centre line Lc. Thereforeg th

centre line of the vehicledwas found, as shown in Figure 3-10.

Banner with checker pattern

Figure 3-10: The camera installation process withdheck-board banner aligned to the centre lin®LC
the vehicle

Step 3: Alignment to Zero Rotational Angle

After the centre line of the vehicle was found, thetallation of the camera is
continued. Figure 3-11 shows the example snapshtiteoreal-time video captured
from the camera. Two perpendicular lines, one @amirg horizontal in red and the
other is drawing vertically in orange, was overlaimto the screen by the calibration
software. When the camera was not installed prgrthe beginning, the horizontal
and vertical lines formed by the checker patternttos banner placing on the level

ground were not aligned with the overlaid horizbatad vertical lines.

The camera was moved to a location where the onamgevas aligned with the centre
line Lc on the checker pattern banner. The yaw angleeo€éimera with respect to the

vehicle body is zero when the lines are aligned.
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Similarly, the position of the camera was refinedtkat the red horizontal line is
aligned with a horizontal line formed by the chackattern. The position of the red
line on the screen was adjustable by the calibmatadtware to facilitate the alignment.
When both the orange vertical line and the redZzontial line were aligned to the

checker pattern, the camera was installed with mdl@and yaw angles.

Finally, the pitch angle of the camera was chedkgedhe on-board sensor reading of
the camera. By adjusting the pitch angle of the eranuntil the pitch angle reading

reaches zero, the installation is completed.

Sensor angle -

Pitch: 0.x deg.
Roll: 0.x deg.
Yaw: x.x deg.

red line:
zero roll-angle lin

yellow line:
/ zero yaw-angle line \

Figure 3-11: An example video display with the sceaptured by the camera to be installed. It dees t
banner with checker pattern on the level groundoramge line is overlaid in the centre of the serge
indicate the line with zero yaw angle. A red honitad line is also overlaid at the bottom of theeser to
indicate the zero roll angle. The orange and meel dhould be aligned vertically and horizontally
respectively to a line formed by the checker pattar the banner.

Step 4: Camera Height Estimation

The installation height of the camera was estimétedsing the banner with checker
pattern placing on the level ground that was wkdjned as described in Step 2 and
Step 3. Figure 3-12 shows the configuration for @arheight calibration based on the
checker pattern placing on the level ground wite ttamera installation at zero

rotational angles. One very important point to nistehat the distanc&; from the
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camera to the checker pattern does not need todasured, ensuring more accurate
calibration result by eliminating the measuremertreof Z;. The screen coordinates of
the control points A B, P, P, Ps and R on the screen are first manually selected.
Then the exact coordinates are refined to sub-pe®blution. These control points
result in a set of Equation shown in Equation (B.fe! (3.19). The left side of these

eqguations are all available from the screen coatdm

Point A Y.=f,hlZ+¢q (3.14)
Point B, Y, = f,h/(4+d+¢g (3.15)
Point R x=fdlZ+c (3.16)
Point B x,=—-fd/ Z+¢ (3.17)
Point B X =fd/(Z+d+¢ (3.18)
Point R x,=—fd/(Z+d+¢ (3.19)

The difference of Equation (3.16) and (3.17) vyieletguation (3.20). Similarly, the
difference of Equation (3.18) and (3.19) yields &ipn (3.21), and Equation (3.14)
and (3.15) yields Equation (3.22).

x-%=24d/Z (3.20)

= f,/2,=(x - %)/ (2d)

X=x=2fd/(Z+ d
= £,/(Z,+d)=(%- %)/ (24
Ya= %= f,h(1/ Z-1/(Z+ d)
=h=(y,~ w)/[ 1/ 2-1/(Z+ d)]
By substituting Equation (3.20) and (3.21) into2@, Equation (3.23) is obtainedul.

(3.21)

(3.22)

can be evaluated by this equation.

h:(ya—yb),[(x— %)=(%- &)]
f 2f d

:2fxd (ya_yb)
fy (%)= (%= x)

(3.23)
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Z1+d

Z1+2d

Figure 3-12: Camera height calibration using a banvith checker pattern placing on the level ground

3.2 Ego Motion Estimation

The movement of the observer, also known as egomditas to be compensated in the
captured image sequence so that the actual motiohjects relative to the ground can
be obtained. This process is known as ego motiampeasation. It is an important step

to identify moving objects in the scene.

Although there has been much research on ego metibmation based on successive
images captured from a moving camera, there dtersiny exceptional cases that the
estimated ego motion is not reliable. For instanice,weak texture of the road region
can give ambiguous feature points for optical flbeld estimation, and there can be
insufficient number of feature points available égo motion estimation. Also, there can
be rapid intensity change in successive imagesingatb unreliable optical flow

estimation.

In addition, ego motion estimation methods mentibme Chapter 2.3.2 require the
extraction of feature points, followed by estimgtthe optical flow fields of these points.
Because of the block based nature of MVs from th26#W/AVC encoder, the MVs

cannot be used directly for ego motion compensathuiditional processes such as
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outlier removal and feature point detection in ebldtk are required before the MVs
can be used for more reliable ego motion estimafitvese processes add computation

overhead to the system and will affect the reaktperformance of the system.

In order to achieve reliable ego motion estimatemmd the real-time performance
requirement, the information provided by the sixp@e-of-freedom sensor and the

speed sensor were utilised.

The MVs generated from the H.264/AVC video encodlere compensated by the MVs
due to the ego motion of the camera. The dynamianpeters of the moving camera,
such as translational and rotational speeds, pitthand yaw angles, are available from
the six-degree-of-freedom inertial sensor mountiivgctly to the camera board. The
vehicle speed of the ego vehicle is also avail&ol® the speed sensor readily available

in the vehicle.

With the information from the inertial and speeds®s, the orientation and ego motion

of the camera can be estimated more accurately.

3.2.1 Planar Homography Estimation

Given the camera intrinsic and extrinsic parametaes obtained from the initial
calibration method, the dynamic yaw and pitch amigian be measured by inertial
sensors with negligible roll angle, and the vehisfeeed can be measured by the
vehicle speed sensor. When the camera operate&raivan frame rate, the distance
travelled by the vehicle on a ground plane can bésoalculated.

Referring to the definition of coordinate systementioned in Chapter 3.1.2, a point

P, at (X,,Y,, Z,)' on the World coordinates has its correspondingtpgi’, at

(X_1» Yy, Z_)" ON the camera coordinates at tifig, and p’ at (x,Y,Z)" on the
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camera coordinates at tinig . The time difference betweéh.; and T; is the time

duration between successive frames. The orientaflomepresents the pitch angle

about thex-axis, €, represents the yaw angle aboutYhaxis, and g, represents the

roll angle about th&-axis. The transformation from the poing’, to the point p;

is expressed in Equation (3.24), whekeis the ground plane homography matrix
shown in Equation (3.25) (Longuet-Higgins, 198®),is the camera rotation matrix at
the previous frame which is expressed in Equati®26), R; is the camera rotation
matrix between the successive frames which is esprein Equation (3.27] is the
translation of the camera between successive fr&&28),n' is the unit normal vector
to the ground plane in the camera coordinatesna¢ Ti.; which is expressed in
Equation (3.29)h is the height of the camera from the ground plare rotational
matrix R; is actually an approximated matrix where the rotetl angles are assumed

to be small between successive frames.

-R[ - g

3.24
_ RC[I- R.T. j o (3.24)
= Ap,
A= R( R Tj (3.25)
co, co, -cl, 9, s,

R,=|c6,s6,+s6, 6, @&, c6. -9 9,8, -9 €,
s0,s6,-¢c0, 6, &, 6. A+ & 9 8, & O,
, Wwherec and denote cosine and sinetions respectivel

(3.26)
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1 -36), 39,

R =| 06,+00,36, 1-360606, -0
| 38,06,-00, B, +3000, 1

- (3.27)
1 -0, %,
~| s, 1 -9
-9, @, 1
T=[vt vt vt (3.28)
—Ccosg, sing,
n" =| cosd, cod,— si), sid, sif, (3.29)

sing, cod, + co¥, sif, sid,
The normalised image coordinates of at (x,V,z) is p°=z(%, y,1)' where
X=%x/7 ., %=%/7. Let p’=(u v 1) and p>,=(u, v\, 1) be the
coordinates on the screen at timigand T.; respectively, Equation (3.24) can be
rewritten as Equation (3.30), wheke is the camera intrinsic matrix expressed in

Equation (3.31)M=KAK ™ is the homography matrix relating the point onsheeen in

the previous frame and the current frame.

P = KAR, = KAK™ |, = M,

0= Mg (3.30)
-1
f, 0 c,
K=l0 fy C, (3.31)
0 0 1

3.2.2 Ego Motion Compensation

The matrixM in Equation (3.30) can be used for ego motion camsption. Figure
3-13 and Figure 3-14 show the MVs due to ego motibthe camera only. Both
figures display the MVs at 16x16 pixel interval foigher clarity. The motion of the

camera in the frame shown in Figure 3-13 consisstraight line motion only, there is
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a clear FOE from the centre location of the scrdencontrast, the motion of the
camera in the frame shown in Figure 3-14 consisteravard and angular movement.
The resulting MV directions are the combined matiolue to the forward motion and

the angular motion.

One point to note is that the matrM in Equation (3.30) represents the planar
transformation between the point in the previoud aarrent frame. All points are

assumed to be lying on the ground plane only.
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Figure 3-13: Display of MVs due to ego motion ornfjne MVs are displayed at 16x16 pixel interval
with vehicle speed and camera parameters from framber 10 of the “Intern on bike” sequence of the
Daimler sequence.
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Figure 3-14: Display of MVs due to ego motion orfjne MVs are displayed at 16x16 pixel interval
with vehicle speed and camera parameters from fram@er 202 of the “Crazy Turn” sequence of the
Daimler sequence.
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With the presence of the H.264/AVC encoder, anabg¢ point ps=(u, v, 1)

on the screen at the current frame is related fooiat pf=(u, v, 1) in the

previous frame by Equation (3.32), whedg is the MV found by the encoder.

pr=p,+4, (3.32)
The resultant MV g, evaluated by the encoder is the combined resuti®MV J;
due to the ground truth motion of the independenttwing object and the MVJ.
due to the ego motion of the observer, as exprasseduation (3.33). Since), and
o are known from the video encoder and the ego matfdhe observer respectively,

the ground truth MV of the objedt, also known as ego-compensated MV, can be

evaluated using Equation (3.33).

& =0 +0, (3.33)

3.2.3 Focus of Expansion Estimation

The Focus of Expansion (FOE) is the point in theeec where static objects are
virtually emerging from. In the proposed algoritiior MV based moving object
detection, the FOE is used as the reference pomfiriding the direction of MVs.
Static objects have MVs with directions pointingttee FOE. Therefore, MVs with
direction not pointing to the FOE is an indicatmirexistence of independently moving
objects. The FOE is evaluated by the on-boardialex¢nsor rather than the estimation

methods making use of features points in the cagtimages.

When the ego vehicle moves on the road, the camgr@&xperience 3-dimensional
dynamic motions. By making use of the camera cafibn method mentioned in
Chapter 3.1.2, the camera has been installed with @tch, yaw and roll angles when

the vehicle was stationary on a level road.
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When the vehicle is moving in a straight line olewel road, the camera’s pitch angle
relative to the road will vary due to pot holes amdevenness of the road surface. The
camera’s roll angle also varies due to the samsoreaSimilarly, when the vehicle is
moving around a bend on the road, its roll and yawles vary according to the
angular speed of the vehicle. The roll angle is ttu¢he lateral acceleration during
cornering leading to change of height of susperssemd tire deformation. The yaw

angle is due to the angular translation of thealehalong the bend of the road.

Since the yaw angle between the camera and thecleels fixed by the rigid
installation, the measured yaw angle between sasee$rames is solely due to the
angular translation on the road. Similarly, thd aoigle is due to the angular speed

induced lateral acceleration and the un-evennedseabad.

The pitch angle is more complicated. It is dueh® tin-evenness of the road, the ego
vehicle’s acceleration in thé-direction, and the inclination of the road relatito the
earth plane. As illustrated in Figure 3-15 withehile travelling on an inclined road.
If the camera is installed with zero pitch anghe aangle between the camera optical
axis and the road plane is zero. However, the palogle measured by the inertial

sensor is actually the angle between the eartle@ad the road plane.

Therefore, the gradient of the road will offset thieh angle measurement. It has to be
compensated to reflect the true pitch angle betwbhencamera optical axis and the

road plane.
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6. = pitch angle measured by inertial sensor )
6x= camera pitch angle w.r.t. road surface o ans
0= road gradient op

1 903 Earth plane
]

Figure 3-15: lllustration of a vehicle on an inééroad, the pitch angle measured by the inegiadar
is the angle between the road plane and the ekatle pather than the angle between the cameraabptic
axis and the road plane.

The camera pitch angle to the road plafje can be interpreted as the summation of
instantaneous change and long-term change of pitghes represented by Equation
(3.34), wheredg, is the instantaneous pitch angle measured betweenessive
frames, 6, (t)is the pitch angle reported by the inertial sersthe current frame,
©is the long-term accumulation of the pitch anglattban be calculated by the
moving average of the reported pitch angle overptst few frames as formulated in
Equation (3.35), where is the number frame for calculating the movingrage. The
instantaneous change is contributed by the un-egsnof the road surface and the
vehicle’s acceleration. The long-term change idrdmuted by the gradient of the road

relative to the earth plane.

6,=00,+6,()-0 (3.34)
l n-1

G:EZHX(t—i) (3.35)
i=0

By making use of the built-in inertial sensor okthamera unit, the instantaneous

change of pitch angle can be obtained by the angpkeed readinguy, in thex-axis

from the sensor, and the time intervat between successive frames. The

instantaneous pitch anglég, can be expressed as Equation (3.36).

o0, = wot (3.36)
Assuming zero translational change in all axes, Bndwing that the yaw angle

between the camera and the vehicle body is zerotdugne camera calibration,

68



Equation (3.4) can be simplified to Equation (3.2nd (3.38). The vanishing point
[ Yo 1]" can be evaluated by substituting,[Y, Z,]" in Equation (3.37) byd 0 1"

(Hartley and Zisserman, 2003) and expressed in tieou#3.39)

T T
=[x v ' =KR[X, Y, 2] (337)
x| [f, 0 ¢ cosb, sing, 0 [ Xy
Y. |=| 0 f, c | -cosfsing, cod co¥, sid || Y,
1] [0 0 1] sing sirg, -singd co®, cob,| Z,
_rll r12 r13 XW
= r‘21 r‘22 r‘23 YW
_r31 r32 r33 ZW
, Where
r,] [ f.cosd,+c, sing, sid,
: : : (3.38)
Iy |=| —f,cosf, sing,+c, sig, sid,
1] | sing, sing,
r,] [ f, sing,—c sind cod,
r, |=| f,cosg, cod,-c, sid, co8,
o | -siné, coY,
r,] [ c,cosd,
rs|=| f,sing, +c, cosf,
s | cosg,
X G
Yo |=| f,tand, +c, (3.39)
1 1

Recalling that Equation (2.6) indicated that whies ¢camera has zero rotational angles,
. T .

the FOE is [(c+V, f/V,) (¢+V,f/V) 1] . So, the FOE is at

lc. ¢ 1T when both Vx and Vy are zero. It differs from Equation (3.39)

by f, tand, in they-axis. Therefore, combining the FOE due to cametation with the

FOE due to ego motion, the FOE can be expressequagion (3.40).
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% G +V 1V,
Yo |=| f,tan@, +c, +V, f/V, (3.40)
1 1

Since the vehicle is moving on the road, its vaftepeed along th¥-axis can be
approximated as zero. The FOE expressed in Equ&BeiD) can be modified to
Equation (3.41).

)(0 CX +VX fX/ VZ

Yo |=| f,tand, +c, (3.41)
1 1

The overall pitch angled, of the camera relative to the road plane is catedl by
Equation (3.34). Assuming the vehicle is movingcahstant speed with constant
angular yaw ratey, the time difference between successive framed.ig can be
obtained from the vehicle speed sensor, apdan be obtained from the angular speed
reading of the y-axis of the inertial sensor. A gienvehicle model shown in Figure
3-16 can be used to estimate the linear motiorhefeigo vehicle along thé- and
Z-axis. Assuming that the vehicle speeds constant, the distance travelled by the
vehicle along theX- andZ-axis isAX and &Z respectively as shown in Equation (3.42)

and (3.43).

oX = v/wy(l— cosa)ydt) (3.42)
0Z =V/wy Sinwyot (3.43)
For small time differenceX between successive frames, the sp¥gdand V; in
Equation (3.41) can be approximateddy/& and oZ/& respectively. By substituting
Equation (3.34), (3.35), (3.36) and (3.42) to (3.#Euation (3.44) is obtained for

evaluating the FOE ak{,Yo).
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c + f, (1— cos(wyé't))sin(wyé't)

Xo
18,
Yo|=| G+ f, tan(a)xéH 0, (t)——Zé?X (t- |)j (3.44)
1 Nizo
1
Z
OZ|— ego vehicle at current frame
™
constant | Yo
speed v v5t| X
ego vehicle at l wﬁ'é‘[/N o S W

previous frame

oX
Figure 3-16: Simple vehicle motion model in bird{ge-view. The vehicle travels at spee@nd turning
at angular ratey. The time interval between successive frames. is

3.3 Road Region Detection

There are several observations from the road redetection methods reviewed in

Chapter 2.5.

Firstly, they require considerable computation tilhenethod that can achieve real-time

performance is required for the proposed ADAS.

Secondly, those road detection methods were tityirgjassify each pixel into a road or
non-road pixel. This process can be very time comsg. For the application in the
proposed system, identified road region is an mitha to reject falsely detected moving
objects. Since the detection of moving objects m@stly block based due to the
block-based nature of MVs from H.264/AVC encoddtsis possible that the road
detection boundaries can be aligned to the blocknbdaries of MVs. By using

block-based instead of pixel-based approach, arloamputation cost is expected.

Thirdly, the bottom part of the captured image indrately in front of the ego vehicle is

highly probably a road region, sampling of the eleeristics of the road region in this
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area is a fast and reliable method to determinadhd colour model (Lee and Crane,

2006, Tan and Hong et al., 2006).

Fourthly, it is more important to detect the roadion near the ego vehicle than regions
that are further away. This is because the MVs febatic objects near the ego vehicle
are having larger distance to the FOE, meaning tti@tMV amplitudes near the ego
vehicle are expected to be larger. Figure 3-17 shawypical captured image with the
direction and amplitude of MVs shown. The areasligited with red circles are closer
to the ego vehicle. Motion estimation error in #hesgions will result in erroneous MVs
of large amplitudes. There can be falsely deteateding object in these areas. Such

false detection can be eliminated if the road negnothis area is identified.

Finally, the target application of the proposed ARA on structured roads. The texture
of structured roads is usually weak with uniformoco. Therefore, except those areas
with markings, the variation of road colour shoblkl small, and the colour of adjacent

area of a particular road region should not dewgta large amount.

Figure 3-17: Relatively large MVs highlighted irdreircles are from static objects near the egoolehi

Based on these observations, a new block based regaon detection algorithm is

proposed with steps as follows.
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3.3.1 Building Road Colour Model

A road colour model is prepared by sampling blamkghe road from multiple images.
The mean(X) and standard deviatioa)(of each block are evaluated using Equation
(3.45) and (3.46), wherk,y) are the starting coordinates of the bloRky,v), G(u,v)
andB(u,v)are the intensity of the red, green and blue cHaofrthe pixel at(u,v), and
Hist(i) is the number of pixels with the average sum efttitree colour channels equals
toi. The block size was set to 16x16 pixels in thiseca set of images with different
light intensities taken on different roads wereestdd manually, and blocks on the
road in each image were also selected manually ttemarea at the bottom of the
image immediately in front of the ego vehicle. Nlmdk with road marking was

selected.

y+15x+15

_ 1;§(R(u’\b+qw+ %) (3.45)
X ==
3 16
B8 (x—i)?Hist(i)
o= \/;‘—162 (3.46)

A total of 2,500 samples were taken from the satmaige to build a table that relates
X to arange ofc. This table was used as the colour models foialrselection of a

road patch for region grow.

3.3.2 Seed Block for Road Region Grow

When an image is captured, a block near the bottbthe image is evaluated for its
mean (X ) and standard deviatiow (). This is because such region is the least likzly

have any moving object when the ego vehicle is mpvBome blocks may however be
affected by markings on the road. If eith& or o exceeds the values defined in the

colour model, another block along the row will besen for evaluation ok ando
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again until the newXx and o of the block can satisfy the colour model. So, and
o are compared with the range of allowable valueestan the table described in
Section 3.3.1, which is the colour model for thadoFigure 3-18 shows a typical
captured image from the camera mounted on the elgicle overlaid with lines of grid
size 16x16. A road patch of size 16x16 pixels iected from the bottom left of the
image that is shown in a blue square. Figure 3K®& shows a block highlighted in red
colour near the bottom right of the image. Sinas bhock has road marking on it, the
value of X and o of this block will exceed the values specifiedtie road colour

model and hence it will be rejected as being a bémrk.

= i—

.,,i"”': T

Figure 3-18: Captured image showing 16x16 griddimegreen colour. The seed block is searched from
the bottom left to the bottom right of the imagilua block is found with satisfactory mean and
standard deviation. An example block highlightediange colour is compared to its neighbour blocks
marked with number 1 to 8 with purple colour.

3.3.3 Road Region Grow

After selecting a block of size 16x16 along the mvthe bottom of the captured image,
the values of meanx() and standard deviatioro() of this block is stored. Since the
road surface usually has uniform colour and weatute, X and o of one block of

a road region should be close to those of its riEghing blocks.

When a blockB; with mean gray levelx, and standard deviatioy along the row of
block near the bottom of the image is identifiedaasoad region block, the eight

neighbouring blocks surrounding the bloBkare also evaluated for their respective

mean X, and standard deviatiow, where & denotes one of the eight blocks. A
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neighbouring block B is identified as a road region block if it satisfi€3.47) and

(3.48), wherdb andc are predefined thresholds.

[%-%]<b (3.47)

o -aif<c (3.48)
The region grow method is employed so that the megibn can “grow” further by
comparing the identified road region blocks witleithneighbouring blocks. Each
comparison employs th& and o of the centre block, such as the one highlighted
orange in Figure 3-18, and one of the eight neighibg blocks, such as the 8 blocks

numbered from 1 to 8 in Figure 3-18, until no n@ad region block can be identified.

3.3.4 Post Road Region Grow Refinement

Since there are some blocks on the road that &wellcroad region but are excluded
by the road region grow algorithm due to the valtiex or o in comparison cannot
satisfy (3.47) and (3.48), a post processing step wses a hole filling algorithm is

proposed to refine the detected road region.

Figure 3-19 shows a typical detected road regioa chptured frame. The detected
road region is highlighted in white colour. There aome “holes” inside the detected
road region. The hole-filling algorithm scans eaolw of the road region detection
result from the bottom of the image. The minimund amaximum road region block
column number at each royy are represented b¥uvin(Yo) and Xuax(Yb) respectively.
Similarly, the minimum road region block row numbeat each columnx, is

represented bYwin(Xp).

The scanning of road region blocks starts from rine below the FOE, withx,

scanning from left to right, ang from top to bottom. When a non-road region block a
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columnx, is detected and it is located belXyin(X,), that is, its location number is

larger thanYyin(Xy), the block is re-labelled as a road region block.

Xutin(yn)

Figure 3-19: Road region blocks are highlighted/ite. The minimum and maximum road region block
at each rowy, areXmin(Yn) andXnadYp) respectively. The minimum road region block atreealumn, is

Ymin(xb)-
After the refinement process, the holes insiderdlael region are filled and re-labelled as

road region. The result after the refinement preceshown in Figure 3-20.

Figure 3-20: The road region detection result afierhole-filling refinement process.

3.4 Segmentation of Regions of Interest

The road detection result using the method mentioneChapter 3.3 is combined with
the amplitude MVs from the H.264/AVC encoder tonfiothe region of interest (ROI)

for moving object detection.

As reported in Chapter 2.4.3, MVs near the FOE rapngling objects with slow relative
speed to the ego vehicle can be very small. Thdl 34 are inaccurate due to the

limited precision of H.264/AVC encoder. Since penighng ego motion compensation on
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these inaccurate MVs will only result in erroneaepresentation of moving objects,

other methods on the detection of relatively sloavimg objects are required.

By making use of the amplitudes of MVs, the ROIs ba segmented into regions with

relatively slow moving objects and relatively fasbving objects.

3.4.1 ROI for Slow Relative Speed Objects

Regions that potentially have slow relative speeaVing objects exhibit MVs with
small amplitudes. Therefore, the ROI for slow rgtspeed moving object is chosen
as the regions with small MV amplitudes. In addifithe ROI can be further reduced

by the detected road region and limiting the RCdreas below the FOE.

Figure 3-21(a) shows a typical captured image ftoencamera. Since the area above
the FOE is mostly the sky or upper parts of mowvirgicles, there is no useful
information for the detection of moving objects. eféfore, the upper part of the
capture image is ignored. More precisely, givenyoeordinate of the FOE i, the

area below/+16 is retained for moving object detection.

Onlythe bottom half of the image is useful

Focus of expansion (FOE)
SRS —

(a) (b)
Figure 3-21: (a) Typical captured image that hantmnverted to grayscale image. (b) The FOE and
the primary ROI is selected as the area below @E.F

In addition to the primary ROI below the FOE, ttenstruction of the ROI for slow

relative speed object detection is further illustdain Figure 3-22. Figure 3-22(a)
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shows the road region detected for the capturedjyensnown in Figure 3-21(a) by
using the method described in Chapter 3.3.1 t@t3Rgure 3-22(b) shows the image
mask with amplitude of MVs larger than a threshgld Since each MV represents a
block of size 8x8, the mask has regions highlighellock-by-block basis. The white
areas in the image mask represent areas with MMitaigs larger thamy,. Figure

3-22(c) shows the resultant ROI with only the dvebow the FOE shown. The white

blocks are areas to be ignored for slow relativeeedpmoving object detection.

(®)

Figure 3-22: lllustration of ROI construction. (a@age mask by road region identification. (b) Image
mask by filtering MVs with amplitude larger thanhmeshold. (c) Cropped image that combines the
image mask (a) and (b).

The result of ROI construction shown in Figure 3e2till has some areas that are not
eliminated for relatively slow moving object deteat These areas include those
highlighted in red circles in Figure 3-23(a). Theseas are removed from the ROI by
noticing the maximum and minimumtcoordinates of highlighted (white) blocks at
each column of the ROI image similar to the holéti method mentioned in Chapter
3.3.4. If a particular block in a column is insithe maximum and minimum bounds of
the highlighted blocks, the block is also highlgghto white to indicate it is the block
to be ignored. After running this refinement pragethe modified ROI is shown in

Figure 3-23(b).
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(b)

Figure 3-23: (a) Regions highlighted in red cirches areas that should be ignored. (b) ROI after
refinement.

It is observed that the area that remains for deteof slow relative speed vehicles is
significantly smaller than the area of the origimahge. For instance, the ROI is only
122 blocks for the image shown in Figure 3-23. Canmg to the 1,200 blocks for the
corresponding full-size captured image, the RQdnk/ 10.2% of the original image.
This ensures the detection algorithm can be comgblétn much shorter time by

examining less area of interest.

3.4.2 ROI for Fast Relative Speed Objects

Similar to the ROI construction procedures for sloslative speed moving object
detection, the ROI for fast relative speed movirgecot detection is illustrated in
Figure 3-24. It is composed of the result from roatkction shown in Figure 3-24(a),
and the image mask with regions that the amplitwd@dVs are larger than or equal to
a thresholdy, shown in Figure 3-24(b). Figure 3-24(b) is theerse binary image of
Figure 3-22(b). The combined result of Figure 3a24nd Figure 3-24(b) is shown in
Figure 3-24(c). Although Figure 3-24(c) shows oalygmall portion of the image is
remained for fast relative speed moving objecta&im, the area for fast relative speed
moving object detection depends on whether theserelatively fast speed moving

objects.
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TR Ty I_
@) (b) (©

Figure 3-24: lllustration of ROI construction fast relative speed vehicle detection. (a) Imagekrgs
road region identification. (b) Image mask by filtgg MVs with amplitude larger than a threshold.
(c) Cropped image combining image mask (a) and (b).

3.5 Slow Relative Speed Moving Object Detection

MVs obtained from the video encoder are the resiutioth global motion (also known
as ego-motion) due to the moving camera and tha faotion due to moving objects on
the road. As mentioned in Chapter 2.4.3, the pi@tisf MVs of an H.264/AVC based
encoder is only up to a quarter pixel, the MVs ofad for moving vehicles with slow
relative speed to the observing camera will belamio regions of far-away background
and weak-texture road regions. This observationbeas reported in Chapter 2.4.1. To
overcome the difficulty of detecting slow relatigpeed moving objects, the method
proposed in this research is to split the detectamk to relatively slow speed and

relatively fast speed moving object detection.

This Chapter proposes the method to detect rear-vahicles with slow relative speed
to the ego vehicle. The proposed method is suitédleise in conjunction with MV
based moving object detection. The major contrdsutrf this work is to use the MVs
from the H.264/AVC encoder, dividing the region inferest for slow relative speed

vehicle detection.
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3.5.1 Slow Relative Speed Vehicle Detection Method

The functional flow chart of the proposed slow tiglaspeed vehicle detection method
is shown in Figure 3-25. It consists of steps mal fihe true horizontal gradient, detect
horizontal and U-shape contours. A tracking aldponiis also proposed, making use of
an expanded detection window based on the detewfiotiow in the previous frame

and the evaluation of vertical and horizontal geats.

The region of interested is constructed accordinthé method mentioned in Chapter
3.4.1. Only the area outside the detected roadmegith amplitudes of MVs smaller

than a threshold, is retained.

-
[ | ( ) :
colour Image » geayseale | Reglon of
| ‘ Image interest
) \
e s Sobel Sobel
e\.a?ua{ion V-gradient +—— H-gradient
(h. edges) (v. edges)
. True
binary image ———» _vertical 4 Hegradient
projection
(true v. edges)
S, MR
Vehicle
i Detection |, Horizontal
)| via U-shape projection
/| _and contours |
'I /‘.‘; ¥
i Distance, Detection
Tracking | speed passed
failed estimation
e———————
[
I
Tracking \
\

Figure 3-25: Functional block diagram of the sl@ative speed vehicle detection algorithm

3.5.2 Binary Image Creation

During the road region identification stage, thexmmm X, and minimumX_;,

grey-scale levels of the road region have beeruated. Each pixel inside the ROI of

the cropped input grey-scale image is compared Wjth to create a binary image. If
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a pixel inside the ROI of the grey-scale imagerigtger than X, the corresponding
pixel in the binary image is set to ‘0’; otherwigds set to ‘1’. The resultant binary

image is shown in Figure 3-26(a) where the whiteezoepresents the area that is

darker thanX ,, . Figure 3-26(b) shows the binary image overlaidtimn ROI image.

The horizontal contours of the rear-view of velsatan be seen clearly.

(b)
Figure 3-26: (a) Binary image with those white aregpresenting regions that are darker than the
minimum graylevel of the road region. (b) Binaryaige in (a) overlaid to the ROI of the captured ieag
Those horizontal contours along the rear part bfoles at the front are identified.

3.5.3 Vehicle Detection

Besides the identified darkest area of the imagehagvn in Figure 3-26, a Sobel filter
is also applied to the cropped grey-scale inpuggena find the horizontal gradient and
vertical gradient inside the ROI. The Sobel kerretsfinding horizontal and vertical

gradients are shown in Figure 3-27(a) and Figu?& ®) respectively.

-1 01 1 2 1
-2 0 2 0O 0 O
-1 01 -1 -2 -1

(a) (b)
Figure 3-27: (a) Sobel kernel for finding horizdrgeadients. (b) Sobel kernel for finding vertical
gradients.

The result of finding horizontal gradient and wveati gradients are shown in Figure
3-28(a) and Figure 3-28(b) respectively. Figure83(B) shows that there are many
horizontal contours for vehicles on the road. Sitheevehicle body is similar to a box
shape when looking from the rear, there are alsticaé contours found by applying
the horizontal gradient kernel (Figure 3-28(a))m®ofound “vertical” contours in

Figure 3-28(a), such as the lane markings, aretmbt vertical contours. They are
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further eliminated by comparing the pixel in thertical gradient image shown in
Figure 3-28(b) with the corresponding pixel in ti@izontal gradient image shown in
Figure 3-28(a) using Equation (3.49), wheyg P, andP, are the resultant pixel value
at screen coordinatés,y), pixel value in the horizontal gradient image aikl value

in the vertical gradient image respectively,, is a predefined threshold for

comparison. The resultant image is shown in Figu2®.

(a) (b)
Figure 3-28: Grayscale image with Sobel filterifa). Resultant image after applying horizontal geadli
Sobel kernel. (b) Resultant image after applyingic@ gradient Sobel kernel.

Figure 3-30 is the combined result of the detewtrtical contours in Figure 3-29 and
the detected darkest region in the image shownigar& 3-26(a). The white area in
Figure 3-26(a) is replaced by red in Figure 3-3@¢a)higher clarity. It shows clearly
the position of a vehicle at the front with the kipe highlighted by the green bracket

in Figure 3-30(b).

(3.49)

PW:{(Ph—Fc) ORO[R. R+ D

0 otherwise

Figure 3-29: Resultant image of true vertical canionage, after using Equation (3.49).
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The proposed algorithm is to detect the U-shapehvisi the result of horizontal and
vertical contours of the vehicle. The algorithnristdy searching for the position of
horizontal lines from the bottom of the binary ireahown in Figure 3-26(a). If a
horizontal lineL with two end point$x;,y1) and(x.,Y2) is detected, the width of the
horizontal line is evaluated by converting the ®wmlpoints of the line in the screen
coordinates to the corresponding World coording®&g, Yu1) and(Xuz, Yu2)
respectively, using Equation (3.10). If the resigtwidth W=X,>-Xw1) is longer than
Wy and shorter thav, whereW, andW_ are predefined upper and lower limits of

the width threshold respectively, the line will discarded.

@) (b)

Figure 3-30: (a) Combined result of the true det@atertical contours (shown in white colour) anel th
detected darkest region in the image (shown ircaaur). (b) U-shape bracket drawn in green colour,
indicating the found U-shape due to the vehicle.

If the line L falls within W andW, it is more likely that this line is produced by a
vehicle than by the environment. The line is furtbealuated by examining the ratio
between the width and the height. The height isiobt by the difference between the
line location and the vanishing line locatiog)(in the screen coordinates. If the ratio
Rwu is within a predefined rangeyy. and Rywnyu, the rectangular area as shown in
Figure 3-31 that is around the line location, Wwal further examined to confirm if there

is a vehicle.
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Line of FOE

Figure 3-31: lllustration of the area shown in greectangle identified for examination of whether a
vehicle exists.

Further evaluation is performed to examine if thare two distinguished vertical
contours near the left and right sides of the idiedt rectangular area, and if the

average vertical gradient exceeds a predefinedlbid.

The sum of gray levelS(x)is calculated by Equation (3.50) at each horiaqmdaition
from x+e to x-e wheree is a predefined constant al{d,y) is the gray level at screen

coordinateg(x,y). Both the left side and the right side of the aagle are evaluated.

A plot of S(x)against the horizontal position is shown in FigB+&2(b). The maximum
S(x) for the left and right sides is found separateyy domparing allS(x) in their
corresponding side. If the maximuB{(x) on both sides of the rectangle exceeds a

predefined threshol&, the existence of the vertical contours is condidm

The left and right sides of the rectangle will leplaced by the identified positions of
the maximumS(x) The existence of a vehicle in the red rectangoas indicated in
Figure 3-32(a) is further confirmed by evaluatimg taverage vertical gradiewi(x)
inside the new rectangular box using Equation (3.here x;’ andx,’ are the new
horizontal position of the rectangle. If the vahfé/(x) exceeds a predefined threshold

Vj, a vehicle at the rectangular position is confiras detected.

N

S(N=D (%Y x— e x+ F (3.50)

Y=Yo
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(3.51)

(b)

Figure 3-32: lllustration of the vertical projedtiof the horizontal gradient image around the regtiéar

position where a vehicle potentially exists. (a¥idontal gradient image and the rectangular areiun
evaluation. (b) Corresponding vertical projecti@anthe red rectangular area.

3.5.4 Vehicle Tracking

Since the detection of slow relative speed vehiagkeguires the examination of
qualified line features inside the ROI, the progesspeed will vary according to the
number of potential line features detected. Theréhé possibility that the detection
algorithm cannot be completed within the durati@ween successive frames. Since
the vehicles to be detected are moving relatividwly, their size and position would
not deviate by a large amount across several frafitesefore, even though there are

chances of skipped frames, the accuracy of thetigtealgorithm will not be affected.

Nevertheless, the computational cost can be redogéde use of a tracking algorithm.
Since the initial position of a detected vehicl&kim®wn from the detection algorithm,
the tracking algorithm can check for some invarf@atures inside a search window of
reasonable size with reference to the detectedcheelposition. The conceptual

flow-chart of the tracking algorithm is shown irgkre 3-33.
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Given the slow relative speed vehicle detectiomi@tigm has identified the vehicle on
the screen bounded by a rectangle @k ( Yiop) t0 (ight , Yootor), & NEW image is
captured by the system and is converted to a gadysmage. The Sobel kernels for
finding horizontal and vertical gradients shownHigure 3-27(a) and Figure 3-27(b)
respectively are used to generate the horizontdl\veamtical gradient images. Since
only the area near the bounded rectangle is usdtebtracking algorithm, the Sobel
kernels are applied to the area insiglg: ¢ 26, Yiop - 28) t0 (Xight + 26, Ybottom + 26))
only, whereg, ande, are the number of pixels to expand in a@ndy-coordinate of

the screen respectively.

Detected / Tracked vehicle at rectangle
(Xleft, ytop) to (Xright, Ybottom)

|

newly captured ‘
grayscale Image/,

Sobel V-gradient Sobel H-gradient
(h. edges) (v. edges)
Horizontal projection inside rectangle Vertical contour projection inside rectangle
(X/eft, Ybottom-ey) (Xleft-ex, (Vtop+Ybottom)/2)
to (Xright, Y bottom*ey) to (Xleft+ex, Ybottom)

‘ Identify the bottom position with max.

cprElian Identify left-side with max. value

Vertical contour projection inside rectangle
(Xright-ex, (Ytop+Ybottom)/2)
to (Xright+ex, Vbottom)

valid left, right
and bottom
position?

Identify right-side with max. value

Return to detection mode

Figure 3-33: Conceptual flow-chart of the trackalgorithm for slow relatively speed moving vehicles

In the next phase, the horizontal projection indite rectangleXes, Yoottom - 6) tO

(Xright » Ybottom *+ €y) IS evaluated by making use of the vertical gnadienage.S(y)in
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Equation (3.52) evaluates the value of horizontajgetion at eaclg-coordinate inside
the selected boundary.

Xight

S(y) = Z I(x Y Oyd[ ¥ottom™ & ¥Yottom' ﬁ (3.52)

X=Xeft

The gradient at eaghcoordinate inside the boundary is found by Equmeti8.53). The
maximum gradien&suax(y) is found by comparin§s(y) inside the boundary.
S(N=F D)+ $ ¥2)- 6y~ 62
DyD B/bottom_ %’ ’ybottom+ (?7 ]

Similarly, the horizontal contour projection foretheft-side is evaluated inside the

(3.53)

+
ytop—zybottmnj to (Xiefﬁew%ottom) by making use of the

rectangle [xieﬂ -6,

horizontal gradient imagé&s(x) in Equation (3.54) evaluates the value of thdicar
contour projection at eack-coordinate inside the selected boundary. It esdbnt
accumulates the intensity vertically along thaxis with a reduced value according to
the difference between two pixels. This can helguce the sensitivity to the
discontinuity in a vertical line. The maximuSauax(X) is found by simply comparing
the values of55(x). The horizontal contour projection for the rigile is similar to

that for the left-side. The difference is that theoundary changes to

ytop * Yoottom

(Xright _Q‘fJ to (Xright +8, 36ottom)'

Yoottom

S= > [ ]I Y= x y ] OX[ - & %+ & G54

y= Ytop* Zbottom
The values ofsuax - ) are compared with predefined thresholds. If thieywithin the
allowable range, the tracking of the vehicle iscassful. The bounding rectangle is

then updated for being used in the next frame dotinued vehicle tracking. Therefore,
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assuming the detected vehicle does not deviate tinertast position by a large amount,
the tracking algorithm only needs to evaluate treemll regions to identify the left,
right and bottom sides of the vehicle. If the tiagkfails, the detection algorithm

mentioned in Chapter 3.5.3 will be used.

3.5.5 Distance and Speed Estimation

After confirming the position of the vehicle, itsi€ moving speed is estimated by the
MVs at the bottom line of the rectangle. In a Dri¥essistance System, the potential
risks of identified moving objects to the driverearelated to the time-to-collision

between the ego vehicle and the moving objectsikblrdtereo cameras that can
estimate the object distance by disparity estimafigrown and Burschka et al., 2003),
the distance estimation for monocular vision systesmd in this research relies on the

geometric information available from the captunege.

The concept of distance estimation reported in @hegh 1.2 for camera calibration can

also be applied to real-time distance estimatioruge in the proposed system.

The distance estimation has to make use of pointshe ground plane for correct
trigonometric calculation. By substituting the caenenounting heighh to Equation
(3.12), the distanc&, and X, between the camera and the detected object can be
estimated as expressed in Equation (3.55) and )(3[Géy-coordinate of the point on

the screen must be larger than the principal pginttherwise the calculated result is

invalid.
f.h
Z, = Oy, > ¢, (3.55)
ys - Cy
f (x.—c.)h
Xy = ,(%-¢) Oy, >c, (3.56)
f, (yS - cy)
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With reference to Figure 3-32(a), the bottom cosrarthe bounding rectangle of the
identified vehicle arexq, y1) and &, y»). y» equals toy, as they are lying on the same

horizontal line. The centre position on the bottiore of the bounding rectangle, which

is at (Xlzxz,ylj, Is used as the reference point for estimatingdiséance of the

vehicle. The distance can be calculated by Equat®h5) and (3.56). However, they
are only valid when the camera’s rotational angethe ground plane are zero, which

is not true when the ego vehicle has motion indut®dzero rotational angle.

A more accurate distance estimation can make ugsjoétion (3.38), and take only
pitch angle g, into account. This is because the roll angle & rbtation about the
Z-axis, its effect on the distance along #axis is minimal. Yaw angle is zero due to
the installation of the camera. Further assumirad the pitch angle is smalking,

can be approximated by,, cosf can be approximated as 1. Taking all these
assumptions and substituting the installation hdighf the camera to Equation (3.38),
it is simplified to Equation (3.57). After expansjothe distance on the World

coordinates Xw, Zy) can be calculated by Equation (3.58) and (3.%8grefore, by

substitutingxs andys by Xl-;xz andy; respectively, the position of the vehicle in the

World coordinates can be estimated.

X, f., -c@, C X

Y.|=| 0 f,-cg, fg+c | h (3.57)
1 0 -0, 1 Z,
f +(y.—c)é
z,=—" (y.-¢,) “h (3.58)
-f,6,+y.—c,
X _(x-c)(-6,ht Z) 350

" f

X
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For the speed estimation of a slow relative speedmy vehicle, it can be erroneous if

using only one MV at the poinEXlJ;)<2 : yljfor ego motion compensation. Since the

amplitude of MVs of relative slow moving vehicle ssall, a small error in the MV
will result in an inaccurate estimation of the tgreund motion of the detected vehicle.
Therefore, the moving speed of the detected velsctalculated by binning multiple
MVs along the bottom line of the rectangle bounding detected vehicle to improve

accuracy.

Figure 3-34 shows a detected vehicle bracketedgrean rectangle. The image also
shows the boundaries of image block of size 8x& WIVs of blocks, highlighted in

red dots in Figure 3-34, along the bottom line loé green rectangle, are read to
calculate the position on the World coordinateshie current frame and the previous

frame.

NITE] i =N
Figure 3-34: Speed measurement based on binnitige Vs along the bottom line of the rectangle
bracketing the detecting vehicle. Red dots in thage indicate the MV samples for true ground speed
evaluation.

Equation (3.58) and (3.59) are used to calculaéMorld coordinates of the block in
the current frame and in the previous frame. df shreen coordinates of the block in
the current frame arngs,ys), its coordinates in the previous frame @&e-mvy, ystmwv),

where (my, my) are the MV from the H.264/AVC encoder

Since the video frame rate and the ego vehicledspee known, the speag of each

blocki along the bottom green line can be calculateddyeaion (3.60), whereis the
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speed of the ego vehicldf is the time interval between two successive frardgs
and Zy, are the distance along Z-axis of blockound by Equation (3.58) for the

previous frame and current frame respectively.

+VAt-Z
ui = M (3.60)
At

The deduced speed of each block along the botteendme of the rectangle will vary
because of the error in MVs. To determine the spédble vehicle, the first step is to
make sure all; obtained are of the same direction. Only the nitgjovill be taken if
someu; are positive and some are negative. The averages/af thoseu;, are

evaluated to represent the moving speed of theeteehicle.

3.6 Fast Relative Speed Moving Object Detection

A flow-chart showing the functions of the propossddorithm for fast relative speed
moving object detection is shown in Figure 3-35e Tetection of fast relative speed
moving object is based on a two-step approach, lyathe Hypothesis Generation
(HG) and the Hypothesis Verification (HV) steps.eTMVs from the H.264/AVC

encoder is used in the HG mode for planar parakaidual evaluation. When certain
criteria are met, a template for comparison is feinand the algorithm will switch to

the HV mode.

In HG stage, a rectangular region inside the imageéentified as being potentially
having a moving object. The rectangular regionssduas a template for matching in
the HV stage. During the HV stage, the templatseiarched for a best match in the
successive frames. If a match is found and thelatisment of the template is
consistent to the previously estimated displacepgnioving object is confirmed, i.e.
the yellow box in Figure 3-35. The template is updawith the newly found

rectangular area and tracking is performed basddrplate matching.
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This two-step approach is proposed to address tbblgm of erroneous MVs

generated by the H.264/AVC encoder. If the MVs em®neous in the current frame

that are not the result of the actual movement ofiaving object, the consistency

check on the displacement of the MVs between ssoae$frames during the HV stage

will fail. Therefore, the HV stage can reject tkiad of erroneous MVs to reduce the

false detection rate.

In order to evaluate the planar parallax residuactor (PPRV), ego-motion

compensation is required to get the true groundemant of the object involved. The

concept on planar parallax residual and the stepsved in HG are described in more

details in the following Sections.
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Figure 3-35: Conceptual algorithm flow chart fostfeelative speed moving object detection
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3.6.1 Planar Parallax Residual

As mentioned in Chapter 2.3.1, the amount of plgraaallax residual can be used to

detect independently moving objects.

Recalling that Equation (3.30) is used to map ikelosition on the ground plane at
time T, from its corresponding pixel position at tinig the relationship for points
lying outside the ground plane is yet to be desctiihe relationship of a point on the
World coordinates and its corresponding point andtreen can be represented by the
planar parallax diagram shown in Figure 2-2 (Baghand Simon et al., 2005). The
green plane is the camera plane at the currentefraintimeT;, the red plane is the
camera plane at the previous frame at fimegP,, is a point above the ground plape,

and p, are the projected point dP, on the image planes at timB.; and T;
respectively, BR® and P are the points on the ground plane duBjavhen viewing
by camera a€:.1 andC; respectively, p,; is the point virtually projected to the image
plane atT; due to P° on the ground plane. Substituting,, andp, to Equation
(3.30), Equation (3.61) is obtained.

P =M™p, (3.61)
Therefore, using the planar homography matkix’ is able to get the point

correspondence of the projected point on the grqulade only, rather than the true

point correspondence gt in the previous frame. Sinc@,; only maps the projected

ground point P of P, to the screen at timg.;, any pointP,, above the ground plane

will result in a differenceu = p,; — p, known as planar parallax residual (Baehring

and Simon et al., 2005). Referring to the derivatimm Baehring et al. (2005) and

Trucco et al. (1998), the planar parallax residgalcan be expressed as Equation
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(3.62), wherdy is the time duration between successive fraveandV, are the speed

of the ego vehicle irX- and Z-axis direction respectively(c,,c,) is the principal

point of the camera(x,, y,)is the FOE defined in Equation (3.62Z},and Z: are the

Z-coordinate of a point and its corresponding prapecpoint on the ground plane in
the camera coordinatgs, =(x, ) is the corresponding point in the screen coordsmate

of the pointP=[X® Y°* Z9"in the camera coordinates.

Uity = = (3.62)

% =GtV IV,
Yo=C,+V, 1V,

(3.63)

According to Equation (3.62), MVs lying on the gnouplane exhibit zero planar
parallax residual becausg® = Z; . Also, for stationary objects above the groundela

the corresponding planar parallax residual vecBPBRVs) point towards the FOE at
(X, ¥,) - For a camera mounted at heigtabove the ground plane with zero pitch, row
and yaw angle, Equation (3.62) can further be sfreglto Equation (3.64), where
[X Y Z,]" are the camera coordinates of a p&inZ.=Z. in this case because there is
no rotational angle and translation difference leetwthe two coordinate systems. The
proposed algorithm makes use of Equation (3.643leove the threshold of planar

parallax residual to determine if there is indepErty moving object.

h-Y
V, (X - )%)(E)
Uity = v (3.64)
V,(y* - yO)(E)
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For potential collision with the ego vehicle, atistaoint at X Y Z,]" in the camera
coordinates will collide with the vehicle at timg,. evaluated by Equation (3.65)

Tee =21V, (3.65)
Substituting Equation (3.65) to Equation (3.64yakue of planar parallax residual can

be expressed as Equation (3.66).

h-Y h-Y
ANC X -
La( >s)(hVZTm) (X = %)( hIm)
Hinin = h-vy |~ hoy (3.66)
Vota(y - yO)(hvam) t (Y= Yol hT. )

The amplitude of i, from Equation (3.66) can be used as the minimuestiold for

moving object detection. That is, when the restilEmplitude of the planar parallax
residual vector at a particular screen pokif {°) is smaller than the amplitude of

... from Equation (3.66), the corresponding planar If@taresidual vector can be

ignored.

3.6.2 Hypothesis Generation

Hypothesis generation is a process to identifyraa & the image that potentially has a
moving object. The ROI for relative fast moving ettj detection is identified by the
method mentioned in Chapter 3.4.2, where the RQOkedced by eliminating the
detected road region and the area with small M\¢gm BEotion compensated vectors
that possess strong planar parallax residual aeel @s indicate the presence of

relatively fast moving objects.
3.6.2.1 Evaluation for Vectorswith Strong Planar Parallax

Each MV exported from the H.264/AVC encoder repnésean image block of size
8x8. The MVs inside the ROI found by the method tiwered in Chapter 3.4.2 are

compensated by the ego motion of the observingcleshi
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3.6.2.2 Ego Motion Compensation and Planar Parallax Residual Vector

Given the screen coordinates of a pointxt {») in the current frame, its point
correspondence in the previous frameXig,(Y1c), estimated by Equation (3.30) and is

expressed as Equation (3.67).

[%e Vi 1]T=M‘1[><2 Y, j]T (3.67)

One point to note is that Equation (3.67) assunoggpare lying on the ground plane.
Therefore X1, Yic) is the corresponding point of the ground plarsgegmtion of &o,Y-)

in the previous frame.

If the true MV of point o, y») is (M, my), the point correspondence in the previous

frame is ki, y1) and their relationship is expressed in Equati8r6g) and (3.69).

X =X+ my (3.68)

Vi =Y, +my (3.69)
According to the definition of planar parallax asal mentioned in Chapter 3.6.1, the
planar parallax residual vector ig = (4, 1,), which is expressed in Equation (3.70)

and (3.71).

/'lx = XlG - Xl (370)
Hy=Yie ™ N (3.71)

3.6.2.3 Filtering of Planar Parallax Residual Vector

The proposed filtering method makes use of thregstcaints to retain only useful
planar parallax residual vectors (PPRVS) insideRi&d. These three constraints are

Amplitude, Position and Direction constraints.
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Constraint 1: Amplitude

After PPRVs inside the ROI are evaluated, soméede PPRVs are erroneous due to
various reasons, such as motion estimation err@& tuthe motion estimation
algorithm of the H.264/AVC encoder, the use of SKiBde for motion estimation,
occlusion and change of light intensity. These regous PPRVs are required to be

excluded for more reliable moving object detection.

Equation (3.66) represents the minimum amplitudplahar parallax residual at each
point in the screen with time-to-collision takingo account. 4 .. (X, y) at each point
(x, y) can be calculated by substitutifg0 andTy.=2 to Equation (3.66)Y=0 means
the expected height of the moving objech,jghe same as the mounting height of the

camera,Tuc=2 means the time to collision for detection is teeconds. Therefore,

U (X, y) can be expressed as Equation (3.72).

(3.72)

:umin(x’y):{ - t(y_y)

2

One point to note is that a longkg: will result in a smalleg,,. (X, y), and an object of
height smaller than the camera mounting height aldb result in a smallélk.. Since

the MVs from the H.264/AVC encoder are block baseith limited precision,
U (X, y) cannot be too small, or otherwise there will beneany false detections.
Similarly, the value of i, (X, y) near the FOEX,Yo) is also very small as the time

durationty between successive frames is only 66ms. Therefogejetection criteria of
PPRVs with strong planar parallax for moving obg@etection are the amplitude of the

PPRV atx,y) is larger than ., (x,y) and a thresholdy,,...
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Constraint 2: Position

Since the PPRVs represented by Equation (3.70)&fd) are the direction of motion
of the screen coordinates ( y») at the current frame after ego motion compensatio
can be used to estimate the position of its cooeding screen coordinates after a time
periodT. If an area in the image is defined as an alexezand a PPRYV enters into the
zone after timdl, the corresponding object can be regarded asieqgtiére dangerous

area after tim@ which may collide with the ego vehicle.

Figure 3-36 shows a screen shot of a vehicle mofvorg the left to the right. A point
at (x2,y2) has a resulting planar parallax residual vectqgm £4). Ty is the time for the
y-component of the PPR)}, to travel from positiory, to the topy-axis positionY,, of

the alert zone, and is calculated by Equation (3.78e corresponding-coordinate at
Xa Of (X2,y») after timeT, is calculated by Equation (3.74) is the time duration

between successive framgg. must be positive for it to become nearer to the eg

vehicle.

M~ %)

Ty :u—21;3i (3.73)
Hy

79
Xq =% + XY (3.74)

Ly

»41”14 . ‘}
(xa.y,) PP R (o) S
S aaaaaan BT
Yu - x,=x‘.+ﬂ

Figure 3-36: lllustration of MV position after tinig
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Therefore, if the position of, is also inside the alert zone, the PPRYV is acdefute

further processing. Otherwise, the PPRYV is disahrde

Constraint 3: Direction

After examining the amplitudes of PPRVs and theisipons after timel,, another
detection criterion is the direction of the PPRWs mentioned in Chapter 3.6.1,
objects with PPRVs pointing to the FOE are movimgarallel to the ego vehicle or
belonging to static objects. They can be vehicléh glow relative speed to the ego
vehicle travelling in parallel, or be stationaryjextis on the road. Nevertheless, PPRVs
pointing to the FOE should be excluded. This isabee the ROI has eliminated
objects with small amplitudes due to relativelyslmoving speed vehicles, and these

PPRVs are highly likely to belong to static objects

A PPRYV at pointX,y) can be excluded if the slope between the PPRMZlamdlope of

the point to the FOE are smaller than a threshglds

3.6.2.4 Clustering of Planar Parallax Residual Vector

After having determined valid PPRVs, they are fertblustered to represent different
objects. Since PPRVs on the same objects shoukl $ienlar amplitude and direction,
the clustering of PPRVs can be done by comparirgg a@mplitude, direction and

distance of PPRVs to some thresholds.

For a PPRVY, wherej is an integer smaller than the total number of P®Rvailable

for clustering, is compared to the mean amplitud @irection of all clusters, starting
from clusterC;. 1 is grouped to clusteC; , wherei is an integer with value smaller
than the total number of clusters, if it meetdlad three constraints listed in Table 3-1,

where m(G)and a(C) are the mean slope and mean amplitude of theecl@st

m(4) anda(y) are the slope and amplitude of PPR\Vespectively.
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Otherwise, a new cluster is created to spgrélhe mean amplitudea(C) and slope

m(CG) of all PPRVs in a clusteZ; are updated if the size of the cluster is changed.

Table 3-1: The three constraints for clusteringslen for PPRVs.

‘D" Slope comparisorm(x£) and mM(G) differ by less than the threshdld
Direction Myt
constraint

A Amplitude comparisona(z§) and a(C) differ by less than the
Amplitude | thresholdags.
constraint

S Distance comparisond, (j,k)is smaller than a thresholges

Spatial The distance A;(j,k) between any pointy,(x,y) inside the

constraint
clusterC; to the point atz, (X, y), denoted byA,(j.k) wherej is

an integer with value smaller than the size of telu€i, k is an
integer with value smal than the number of PPRVs, i

20 (100 = (1, 004, ) + (11, (D=4, ()

3.6.2.5 Cluster Refinement

After all PPRVs are clustered, the maximum sizeadfounding rectangle that can
include all the points in the cluster is evaluat&étie coordinates of the bounding

rectangle are also stored in this process.

The refinement is started from the bottom sidehef hounding rectangle. The bottom
row of blocks of the rectangle, each of size 8&.ekxamined for “homogeneity”.
Homogeneity is a measure to determine if the texiara block is rich. A simple
method is used in this algorithm by summing theresponding area of the block
inside the Canny edge image obtained by applyintn€a&dge filter to the grey-scale
image converted from the captured colour imagthdfsum is smaller than a threshold,
the block is regarded as having weak texture. &lble marked as ‘invalid’ either if it
is having weak texture or is a block of the roaecétling that road region is found
using the method mentioned in Chapter 3.3). Ifrthmber of ‘invalid’ blocks exceeds

two-third of the total number of blocks along thettom row of the rectangle, the
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whole row at the bottom of the rectangle is exctutem the cluster. Then, the next
bottom row is compared for homogeneity. A maximuneight rows can be excluded

in this process.

The top-side refinement is simply performed by egteg the top side of the rectangle
to eight pixels below the FOE. This is because mgwbjects in front of the ego

vehicle will appear to have vertical span beyorayaxis of the FOE.

Similar to the refinement done towards the bottae ®f the rectangle, the blocks at
the left and right sides are also compared for hgeneity. If the total number of
invalid blocks on one side is larger than two-tlofdhe total number of blocks on the

side of the rectangle, the column of blocks on side is excluded from the cluster.

Finally, the size of the bounding rectangle is dupdaaccording to the refinement

result.
3.6.2.6 Cluster Selection

After all PPRVs are clustered and refined, the telgsare checked for overlapping.
Overlapping clusters are removed from the clusstriéaving only the cluster of the
largest area among the overlapped clusters. Amdhgemaining clusters after

overlapping cluster removal, only the cluster whk largest area will be kept for HV

in the proposed algorithm.
3.6.2.7 Template Registration

For the selected cluster with the largest areainiage inside the cluster is cropped for

being used in the Hypothesis Verification stage.e Tborresponding position

P :(x:i, yCi) in the image, mean amplitud&(C) and direction m(C) of the MVs

of the selected cluster are also stored for coraparipurposes in the Hypothesis

Verification stage.
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3.6.3 Hypothesis Verification

For the selected cluster in the HG mode, the medraMplitude a(C) and direction

m(CG) are used as the target displacement of the teenfalbe matched in the next

captured frame. The target displacement is expalaasequation (3.75).

(3.75)

F(Q)COSWQ ))}
a(C)sin(m(G))

A search window of size 16x16 is defined as thecte@ange around the position

indicated by the target displacemeftand direction of the selected cluster, as

expressed in Equation (3.76).

oS, = pS+ $+m 0j,k0Z{-16 :+16} (3.76)

The search is performed spirally inside the seamshdow. Sum of Absolute

Difference (SAD) between the template stored frdma kast frame and a candidate
template in the search window is used to indicatgotential match. The template
matching is successful if the SAD is within a prfeded threshold and a local

minimum is found inside the search window. The ltesti displacements, =(u, \) of
the match template from the initial position of ttlaster at pZ is compared with the

target displacemerst.

When a match is found and the percentage differelbesveen the resultant
displacement and the target displacement is smidéer a threshold, the hypothesis
verification is successful. A moving object is thfere identified. This process reduces
the number of false detection due to the inaccucddy.264/AVC MVs. The resultant
displacement; of the template is stored as the target displaoémmethe successive

frame for tracking purposes. The bottom row of tin@plate is also expanded for one
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more row, in order to account for potential chamgdimension of the selected object

on the screen due to the perspective change ohdiveng object.

3.6.4 Tracking

After successful Hypothesis Verification, the sigethe template is refined by the
method mentioned in Chapter 3.6.2.5. The imagaléntiie template is cropped for
being compared with the successive captured imaBe#g the same as the
Hypothesis Verification stage, template matchinghwiiéx16 search window around
the target displacemerg continues to be used. The tracking is successftiha
percentage difference between the resultant displant and the target displacement is
within a defined threshold. The tracking mode isyarsed for one successive frame
after the Hypothesis Verification stage. This is nake sure the system can be
responded more swiftly to the change of scene ab riew moving objects can be

detected and tracked.

The template matching method is proposed as on¢hefsimplest methods for
identifying similar pattern in the successive franfer hypothesis verification and
tracking. The advantage of using a simple temphatdching method is its low

computational cost that fulfils the real-time presi@g requirement.

However, the template matching method cannot adctarnsignificant perspective
change of the target object effectively. Thath®, inatching may falil if the target has a
significant perspective change in successive fral8gxe the time duration between
successive frames is only 66ms, the perspectivegehaf the target object is assumed
to be small, therefore template matching is reghrde an effective method for

hypothesis verification given the assumption isdzal
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3.7 Chapter Summary

This Chapter has described the proposed algorittamedwork in details. It also
mentioned the proposed technique on camera catibrathich is one of the important
preparation steps for successful application offeposed algorithm. The algorithm is
proposed based on the identified problems on ubirkp4/AVC MVs for moving
object detection, and the requirement on the resd-performance for being used as an
ADAS. The proposed algorithm includes the technigneego motion estimation, road
region detection, segmentation of regions of irgergow relative speed moving object

detection, and fast relative speed moving objetdi®n.
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4 Test and Evaluation

A series of tests were performed to evaluate tfec®@ieness of the proposed algorithm

framework for moving object detection.

4.1 Evaluation of Camera Calibration Results

The goal of the calibration process was to obt@inaecurate estimation of the point
correspondence in the World coordinates from thieest coordinates. The accuracy of

distance estimation is the parameter of the perdowa of the calibration method.

4.1.1 Focal Lengths and Principal Point Estimation

Figure 3-5 shows the setup for intrinsic paramegdibration. The setup consisted of a
computer and software to capture the image fromctreera, a flat checker board
pattern fixing vertically to an up-right board, ard laser distance checker. The
computer software was able to overlay horizontal aertical lines on the screen for
easier alignment of the checker pattern to therel@gpositions. The checker pattern

shown in Figure 3-7 was used.

Figure 3-7 also shows the physical dimension amdesccoordinates of the checker
board pattern printed on the paper. The checkeenpatvas created with the dimension
of Dap andD4c equal to 0.447m and 0.894m respectively. The wiistaf the checker
board from the camera was measured as 4.582m.efthahd right-side distances of
the checker board to the camera were both 4.604roe $he difference in the left- and
right-side distance was almost zero, the checkardowas regarded as being placed

perpendicularly to the camera.
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Sub-pixel search for the corners at control pot8 and C shown in Figure 4-1 was

performed by the calibration program. The valuethete control points are shown in

Table 4-1.

Table 4-1: The control points values for calibratio
Control point Screen Coordinates

A = (Ua,Va) (266.973, 205.074)

B = (Up,W) (372.417, 204.913)

C = (U %) (266.261, 417.258)
Hg= Up -U, 105.444

V4= Ve —Va 212.184

Recalling Equation (3.13), the focal lengthsindf, were calculated as 1080.853 and

1087.504 respectively.

"\

Figure 4-1: Sub-pixel coordinate of control padpB and C on the upright board
For simplicity reasons during the experiment, thegypal point was set to the centre
of the image. Sirisantisamrid et al. (2011) haswshthat the influence of principal
point on the calibration result is minimal when tleas distortion of the camera is
small. Since the resolution of the selected canse640x480, the centre of the camera

was at (319.5, 239.5).
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4.1.2 Intrinsic Parameter

With the focal lengths and principal point availgbthe camera intrinsic parameter
could be expressed as the 3x3 maltishown in Equation (4.1). Since the difference
in focal lengthf, andfy is very small, the average valuefpfndf,, which is 1084.179,

could be used as the overall focal lenigtbr the camera.

f, 0 c,) (1080.853 0  319.
K= 0 f, ¢/ [=| 0 1087504 239 (4.1)
0 0 1 0 0 1

4.1.3 Camera Installation

Figure 4-2 shows the captured screen after the reamas installed correctly. The
correct installation is indicated by the alignedibontal and vertical lines to the edges
of checkers on the screen, and the near-to-zetoaml pitch angles read by the

computer software.

w' Camera Calibration Screen M

| Save & Close J I
Figure 4-2: Captured image with aligned horizoatad vertical line. The roll and pitch angles araast
zero.
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4.1.4 Extrinsic Parameter Estimation

The extrinsic parameters were estimated using #thad mentioned in Chapter 3.1.2.
Since the camera was installed carefully so thatakational angles are all nearly zero,
the extrinsic parameters in this case include tdmyinstallation height of the camera.
The screen coordinates of checker corner poinelléabin Figure 3-12 are shown in
Table 4-2. The physical dimension of each squarthénbanner was, which was

equal to 0.5m in this setup.

By using Equation (3.23), the camera installatieighth was estimated as 1.08m.

Table 4-2: Screen coordinates of checker cornertgoi

Point Screen Sub-pixel value

label Coordinates
Ac (%, ¥a) (319.229, 444.131)
B. (%, %) (319.200, 427.001)
P1 (Xl, yl) (416.442, 443.763)
P, (x2 yz) (222.503, 444.500)
P (% s) (408.627, 426.187)
P, (% Ya) (230.384, 427.522)

By using Equation (3.20), the distari¢ebetween the camera and the checker paint P

and B can also be calculated. The estimated valug ofas 5.57m in this setup.

Since the installation heigitt of the camera has been calculated and the irtstalla
method has set the rotation angles to nearly zemwal{er than 0.1 degree in the
experiment), the extrinsic parameters of the cancara be represented by the 3x4

matrix shown in Equation (4.2).

100 0
[R,/]=]0 1 0110 4.2)
001, O
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4.1.5 Distance Accuracy Evaluation

With the intrinsic and extrinsic parameters fouadpoint on the screen coordinates
could be related to its corresponding point in Werld coordinates according to
Equation (3.11). Equation (3.11) is expanded armavehin Equation (4.3). Since points
are lying on the groundy,, can be set to zero. Then Equation (4.3) is matlifee

Equation (4.4), wher® is the planar homography matrix.

=[x V. 1]T:K[RN:1][><N Y, Z T

><W
0O c\(1 00O
Y,
0 1 ohy| "
1 O 010 “u
1 (4.3)
><W
0 0 v
0fy fh Zvvvv
0O O 0
1
XS fX CX O XW XW
1 O 1 O 1 1

So, the corresponding point on the World coordmageevaluated by Equation (4.5)

which is obtained by multiplyintyl * on both sides of Equation (4.4).

[Xo Zo T =m?[x vy, T

-1

hoe 0% (4.5)
=0 ¢, fh| |V
0O 1 O 1

M 7 in this case is equal to that shown in Equatior)(4t has been normalised for

easier matrix multiplication at later times.

-4.53714 10° 0 1.4496
M= 0 0 -4.90398 (4.6)
0 ~4.1753% D ° 1
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The matrixM * is then used to estimate the World coordinatgsoafts on the ground
surface. The error comparing to the World coordisabbtained from physical
measurement is shown in Table 4-3. For points\iteae farer away from the camera,
the estimation error was larger. This is becauseuthit of distance representing by

each pixel for far away objects is larger, leadim¢arger estimation error.

Nevertheless, the accuracy for distance of corgmhts can be kept below 3.5%,
which is within the expected accuracy of the system

Table 4-3: The deviation of calculated World conedes from the measured World coordinates

M easured Calculated . .
Estimation
. World World
Screen Coordinates . . Error
Coordinates Coordinates (Z- direction)
(X,2) (X,2)
(xa, ya) = (319.229, 444.131) (0, 5.57) (-0.0014, 5.74) 3.05%
(%, ) = (319.200, 427.001) (0, 6.07) (-0.0017, 6.26) 3.13%
(xl, yl) =(416.442, 443.763) (0.5, 5.57) (0.516, 5.75) 3.23%
()(2, yz) =(222.503, 444.500) (-0.5, 5.57) (-0.514, 5.73) 2.87%
(x3, y3)=(408.627, 426.187) (0.5, 6.07) (0.518, 6.29) 3.62%
(x4, y4) =(230.384, 427.522) (-0.5, 6.07) (-0.515, 6.25) 2.97%

4.1.6 Comparison to Zhang's Method

Zhang’s calibration method (Zhang, 2000) is a weailbwn method for generic
calibration of cameras. The method proposed in shigy is a simplified version of
Zhang’s method. Zhang's method implemented in Openfias evaluated for
comparison to the result obtained by using the peposed method. Figure 4-3 shows

nine captured images for input to Zhang’s algorifemcalibration.

Since the camera’s principal point is assumed tatbthe centre of the screen, the

calibration program from OpenCV was run with fixadhcipal point. The result of the

111



1094.04272 0 3109.
estimated intrinsic matrix wa 0 1093.78186 239.F. The values ofy
0 0 1

andf, shown in Chapter 4.1.2 found by the proposed niethas very close to that

found by Zhang’s method. They differ by less tha3?4.

Figure 4-3: Checker board images used for the asitm of intrinsicparameters of the camera using
Zhang’'s method.

For the extrinsic parameter estimation using Zhaengethod, the image shown in
Figure 4-2 was used. The OpenCV program was usedthi® evaluation. The
determined rotation angles in radian aboGt Y- and Z-axis were 0.0095813,
-0.0012957 and -0.0085325 respectively. Thesetsewdre close to the ideal rotation
angles of zero. The translations in meter fig¢mY- andZ-axis were 4.47x16) 1.05,

and 5.09 respectively. Therefore, the estimated mmog height of the camera was
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1.05m which was the translation along thaxis. Similarly, the distance of the first

control point A on the banner was 5.09m, which was the translafimmgZ-axis.

Compared to the results with the proposed methuoel,deviation in the estimated

camera height was 2.86%. The deviation in the @séchdistance to the control point
Ac was 8.62%. The intrinsic and extrinsic parameestgmated by Zhang’s method

were used to calculate the world coordinates freensupplied screen coordinates. The
result shown in Table 4-4 revealed that the es@thatanslation of 5.09m along the

Z-axis was not so accurate as the estimation erasr larger than 12% for all points.

Although the result from the proposed calibratioetimod was close to the result

obtained by Zhang’s method, it is more preferablade the proposed method for more
accurate estimation of World coordinates from ttr@an coordinates. In addition, the
proposed method has addressed the problem oflingtéhe camera correctly into a

vehicle.

Table 4-4: Deviation of calculated World coordirsateom the measured World coordinates using Zhang's

method
M easur ed Calculated E<timation
. World World
Screen Coordinates . . Error
Coordinates Coordinates (Z- direction)
X,2) X,2)
(Xa, ya) =(319.229, 444.131) (0, 5.09) (-0.0014, 5.77) 13.36%
(Xb, yb) =(319.200, 427.001) (0, 5.59) (-0.0017, 6.30) 12.70%
(Xl, yl) = (416.442, 443.763) (0.5, 5.09) (0.512, 5.78) 13.56%
(X2, y2) =(222.503, 444.500) (-0.5, 5.09) (-0.510, 5.76) 13.16%
(XS, y3) = (408.627, 426.187) (0.5, 5.59) (0.515, 6.33) 13.24%
(%, V4) = (230.384, 427.522)|  (-0.5, 5.59) (-0.512, 6.28) 12.34%
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4.2 Verification of Ego Motion Compensation

To verify the ego motion compensation algorithngiraple synthesized sequence was
produced to serve the purpose. Figure 4-4 showsifioaige frames of a simple image
sequence. The frame to frame duration was 160nmes séquence was synthesized with
an ego vehicle moving at 20m/s. A moving objecpbysical size 2m x 2m that was
represented by the square at the centre of thersevas moving forward at 10m/s. A
house on one side of the road with physical dinenshown in Figure 4-5 was located
at 5.5m left from the centre line. It was at 80mnirthe ego vehicle at the beginning.
The camera focal length and principal point wer® 88d (320, 240) respectively. The

mounting height of the camera was 1.26m with zetational angles.

FOE (320.00, 240.00} Obj size wxh 2m « 2m  Time 2.00, Distonce 60.00 FOE (320.00, 240.00} Obj size wxh 2Zm x 2m  Time 2.40C, Distance 56.00
Yeh. Speed 20.00, Obj. Speed 10.00 Weh, Speed 20.00, Obj. Speed 10.00
FOE (320.00, 240.00) Ob] size wxh 2m x 2m  Time 2.80, Distonce 52.00 FOE (320.00, 240.00} Obj size wxh 2m x 2m  Time 3.20, Distance 48.00
Veh. Spead 20.00, Obj. Speed 10.00 Weh. Speed 20.00, Obj. Speed 10.00

] -
] [ [L L]

Figure 4-4: Simple image sequence containing &gthe house) and a moving object (the square.box)
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5.5, 4.5, Zw)

(-7, 4, Zw) (4, 4, 2Zw)
(6.5, 3.5, ZW) > <! (45,35, zw)
6,2, ZW)—| 452 2w
6. 15 2m— S5, 15, Zw)
A (4, 0, Zw)
(-7.0,.2w)
(-6,0,2W) (-5,0,2w)

Figure 4-5: The physical dimension of the housth@simple synthesized sequence. The World
coordinates of vertices of the house are showrué&hre shown in meter. Zw is the distance of thesé
from the ego vehicle. Negative X-axis value medwasabject is on the left-hand side of the World
coordinates.

The equation concerned for ego motion compensasia@nown in Equation (3.30) in
Chapter 3.2.1. It relates a point on the groundiela the screen coordinates between
the current and the previous frames. The evaluatias performed by examining the
screen coordinates of selected points of succe$siuges, comparing the difference in
the calculated screen coordinates and the actsa&rodd coordinates. The matéxin
Equation (3.30) is evaluated in Equation (5.6) b§pstituting the parameters from
Equation (5.2) to (5.5). Then matfiz * can be found by Equation (5.6) and (5.1) as

shown in Equation (5.7).

5.1
f, 0 c) (830 0 32 e
K=|0 f, c|=| 0 830 24
0O 0 1 0O O 1
T.=[0 0 veh_spd 7] =[0 0 2001f =[ 0 0 3] (5.2)
100
R,=/0 1 0|=I (53)
001
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1 0O
R=/0 1 0|=I (5.4)
0 0 1
n=(0 1 0 (5.5)
A:R(l—RNTC nTj
h
1 1 0 0 O 1 0 (5.6)
=Hl-50 10 0|(0 1 9|={0 1
' 0 0 1) 3.2 0 - 25397
M = KAK™
830 0 320/ 1 0 0.0012048 0 -0.38554¢
=| 0 830 240| O 1 0 0.0012048 -0.28915
0 0 1 /{0 25397 0 0 1 (5.7)

1 -0.9791547 234.997
=10 0.265634 176.2478
0 -0.0030599 1.734366

Figure 4-6 shows two successive frames of the sgithd sequence. The lower right
corner of the house, which is a point on a stalijea in the sequence, was used to
verify the equation for ego motion compensationsAsn from the current frame shown
in Figure 4-6(b) the screen coordinates of the toweght corner of the house is
(261, 259). It is substituted to Equation (3.30)fital the corresponding point in the
previous frame. The calculated point correspondemcehe previous frame was
(264.24, 257.96), as shown in Equation (5.8). Tdleutated result is close to the actual
coordinates at (264, 258) recognising directly frira image. Therefore, the equation

for ego motion compensation is verified.

1 0.979155 -234.9971 281[ 264
P, =M7'p’=| 0 1734366 -176.2478 25| 257. (5.8)
0 0.003060 0.26563 1
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80, Distonce 32.00 FOE (320.00, 240.00) Obj size wxh 2m x 2m Time 4.80, Distance 32.00
eh. Speed 2 0o

0.00, Obj. Speed 1(

FOE (320.00, 240.00} Obj size wxh 2m x 2m
Veh, Speed 20.00, Obj. Speed 10.00

Frame #58 Frame #60
Previous frame Current frame

| a

\ \
\ \

\\ - '\_
(264,258) (261,259)

(a) | (b)

Figure 4-6: Two successive frames of the synthdsseguence. The coordinates of the lower rightarorn

of the house is read from the image. The coordirestding for the previous frame is compared with th
calculated result.

4.3 Slow Relative Speed Vehicle Detection and Tracking Method

The effectiveness of the proposed slow relativedpehicle detection algorithm and its

computational speed are summarised in this Chapter.

4.3.1 Region of Interest Formation

The region of interest (ROI) in the captured imagthe area outside the detected road
region and having small MV amplitude. Figure 4-0wh the sequence of images on
the formation of the ROI for relative slow speedhicke detection. Figure 4-7(a) is the
original captured image. The road region in frohth@ ego vehicle is identified and
shown in white colour blocks in Figure 4-7(b). Thbite blocks in Figure 4-7(c)
represent those with MV amplitude larger than agholdg.. gm is set to 12 according
to the experiment results. Figure 4-7(d) showsdiselt of combined road region mask
in Figure 4-7(b) and the MV region mask in Figur&(4). It is noticed that there are
many small black blocks surrounded by the whitekn@bese small black blocks are
removed from the image mask by a hole-filling aitjon mentioned in Chapter 3.3.4.

The result is shown in Figure 4-7(e). The result®@l| with the upper part of the

117



image cropped is shown in Figure 4-7(f). Therefardy the lower half of the image
with areas outside the image mask would be evaluayethe algorithm for relatively

slow moving objection detection.

The example shown in Figure 4-7 is a typical sdenam the road. The image area to
process is less than 20% of the original image. Siberefore the reduced ROI can
lower the computational time to help achieve tred tiene performance requirement of

the system.
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Figure 4-7: lllustration of road region detectiordaexclusion of areas with large MV amplitude. (a)
Original captured image. (b) Result of block basmat region detection. White colour represents the
detected road region. (c) Blocks with MV amplitddeger than a threshold with white colour. (d)
Combined mask from road region and large MV arégsCombined region mask with holes filled. (f)
Final ROI overlaid to the original image. ROI igtlegions outside the white colour mask.

119



4.3.2 Detection and Tracking

The detection algorithm was evaluated against réiffe kinds of vehicles. This
included passenger cars, minivans, buses and trioggsre 4-8 shows some of the
vehicles that were detected in the video sequeoaptired from different roads in
Hong Kong. The rectangular bounding boxes are @bl®cate the bottom and the
sides of the detected vehicles. The upper bounthefrectangle is obtained by the
aspect ratio of the rectangle or freoordinate of the FOE. Therefore, the computation
time for finding the upper bound of the vehicle ¢@reduced. It is also noticed from
the examples shown in Figure 4-8 that the lighenstty of the scenes varies quite
significantly. Even if there are shadows and strenglight on the road, the vehicles

can still be detected.

The threshold values for successful vehicle deiacéire listed in Table 4-%, the
threshold for segmenting the region of interesbetiag to the amplitude of MVs, was
determined with the assumption that relatively fapeed moving objects have
relatively large MV amplitudes. It was set to 1ieh is 1.5 times of the block size
used. A larger value dof, will mean increasing the region of interest folateely
slow speed moving object detection, and vice vddgas the threshold for comparing
point correspondence in the vertical gradient amrizbntal gradient images in order to
eliminate non-horizontal contours in the verticahdjent image. The main noise to
eliminate in a vertical gradient image is the lam&rkings on the road. This parameter
should be adjusted if the focal length of the camier changed. For instance, if a
camera with smaller focal length is used, the canfietd of view will be increased.
Lane markings will appear to be more ‘horizontdhis means the lane markings will
have larger amplitudes in the vertical gradientgmaA smaller value dDy, should be

used in this regardMy andW_ are the upper and lower limits of the width of iotds
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to be detected. They were determined accordinigg@ttual width of vehicles that will
appear on the road. SimilarlRynu and Ryn. are the upper and lower limits of the
width to height ratio of the detected vehicle. The&slues should be set according to
the actual width and height of vehicles appearmghe image. A smaller range will
reduce the true-positive and false positive ra¢es the parameter that defines the
range of x-coordinates for evaluating the vertajection near the end points of the
horizontal line at the bottom of the detected viehi¢his parameter was set according
to the observation that most vertical edges of alekiwould fall within this search
range. A larger value of this parameter will ingeshe search range. This may include
more vertical edges that are not belonging to #tealed vehicles. On the other hand, a
smaller value of this parameter may be insufficieninclude the vehicle edges in the
search range, leading to reduced detection ¥4tés the threshold to confirm that a
vehicle exists if it is smaller than the averagdival gradient in a bounded rectangle.
This value is determined by observations in expeni® conducted. A smaller value
will result in increased false positive ragg.ande,are number of pixels to expand the
bounding rectangle in the x- and y-coordinate efgbreen respectively for tracking of
detected vehicle in successive frames. They weerrdaed according to observations
during experiments with the ego-vehicle travellingstraight line, following a vehicle
at the front at constant speed. Increasing thekeevavill increase the search range,
and hence increasing the chance of successfulitigadBut this will also increase the
computation time during tracking. On the other hamdre false positive tracking is
expected due to the inclusion of more sources teffierence in the increased search

range.

Although reducing the ROl by MV amplitude and roaelgion detection can

successfully reduce the computation time for vehitection, the detection time is
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still affected by how many vehicles are identifiedeach captured image. Since the
detected vehicle will not disappear immediately sinccessive frames, a tracking

algorithm that largely limits the search window caduce the computational cost.

Table 4-5: The parameters used in the algorithnsdiocessful detection of vehicles. These paramaters
determined by repeated testing to the video se@saiaken in Hong Kong for this project.

Parameter | Description Value
1 Om Parameter mentioned in Chapter 3.4.1. lhis threshol( 12
in number of pixels for segmentation of the iraaip
regions for relatively slow and fast speed veh
detection.

2 Dhv Parameter mentioned in Chapter 3.518.is for the 50
comparison between vertical gradient image
horizontal gradient image for the elimination ofnamted
vertical contours.

3 | WL andWy | Parameter mentioned in Chapter 3.5Bhey arg 1.0
predefined lower andupper limits of the width ¢ and
detected horizontal line. The width must be witMa| 2.5
andW.
4 Rwueand | Parameter mentioned in Chapter 3.5.3. They areatlee 0.5
Rwhu between the width and the height of the detectéatiee | and

4.1
5 e Parameter mentioned in Chapter 3.%t3s the range @ 10
x-coordinate for evaluating vertical projection nehe
end point of the detected horizontal line.
6 Vh Parameter mentioned in Chapter 3.5t 3s the threshol{ 40
for confirming the existence of strong vertical edgom
the vehicle.

7 ecande, | Parameter mentioned in Chapter 3.5T#e number o 3 and
pixels to expand the bounding rectangle in theamed 5
y-coordinate ofthe screen respectively for tracking
detected vehicle in successive frames
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(3) Minivan (4) Minivan

(21) Passenger car (22) Passenger car (23) Passenger car (24) Passenger car
Figure 4-8: Detection of different vehicles on thad.
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4.3.3 Detection Rate

The detection and tracking algorithms were evathatath self-prepared video
sequences. These video sequences are listed ie Babl These sequences were
prepared with the simplest scenario and shortesdtidn as in Sequence A, and to
more complex scenarios and longer duration as qu&se F and G. The challenges
contained in these sequences are illustrated imr&ig-9. They include shadows from
the environment, broken road with non-uniform cojaext or symbol on the road,
fences on the road side, increasing or decreadiniistance to the front vehicle, and
lane change due to the front vehicle or the egaclesh

Table 4-6: Video sequences with different challenigethe proposed algorithm
Sequence | Shadow Broken Road- Far to Closeto Lane Symbol /
road sidefence close far change Text

Seq.
Seq.
Seq.
Seq.
Seq.
Seq.
Seq.

OMmo0|w| >

The image sequences were then encoded by the JNHL2B#/AVC encoder. The
block size of MVs in a frame was configured so thataried from 8x8 to 16x16.
Those MVs of block size larger than 8x8 were regdrds multiple blocks of size 8x8

with the same MV value, as proposed in Chapted 3.1.
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Figure 4-9: Challenges appeared in the test vidgoences. (a) Road-side fence and shadows. (b3 Text
on the road. (c) Broken road. (d) Symbol on thelroa

Different Quantization Parameters (QP) of valud®, 28, 35 and 45 were chosen to
test the sequences from low to high compressioh watget bit-rate ranging from
8.0Mb/s down to 1.5Mb/s. The smaller is the QP,filgher is the video quality. The
MVs from the encoder with different QP have simifatterns. With higher QP for
higher compression, larger block size MVs and n8# mode blocks are used. This
can be observed from Figure 4-10(i) versus FiguréO@). The number of
macroblocks using 16x8 and smaller partitions ghéar for lower QP, but the resulting
ROI for moving object detection was similar, asistrated in the right side of Figure
4-10. The resulting video quality using QP35 and4®R&re nearly un-usable, but the
MV amplitudes around the relatively slow speed gkds at the front are small, not

being affected by the selected QP value.
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One point to note is that the detection algoritsmun on a system with an H.264/AVC
encoder, the source image is available for beirgd usy the algorithm. Since the
source image is used for the identification of readion and the U-shape feature of
vehicles, the degraded video quality due to congwaswill not affect the detection

result.

For the detection result, it was categorised imae-positive, false-positive and
un-successful detection. True positive detectionachieved by either successful
detection or tracking of vehicles. The detectiosufts are summarised in Table 4-7.
The last row of Table 4-7 combines the result aju@ace A to G by summing all the

frames in the sequences.

Table 4-8 shows the combined detection rate ofhalte sequences. The results show
that the true-positive detection can reach mora 826, while the false-positive rate
remains at very low level of less than 1%. Figw¥24to Figure 4-18 show a snapshot

of the image sequences.

It is noted that the detection rate remained nediti stable with all QP values used.
There is no significant gain in detection rate wtk increase in video quality. This is
because the source image was used for object etedtherefore, the detection
algorithm was not affected by the degradation iotyse quality due to video
compression. Since the source image was the sameéljfference in detection rate in
the same sequence with different QP was becauseafeous MVs on the vehicles at
the front. Some region of the vehicle was maskednduthe ROI evaluation as
illustrated in Figure 4-11. This led to corruptedshhpe features, affecting the

detection algorithm.
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Figure 4-10: The left side shows MVs of macroblooksa typical frame with different QP. (a) QP=9) (c
QP=17, (e) QP=28, (g) QP=35, (i) QP=45. The rigti¢ shows the corresponding ROI with different QP
constructed by using the amplitudes of MVs andidkeatified road region. It is observed that morarse
macroblocks (16x16) were used with higher QP, & tesulting ROI was essentially the same,
preserving the regions with relatively slow speetigles at the front.
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Table 4-7: Detection result of seven image sequeridee last row shows the combined result of sezpien

Ato G.
Total True-positive False-positive Unsuccessful
Sequenceframe QP | QP | QP | QP | QP |[QP| QP | QP | QP | QP | QP | QP | QP | QP | QP
9 17 | 28 | 35 | 45|19 |17|28|35|45| 9 | 17| 28|35 45
A 42 | 42 42 | 42 42 | 420} 0| 0]J]0]JO0O]jJ0O0O]0O]0O]O]O
B 100 | 97 97 | 97 97| 97/0/ 0] 0| 0]O0|3]3|3|3]3
C 246|239 1239|239 237|237/1|1|1]1]|]1]|6|6|6|8]S8
D 275| 262 | 262 | 261 | 262|262 0| 0 | 0| 0| 0 [ 13|13|14]|13]|13
E 440 | 425 | 4251399399399/ 1|1 |1 |1|114[14]40]40]40
F 208 | 188 | 188 | 189 | 188|183/ 0| 0 | 0 | 0 | 0 |20|20| 19|20 20
G 342|331 |331|332|331|331|0| 0| 0]0O0]|]0]21|12]10]11]|11
Ato G | 1653 1584 | 1584| 1559| 1556|1556 2 | 2 | 2 | 2 | 2 | 67| 67| 92| 95| 95

Table 4-8: Detection rate of the seven image sempseiThe last row shows the detection rate of the
sequence combined from A to G

Detection rate %
Sequence Total frame
QP9 QP 17 QP 28 QP35 QP45
A 42 100 100 100 100 100
B 100 97.0 97.0 97.0 97.0 97.0
C 246 97.2 97.2 97.2 96.3 96.3
D 275 95.3 95.3 94.9 95.3 95.3
E 440 96.6 96.6 90.7 90.7 90.7
F 208 90.4 90.4 90.9 90.4 90.4
G 342 96.8 96.8 97.1 96.8 96.8
Ato G 1653 95.8 95.8 94.3 94.1 94.1

(a) Seq. C frame 121

(b) Seq. E frame 159 (c) Seq. F frame 83

Figure 4-11: lllustration of images with un-sucdakdgetection. These images show the region oféste

in grey which was constructed by combining the cle road region and the region with MV amplitude
larger than a threshold. All images show significenasking of the U-shape feature of these vehicles
leading to unsuccessful detection.
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(b) T

(@)

Figure 4-12: A snapshot of sequence A at framda@4Binary threshold and the vertical gradient iegg
(b) Filtered horizontal gradient image and its esponding horizontal projection near the edgebef t
front vehicle. (c) Original image with the overlaiectangle representing the identified positiothef

detected vehicle.

(b)
Figure 4-13: A snapshot of sequence B at frama)4Bipary threshold and the vertical gradient insage
(b) Filtered horizontal gradient image and its esponding horizontal projection near the edgebef t
front vehicle. (c) Original image with the overlaiectangle representing the identified positiothef
detected vehicle.

(b)
Figure 4-14: A snapshot of sequence C at framéadBinary threshold and the vertical gradient igmg
(b) Filtered horizontal gradient image and its esponding horizontal projection near the edgebef t
front vehicle. (c) Original image with the greertangle representing the identified position of the
detected vehicle.
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(b)
Figure 4-15: A snapshot of sequence D at frama)@Bipary threshold and the vertical gradient insage
(b) Filtered horizontal gradient image and its esponding horizontal projection near the edgebef t
front vehicle. (c) Original image with the greertangle representing the identified position of the

detected vehicle.

(b)
Figure 4-16: A snapshot of sequence E at frame (89®inary threshold and the vertical gradientges
(b) Filtered horizontal gradient image and its esponding horizontal projection near the edgebef t
front vehicle. (c) Original image with the greertangle representing the identified position of the
detected vehicle.

(b)
Figure 4-17: A snapshot of sequence F at frame @3&8inary threshold and the vertical gradientges
(b) Filtered horizontal gradient image and its esponding horizontal projection near the edgebef t
front vehicle. (c) Original image with the greertangle representing the identified position of the
detected vehicle.
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(@) (b)

Figure 4-18: A snapshot of sequence G at frame (&3 Binary threshold and the vertical gradientges

(b) Filtered horizontal gradient image and its esponding horizontal projection near the edgebef t

front vehicle. (c) Original image with the greertangle representing the identified position of the
detected vehicle.

4.3.4 Computation Time Analysis

Since the proposed algorithm was targeted fortrered-application in automobiles, the

computation load of the algorithm is also analysed.

The algorithm was developed in C++ language and tesied with a PC with x86
processor running at 2.6GHz clock speed. Capturedjé sequences of size 640x480
each were stored to the PC for offline processiflte JM18.4 H.264/AVC video
encoder (JVT, 2012) was used for offline encoding Yideo to H.264 format. The
video encoder was modified to output MV map forleReframe and was stored in the
PC. Furthermore, the encoder was set to IBPBP fretmeture, with frame rate of
30fps, using EPZS motion estimation algorithm, wittra-frame encoding in P-frame

disabled and macroblock partition smaller than 8is@bled.

The program read the captured image sequence hancbtresponding dynamic data
and MV file from the harddisk of the PC. The maumdtions for low relative speed
vehicle detection include finding the ROI and thetedtion of the vehicle. After
successful detection, the tracking function wasdusghout running the detection

algorithm.
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The average time for processing the seven testesegs mentioned in Table 4-6 is
shown in Table 4-9. It was found that the procagsime for finding the ROI and for

vehicle tracking was relatively low with a maximwh?21.5ms. However, the average
processing time for relatively slow vehicle deteotvaried from 15.7ms to 192.9ms.
The large deviation in the detection time was duée existence of multiple regions
with U-shape features. For instance, Figure 4)18ifaws the binary image of frame
66 of Sequence F with white areas representingomegihat are darker than the
minimum gray level of the detected road regionuFegd-19(b) highlights the areas in
red circles that are required to run vehicle detaectlgorithm. Since the area is
relatively large when comparing with the case waitty one vehicle at the front, extra

time was spent on the vehicle detection function.

With the H.264/AVC encoder set to IBPBP frame g and 30fps, the interval
between P-frame for ROI detection is 1/15 secomd,f6.7ms. If the cycle time for
vehicle detection is less than 66.7ms, the detectycle is fast enough to catch up with

the designed video frame rate.

Ignoring the file input/output (1/O) time (IV in Tde 4-9) that can be eliminated in the
future real-time system where the image and MVraeal directly from the memory,
the tracking cycle time (I+ll) is less than 24niisis fast enough to match with the

desired video frame rate.

Table 4-9: Average processing time in ms for lolatree speed vehicle detection. The time for firgdin
ROI and tracking is relatively stable. The detattione varies due to the difference in area foeptal
vehicle detection.

I 1 Il v CycleTime
Sequence |Finding ROI | Detection| Tracking| Filel/O | 1+l1+1V [+11 Ralll
A 5.6 15.7 4.3 126 147.3 21.3 9.9
B 10.5 16.5 4.7 76 103 27.0 15.2
C 7.2 51.5 4.5 67 125.7 58.7 11.7
D 11.6 31.8 9.9 89 132.4 43.4 21.5
E 12.7 75.2 7.3 89 176.9 87.9 20
F 11.1 192.9 5.7 83 287 204.( 16.9
G 17.2 52.7 6.3 102 171.9 69.9 23.5
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(b)
Figure 4-19: (a) Binary image with white colour regenting the area that is darker than the minimum
grey-level of the identified road region. (b) Mplg regions for potential vehicle detection, ciccle red
colour.

It was noticed that the cycle time for vehicle d&ta (I1+II) can vary from tens of
milliseconds to hundreds of milliseconds. This ieywthe tracking algorithm was
required to shorten the computational time uporcessful detection of a vehicle so
that more computation resources can be reservedhéomeed of other processes.
Nevertheless, if the detection takes hundreds bBisetonds to complete, the detection
algorithm is still effective for a real-time appion. This is because the expected
movement of low relative speed vehicles acrossrakframes is small, the ROI is still
valid across several frames for detection evelnafdetection algorithm is skipped for a

few frames.

The computation time increases with increase inniimaber of U-shape features that
indicates the number of potential vehicles in thage. Since the algorithm tries to find
U-shapes by scanning the ROI in the image, theeas® in the image resolution and
the number of pixels in the ROI will also incregbe computation time for vehicle
detection. The worst timing in those sequences taken as the worst case figures for
estimating the detection time and ROI evaluationetiwith increase in number of
vehicle and image resolution. There were up to fdeshapes in the entire ROI in
Sequence F requiring 192.9ms for detection. So éadhape requires 48.2ms to
process. The time taken for ROI evaluation wasrhg.th Sequence G, and the time

for tracking was 9.9ms in Sequence D. The experim@s carried out with an image
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resolution of 640x480, the corresponding processimg at higher resolutions was
projected from this resolution according to thecpatage change in resolution. The
time required for processing the image at differesblutions for one vehicle is shown
in Table 4-10. Considering that there are multiy@bicles to detect in the same image
and only one vehicle is tracked after the detect@oplot of processing time versus the
detection cycle time is shown in Figure 4-20. lbwk that the increase in image
resolution can impact the detection cycle time ificgntly. For instance, the
processing cycle time for only 1 vehicle in the gaat 1920x1080 can exceed 500ms.
Further increase in the number of vehicle in thagewill make the detection time
being unpractical for real-time application. Howeuwbe algorithm is able to maintain
the cycle time at less than 500ms for up to 9 Jekjowhich is usable for real-time
applications. Nevertheless, the algorithm compaomatiime can be improved by
employing methods proposed in Chapter 7.

Table 4-10: Processing time of the algorithm afiedént resolutions. The processing time for 1280x72
and 1920x1080 was projected from the result at 680x

@640x480 | @1280x720 (x3) | @1920x1080 (x6.75)
Timetofind ROI 17.2 51.6 110.9
Detection Time per vehicle 48.2 144.6 325.4
Tracking per vehicle 9.9 29.7 66.8

Processing Tme (ms)
3500

—— ([@640x480 —— @1280x720(x3) @1S20x108C (x6.75)
3000

2500

2000

1500

1000

678‘9

No. of vehicle in the image

Figure 4-20: Processing time for multiple vehidlesin image at different image resolution.
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4.3.5 Comparison of Results

Since the test results from other publications weraking use of different test
sequences for evaluations, direct comparison talteegrom this project was not
possible. The algorithm proposed in this reporunessg to use the information from the
inertial sensors and the vehicle speed sensory tlsepublicly available database for

evaluation directly was also not possible.

However, the comparison can still give a referefiocehe performance of the proposed
algorithm. Monocular vision based algorithms udiegture based methods (Wang and
Lien, 2008, Jazayeri and Hongyuan et al., 2011)statistical based methods (Sun and
Bebis et al., 2006, Chang and Cho, 2010, Sivaraamah Trivedi, 2010, Yuan and

Thangali et al., 2011, Chen and Chen et al., 2@ and Shao et al., 2015, Cheon

and Lee et al., 2012) that were published in regeats were selected for comparison.

Table 4-11 shows the comparison among the selatgedithms for the detection rate
and false positive rate. The detection rate oadgerithm proposed in this study shown
in Table 4-11 is the combined detection rate ohgeguence A to G mentioned in the

last row of Table 4-7.

Within the comparison, the detection rate and fgissitive rate of the proposed
algorithm is on a par with the detection rate ¢feotalgorithms in the comparison. One
of the reasons for the high detection rate andfedse positive rate is the elimination
of non-vehicle objects by limiting the ROI to thegrons with small MV. Another
reason is the good image threshold value obtaineohgl the road region detection
stage which was used for constructing a binary enagth essentially the dark

contours of vehicles and their respective shadows.
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Table 4-11: Comparison on the detection rate alsé-faositive rate of the proposed algorithm vseoth

selected algorithms from renowned journals.

Resear ch Description Detection False Remarks
Study Rate Positive
Rate
Sun et al. Statistical based vehicle detection using6.1% 2.29%
(2006) HOG and Gabor features, followed by
SVM and neural network classification
Wang and | Feature based vehicle detection usjrgh.6% <0.5% | Evaluation is
Lien (2008) | local features of vehicles, extracted py done on selected
principal component analysis (PCA) static images.
and independent component analysis 8.7fps was
(ICA) for hypothesis generation. achieved.
Hypothesis verification is done by |a
posterior probability function.
Chang and | Statistical based detection usin®@6% 8%
Cho (2010) | Haar-like feature and Adaboost
classification. It also features on-line
continuous learning to refine the trained
classifier
Sivaraman | (Similar to Chang et al.). Statistical95% 6.4%
and Trivedi | based detection using Haar-like featlire
(2010) and Adaboost classification. It also
features on-line continuous learning |to
refine the trained classifier
Yuan et al. | Statistical based using HOG feature82% 1 per
(2011) and SVM classification. frame
Jazayeri et | Motion based using optical flow,86.6% 13.2%
al. (2011) | followed by feature based hidden
Markov model classification
Cheon et al.| Statistical based using HOG symmetr93% 5%
(2012) features and a classifier based on total
error rate minimisation using reduced
model.
Chen et al. | Road modelling followed by Haar-like94.32% 5.52%
(2013) feature and eigencolour based detection
using Adaboost classifier
Wen etal. | Haar like feature based followed by94.1% 3.26%
(2015) SVM
Proposed | Vehicle detection by road regign95.8% <0.5% | True-positive
Algorithm estimation, MV amplitude for RO| detection rate of
selection, horizontal contours, all the test
horizontal projection and vertical sequences Ato G
projection. using QP=17 for
video coding.
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4.4 Fast Relative Speed Vehicle Detection and Tracking Method

The effectiveness of the proposed fast relativedpehicle detection algorithm and its

computational speeds are summarised in this chapter

4.4.1 Region of Interest Formation

The region of interest (ROI) for relatively fast wirag object detection is the area that
is outside the detected road region and having kilaude larger than the threshold
Om- Figure 4-21 shows the sequence of images inatmdtion of the ROI for relative
fast speed vehicle detection. Figure 4-21 (a) ésdhginal captured image. The road
region in front of the ego vehicle is identifieddashown in white blocks in Figure
4-21(b). The white blocks in Figure 4-21(c) repreas@ose with MV amplitude larger
than a threshold. g is set to 12 according to the experiment resiitpure 4-21(d)
shows the result of combine the road region maskgare 4-21(b) and the MV region
mask in Figure 4-21(c). It is noticed that there arany small black colour blocks
surrounded by the white mask. Unlike the ROI fomstelative speed object detection
in which these black blocks were removed by a lfidlag algorithm mentioned in
Chapter 3.4.1, these small black blocks were mabked from the image mask so that
more blocks were retained. This increased the numiblelocks with larger amplitude
for better relatively fast speed moving object dete. Figure 4-21(e) shows the
resultant ROI for fast relative speed moving obptiection overlaid with the original
captured image. Figure 4-21(f) is the ROI of thwdo half of the image overlaid with
the original captured image. It is the image maskdufor relatively fast moving
objection detection. As clearly seen from Figur2l4f), the ROI contains essentially
the vehicle moving from the left to the right oktkcreen. There were some outliers

due to the motion estimation error of the H.264/A¥fcoder. Some blocks on the
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moving car body were also masked. This is becatifeeomotion estimation error of

the H.264/AVC encoder to blocks with weak textureepetitive pattern.

(e) (f)

Figure 4-21: lllustration of road region detectimd exclusion of areas with small MV amplitude. (a)
Original captured image. (b) Result of block basmat region detection. White colour represents the
detected road region. (c) Blocks with MV amplitughealler than a threshold filling with white colod)
Combined mask from road region and small MV arégsCombined region mask. (f) Final region of
interest, with only the areas in the lower halfle image that are not filled with white. The owél
image shows that most of the MVs on the relatifagt moving object are not masked.
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It was observed that the ROI using MV amplitudenal@s shown in Figure 4-21(c)
contains many disconnected blocks in the areaggponding to the road region. After
combining with the detected road region, the RQlléde reduced to minimise the
computational time for moving object detectionwasl as to reduce the false detection

rate.

4.4.2 Setup of Experiments

For normal driving on the road, most vehicles amvimg at similar speed to the ego
vehicle. However, there are occasions when someleshare moving relatively fast
and are not necessarily moving at the same direetsathe ego vehicle. Table 4-12 and
Figure 4-23 show the description and a snapshptotisely of eight video sequences
for the evaluation of the fast relative speed mgwibject detection algorithm. These
video sequences were created with a test vehicleng@cross junctions, or driving at
the front of the ego vehicle with sudden lane cleandgn addition, two sequences V
and W were created with an air inflatable dummyislehas a fast relative speed
moving object and with the ego vehicle having heaaollision to it, to investigate the

effectiveness of the algorithm.

The inflatable dummy vehicle is shown in Figure2i-Zhe size of the dummy vehicle
was similar to a standard compact private car. &sthe mass of the dummy vehicle
was small, typically less than 5kg, no damage wasduced to the ego vehicle during
collisions. Also, there was no motorised compornerthe dummy car, it was required

to be pulled by a human across the road duringette
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Table 4-12: Video sequences with different chalésntp the proposed algorithm

th

th

Sequence Description

Seq. P Two vehicles move from the left to the right in $ereen. The ego vehicle is moving
with distance of around 10-20m from these vehicles

Seq. Q One vehicle moves from the left to the right in Steeen. The ego vehicle is moving wi
distance of around 10-20m from the vehicle.

Seq. R One vehicle moves from the right to the left in Soeeen. The ego vehicle is moving w
distance of around 20-30m from the vehicle.

Seq. S One vehicle is moving from opposite lane and issig the road from the right to the
left in the screen. The ego vehicle is moving wiistance of around 30-45m from the
vehicle.

Seq. T One vehicle is moving on the left side of the eghigle, then changing lane from left tq
right. It then changes its lane again from thetrigtthe left. The ego vehicle is moving
with distance of around 10-20m from the vehicle.

Seq. U One vehicle is moving at the front of the ego vighithen changing lane from the centr
to the right and then back to the centre lane addia ego vehicle is moving with
distance of around 10-20m from the vehicle.

Seq. V One dummy vehicle is moving from the left to thghti the ego vehicle is having direct
collision with the dummy vehicle. The ego vehideaccelerating hardly from standstill
whereas the motion of the dummy vehicle is pullgdhbman force with moderate
acceleration only.

Seq. W One dummy vehicle is moving from the right to th#,Ithe ego vehicle is having direct

collision with the dummy vehicle. The ego vehideaccelerating hardly from standstill
whereas the motion of the dummy vehicle is pullgdhbman force with moderate

acceleration only.

(b) Right-side view _

(c) Front view . (d) Rear View

Figure 4-22: The air inflatable dummy car usedtésting in this project. Its size is similar to@gact

private car as shown in the pictures.
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One point to note is that the detection of fast mgwbjects is targeted to identify part
of the object for generating a warning alert. Itniast possible to detect the whole
moving object in real-time. This is because oféh@®neous MVs from the H.264/AVC
encoder mentioned in Chapter 2.4. Also, the diffeMV amplitude and direction on
the object due to perspective transformation wdeld to the same object being
clustered into different objects for verificatioAnother problem is the additional
computational resources required to interpret thage and to cluster correctly with
real-time performance. Nevertheless, the drivey orleds to know that an object may
pose danger to his driving direction. Therefore, téwrget of successful detection is to
detect only part of the moving object so that thiwest can be alerted of potential

danger during driving.

Since only moving objects that may collide with #go vehicle need to be detected for
a warning output to be given to the driver, thoge eotion compensated MVs that
represent objects moving away from the ego vehieee discarded. The detection
criteria were the same as that proposed in Ch&pde2, which include the amplitude,

position and direction constraints.
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(9) Seq.V (h) Seq. W
Figure 4-23: Eight video sequences to evaluatg@tbposed fast relative speed moving object detectio
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4.4.3 Detection Results

The parameters for relative fast speed moving olietection are listed in Table 4-13.
Om is the threshold for segmenting the region ofregeaccording to the amplitude of
MVs. It was determined with the assumption thaatreély fast speed moving objects
have relatively large MV amplitudes. It was setl®y which is 1.5 times of the block
size used. A larger value gf, will mean increasing the region of interest fdateely
slow speed moving object detection, and vice ve¥sas the parameter to determine
the y-position in the image where the alert zometst Since the origin starts from the
top left corner, a smalleY, means a larger alert zone, accepting more PPRNVs fo
processing., was set to 350 in the experiments conducted. fidpsesents around
3.5m from the ego vehicle, which is approximatelyce the distance between the
camera and the front nose of the test vehiGlés the time to collision. It was set to 2
seconds to provide enough of a time buffer betwbenego-vehicle and the moving
object. A largerTy will also mean accepting more PPRVs for processkngs the
x-position of the PPRYV after entering the alerteoq was set to 650, a larger value
than the maximum range of tkecoordinate of 639, in order to retain more PPRMs f
processingmpresiS the parameter to determine the gradient difieeebetween the
point to the FOE and the corresponding PPRYV apthiet concernednyes was set to
30 degrees. A larger value of this parameter mdaidess PPRVs will be retained for
processing. The setting of 30 degrees is a balaetveeen the number of PPRVs to be
included for processing, and the number of outleEr®nging to static objects but with
erroneous MVsmyi is the parameter for slope comparison in clusterihg/as set to
15 deg in the experiments. A smaller threshold tedd for filtering PPRVs can
further narrow down the difference in MVs. But tecaunt for the existence of

erroneous and the limited precision of MVs, smal&iue will result in many clusters
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with only a few PPRVsdyresis the parametdor distance comparison in clustering. It
was set to 3, meaning that PPRVs will belong téedgt cluster if they are more than
3 blocks of size 8x8 apart. Setting a smaller valiie result in more clusters being
adjacent to each othex; is the amplitude comparison for clustering. Of éineplitude
of a PPRV is less than that of the average am@itoidthe PPRVs in a cluster for
comparison by, it will be included in the cluster. A larger valwf this parameter
will allows larger difference among PPRVs in a tduslt was set to 15% to account

for the precision and erroneous MVs from the encode

Table 4-13: Parameters for relative fast speed ngpebject detection

Parameter | Description Value

1 Om It is the threshold in number pfxels for segmentation { 12
the image to regions for relatively slow and faséen
vehicle detection.lt is the same parameter used
relative slow speed moving object detection.

2 Yu y-position in the image where the alert zone starts. 50
Ty Ty is the time to collision associated with the PR 2s
entering the alert zone.
Xa Xa IS thex-position of the PPRV after entering the 8 650
zone.
3 Mhres Parameter to determine the gradient difference &t 30

the point to the FOE and the corresgimg PPRV at th| deg.
point concerned. myes Was setto 30 deg.
A larger value means that less PPRVs will be rethiior

processing.
4 Myiff Parameter for gradient comparison in clustering. . 15
deg.
5 Athres Parameter for the distance between clusters. 3
6 adiff Threshold for amplitude comparison for clustering. 15%

Figure 4-24 to Figure 4-31 show the detection teBul Seq. P to Seq. W. Figure

4-24(a) shows the detection result for Seq. P.détected moving object indicated by
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the coloured rectangle includes part of the mowelicle from the left to the right of
the screen. The overlaid rectangle shown in Figii#t(a) indicates a successful
Hypothesis Generation (HG). The content insiderdmangle is used as the template
for matching with the most similar pattern in thext frame for Hypothesis
Verification (HV). Figure 4-24(b) shows a rectanghelicating a successful HV with
the template defined in the previous frame. Debactf relatively fast moving object
was confirmed when the template matching was ss@dem Figure 4-24(b). The
template update was continued for matching in #ad frame for tracking purpose, as

shown in Figure 4-24 (c) and Figure 4-24 (d).

(a) Frame #46, (b) Frame #48, (c) Frame #50, continug(d) Frame #52, continu
successful HG well successful HV. tracking tracking
before collision may | Detection is confirmed

occur.

Figure 4-24: Detection Result for Seq. P.

Being similar to the detection result of Seq. R, tbsult for Seq. Q and Seq. R shown
in Figure 4-25 and Figure 4-26 also reveals thecessgful detection of part of the

relatively fast moving vehicle at the front.
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(a) Frame #12, successl| (b) Frame #14, success| (c) Frame #16, continuedd) Frame #18, continued

HG well before collisio HV. Detection is tracking. tracking.
may occur. confirmed.

Figure 4-25: Detection Result for Seq. Q.
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(a) Frame #42, sgessful (b) Frame #44, success| (c) Frame #46, continuedd) Frame #48, continued

HG well before collision] tracking. Detection is tracking. tracking.
may occur. confirmed.

Figure 4-26: Detection Result for Seq. R.

Being different from Seq. P, Q and R with relatw&dst moving object travelling from
the left to the right or vice versa, Figure 4-20wh the result for Seq. S that has a
relatively fast moving object moving in oppositeredition to the ego vehicle. It
changed its direction and moved across the drilamg, causing danger to the ego
vehicle. Figure 4-27(a) shows the successful H@gusine constraints mentioned in
Chapter 3.6.2Figure 4-27(b) shows the successful HV of the nadht fast moving
object after successful template matching. FiguB¥ @) and (d) show the successful

tracking for two more frames after successful HV.
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(@) Framé #132, ' (b) Frame #134, (c) Frame #136, (d) Frame #138,

successful HG. successful HV. Detectign continued tracking. continued tracking.

is confirmed.

Figure 4-27: Detection Result for Seq. S.

Figure 4-28 and Figure 4-29 show the detectionlt®$or the case of a moving vehicle
at the front that changes its driving lane suddeBlgth sequences show positive
detection results. It is also noticed that the arfethe part for template matching of the

detected vehicle varies, depending on the resulinidal detection based on the

constraints to PPRVs.

(a) Frame #46, (b) Frame #48, (c) Frame #50, successful  (d) Frame #52,
successful HG. successful HV. Detection tracking. successful tracking
- is confirmed. ] ‘ _continued.
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(e) Frame #310, (f) Frame #312, (g) Frame #314, (h) Frame #3186,
successful HG. successful HV. Detection successful tracking. successful tracking
is confirmed continued.

Figure 4-28: Detection Result for Seq. T.
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(a) Frame #310, (b) Frame #312, (c) Frame #314, (d) Frame #3186,
successful HG. successful HV. successful tracking. successful tracking
Detection is confirmed continued.

Figure 4-29: Detection Result for Seq. U.

The test condition for the scenarios shown in Fegti30 and Figure 4-31 was that the
ego vehicle was accelerating quickly from stand stwards the moving dummy
vehicle for a direct collision. The dummy vehiclasvalso stationary at the beginning.

It was pulled manually by a running human so ited@ated gradually to around 6ms

The result shown in Figure 4-30 indicates succéss$fs, HV and tracking, although
the size of the template indicated by the coloueatiangles in Figure 4-30(a) to (c) has
changed significantly. The size change is due ® ititended expansion of the
rectangle in the algorithm to accommodate potemi@kase in the size of the detected
object due to camera perspective change and ttendesof the object from the camera.
The result shows that it can alert the driver beftire collision may occur, leaving

enough time for the driver to react.

For the result shown in Figure 4-31, the HG andw®fre successful, meaning that the
dummy vehicle was successfully identified. The duymwehicle was also detected
before the collision may occur, leaving enough tiimethe driver to react. However,
the tracking was not successful after the HV stages was because both the dummy
vehicle and the ego vehicle were accelerating. predlicted MV amplitude and

direction have not been estimated with accelerat&img into account. This leads to a
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relatively large deviation in the predicted disglaent and the actual displacement,

and hence the unsuccessful tracking.

(a) Frame #176, successful HG.(b) Frame #178, successful HY. (c) Frame #180, successful
tracking.

Figure 4-30: Detection Result for Seq. V

(b) Frame #158 esgfal HV. |(c) Frame #160, tracking failed.
Switching back to HG mode in t
next frame.

Figure 4-31: Detection Result for Seq. W. The tmaglafter HV shown in (c) is not successful.

(a) Frame #156, successful HG|

4.4.4 Exception of Detections

Despite the true-positive detections shown in Gérapt4.3, there were false-positive
detections and unwanted loss-of-track after sufwledstection of a potential moving

object.
L oss-of -tr ack

Figure 4-31 shows the successful HG and HV restit failed tracking of the detected
object in Figure 4-31(c). Since the ego and the mymehicles were moving under

acceleration, the actual displacement of the okapgearing on the screen deviated
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beyond the allowable range of the predicted digrtent. Therefore, the tracking
failed. The detection process went back to HG stageart the detection again in the

next frame.

Figure 4-32 shows another lost-track case in wthehinitial clustered region included
a large portion of static object in the scene. F8gd-32(a) shows the undesirable
clustering result in which a large area of the wallfront of the ego vehicle was
included. The rich and repetitive texture of thdlwesulted in many irregular MVs
being evaluated by the H.264/AVC encoder. The elusg algorithm grouped the
MVs wrongly due to unexpected similarities in arhples and directions.
Subsequently, the area enclosed in the rectangkagure 4-32(a) was used as the
template for block matching in Figure 4-32(b). Dodhe repetitive pattern of the wall,
the block matching algorithm returned a positivetahieng result as shown in Figure
4-32(b). When the vehicle moves further, the blouktching algorithm returns
negative result as the similarity falls below a-gefined threshold. This ended the

tracking mode and the HG mode was used in the ssiseeframes.

(a) Frame #38, successl](b) Frame #40, success| (c) Frame #42, tracking(d) Frame #44, HG mod
HG. HV. lost. Go back to HG No detection.
mode in the next frame

Figure 4-32: Loss-of-track after entering trackingde.
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False-Positive Detection

There were cases of detecting non-moving objecth@moad. Figure 4-33 (a) shows a
false-positive detection result. Because of thk texture and repetitive pattern of the
wall, the H.264/AVC encoder outputs MVs violatingetamplitude and direction of the
estimated MVs for ego motion. The template founthim HG mode in Figure 4-33(a)
was used for the HV and it was successfully vetifie Figure 4-33(b). It was noticed
that the resultant displacement of the matched fkaenfrom Figure 4-33(a) to Figure
4-33(b) was around eight pixels horizontally andtieelly, and the horizontal
displacement was negative, meaning that the mattdraglate was actually moving
away from the ego vehicle. Since the displaceménh® matched template has not
been verified for its validity of being an objebiat may give rise to danger to the ego
vehicle, it resulted in the false positive HG and.Hhe false detection can further be

eliminated if the matched template appears to bamgaway from the ego vehicle.

Similarly, the false detection results shown in uUfey 4-34 and Figure 4-35 were
because of the erroneous MVs output from the HA&28@/ encoder. These MVs had a
large deviation from the expected displacement @uego motion. The clustering

algorithm identified the region in Figure 4-34(apdaFigure 4-35(a) as potential

moving objects. Because of the similarity of thgioa in successive frames, HV was
successful with the use of the block matching allgor where the actual displacement
was within a predefined percentage from the expedigplacement. The displacement
of the template from Figure 4-34(a) to Figure 4H4@nd Figure 4-35(a) to Figure

4-35(b) actually indicated that the object ideptifiby HG was moving away from the
ego vehicle. The false detection can further bmiakted if the displacement direction

is taken into account.
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Since the MV based moving object detection doesdepend on the shape of the
object, prior assumption on the size, shape andresof the object are not available.
The wrongly detected object during HG cannot beated by methods related to the
features of the detected object. Therefore, thedstBge is proposed to reject objects
with inconsistent temporal motion. The false detectate can be reduced further by
re-designing the motion estimation algorithm of Bh@64/AVC encoder using the ego
motion information available from the built-in iied sensor of the camera and the

signal from the vehicle speed sensor.
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(a) Fréfne #90, (b) Frame #92, (c) Frame #94, ri(d) Frame #96, tracking
false-positive HG. false-positive HV. false-positive tracking. lost.
Figure 4-33: False-positive detection of the walltbe road.

GiaE

(a) Frame #108, false| (b) Frame #110, false| (c) Frame #112, false| (d) Frame #114, tracking
positive HG. positive HV. positive tracking. lost.

Figure 4-34: False-positive detection of the tie@dew on the road.
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(a) Frame #98, (b) Frame #100, (c) Frame #102, trackin (d) Frame #104,
false-positive HG. false-positive HV. lost. true-negative HG.

Figure 4-35: False-positive detection of the feocdhe side of the road.

4.5 Computation Time Analysis

The computation load of the algorithm was analyeedts suitability for being used in

real-time systems for practical application in awbdbiles.

The algorithm was developed in the same C++ langweythat for the slow relative
speed vehicle detection algorithm. The test platfaras also the same. There are many
common procedures for both relatively fast andtredéy slow moving object detection
algorithms. These common procedures include theudag of image of size 640x480
each for storing to the PC for offline processinging a JM18.4 video encoder for
offline encoding the video to H.264/AVC format. Thieleo encoder was modified to
output MV map for each P-frame. The MV map was alteoed in the PC. Furthermore,
the encoder was set to IBPBP frame structure, frattme rate of 30fps, using the EPZS
motion estimation algorithm, with intra-frame entcay in P-frame and macroblock

partition smaller thanx8 disabled.

Since the system will finally be implemented aseanbedded system where the file
input and output overhead for obtaining capture@ges and reading MVs will be
eliminated, the timing analysis was focused on tienputational loading of the

algorithm rather than the time for input and outpetess.
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The average time for processing the eight testesemps mentioned in Chapter 4.4.2 is
shown in Table 4-14. It was found that the progegsime for identifying the ROI and
for HG only were having small variation. The RObation took approximately 30ms
+10% to complete, and the HG took approximately #1086 to complete. However, the
execution time for the HV or tracking algorithm et from 20.1ms to 27.9ms. This was
because the HV algorithm essentially consists ef bhock matching algorithm. It
required longer time to complete when the blocle sias increased. For instance, the
detected moving object was relatively small in SEghence the time required for block
matching was relatively short. Also, the numberitefations required to find the
matching block depends on the match result underspiral search. If the matching
block can be found earlier, the time required f& &hd tracking becomes smaller. That
is, if the estimated displacement is close to tttea displacement, the block matching
algorithm used in HV and tracking can be completadier.

Table 4-14: Average processing time in ms for fakttive speed vehicle detection

Sequence | Finding ROI HG HV or Tracking
Seq. P 27.6 3.6 27.9
Seqg. Q 30.7 3.8 21.3
Seg. R 27.8 4.0 20.1
Seg. S 28.6 3.8 21.1
Seq. T 30.5 4.3 17.4
Seq. U 32.2 4.0 20.3
Seq. V 29.5 4.0 26.4
Seq. 31.1 4.2 27.3

Currently, the block matching algorithm is a simgpiral full-search, the search

algorithm can be improved in the future by usingenatelligent search algorithm.

Since the cycle time for vehicle detection can ibestied within 66.7ms, the detection
cycle is fast enough to catch up with the frame cdt30fps for the H.264/AVC encoder
with IBPBP frame structure. This means the videonie rate needs not be lowered to

facilitate the detection, preserving the smoothméske recorded video.
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For a single system to have relatively fast anevsiooving object detection functions,
the system should be designed so that the fastlamdrelative speed object detection
algorithms are running alternatively, or in parallith the use of multi-core

system-on-chip.

4.6 Cost Analysis

The proposed system architecture of the MV based3\» shown in Figure 4-36. It
consists of a CMOS camera sensor unit, a six degfréeedom inertial sensor, a
Digital Signal Processor System-on-Chip (DSP SOd&2), SD-Card interface and a
display and warning device. The six degree-of-fomedinertial sensor is mounted
directly to the printed circuit board for the CM@8mera sensor in a position which is
close to the optical centre of the CMOS cameramerie inertial sensor is able to
measure the three-dimensional acceleration andamnguwotion of the camera. Therefore,
the instantaneous tilt, roll and yaw angle of thenera relative to the earth plane can be
obtained. The signal from the vehicle speed semsa@lso fed into the DSP SOC.
Therefore, the travelled distance by the vehicle loa calculated from the vehicle speed
sensor and the time interval between successivgarframes. The SD card interface is
for H.264/AVC video recording. The display and wagdevice is for alerting the
driver of a dangerous situation, such as when itne-to-collision is less than two
seconds. The DSP SOC is the heart of the systein.réisponsible for executing all

algorithms for lane detection and moving objecedeon.
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Video

CMOS Image ego-motion
camera sensor capture compensation storage
| SD-Card
; : lane moving object
6-DOF inertial detection detection
sensor DSP SOC
time-to- warning
collision output
Vehicle speed estimation | [H.264/AVC L\)/{/S;r'r‘?i}r']:‘
sensor encoding device

Figure 4-36: System architecture of the proposedbdsed ADAS

The DSP SOC used in this project was DM3725 froa$dnstruments (Tl, 2013). The
SOC has an embedded ARM Cortex A8 processor car®|%B820C64x DSP core and a
dedicated hardware logic for H.264/AVC encodingcéing to the official website of
Texas Instruments, the reference unit price of $@C was US$27.20 at an order
quantity of 1,000pcs (Tl, 2015b). For vision basBBAS utilising optical flow
technique (Giachetti and Campani et al., 1998, pdtgin and Stein et al., 2006), an
additional DSP is expected to be used for the apfiow evaluation (Zhang and Gao et
al., 2014). An estimate of the additional cost floe DSP is US$26.53 (Tl, 2015c).
Similarly, feature-based ADAS can share-use the B8R for both rear-end vehicle
detection and H.264/AVC recording. However, theedgbn of vehicles or objects that
have different shapes to the vehicles looking fittva rear requires an additional DSP
for the additional feature detection. Table 4-1®nswarises the number of processors
required to achieve the moving object detectionaddo recording functions using the
solution proposed in this project, optical flow edsmethods, and feature based

methods.
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Table 4-15: Required processors for different ADgafutions

Function Proposed solution Optical flow solution | Feature-based solution
) 1x DSP for handling
Relatively fast speed 1x DSP for optical flow N
_ additional feature
object detection evaluation

recognition

Relatively dow speed | 1x DSP SOC DM3725

object detection
1x DSP SOC DM3725| 1x DSP SOC DM3725

H.264/AVC Video

Recording

Based on the number of embedded processors redairddferent ADAS solutions, the

cost comparison of these solutions is shown in &abl16. The price for each
component was reference to the official websiteshef components, retail electronics
component websites such as digikey.com, or quotstioom component distributors.
The comparison assumes that each embedded procegsoes a set of SDRAM and
NOR flash in order to function correctly. Therefottee size of SDRAM and NOR flash
memory were doubled in both the optical flow andtiee based solutions. The
comparison shows that the proposed solution is E3%expensive than the optical flow

or feature based solution.

Therefore, the proposed solution can achieve arloost than typical solutions making
use of optical flow or feature based techniquese Paoint to note is that the research
project is supported by the funding from the Inrteraand Technology Commission of
Hong Kong (ITC, 2015), and part of the funding loé oroject is supported by industry
contributions. Conscientious and careful vettingcesses have been gone through when
the funding for the project was approved. The figstiions on the cost competitiveness

of the proposed solution have also been considered.
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Table 4-16: Cost comparison for different ADAS gins

Major component

Proposed solution

Optical flow solution

Feature-based solution

Embedded Processor

$27.20 (1x DSP SOC)

$53.73 (1x DSP + 1x

$53.73 (1x DSP + 1x

DSP SOC) DSP SOC)
Inertial sensor $4.02 (Invensense, 2015%) -- --
Camera sensor $20 $20 $20
Power regulators $5 $5 $5

SDRAM $17.78 (256MB x 2) $35.56 (256MB x 4 $35.56 (256MB)
NOR Flash $14.0 (256MB) $28.0 (512MB) $28.0 (512MB)
Passive components $10.0 $10.0 $10.0
Total $98 $152.29 $152.29

4.7 Chapter Summary

This Chapter reported the test and evaluation tesfl the proposed algorithm for

moving object detection, and the evaluation ofghe@posed camera calibration method.

With the techniques proposed in the algorithm tinielate the problems with the
imperfect MVs from typical H.264/AVC encoders, tihetection performance is on a par
to other methods found in the literature. The dedaaate is higher than 90% under real
and practical environment in Hong Kong. The compomatime analysis shows the
ability of the proposed algorithm for running iratdime. The cost analysis shows the

potential 50% reduction in cost with the use of preposed algorithm and ADAS

solution.
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5 Commercialisation

A project “Development of Advanced Collision Avordze (ITT/006/12AP)” to trial of
the proposed solution has been conducted in HomgKeith the funding support of
amount HK$800,000 from the Innovation and Technpl@@mmission of Hong Kong.
The objectives of the trial project were to colloe user experience to ADAS, and to
identify problems of the hardware and software st improvements could be done

prior to mass production.

My major role was to develop the vehicle detectbgorithm for this trial project for
running in an embedded Digital Signal Processor RDSThe calibration method
proposed in this study was also applied to inskelcameras to the wide variety of car
models in this trail. The lane detection functitiD{V) and the blind spot zone detection
function (BSDS) that were developed by other cgiless in my organisation were also
included in this trial project. The trial period svbom February 2014 to August 2014.
This project has invited four government departmeahd two non-governmental
organisations (NGOSs) to test the engineering pypes. These government departments
and NGOs included Fire Service Department (FSD)tewaupplies Department (WSD),
Hong Kong Police Force (HKPF), Government Logistiggpartment (GLD), Hong
Kong Society for Rehabilitation (HKSR), and the §l@ourhood Advice-action Council
(NAAC). The car models that were used for testimg prototypes are shown in Figure

5-1.

This trial has provided a very good opportunityréine the algorithm for running in
real-time in a low-cost embedded Digital Signaldessor. It also has provided a chance
to test the robustness of the algorithm and theeeiadd system for different road

conditions in Hong Kong. Because of the tight sciedf the trial project and the
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moving object detection algorithm was still undesvelopment, the moving object
detection for trial included only the relativelyosl speed moving vehicle detection
algorithm in which the MV information for ROI rediien was omitted. This was
because efforts were still in progress at that ttmenable the MV output from the
H.264/AVC encoder from the selected DSP. When tistesn was ready for trail, the
relatively slow speed vehicle detection algorithnaswable to run at 10fps in the
embedded DSP. Although the processing speed catldef be improved by utilising
the hardware resources of the embedded DSP, sutshimsage pre-processing hardware
for image colour conversion, image cropping, argtdgram evaluation, there was no
enough time for such engineering optimisation tadbee. Nevertheless, the algorithm
was able to work as expected due to the changesfign of relatively slow speed

moving vehicle is small in successive frames.

Figure 5-2 shows the components of ADAS for inatalh to test vehicles. These
components include a camera installing to the vhredd, a warning device for audible

alert output and an embedded hardware prototypeiforing the algorithm.

The typical mounting position of the camera is shaw Figure 5-2(a). It was placed
behind the rear-view mirror in the vehicle to pretvebstructing the view of the driver.
The installation and calibration methods mentionedChapter 3.1.2 enabled our
engineers to install the camera efficiently. Thethod also has provided a means to
make sure of the installation quality and the adrestimation of the installation height
of the camera. The warning device shown in Figu&l®H was able to display and
output audible warnings when the time-to-collisioetween the front vehicle and the
ego vehicle were too close, or when lane depadueats were detected. Figure 5-2(c)

shows the embedded hardware prototype which waipmep with an embedded DSP
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from Texas Instruments. Figure 5-2(d) shows thdosnice for the embedded hardware

prototype, installing beneath a passenger seatdastaehicle.

Figure 5-1: Government departments and NGOs tléphéicipated in the Trial Project. (a) Hong Kong
Police Force. (b) Water Supplies Department. (a)dHiiong Society for Rehabilitation. (d) The
Neighbourhood Advice-action Council. (e) Fire Seed Department. (f) Government Logistics

Department.

The drivers of those selected vehicles from difiegovernment departments and NGOs
had the chance to evaluate the prototype on nawaadks of their daily duties. There was
no designated route assigned to the drivers, hdpimgllect as many opinions from the
drivers as possible. The evaluation results welleated by the Government Logistics

Department and a trial evaluation form was returaker the trial period. According to

the collected evaluation forms, the drivers commeérihat the system was useful. They
also reported that there were false alarms, edpeoia single carriageways. This was

because MV based ROI reduction techniqgue mention&hapter 3.4.1 was not used in
the trial. Those vehicles driving in opposite direas to the ego vehicle were detected
because of the existence of generic line featumstioned in Chapter 3.5.3. This led to

undesirable excessive false detections.
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The drivers also reported that the warning outputict be annoying when there were
warnings from both the three functions. Therefards necessary to research on the
warning output strategy due to the FCW, LDW and BSDnctions so that they can be

harmonised to minimised unwanted distraction.

Many drivers reported that the hardware was ndilstdt needed to be turned off for a
while before turning it on again. This was becatmeembedded DSP was over-heated
after prolonged operation, and the connectors uselis project were loosely due to
shocks and vibrations. A heat-sink was installethiooembedded DSPs to dissipate the
generated heat more efficiently. Better automogjreede connectors should also be used

to make sure of the electrical and signal conniygtiv

() " (@)

Figure 5-2: (a) Camera mounted to the windsheildrabthe rear-view mirror. (b) Warning device to

output audible alerts to the driver. (c) Embedd&Phardware prototype. (d) Prototype installation
location.

162



5.1 Chapter Summary

This Chapter described the project that has beae tinfacilitate the commercialisation
of the research results of this project. In pafléicuthe project has tried out the
developed algorithms for ADAS in different car mtsderovided by the Hong Kong
government. The tests were conducted on roads g Hk@ng. Drivers that have tried
the system felt the system was useful. There wagnaglated experience from this trial

project. It provides useful information for contous improvement of the system.
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6 Publications and Patents

During the course of this research, two internaiononference papers and one
international journal paper were either publishedaocepted, and one international
journal was under preparation for submission. ©Ointhe two conference papers was
published, and the other one was accepted. The igatinjournal paper was also

accepted for publication.

Published Conference Paper

Wong, C.-C., Siu, W.-C., Barnes, S. & Jenningsl.®®v relative speed moving vehicle
detection using motion vectors and generic linetuies. IEEE International

Conference on Consumer Electroni@sl2 Jan. 2015 Las Vegas, pp. 208-209.

This paper summarised the interim result of theassh of this study. It proposed the
region of interest construction by making use oé @mplitudes of MVs from a
H.264/AVC encoder, and the detection of relativelyw moving objects using generic

line features.

Accepted Conference Paper

Wong, C.-C., Siu, W.-C., Barnes, S. & Jennings, Shared-Use Motion Vector
Algorithm for Moving Objects Detection for Automdbs. IEEE International

Conference on Consumer Electroni8sll Jan. 2016 Las Vegas, forthcoming.

This paper summarised the algorithm framework pseddn this research on the shared
use of MVs for moving object detection. It mentidnde techniques for dividing the
detection task into the detection of relativelyvslmoving objects and relatively fast
moving objects. The algorithm for relatively slopegd object detection and tracking, as

well as that for relatively fast moving object ddien and tracking were also mentioned
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in details. This paper also included the test tesuh some challenging image sequences.
The result indicated that the proposed method b&ection rate above 90% which is on
a par with state of the art methods proposed bgraththors. The computation time was
also analysed, indicating a real-time performarmegability with typical cycle time of

less than 66ms.

Accepted Journal Paper

Wong, C.-C., Siu, W.-C., Jennings, P., Barnes, SFdag, B. forthcoming 2015. A
Smart Moving Vehicle Detection System Using Motidectors and Generic Line

FeatureslEEE Transactions on Consumer Electronics.

This journal paper mentioned the algorithm on thared use of H.264/AVC MVs for
relatively slow speed vehicle detection in detaltsalso outlined the algorithm for
relatively fast speed moving object detection. Tessults with image sequences
containing challenging road conditions such as sWad broken road and road-side
fence were presented. It revealed the performargceraa par to algorithms proposed by
other authors in terms of detection rate, and mpmdationally efficient for being used

in a real-time system.

Journal Paper under Preparation

A journal paper of title “A Smart Block Based RoRdgion Detector for use in Vision
Based Advanced Driver Assistance Systems” is umpdeparation. It will report the
novel algorithm on block based road region detacti@ntioned in Chapter 3.3, as well

as the improvements mentioned in Chapter 5.2.1.
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Patents

A Hong Kong Short-term patent of title “A Methoddaa Device for Detecting Moving
Object” has been granted successfully. The apmitaand grant numbers are
15106442.4 and 120328A respectively. In the meare tithe patent search report
conducted by the State Intellectual Property Off6#P0O) of the People’s Republic of
China (PRC) indicates that the invention is novel anovative without any finding on
infringement to intellectual properties. The invent therefore fulfils the criteria for
patent registration to SIPO of PRC. The inventi@atept is under registration to the

SIPO of the PRC at the time of writing this report.

6.1 Chapter Summary

This Chapter mentioned two international conferepeg@ers and one international
journal paper that are either published or acceptedso mentioned an invention patent
is filed in Hong Kong and is preparing to file inamland China. One additional

international journal paper is under preparation.
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7 Future Improvements

There is room for improvements of the proposed ralym framework for higher
true-positive and lower false-positive detectioteyas well as for faster computation.
The improvements will be done continuously by miyseld my research team in the

future.

7.1 Camera Calibration Method

Since the selected road surface may not be exawctdyflat level ground, the pitch angle
measured by the inertial sensor inside the camedula may include the gradient of the
road. Therefore, the offset due to the road gradséould be compensated so that the

pitch angle of the camera with respect to the maathce is close to zero.

7.1.1 Road Gradient Compensation

Figure 7-1 shows the situations where the vehglen a road with non-zero gradient.
Figure 7-1(a) and (b) show the case with the cantipgg upwards and downwards
respectively. A method is proposed to remove thisebfpitch angle due to the
inclination of the road. The proposed method iplaxe the vehicle on the same road
segment for two times with 180 degree opposite ingad’ he measured pitch angle for
these two different headings can then be compemhdatethe offset due to the road

inclination.

The pitch angle measured by the inertial sensér Ejuation (7.1) and (7.2) show the

measured sensor readings for the vehicle pointoglland downhill respectively.

Therefore, for the same road segment with the sahele facing in one direction, a
value of @ can be measured. After that, the same vehiclacieg another direction that

is 180 degree opposite to the previous directiootteer value of¢ can be measured.
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The actual pitch angle of the camera can be estiniay combining Equation (7.1) and
(7.2), where& is the inclination of the road is the camera pitch angle with respect to
the road surface, andis the pitch angle measured by the inertial serisguation (7.3)
and (7.4) are the results of combining Equatiorl)(/and (7.2). They represent the
formulae for calculating the camera pitch anglenwéspect to the road surface and the
inclination of the road. By noticing the directiof the vehicle during calibration, the
offset due to the road gradient can be eliminateat. example, the estimated road
gradient is&=0.5 degree, the target pitch andeis zero, then the target reading from

the inertial sensof should be 0.5 degree.

6,=6,+6, (7.1)

8,=6,-6, (7.2)

g = 8.6 (7.3)

2

g, = 8, — 6, (7.4)
2

| 8, or 6q= pitch angle measured by inertial sensor
6+= camera pitch angle w.r.t. road surface‘aop\'nca“ @
o= road gradient came

L3
) Earth plane Earth plane

(@) (b) |
Figure 7-1: Illustration of road gradient affectitige measured pitch angle for the camera instafiati
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7.2 Road Region Detection

7.2.1 Use of Temporal Information

The computation time for road region estimation d@n reduced by incorporating
temporal information. Since the captured framescamginuous and the time interval
between successive frames is small (typically 66thg)road region will not be changed

significantly from frame to frame.

Therefore, the road region identified in the pregidrame can be reused so that the
number of blocks to process for road region estonatan be reduced. By reducing the
number of blocks to process, the computational tcae be reduced. In this regard,
some of the blocks along the boundaries of thetifies road region can be invalidated

according to the moving path of the ego vehicle.

The proposed improvement algorithm is illustratedrigure 7-2 and Figure 7-3. Figure
7-2(a) shows the identified road region shadedéy gsing the block based road region
detection algorithm mentioned in Chapter 3.3. Fegas2(b) shows only the identified
road region. The identified road region is redubgdone block along the road region
contour. The yellow contour shows the differencéwieen the original road region
boundary and the diminished road region boundaigurgé 7-3 shows the diminished
road region in Figure 7-2(b). The region growthaoaighm will start from a block along
the yellow contour. Since the number of blocks fwocessing is reduced, the road

region identification algorithm can be completeaishorter time.
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Figure 7-2: Road region identified in a captureahfe and the corresponding diminished road region fo

use in the next frame. (a) Captured frame withftified road region. The identified road region imded

with grey colour blocks. (b) Extracted road regimym (a). The boundary is diminished by 1 blockrgo
the contour. The yellow contour is the differenegvieen the original and diminished contours.

Figure 7-3: Overlaid road region found from theviwes frame. The region growth algorithm will start
from 1 block along the yellow contour, reducing thquired computation time due to reduced number of
blocks to process.

7.3 Segmentation Method for Relatively Slow and Fast Objects

Currently, the proposed method splits the ROI irgtatively slow and fast moving
objects by means of the amplitude of the MVs o#lymore intelligent segmentation
method can be proposed to improve the ROI segmemtatcuracy. For instance, the
threshold of MV amplitude can be adaptive to th® eghicle speed. That is, the

threshold can be increased for higher speed.

The segmentation can also take other parameteraatiount. For instance, when there

is a relatively slow speed vehicle detailed in pinevious frame, the ROI in the current
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frame can assume the region near the previouskcuet region is still the ROI for

relatively slow speed moving objects.

7.4 Slow Relative Speed Moving Object Detection Algorithm

The false-positive detection of invalid objects the road can further be reduced by

evaluating the symmetry of the area concerned.

There has been research on symmetry feature deteatgorithms (Kuehnle, 1991,
Marola, 1989, Zielke and Brauckmann et al., 199®). particular, a symmetry
measurement function by comparing the summed iiyevalue of the greyscale image
for the left and right part of a selected regiordéscribed by Broggi and Cerri et al.
(2004). They combined the symmetry measurement withboost algorithm as the
vehicle detector (Friedman and Hastie et al., 2088aboost algorithm makes use of a
series of weak classifiers that were trained bgtaokdata, to compare with a set of new
data obtained in the current image. When the neéwwfsdata is not rejected by all the
weak classifiers, the set of new data is accep@teon and Yoon et al. (2012)
introduced the symmetry measurement method by igtegnam of oriented gradients
(HOG). Each region of interest was divided intorfoegions, namely upper left, upper
right, lower left and lower right. The HOG featwas then trained by the total error rate

reduction polynomial model (TER-RM) proposed by &otd Eng (2008).

For application to a real-time system, an objectomparison will be conducted before
a suitable symmetry detection algorithm is selectdok selection will be based on the

computation load and the associated symmetry detegéerformance.
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7.5 Fast Relative Speed Moving Object Detection Algorithm

7.5.1 Predictive Displacement Estimation

Currently, the region for template matching is tiedi to 16x16 pixels around the
averaged amplitude and direction of MVs of the td®d region which may contain
relatively fast moving objects. Since the targgeobis moving, the average amplitude
and direction of the MVs should be compensatedheypredicted speed change (or
acceleration) of the object. The change in spedteftletected object can be predicted
by the amplitude of MVs of previous frames. Wittbasic kinematic model for the
movement of the moving object, the prediction cenréfined by the use of Kalman

filter.

7.5.2 The Use of Bi-Prediction Motion Vector

In the current implementation, the MVs from P-framsere used to evaluate the
movements of objects in successive images. As skgcliin Chapter 2, MVs from
H.264/AVC can be erroneous as they were used piinfar video compression rather
than precision object motion estimation. One of tery important pieces of
information in B-frames is bi-prediction motion ¥ers of some macroblocks. The
bi-prediction MVs can be used to refine the accym@icMVs in P-frames. By taking
into account the spatial and temporal consisterioybgect movements in successive
frames, MV outliers can be detected and eliminatadthis connection, the false

positive rate can further be reduced.

One point to note is that MVs are estimated usirgdurrent frame as the coordinate
reference. The coordinates in the current framealways in integer form, aligning to
the macroblock boundaries. For a bi-predictive mlalock in a B-frame, each pixel in

the macroblock is the average sum of the pixethendisplaced coordinates according
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to the two bi-predictive MVs. The bi-predictive M\éan be of sub-pixel units of up to
1/4 precision rather than integer. Also, they aot mited to be aligned to the

macroblock boundaries.

Therefore, to utilise the bi-predictive MVs in Bafnes to improve the reliability of
MVs in P-frames, the coordinate reference of thesMw the B-frame has to be
changed to use the current P-frame as referends.ifVolves the construction of a
MV map by rounding or truncating the sub-pixel Mdsinteger pixels. After that, the
MV map can be used to compare with the MVs obtaifnech the current P-frame.
MVs in the current P-frame can be discarded ifdiserepancies are larger than certain
thresholds, indicating they are temporally incotesisto the corresponding MVs found

in the previous B-frame.

7.5.3 The Algorithm for Template Matching

Currently, the search algorithm for template matghiis performed by simple
exhaustive spiral search about the estimated displant from the position in the
previous frame. The search can be computationadiificient especially when a match
template cannot be found inside the defined seeanlge. The speed of the search
algorithm can be improved by employing smarter geatgorithm. Similar fast search
algorithms for H.264/AVC motion estimation can msidered, such as the Diamond
Search algorithm (Tham and S. et al., 1998), UMIger& algorithm (Chen and Xu et
al., 2006), and Image Edge Assisted Search algori@han and Siu, 2001). According
to the test results of these authors, all these dearch algorithms can reduce the

computation cost by at least 80%.

Also, the decision on successful template matchétigs on the evaluation of sum of

absolute difference (SAD) of the image region uncemparison. The computation
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cost for SAD evaluation can be reduced by usinggiratl image (Schweitzer and Bell
et al., 2002, Viola and Jones, 2001). The propeudielntegral Image allow rapid and
efficient computation. Figure 7-4 illustrates hdwe tintegral Image can facilitate rapid
computation of sums and differences of rectangrggions. Figure 7-4(a) shows a
rectangle at location from,(0,0) to P(x,y) The sum of pixel values above and on the

left of P(x,y)is Pyy as expressed in Equation (7.5).

Py= 2 i(x\y) (7.5)

X'SX YLy

where i(x',y') is the pixel value at poin{x', y"). The relationship of area A, B, C

and D to the poinP1, P2, P3 and P4s shown in the Integral image in Figure 7-4(b)

can be expressed as Equation (7.6).

R=AR=A+BR=AGCP= A B G I (7.6)

By solving these equations, D can be expressedjaatién (7.7).
D-=R+R-R-R (.7)

So, the are® can be evaluated very quickly by knowing the sudmixel values at the

four corners obD.

Py(0,0) Py(0,0)
I [
B
C D
P(x.y) P P
(a) (b)

Figure 7-4: Integral image. (a) sum of pixel valabsve and left of P(x,y), (b) sum of pixel valawve
and left of P4(x,y) = A+B+C+D
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In addition to the use of search algorithm, the mgwirection of the identified
template can also be estimated from the MVs froemHh264/AVC encoder. During
the HV mode, the template identified from HG mode be evaluated for the moving
direction of blocks inside the template by refagrio the MVs from the H.264/AVC
encoder. Since the MVs from H.264/AVC encoder aferring to the movement from
the current frame to the previous frame, a revbfgemap needs to be constructed so
that the movement of the blocks in the templatenftbe previous frame to the current
frame can be evaluated. After that, if the restiltanvement of the whole template is
consistent to the estimated movement, the HV cardp@rded as successful. Similarly,

tracking can perform in a similar way as in the kidde.

7.5.4 Reducing False-Positive Detection

As mentioned in Chapter 4.4.4, there were casésls#-positive HG and HV for MV
based moving object detection. The false-positiypothesis can pass the HV stage
because the identified displacement in the HV stagdthin the allowable limit of the
estimated displacement evaluated in the HG stagen dghough the estimated

displacement found in HG is erroneous.

The false positive detection can be reduced byueawalg the direction of movement of
the template in HV stage. If the movement of thapgkate from the HG frame to the
HV frame is moving away from the ego vehicle, thé ¢an be treated as failed. And if
the direction of movement of the template is poigtio the FOE, and the amplitude of
the displacement is the same as the displacementodego motion, the HV can also

be regarded as unsuccessful.
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7.6 The Use of Stereo Camera

With the use of stereo camera, a scene can beredgiy two cameras simultaneously.
The depth information of objects in the scene camliained by evaluating the pixel
disparity between the two images. Disparity referthe displacement of pixels on the
same object appearing on the pair of images captamultaneously by the two

cameras.

The disparity evaluation can be done in the un-cesged image domain using
different block matching techniques. The most éfivhatching cost is to evaluate the
difference between pixels one by one along thedadg@ipline. However, this trivial
method requires absolute intensity constancy ofjgsdaken by the two cameras. Such
absolute intensity constancy is not achievableratyce because of the manufacturing
tolerances of components for the cameras such res Eensors and mechanical
enclosure, as well as the fact that the light otihg from objects reaching the two
cameras can be different. Most stereo matchingfoostions are block based so as to
reduce the effect of intensity difference of thetaameras. Common matching cost
functions used for finding stereo correspondenecthe sum of absolute difference
(SAD), sum of squared difference (SSD), normalisexss correlation (NCC) and the
sampling insensitive absolute difference or knownBa algorithm (Birchfield and

Tomasi, 1998).

In addition to evaluating disparity in the imagerdon, it can also be evaluated in the
compressed domain. H.264/AVC encoders support igficstereo camera video
encoding using the Stereo High Profile. In ster&wnvscenarios, there are many
similarities between the two camera views. Codiffigiency gain can be achieved by
using one of the camera inputs as reference, amthgtthe difference of the input

from the second camera by either P-frame or B-frameoding. Disparity of stereo
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images can be evaluated by looking into the MVsvbeh the pair of images. Hence,
the depth maps of the pair of video can be obtaiA#tdough there are few research on
depth map estimation using stereo H.264/AVC strdaouyrazad et al. (2010) showed

that it is possible in a published paper.

With the availability of depth information, more MMthat potentially are outliers can
be discarded. For instance, the clustering procassnclude the depth information as
an input parameter so that only MVs of similar ¢epill be considered for the same
cluster. Also, the selection of the final cluster hypothesis verification can be based

on the distance to the ego-camera, selecting thehat is closest to the ego-vehicle.

7.7 Improving H.264/AVC Motion Estimation

The motion estimation algorithm used in the H.264CA encoder involves some
search and evaluation methods to find the mostogpiate motion vectors in order to

achieve the lowest bit rate possible.

Since the ego motion of the camera can be estinfeded the built-in inertial sensor

and the signal from the vehicle speed sensor, thgomestimation algorithm can be
improved by making use of the information from #hesensors. In particular, fast
motion estimation algorithms available in the JMiL8.264/AVC encoder, such as
MVFAST (Tourapis and Au et al., 2000), UMHS (Chamdahou et al., 2002) and
EPZS (Tourapis and Cheong et al., 2005), use preelimformation from the video

stream to reduce the computation cost on blockdoasation search. The predictive
information is obtained from the spatial and tenaponovements of adjacent blocks in
successive frames. The movement of a particulackblannot be obtained from

adjacent blocks at the boundaries of independemblying objects.
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There has been research on the use of inertiabsefr video encoding (Chen and
Zhao et al., 2011, Angelino and Cicala et al., 200/&ng and Ma et al., 2012). The
experimental results by Chen and Zhao et al. (2@hbwed that the computational
cost for motion estimation can be reduced signifigaby transforming the camera
motion into the predictor for motion estimationn& the search direction and search
range can be reduced, the computational cost isceeld According to the experiment
result of Angelino and Cicala et al.’s sensor-dssistion estimation method, the
computation time for motion estimation can be reduby at least 50% comparing to

the UMHS fast search method.

Further research on this direction can reduce tmpatational cost as well as the
accuracy of the output motion vectors to represattial object movement without
sacrificing the video coding efficiency. The comgtidnal cost can be reduced because
the motion search direction and range can be esdrfaom the inertial sensors and
the vehicle speed sensor, allowing less numberie$ for finding the best match.
Similarly, the motion vector accuracy can be imgwecause the first guest for
direction and amplitude of motion can be estimdted the inertial sensor and the

vehicle speed sensor, reducing the chance of trgppio an irrelevant local minimum.

7.8 Extension to Next Generation Video Encoder

The proposed algorithm relies on the MV output freisleo encoders that conform to
the H.264/AVC standard, it is likely that the enepdavill be phased out sometime in
the future and be replaced by encoders of newerdatd to cope with the ever
increasing demands for higher screen resolution @uing efficiency. The block

based MV output format used in the proposed algariénsures the extensibility of the

algorithm to work with next generation video enasde
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7.8.1 Comparison to H.265/HEVC Encoding Standard

Comparing with H.264/AVC standard, the emerging HHEfficiency Video Coding
(HEVC) standard can reduce video bit rate to upG® without loss of video quality
(Sullivan and Ohm et al., 2012). The different ag@aments in block structure for the
two encoding standards are shown in Figure 7-5si@vn in the figure, the major
difference between H.264/AVC and HEVC standardhet the coding block size in
H.264/AVC is fixed at 16x16, while it can be 8x8 @dx64 in HEVC. The variable
block size in HEVC is known as Coding Unit (CU) ttlshown in the Quadtree Coding
Structure in Figure 7-5. The selection of blockesfar motion estimation in HEVC
standard is arranged in a coding tree unit (CTUW) @ding tree block (CTB) structure.
One frame is divided into a series of non-overlab@dU. The size of a CTB can be
chosen as 16x16, 32x32 or 64x64 samples. The CT{ coatain one or multiple
coding units (CUs). Similarly, each CU may contaime or multiple prediction units
(PUs). The size of each PU varies from 64x64 dawxtt samples (Sullivan and Ohm
et al., 2012).

H.264/AVC HEVC

Coding Unit
64x64 to 8x8

16x16 Macroblock

B o

Block coding structure Quaditree coding structure

Prediction
Unit (PU)

T
3 intra partitioning -
|

L] L1

4 inter partitioning ‘:| |:|:| | |
4
| Transform

Unit (TU
+ 4 sub-partitioning 8x8 | E [D it (TU)

| =={l
Figure 7-5: Comparison of block structure for H.204C and HEVC

In addition to the motion estimation process talfthe MV to relate the current frame

to previous frames, there is a special mode knosSKIP mode in H.264/AVC

179



encoders. No motion information is present in 8(&dP mode. The information for the
block concerned is obtained from the co-locatedclblon the previous frame. In
contrast, MVs in HEVC are evaluated by either spair temporal approach. For an
intercoded PU, the encoder can decide to use metitmation mode or motion merge

mode.

The motion estimation mode is the same as that 2644AVC encoders. It evaluates
the motion vectors according to images from previframes. Motion merge mode is
newly introduced in HEVC, which is an improvement 8KIP mode. A set of

previously coded neighbouring PUs is used to forlisteof candidates that are either
spatially or temporally close to the current PUteAfdeciding which candidate in the
list is suitable to be used, the motion informatmithe selected candidate is used
directly for the current PU. Therefore, the inddxhe selected candidate in the list is
encoded; no intensive motion search algorithmdasired. By encoding only the index,

very few bits are required to code the differenegveen frames.

Bi-prediction motion estimation is employed in bétl264/AVC and HEVC. It makes
use of two sets of motion data to generate two NiUm different reference images.
The resultant motion compensated block is the wedylsum of the two motion
compensated blocks using the two MVs. Differentghieican be applied to the two
motion compensated blocks in order to accommodatelifferent scenarios, such as

reflections and sudden light intensity changes.

Although there are different motion estimation aitjons available in the free
reference software for HEVC and H.264/AVC encoddigy are provided for
reference only. Among the motion estimation aldwn$ available in the reference
encoder software, Test Zone Search (TZS) algorihmrovided as a reference fast

search algorithm to speed up the motion estimgtimtess (Tourapis, 2002). Since
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there is no specified motion estimation algorittonthe video standards, many motion
estimation methods have been studied and propogedaby researchers to achieve

different computation complexity and video quatdygets.

The increased coding efficiency in HEVC is the testiincreased encoder complexity.
The high computational cost on mode decision andiomoestimation require
parallelised hardware and more computationallyceffit algorithms to enable the

HEVC encoders to be used for real-time applications

7.8.2 Shared-Use of Motion Vector from HEVC Encoder

Although the complexity of the HEVC encoder hassiderably increased to achieve a
higher coding efficiency, it can be regarded as improvement based on the
experience gained from previous coding standamdsh sis H.264/AVC. One of the
most important observations is that both H.264/A¥@ HEVC encoders work by
dividing one frame into multiple non-overlappingahblocks. The motion estimation
process will also output MVs with different blocize to best represent the underlying

motions of objects in the screen.

The block size of MV used in the proposed algoritle8x8 samples, the HEVC
encoder can be modified to output inter-frame M\blaick size 8x8, using the method
proposed in Chapter 3.1.1. With the MV output frtma HEVC encoder following the
format proposed in this project, the algorithm denextended to be used in newer
generation video encoders. The computation cosifmion estimation in the HEVC
encoder can also be enhanced by making use ofntbamation from the inertial
sensors and vehicle speed sensor. The effortsopaghhancing H.264/AVC encoders

can therefore be re-used in the new HEVC encoder.
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7.9 Chapter Summary

This Chapter has elaborated the potential impromsnéhat can be made to the
proposed algorithm. These include an improved camalibration method, road region
detection with temporal consistency consideratamgptive ego vehicle speed region of
interest segmentation and adding symmetry detedtorslow relative speed vehicle
detection. For relatively fast speed moving obptiction, adding predictive algorithm
to the estimation of displacement of MVs, fastampéate matching algorithm, and
rejection of non-critical detected objects by temapanovement evaluation, can be
considered to improve the detection rate and coatioual speed, as well as to reduce
the false alarm rate. Improvements to the motidimasion algorithm in the H.264/AVC
encoder, and future extension in using the MVs ftoemmnewer HEVC encoder are also
considered. With continuous efforts putting to theearch on ADAS, these suggested

improvements will be tested and evaluated in treer iidure.
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8 Future R&D Directions

The future R&D direction will be to refine the pennance of the developed algorithms
in terms of detection rate, false positive ratevali as computation efficiency. Potential

improvements mentioned in Chapter 7 will be redliseimprove the performance.

Since HEVC is the standard for next generation Haigfinition video, the future R&D
direction will be on better integration of the deped algorithm with HEVC. There
have been studies on the use of inertial sensoredoce the computational cost on
motion estimation for video encoders (Chen and Zitaal., 2011, Angelino and Cicala
et al., 2013, Wang and Ma et al., 2012). It is expe that the use of inertial sensors and
speed sensors can reduce the computation cost GCHBr automotive applications.
Since the motion prediction can be taken from thesesors, it is expected that the
resulting MVs can describe the movements of objeuise accurately without loss of
video compression efficiency. A new System-on-Ghiihh HEVC encoding making use
of sensor inputs can be less computationally expen3he power consumption for
video encoding can also be reduced. This desigh nmat only be beneficial to
automobiles looking for lower power consumptiont &lso to battery powered handheld

devices such as cameras and smartphones.

Working with multiple systems in a vehicle is armthdirection that needs to be
addressed. Currently, the system assumes thecedathar system that outputs warnings
or overrides controls from the driver. The compkchon-board automobile system will
include a human-machine-interface that integratéswvarnings, system status, and
available user preferences. The strategies on mgroutputs, communication and
coordination among different driver assistance ewst are also required to be

developed.
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9 Further Works on Product Commercialisation

The algorithms developed are porting to an embedgystem for commercialisation.
Since the image resolution has been increased 86x¥20 in the target system from
640x480 during the development for commercialisatmptimisation on the algorithms
Is required to perform the detection in real-tifiike target product is a complete ADAS
with lane departure warning (LDW), relative slowesd vehicle detection and relative
fast speed moving object detection. The portinglo¥Vv and relative slow speed moving
object detection has been completed. While the fitral samples for the embedded
hardware has been developed, second trial sampiesursder development with
modifications to correct the problems found in finst trial samples. In parallel to the
hardware development, the integration of relatigst fspeed moving object detection
algorithm is also in progress. At the same timerdhare other supporting functions,
such as image quality, lens dirt detection, adveveather detection and night time
detection, are required to be included in the syste help determine whether the

detection result is reliable.

In addition, the image pre-processing functions ilabke from the embedded
System-on-Chip will also be utilised to reduce ttwmmputation overhead. Imaging
functions such as colour space conversion, resizingpping and image histogram

evaluation can be done by the hardware for usdffgreht algorithms in the system.

Since multiple algorithms are required to run irrgtlal, the system will utilise the
multi-core System-on-Chip to run multiple threads parallel. The optimisation on
processor load of multiple cores as well as thisation of the memory bandwidth is

also ongoing.
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To further improve the reliability of the detectjoa self-testing and auto-calibration
algorithm will also be developed. This algorithrmaito detect if the camera is mounted
correctly, and if the inertial sensors are workjmgperly. This is because there is chance
that the camera will be misaligned due to long tersage. When misalignment is
detected, the system can self-calibrate itself éarsure the orientation of the camera is

usable. Otherwise, a fault should be reported kd@srepair or servicing.

In the meantime, a demonstration system will alsdubilt to show the features of the

system to facilitate the commercialisation.
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10 Conclusions

The objective of this research was to develop adost Advanced Driver Assistance
System by the shared-use of motion vectors from.264AVC encoder. It was
identified via the literature review on vision bds&DAS. This project was funded by
the Innovation and Technology Commission of Honghéloria a conscientious and

careful vetting process.

The challenges of using MVs from the H.264/AVC at@oincluded the difficulty in
detecting moving object due to small and impredi#és on moving objects with
relatively slow moving speed to the ego vehicle] Hre erroneous MVs due to the fact
that the motion estimation algorithm of the H.26¥(& encoder is designed for highest

video compression ratio rather than for preciseionagstimation of objects in the scene.

The main contributions of this research are thehous proposed for moving object
detection given the limitations of MVs from H.264/& encoders. By separating the
captured image into ROI for relatively slow and tfasoving object detection
respectively, the proposed algorithm has solvedtbblem of difficult object detection
due to small MV on moving objects with relativellow speed to the ego vehicle.
Relatively slow moving objects are detected byphgposed algorithm with the use of
generic line features of vehicles. It allows a wideiety of vehicles with different shape
and size to be detected, such as passenger cargans, trucks, coaches and buses. The
resulting detection rate and false positive rate @n a par to other state-of-the-art
algorithms proposed and published by other auti#aralysis also shows that the cost of
the proposed system is 50% less expensive thamnsysutilising optical-flow or

feature-based techniques.
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The algorithm for fast relative speed object debectvorks in conjunction with the
detection of moving objects that may not be covdrgdhe slow relative speed moving
object detection algorithm. The detection is basadthe amplitude and direction of
planar parallax residuals of MVs of the macrobloikiside the ROI. The detection phase
consists of a Hypothesis Generation stage for rigmdhe template dynamically for
matching in the Hypothesis Verification stage ia tiext frame. Hypothesis Verification
is achieved by the template matching algorithm dyisamic template re-generation in
the successive frames. This algorithm solves tloblem of erroneous MVs generated

by the H.264/AVC encoder that will lead to wrondlgtected moving object.

The road region detection algorithm serves to redtiee ROI for moving object

detection, thereby reducing the computational tiamel the chance of having false
positive detection. The threshold value for cregtine binary image for initial vehicle

location determination and for the Canny edge imigetemplate matching is also
determined during the process of road region detecthe innovation of the proposed
road region detection algorithm is based on the afsklock based rather than pixel
based evaluation. This approach reduces the refomaputational cost to help achieve

the real-time performance.

A six-degree-of-freedom inertial sensor is incogted in the camera module. The
sensor is able to measure the three dimensionallangpeed, acceleration and
orientation of the camera. By making use of thediregs from the sensor, the
transformation matrix between the camera coordsate the World coordinates can be
deduced more accurately for ego motion compensafioa sensor is also utilised in the

camera calibration method proposed in this study.
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As the system was targeted to operate at real-tihee,computational cost was also
evaluated. The result shows that the algorithm lmarcompleted in 66ms, within the

time duration of successive frames.

A new camera calibration method was also proposethis study to facilitate the
practical needs of consistent camera installatioality and the accurate estimation of

camera intrinsic and extrinsic parameters.

A trail project has also been carried out for comuoadisation preparation. Although a
prototype with all the features proposed in thigjgxt could not be put into trail due to
the time constraints, the collection of user ex@®e and identification of areas for

improvements will be useful to the future commdisaion.

A Hong Kong Short-term patent was filed succesgfullhe associated patent search
report indicates that the invention is innovatived athere is no infringement to
intellectual properties. The invention is underisggtion to the SIPO of the PRC.
Finally, there remain some areas where the algorittan be improved in terms of
computational cost, detection rate and false pasitate. These include the use of
temporal information to speed up the road regiotea®mn algorithm, using a better
strategy for splitting the ROI for relatively fasind slow moving objects, adding
symmetry evaluation to further reduce the falsenalaate, predictive displacement
estimation of relatively fast moving object durisgccessive tracking, faster search
algorithm for template matching, and improvementhe motion estimation algorithm
of H.264/AVC encoder using the information from thertial sensor and vehicle speed
sensor. These improvements to the algorithm wilinvestigated by the author and the

research team in his organisation.
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The specific conclusions from this research ar®lésns:

® A low-cost ADAS that share-uses MVs from the H.264C encoder has been
developed. It matches with the objective of thisesach. Analysis shows that the
cost of the proposed system is 50% less expenbae $ystems utilising other

techniques

® An original and novel algorithm to address the peois of the use of MVs from
the H.264/AVC encoder for moving object detectioms been proposed. Test
results show that the detection rate is on a pastabe-of-the-art algorithms

proposed by other authors. This is also the mamtribmtion of this research.

® A six-degree-of-freedom inertial sensor was buntbithe camera unit to assist the

ego motion estimation and focus of expansion.

® A novel camera calibration procedure was develofidtas provided a systematic
approach for engineers so that the camera can $&lled and calibrated

consistently.

® The novelty of this research is illustrated by tecessful publications of a peer
review journal paper and a conference paper, aesstudly filed short-term patent
in Hong Kong with the patent search report mentignthe eligibility of the

invention for registration towards the SIPO of BfeC.

® A trial project has been carried out to collect tser feedback and identify
problems of the system prototype. The algorithm pes/en to be useful and
improvements to the system will be made contingousluring the

commercialisation of the system.
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