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Abstract 

Cost is one of the problems for wider adoption of Advanced Driver Assistance 

Systems (ADAS) in China. The objective of this research project is to develop a 

low-cost ADAS by the shared use of motion vectors (MVs) from a H.264/AVC video 

encoder that was originally designed for video recording only. There were few studies 

on the use of MVs from video encoders on a moving platform for moving object 

detection. The main contribution of this research is the novel algorithm proposed to 

address the problems of moving object detection when MVs from a H.264/AVC 

encoder are used. It is suitable for mass-produced in-vehicle devices as it combines 

with MV based moving object detection in order to reduce the cost and complexity of 

the system, and provides the recording function by default without extra cost. The 

estimated cost of the proposed system is 50% lower than that making use of the 

optical flow approach. 

To reduce the area of region of interest and to account for the real-time computation 

requirement, a new block based region growth algorithm is used for the road region 

detection. To account for the small amplitude and limited precision of H.264/AVC 

MVs on relatively slow moving objects, the detection task separates the region of 

interest into relatively fast and relatively slow speed regions by examining the 

amplitude of MVs, the position of focus of expansion and the result of road region 

detection.  

Relatively slow moving objects are detected and tracked by the use of generic 

horizontal and vertical contours of rear-view vehicles. This method has addressed the 

problem of H.264/AVC encoders that possess limited precision and erroneous motion 

vectors for relatively slow moving objects and regions near the focus of expansion. 

Relatively fast moving objects are detected by a two-stage approach. It includes a 

Hypothesis Generation (HG) and a Hypothesis Verification (HV) stage. This approach 

addresses the problem that the H.264/AVC MVs are generated for coding efficiency 

rather than for minimising motion error of objects. The HG stage will report a 

potential moving object based on clustering the planar parallax residuals satisfying the 

constraints set out in the algorithm. The HV will verify the existence of the moving 

object based on the temporal consistency of its displacement in successive frames. 

The test results show that the vehicle detection rate higher than 90% which is on a par 

to methods proposed by other authors, and the computation cost is low enough to 

achieve the real-time performance requirement. 

An invention patent, one international journal paper and two international conference 

papers have been either published or accepted, showing the originality of the work in 

this project. One international journal paper is also under preparation.  
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1 Introduction 

1.1 Research Objective 

Cost is one of the problems for wider adoption of Advanced Driver Assistance System 

(ADAS) in China (Lu and Wevers et al., 2010). The objective of this research project is 

to develop a low-cost ADAS by the shared use of motion vectors (MVs) from a 

H.264/AVC video encoder that was originally designed for video recording only. Since 

MVs from H.264/AVC video encoders are readily available without extra computational 

cost, successful utilisation of these MVs for moving object detection can simplify the 

system design, enabling an ADAS with video recording function by default. 

The development of this ADAS, targeting low-cost and simplicity, bundling with video 

recording function by default, aims to address a wider adoption in China where the price 

of cars is mostly budgetary (CarNewsChina.com, 2015), and the demand for higher level 

of road safety is growing (Zhang and Zhang, 2010). The system will also be suitable for 

mass-produced consumer market, and for being used in other countries by optimising the 

system to meet the regulatory requirements in different countries. 

1.2 Advanced Driver Assistance System 

ADAS has been employed in many automobiles to assist drivers for improved road 

safety. It aims to help drivers recognise potentially hazardous situations. It detects 

objects surrounding the vehicle and gives warnings to alert the driver of potential 

hazards. Some systems can take over the vehicle control from the driver, managing the 

vehicle to decelerate or change direction for collision prevention. In this connection, 

many algorithms and techniques have been developed to recognise objects such as 

vehicles, motorcycles, pedestrian and cyclists.  
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ADAS can be divided into Forward Collision Warning System (FCWS), Lane Departure 

Warning System (LDWS), Pedestrian Detection and Warning System (PDWS), and 

Blind-Spot Detection and Warning System (BSDW).  

Figure 1-1 shows a typical FCWS where a forward-looking camera is mounted at the 

windshield inside the car compartment. The FCWS detects the vehicle at the front and 

estimates the distance to the vehicle. If the distance to the vehicles is so small that the 

response time of the driver may not be able to prevent collision from happening, as 

illustrated in Figure 1-1(b), warning is issued by the system to alert the driver for proper 

actions. 

 
Figure 1-1: Forward Collision Warning System (FCWS). (a) Forward looking camera installed in a 
vehicle, monitoring the relative location of the front vehicle. (b) Warning signal is issued to alert the 

driver when the distance between the vehicles is too close. 

 

For LDWS, its hardware is similar or even identical to that of FCWS where a 

forward-looking camera is also mounted at the windshield inside the car compartment. 

Figure 1-2 illustrates how LDWS works. Sequence (1) inside Figure 1-2 shows the 

front-side-looking mounting position of the camera at the windshield inside the car 

compartment. As depicted in sequence (2), driving lanes can be clearly captured with the 
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front-side-looking camera. The LDWS detects the driving lane marking from the image 

captured by the forward-looking camera. It monitors the lateral distance of the vehicle 

from lane markings appearing on both sides of the road. When the vehicle approaches to 

one side of the lane markings and is going to depart from the current driving lane, 

warnings with audible or haptic signal as shown in sequence (3) is issued to the driver. 

The driver then responds to the warning signal and performs corrective actions so that 

the car stays safely in the current driving lane. 

 
Figure 1-2: Illustration of LDWS. (1) A forward looking camera monitoring the driving lanes. (2) 

Capture image from the forward looking camera. (3) The instance with warning signal output to notify 
the driver when the vehicle is cutting the driving lane. (4) Vehicle driving back to the designated lanes 

after the driver has corrected the driving path. 
(source: http://fr.wikipedia.org/wiki/Fichier:Lane_Departure_Warning.jpg) 

PDWS can use the same hardware for LDWS and FCWS. When pedestrians are moving 

laterally relative to vehicles, the relative moving speed of the pedestrians is significant 

and is potentially fatal. PDWS aims to inform the driver of potential collision with 

pedestrians so as to reduce the severity of accidents. Since the size of pedestrians is 

small comparing to the size of vehicles, pedestrians can hardly be detected when they 

are far away from the camera. Figure 1-3 shows the size of a pedestrian, marked with a 

red triangle, appeared in the image at a distance of 60m from the camera. The system 

detects pedestrians and estimates the distance to the vehicle. It also estimates the moving 
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path of the pedestrian relative to the vehicle. If the relative moving path will result in a 

collision within a predefined time, say two seconds, the system will issue a warning to 

alert the driver for proper actions to prevent the accident. 

 
Figure 1-3: A pedestrian at 60m away from the vehicle marked with a red triangle. 

BSDWS operates in the same principle as FCWS. The difference is that there are two 

cameras for BSDWS. They are mounted to both sides of a vehicle, known as the 

blind-spot zones, to monitor the areas that the driver cannot see. Figure 1-4 shows a 

BSDWS with cameras mounted to the two wing mirrors. Each camera is responsible for 

monitoring one blind-spot zone of the driver. The system monitors if objects appear in 

the blind spot zones shaded in blue and brown in Figure 1-4. When there is an object 

detected, warnings or indication will be issued to notify the driver. An indicator will turn 

on in the wing mirror to notify the driver of the presence of an object at the blind spot 

zone.  

There are different sensors used in ADAS, such as Vision, Infrared, Radar, Lidar and 

Ultrasound. Radar, Lidar and Ultrasound sensors are usually referred to as active sensors. 

This is because they detect objects by sensing their emitted signals. An infrared sensor is 
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a special camera sensor which senses the thermal spectrum of the scene rather than the 

visible spectrum.  The research in this project was concentrated on monocular vision 

based ADAS mainly because of the cost and versatility of the vision sensor. One 

forward looking camera can be used for multiple functions, such as FCWS, LDWS and 

PDWS, whereas the use of an active sensor will need to combine with a vision sensor to 

deliver all these functions. 

 
Figure 1-4: Blind Spot Detection and Warning System (BSDWS). Cameras installed at the wing mirrors 

looking backward, covering the areas that are not easily seen by the driver.  
(Source: http://images.businessweek.com/ss/06/09/cartech/source/2.htm) 

1.3 ADAS Products in the Market 

Table 1-1 shows a comparison of typical ADAS products in the retail market. It shows 

functions equipped with these products, and the embedded processors that were used. 

The retail price was referenced from popular websites such as Amazon, Ebay and 

Taobao. Mobileye is one of the earliest suppliers of ADAS. It also supplies ADAS to car 

makers in addition to that in the retail market. It makes use of its proprietary EyeQ2 

processor to perform the processing tasks for Lane Departure Warning (LDW), Forward 

Collision Warning (FCW) and Pedestrian Detection Warning (PDW). The EyeQ2 

processor was designed with highly parallelised architecture for real-time image 

processing applications, enabling it to process image frames in parallel for different 
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recognition tasks. AiDriving ADAS A1 is a product from China, it made use of a DSP 

for handling image processing task, and an ARM based embedded processor with video 

encoding function for handling the video recording task. Papago P3 is a product from 

Taiwan, it made use of a System-on-chip for both video recording and image processing. 

The processor clock speed for ADAS A1 and Papago P3 was around 700MHz. Although 

the clock speed of the EyeQ2 processor is only 332MHz, its multi-core customised 

design enables it to perform all the image processing tasks, including the more 

demanding pedestrian detection and warning (PDW) function.  

In order to understand the limitations of embedded processors, the performance 

benchmark of typical embedded processors used for real-time image processing is 

shown in Table 1-2. CoreMark is a benchmark for embedded systems developed by an 

industry alliance EEMBC (http://www.eembc.org). The performance of an Intel Pentium 

Dual-Core E5300 processor which was used in a desktop computer for the development 

of this project, and an Intel i3-3217UE processor were included in the table to show the 

performance differences between embedded processors and desktop processors. 

As seen from the table, modern embedded processors are still running slower than an 

Intel E5300 that was launched to the market in 2008. In particular, the benchmark for 

DM3730 from Texas Instruments (TI), which has an ARM Cortex A8 core and a DSP, 

was reported with the use of its processor core only. 

In addition, the benchmark for AM57xx from TI was reported with the use of its DSP 

core only. The use of both the ARM and DSP cores in a DM3730 is expected to achieve 

a benchmark of around 6073, which is still slower than an Intel E5300 processor. 

However, with code optimisation and fast image processing library for running on the 

DSP, it is expected that a System-on-Chip (SoC) with performance similar to the 

DM3730 is able to fulfil the real-time processing requirements for an ADAS. 
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Table 1-1: ADAS Product Comparison 

Product  Market price Functions Processor 

Mobileye CS-270 

 

US$729 �LDW 

�FCW 

�PDW 

 

Proprietary EyeQ2 SoC 

@332MHz 

Five Vision Computing 

Engines 

Three Vector Microcode 

Processor 

Two floating point 

MIPS34K CPU 

AiDriving ADAS A1 

 

US$1000 �LDW 

�FCW 

�Video 

Recording 

TI DSP @650MHz 

One ARM 32-bit CPU 

Papago P3 

 

US$335 �LDW 

�FCW 

�Video 

Recording 

 

Ambarella SoC @700MHz 

One ARM 32-bit CPU 

One Image DSP 

One Video DSP 

Table 1-2: Processor Performance Comparison 

Processor Clock Speed CoreMark CoreMark/MHz 

nVidia Tegra 2 1GHz 5866.39 5.87 

TI DM3730 Cortex A8 Core 1GHz 2530 2.53 

TI AM57xx C66x DSP 750MHz 3543.26 4.72 

Intel Pentium Dual-Core E5300 2.6GHz 8885.30 3.42 

Intel i3-3217UE 1.6MHz 24231 15.41 
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1.4 Industrial Requirements and Constraints 

Since the performance and memory resources of embedded processors are still lower 

than that of desktop processors, the major constraints in selecting an embedded 

processor is to fulfil the real-time computation under tight memory and computational 

resources, and is able to achieve the cost target and energy efficiency to be competitive 

in the market. Since the Consumer Electronics market as well as the Automotive market 

are highly competitive, the embedded processor selected for ADAS applications must be 

highly cost effective. Achieving all of these constraints is difficult for demanding 

computer vision applications. Nevertheless, the quantitative requirements were defined 

at the beginning of this project with reference to available system-on-chips in the 

market. 

Table 1-3: Quantitative industrial requirements and constraints 

 Constraints Description 

1 Processor Use Off-the-Shelf embedded processor / system-on-chip 

2 Clock Speed Should be below 2GHz in view of the availability of 

embedded system-on-chip in the market 

3 Camera resolution 1280 x 720 or better, with 30 frames per second  

4 Embedded memory 1GB or below, DDR3 or DDR4 RAM 

5 Power consumption Should be less than 10W 

6 Cost Main component cost should be less than US$150 
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1.5 Statement of Originality 

There were new ideas generated and new algorithms developed during the research and 

development of this project. The originality includes the following items: 

1. An original integrated approach to the shared-use of motion vectors from the 

H.264/AVC encoder for moving object detection, capable of running in real-time 

with performance on a par with other state-of-the-art approaches proposed by other 

authors, targeting for application to an Advanced Driver Assistance System. This 

approach comprises of dividing the detection into relatively slow and relatively fast 

moving objects, block based road region growth, region of interest reduction using 

amplitudes of motion vectors and road region information, detection of relatively 

slow moving objects based on generic line features, detection of relatively fast 

moving objects based on planar parallax residuals, and also tracking of detected 

objects using image projection information and dynamic template matching for 

relatively slow and relatively fast objects respectively. 

2. A novel approach to address the problems of moving object detection due to the 

limited precision of motion vectors from a typical H.264/AVC encoder for relatively 

slow moving objects especially those near the focus of expansion. This approach 

comprises of dividing the regions of interest into areas for detecting relatively slow 

and relatively fast moving objects according to the amplitudes of motion vectors. 

3. A novel approach to address the problem of moving object detection due to the 

erroneous motion vectors from a typical H.264/AVC encoder caused by the coding 

efficiency optimised motion estimation process. This approach comprises of 

hypothesis generation according to the amplitude, direction and location of ego 

motion compensated planar parallax residuals, and also hypothesis verification 

according to the dynamic template matching evaluation. 

4. The division of regions of interest into regions for relatively slow and relatively fast 

moving objects detection is making use of the amplitude of MVs, position of the 

focus of expansion and the result of road region detection.. 
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5. An original algorithm for relatively fast moving object detection by using planar 

parallax residual and the associated filtering and clustering techniques using 

amplitude, position and direction constraints. 

6. An original algorithm for relatively slow moving object detection by locating the 

darkest area in the image making use of a gray level threshold obtained from the 

road region detection algorithm, and followed by the detection and refinement of 

generic line features. 

7. An original algorithm for the tracking of relatively slow moving objects by the 

expansion of the bounding rectangle of the found object and refinement of the 

boundaries by horizontal and vertical projection images. 

8. An original algorithm for the tracking of relatively fast moving objects by 

dynamically updating the template for comparison followed by simple template 

matching technique.  

9. An original algorithm for the road region detection by block based region growth 

technique, with dynamic update of the intensity of the road for comparison. 

10. Incorporation of a six-degree-of-freedom inertial sensor to assist accurate 

estimation of ego motion and focus of expansion. 

11. A novel camera calibration procedure that is designed to simplify the camera 

installation process, targeting for mass production devices.  

1.6 Organisation of Chapters 

This report is organised as follows: Chapter 2 is the literature review. It reports the key 

findings of that lead to the research direction of this project. Chapter 3 reports the 

proposed algorithm framework, which is the major part of the research and development 

of this project. Chapter 4 reports the test and evaluation results of the proposed 

algorithm framework. Chapter 5 reports the activities that have been done for 

commercialising the R&D results. Chapter 6 reports the patents and peer-reviewed 

papers that have been published or accepted. Chapter 7 elaborates further development 
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that can be carried out in the future. Chapter 8 is the outline of future research and 

development direction. Chapter 9 is the outline of further works for commercialisation. 

Chapter 10 is the conclusion for this research project. Chapter 11 is the references. 

1.7 Chapter Summary 

This Chapter introduced the objective of this project which is the development of a 

low-cost ADAS. It also briefly introduced the four major functions of ADAS which 

include Forward Collision Warning System (FCWS), Lane Departure Warning System 

(LDWS), Pedestrian Detection and Warning System (PDWS), and Blind-Spot Detection 

and Warning System (BSDW). Moreover, the content structure of this report, and the 

originality of this study were also described for easier reference by the readers.  

In the next Chapter, a literature review on vision based ADAS is presented.  
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2 Literature Review 

The literature review has been concentrated on technologies related to vision based 

ADAS because of the cost and versatility of camera sensors. For instance, the video 

output of a forward looking camera can be used for both lane detection and moving 

object detection. Different kinds of detection can also be done with different image 

processing algorithms. Vision based ADAS works by first capturing the camera image, 

followed by image processing of regions of interest, extraction and feature recognition. 

When certain patterns or features of objects in the image are recognised, decision on the 

level of severity will be performed by the processor. If there is potential danger, a 

warning signal is output to draw the driver’s attention. The patterns and objects that are 

of interest for the ADAS application are driving lanes, vehicles at the front and at both 

sides of the car. 

2.1 Lane Detection 

Since lane markings are flatly painted on the road, vision based detection of lanes 

usually relies on the contrast difference between the lane markings and the road surface. 

There have been some well know projects that developed methods for lane detection 

algorithms in the past decades, such as AURORA (Chen and Jochem et al., 1995), 

GOLD (Bertozzi and Broggi, 1998) and TFALDA (Yim and Se-young, 2003). A 

comprehensive review has been done by McCall et al. (2006) for methods proposed 

before 2005. Most of the lane detection algorithms involve lane feature extraction, 

outlier rejection and tracking.  

For feature extraction, edges of lane markings are one of the most significant features to 

extract (Kluge and Lakshmanan, 1995, Li and Zheng et al., 2004, Wang and Teoh et al., 
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2004, Chapuis and Aufrere et al., 2002, Wang and Bai et al., 2008). The edge extraction 

can be noisy if the lane markings are not clearly marked on the road, or the threshold 

used for extraction is not determined appropriately. Also, if the edge extraction is done 

on a greyscale image, there is a chance that the edges of coloured road markings, such as 

those painted in yellow or red, cannot be extracted correctly. This is because the contrast 

of coloured road markings is relatively low in greyscale images. To overcome this 

problem, some edge extraction methods made use of some transformations on the colour 

image to improve the contrast for extraction (Cheng and Jeng et al., 2006, Sun and Tsai 

et al., 2006). To reduce the false extraction on lane markings, there have been attempts 

using the intensity change pattern of dark-bright-dark of lane markings to filter falsely 

detected edges (Bertozzi and Broggi, 1998, Ieng and Tarel et al., 2003).  

For lane detection, the algorithm to identify lanes on the road after initial lane feature 

extraction include the Hough Transform (Li and Zheng et al., 2004), lane curvature 

modelling (Wang and Teoh et al., 2004, Li and Fang et al., 2015) and probabilistic 

estimation (Kluge and Lakshmanan, 1995, Liu and Worgotter et al., 2013). Therefore, 

successful detection of lanes is heavily dependent on the feature extraction algorithm. 

Some algorithms make use of the Inverse Perspective Mapping (IPM) technique to 

obtain a bird’s eye view image from the original captured image (Muad and Hussain et 

al., 2004, Sehestedt and Kodagoda et al., 2007). Figure 2-1(a) shows a typical image 

captured on the road. Figure 2-1(b) shows the corresponding bird’s eye view image 

transformed from Figure 2-1(a) using the IPM technique. As seen from Figure 2-1(b), 

both the lane markings and texts on the road become clear straight lines. This can 

facilitate simpler method for recognition by simplifying the edge extraction and 

detection method since all road markings can be converted to straight line segments with 

uniform width. However, the conversion to bird’s eye view image requires high 
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computational cost or dedicated hardware to achieve real-time performance. It is not 

suitable for off-the-shelf microprocessors where hardware for fast perspective transform 

is not available.   

Figure 2-1: (a) Normal captured image. (b) The bird’s eye view image transformed from (a) using IPM 
technique 

For lane tracking after detection, the most popular algorithms used are Kalman Filter 

(Kosecka and Blasi et al., 1998, Lim and Seng et al., 2009) and Particle Filter (Wang 

and Bai et al., 2008, Apostoloff and Zelinsky, 2003). Both the Kalman Filter and Particle 

Filter are recursive state estimators making use of Bayes filter. Bayes Filtering is a 

method for predicting and updating the state of a dynamical system from measurable 

information. Kalman Filters are designed for estimating linear systems with Gaussian 

noise. Some modified Kalman Filters, such as Extended Kalman Filter and Unscented 

Kalman Filter, are derived to estimate non-linear systems. Kalman Filters are parametric, 

requiring a mathematical model to describe the behaviour of the system.  

Particle Filter performs the estimation by a set of random points known as particles. 

Each particle contains a set of state variables to describe the system. It can represent any 

systems with complex models. No exact representation of the system model is required. 
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However, Particle Filter demands higher computational cost because of the larger set of 

state variables required to describe the system.  

Although there are commercially available systems such as AutoVue (Bendix, 2015) and 

Mobileye LDW (Mobileye, 2015), lane detection is still an active research topic as there 

are still so many challenges to further enhance reliability. For instance, the effect of 

shadows during day time and the high dynamic lighting conditions during night time are 

still challenging to vision based lane detection methods. 

2.2 Vehicle Detection 

There have been many methods proposed for vehicle detection in the past decades 

(Sivaraman and Trivedi, 2013). These methods can be classified as feature based, 

statistical based and optical-flow based methods. 

For the feature based method, vehicles can be detected based on prior knowledge to their 

characteristics. For instance, the left-right symmetrical characteristics of vehicles can be 

used as one of the features for vehicle detection. Because most vehicles look rectangular 

from the front and rear, the edges and corners of vehicles are also frequently used as the 

clues for vehicle detection (Broggi and Cerri et al., 2004, Du and Papanikolopoulos, 

1997, Kuehnle, 1991, Kuo and Pai et al., 2011, Liu and Zheng et al., 2005, Zielke and 

Brauckmann et al., 1992). Detection methods that analyse the shadow underneath a 

vehicle have also been proposed (Tzomakas and Seelen, 1998, Manuel Ibarra Arenado 

and Juan Maria Perez Oria et al., 2014). 

For statistical based approaches, feature extraction based on Haar (Haselhoff and 

Kummert, 2009, Yong and Zhang et al., 2011, Chang and Cho, 2010) and Histogram of 

Oriented Gradients (HOG) (Mao and Xie et al., 2010, Sivaraman and Trivedi, 2010) 

have been reported. They combine with the use of statistical training algorithms such as 



 

16 

 

Adaboost (Freund and Schapire, 1997) and Support Vector Machine (SVM) (Cortes and 

Vapnik, 1995) to generate the classifiers for high true-positive and low false-positive 

detection rates. In the hope of increasing the true-positive detection rate and decreasing 

false-positive rate, there has been a trend for using online learning, allowing new 

samples taken to be added to the classifiers (Sivaraman and Trivedi, 2010, Chang and 

Cho, 2010). But the problem with online learning is the validity of samples collected. It 

is difficult to determine automatically if the samples collected are true-positive samples 

or true-negative samples without human interpretation.  

Both the feature based and statistical based approaches require prior knowledge on the 

characteristics of the objects to be detected. The detection involves identifying both 

rear-view vehicles and vehicles on the road viewing at different perspectives. There are 

different characteristics appearing on the vehicles to be detected when they are viewed at 

angles. Therefore, multiple sets of features or statistical models are required for 

detecting vehicles viewing differently. This implies additional computation for each set 

of features or models for improved detection. 

Other techniques have been reported that can supplement the vehicle detection tasks. For 

instance, Optical Flow algorithms can be used to differentiate moving objects from the 

background. The direction of movement of pixels in the consecutively captured image 

sequence is known as Optical Flow. By identifying the features of clustered moving 

pixels in the image sequence, moving vehicles can be detected by applying feature based 

techniques. However, the ego motion of the camera needs to be evaluated for extracting 

the true ground motion vectors instead of those relative to the moving camera. Some 

research activities have been reported on the use of optical flow for ego motion 

estimation and moving object detection (Giachetti and Campani et al., 1998, Klappstein 

and Stein et al., 2006).  
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In addition, the disparity of objects from the captured images of stereo cameras is able to 

provide important depth information for object recognition. Therefore the use of stereo 

images for object detection is able to combine with other feature extraction techniques 

such as optical flow, symmetry and / or statistical training for object detection (Bertozzi 

and Broggi, 1998, El Ansari and Stéphane et al., 2010, Toulminet and Bertozzi et al., 

2006). 

The problem with stereo vision is the highly demanding calibration process. The two 

cameras need to be calibrated so that the epipolar line lies on the same horizontal axis in 

the images captured by both cameras. There are so many uncertainties that may affect 

the calibration result for Stereo cameras installed in vehicles are affected by 

uncontrollable parameters such as shocks, vibrations and even collisions may drastically 

affect calibration.  Although a monocular camera is a lot simpler, it also requires a 

good calibration for accurate estimation of physical parameters of detected objects.  

The refinement of calibration process opens up new research opportunity to research on 

how stereo cameras can be setup quickly and reduce the impact of environmental 

factors. 

2.3 Generic Moving Object Detection 

The vehicle detection algorithms mentioned in Section 2.2 are used specifically for 

detecting vehicles. Another consideration for vehicle detection is that drivers may not be 

interested to recognise vehicles that are not posing any trouble to them. In contrast, they 

are required to know if there is any object that may pose danger to them and to be alerted 

early enough to mitigate the situation. Therefore, the methods on generic (or 

non-parametric) moving object detection with a moving observer (i.e. the camera) have 

been reported in this Chapter.  
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Moving objection detection methods are commonly used in surveillance systems with 

cameras mounted to fixed positions. When the camera is fixed, the simplest idea for 

detecting moving objects is simply by frame differencing (Jung and Sukhatme, 2004). 

However, for cameras mounted to automobiles, they move with vehicles’ translational 

and rotational motions. Many techniques for fixed cameras are not applicable to 

situations with moving cameras. For the case with a moving camera, the ego-motion of 

the camera has to be estimated for compensation in order to estimate the ground truth 

motion of the independently moving object. 

For a monocular camera setup, the movements of independently moving objects that 

appear in the screen are composed of both their ground truth motions and the ego motion 

of the camera. Also, a Monocular camera lacks the depth information, the distance and 

moving speed of independently moving objects can only be recovered by the use of 

algorithms. 

To detect an independently moving object, the motion vectors after ego motion 

compensation in the scene are examined. The two most commonly used methods for 

monocular vision are planar parallax violation (Giachetti and Campani et al., 1998, 

Baehring and Simon et al., 2005) and flow field angle criterion (Pauwels and Van Hulle, 

2004, Clauss and Bayerl et al., 2006). Klappstein and Stein et al. (2006) have developed 

a method called Two-View constraint. This method detects the optical flow field 

irregularity using positive depth constraint and positive height constraint. However, 

these constraints are referring to the difference in the measured motion field to the 

expected motion field of a static object when the camera is moving. Therefore, the 

Two-View constraints can also be regarded as planar parallax violation detection. The 

flow field angle criterion detects the angle of the flow field vector to the focus of 

expansion (FOE). FOE is the point where objects in the scene are apparently emerging 
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from when the camera is moving. If the angle is larger than a threshold to the expected 

flow field due to ego-motion, a moving object is detected. 

2.3.1 Planar Parallax Method 

The relationship of a point on the World coordinates and it corresponding point on the 

screen can be represented by the planar parallax diagram shown in Figure 2-2 

(Baehring and Simon et al., 2005). The green plane is the camera plane at the current 

frame at time Tt, the red plane is the camera plane at the previous frame at time Tt-1, Pw 

is a point above the ground plane, p1 and  p2 are the projected point of Pw on the image 

planes at time Tt-1 and Tt respectively, 1
GP  and 2

GP  are the points on the ground plane 

due to Pw when viewing by camera at Ct-1 and Ct respectively, 2Gp  is the point 

virtually projected to the image plane at Tt-1 due to 2
GP  on the ground plane. Since the 

image contains no depth information, the point correspondence between points in the 

screen in successive frames is estimated by assuming that these points are lying on the 

ground plane. By knowing the camera translation and rotation between successive 

frames, a ground plane homography matrix can be estimated. This planar homography 

matrix is only able to identify the point correspondence of the projected point 2
GP on 

the ground plane to 2Gp  on the screen in the previous frame, rather than the true point 

correspondence at p1 in the previous frame. 



 

20 

 

 

Figure 2-2: Planar parallax diagram 

Therefore, there is a difference of 2 1Gp pµ = −  in the estimation which is known as 

planar parallax residual (Baehring and Simon et al., 2005). By evaluating the amount 

of planar parallax residual, moving objects can be detected.  

2.3.2 Optical Flow versus H.264/AVC Motion Vector 

Optical flow is one of the essential algorithms for moving object detection. It estimates 

the velocity of movement of a brightness pattern in an image pair. 

The earliest methods for optical flow evaluation were originally developed by Horn and 

Schunck (1981) and Lucas and Kanade (1981). The basic assumptions for optical flow 

are brightness constancy, spatial coherence and temporal persistence. These 

assumptions result in a set of equations relating the intensity gradients of pixels in 

successive frames. The resulting optical flow field can be solved by minimising the 

cost function involved. Optical flow is pixel based computation. It is computationally 

expensive to embedded systems. Studies show that one Digital Signal Processor is 

required for real-time optical flow evaluation (Zhang and Gao et al., 2014).  
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Motion vectors (MVs) in H.264/AVC video encoding are determined by minimising 

the cost function (J ) that essentially consists of a distortion term (D) and a rate term 

(R), as shown in Equation (2.1). J is known as the Rate Distortion Optimisation (RDO) 

cost. The distortion term (D) is the matching function that is usually evaluated by the 

Sum of Absolute Difference (SAD) with formula shown in Equation (2.2), where s is 

the signal from the original video, c is the signal from the coded video, Bx x By is the 

block size for the evaluation, ( ),
T

x ym m m= is the motion vector (MV). 

 J D Rλ= +  (2.1) 

 
1 1

( , ( )) ( , ) ( , )
ByBx

x y
x y

SAD s c s x y c x m y mm
= =

= − − −∑∑  (2.2) 

Each MV in a H.264/AVC video encoder represents an image block of variable size of 

either 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, or 4x4, depending on the decision of the 

motion estimation algorithm (Chiu and Siu, 2010). Motion vectors are generated when 

a motion estimation algorithm is run during video encoding. The motion vectors 

represent the displacement of blocks between successive frames. The goal of motion 

estimation in H.264 video compression is to achieve high quality video with the lowest 

possible bit rate by correlating the patterns in the past video frames to the current video 

frame. So, if the motion vectors directly available from motion estimation for video 

compression are used for moving object detection, there will be many outliers that need 

to be eliminated before accurate moving object detection can be performed.  

Motion estimation is highly computationally expensive (Chan and Siu, 2001). To 

reduce the computational cost for finding the best match, there have been studies on 

many fast search algorithms. There is a set of reference software publicly available 

from Heinrich Hertz institute (HHI 2012) that is commonly used for educational 

purposes and for benchmarking among different implementation approaches of 

researchers. In addition to the generic full search algorithm that searches for the 



 

22 

 

minimum sum of absolute difference (SAD) value inside the search window, three fast 

search algorithms, namely Uneven Multi-Hexagon Search (UMHexgonS) (Chen et al. 

2002), Simplified Hexagon Search (SHS) (Yi et al. 2005) and Enhanced Predictive 

Zonal Search (EPZS) (Tourapis and Tourapis 2003) are included in the reference 

software. These fast search algorithms mainly comprise of three steps, namely the 

initial predictor selection, adaptive early termination, and prediction refinement. 

The initial predictor selection stage selects a MV predictor among a set of predictors 

that are potentially giving good estimation results. Instead of examining all possible 

positions in a search window to determine the best predictor, these fast search 

algorithms only examine a smaller set of positions according to some temporal and / or 

spatial constraints.  

In the adaptive early termination stage, the MV search is terminated by examining the 

distortion evaluated by SAD. If it is smaller than a threshold determined by minimum 

distortion values of previously examined blocks, MV search can be terminated. 

In the prediction refinement stage, the MV is refined by searching for the best predictor 

with a search pattern around the best predictor. The search pattern is designed to reduce 

the chance of being trapped in a local minimum, and to reduce the number of required 

search for computation efficiency. 

With a fixed video frame rate of small frame-to-frame interval, optical flow can also be 

estimated by the block matching approach, such as that used in the motion estimation 

process in the H.264/AVC encoder (Davis and Karul et al., 1995, Chi and Tran et al., 

2007). The optical flow can simply be estimated by the motion vector divided by the 

time interval between successive frames.  
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The equivalence of motion estimation by the block matching and optical flow methods 

implies that the MVs for video coding can be used for moving object detection and 

vice versa. However, the ultimate goal of the use of MVs in the video encoder is to 

achieve the best coding efficiency possible. The resultant MVs do not guarantee to 

represent the true motion of objects in the scene. They are therefore noisy for moving 

object detection. It is a challenging task to make use of such noisy motion information 

for moving object detection. Also, the video coding must be executed in real time for 

encoding live video without frame loss or reduced frame rate. This implies that the 

moving object detection algorithm for use with MVs from H.264/AVC video encoding 

must be highly efficient to allow completion within the duration between successive 

frames.  

2.3.3 Ego Motion Estimation 

Since both the observer vehicle and other objects for detection are moving on the road, 

the MVs obtained from the H.264/AVC encoder are the result of motions of both the 

observer vehicle and the objects on the road. The movement of the observer, also 

known as ego motion, has to be compensated in the captured image sequence so that 

the actual motion of objects relative to the ground can be obtained. This process is 

known as ego motion compensation.  

For image based ego-motion estimation, feature points from the captured image 

sequence are tracked to find the corresponding flow field which is known as optical 

flow. Selected flow fields between two successive images can be used to estimate the 

planar homography matrix or the Fundamental matrix between the two images. A 

motion model that transforms the motions in the 3-D space to the captured 2-D image 

is described by the homography matrix. For a set of point correspondences i ip p′↔  
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between two images, the Fundamental matrix F can be represented by Equation (2.3). 

And for each point correspondence i ip p′↔ , it satisfies Equation (2.4). Alternatively, 

for each point correspondences i ip p′↔  on a plane (such as the road plane) between 

two images, it satisfies Equation (2.5), where H is the planar homography matrix of the 

plane in the two images. 
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f f f

F f f f

f f f

 
 =  
  

 
(2.3) 

 0T
i ip Fp′ × =

 
(2.4) 

 i ip Hp′ =   
(2.5) 

The Perspective model with eight parameters is the most sophisticated model to 

account for both rotational and translational movements of objects in any direction (Su 

and Sun et al., 2005). For accurate ego-motion estimation, the Perspective model 

should be applied to account for movements of objects in all directions with change of 

depth. 

As summarised by Derpanis (2006), optical flow estimation methods can be classified 

as Direct Matching Methods (Horn and Weldon Jr, 1988, Stein and Mano et al., 2000, 

Ke and Kanade, 2003), Differential Methods (1981, 1981, Bruhn and Weickert et al., 

2005, Weickert and Schnörr, 2001, Liu and Hong et al., 1998) and Frequency Based 

Methods (Langer and Mann, 2003, Huang and Chen, 1995). Among these methods, the 

Direct Matching Methods (Horn and Weldon Jr, 1988, Stein and Mano et al., 2000, Ke 

and Kanade, 2003) make use of a sum of squared difference (SSD) cost function to 

estimate the ego motion parameters. This method is similar to the motion estimation 

algorithm used in the H.264/AVC encoder. But the cost function used in the 

H.264/AVC encoder is a Rate-Distortion function (Wiegand and Sullivan et al., 2003) 
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that involves Sum of Absolute Difference (SAD) as the cost function and the parameter 

related to the resulting encoding efficiency. 

To estimate the Fundamental Matrix F or the homography matrix H, a set of points in 

the image are selected to fit into Equation (2.4) or (2.5). This set of equations are used 

for the minimisation of a cost function so that the parameters in the matrix F or H can 

be determined (Wang and Cai et al., 2012). The selection of feature points is crucially 

important to the accuracy of the estimated Fundamental matrix and homography matrix. 

Feature points extraction methods using Harris corner (1988), “SURF” (Bay and 

Tuytelaars et al., 2006), “FAST” (Rosten and Drummond, 2006), “BRIEF” and “SIFT” 

(Lowe, 2004), have been used by many authors for feature points extraction (Xiaqiong 

and Xiangning et al., 2011, Nedevschi and Golban et al., 2009, del-Blanco and Garcia 

et al., 2009, Scaramuzza and Siegwart, 2008). The SIFT feature detector have proven 

to be a method robust to scale, rotation and illumination variations (Heinly and Dunn et 

al., 2012). Comparing with more recent methods such as SURF and ORB (Rublee and 

Rabaud et al., 2011), SIFT has been proven to be much more computationally 

expensive (Rublee and Rabaud et al., 2011). 

For application to Advanced Driver Assistance Systems, the moving camera results in 

perspective changes of objects in the scene. The chance of having photometric 

variation is also high because of the rapid change of traffic and road conditions. The 

scene change due to rotation is relatively small since the degree of rotation is limited 

by the inclinations of roads and the cornering speed of the vehicle. Therefore, the 

feature point computation method should be robust to scale and photometric variation. 

It should be computationally efficient as well as robust to small rotations. According to 

the comparison done by Heinly and Dunn et al. (2012), ORB is able to fulfil the 
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requirements with computation time of an order of magnitude faster than SIFT under 

environments with stable illumination. 

2.4 H.264/AVC Motion Vector Overview 

MVs are generated when a motion estimation (ME) algorithm is run during the video 

encoding process. The MVs represent the displacement of objects between successive 

frames. The goal of ME in video compression is to achieve the “best” quality video with 

the lowest possible bit rate by correlating the patterns in the past video frames to the 

current video frame. MVs are therefore not necessarily representing the movement of 

objects in the video stream. 

In addition to the eight variable block sizes ranging from 4x4 to 16x16 samples shown in 

Figure 2-3, there is a special mode called “SKIP” which is used with 16x16 macroblock 

size where the motion estimation need not be performed. The identification of 

macroblock using SKIP mode can reduce the computation time for finding suitable 

mode and MV without degrading the video coding performance (Zeng and Cai et al., 

2009).  

 
Figure 2-3: Block size for motion estimation. Primary macro-block size is mode 1 at 16x16. Smaller 

partitions from 16x8 down to 4x4 are possible according to the decision of the motion estimation 
algorithm. 

The H.264/AVC standard allows each captured image to be encoded as an “I”, “P” or 

“B” frame. An “I” frame is an intra-coded image. It can be decoded without referencing 

to other frames and is regarded as the least compressible frame. A “B” frame is known 
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as a bi-predictive frame that contains both image and difference data. It can take 

multiple frames from previous or next frames as reference. A “P” frame is known as a 

predicted frame or a delta frame. It contains the MVs that represent changes in the image 

from its previous frame up to a quarter pixel precision. The proposed system developed 

in this project only uses the MVs from P-frames for moving object detection. 

An evaluation of MVs using the open-source H.264/AVC software JM18.4 (JVT, 2012) 

on some sample sequences was conducted. 20 frames from four Daimler image 

sequences (Vaudrey and Rabe et al., 2008) were selected for H.264/AVC encoding. The 

Daimler image sequence name referred in this report follows the file name of the 

sequence used by Vaudrey et al.. Four image sequences, namely “Construction site”, 

“Crazy Turn Left”, “Dancing Light” and “Intern on Bike”, were used for evaluation.  

2.4.1 Bitrate Comparison 

The four video sequences shown were encoded with IPPP frame structure in Baseline 

profile. Each video sequence was encoded with Intra-mode within P-frame enabled 

and disabled respectively. Also, three different motion search algorithms, namely 

Full-Search (FS), Un-Symmetric-Hexagon (UMH), and Enhanced Predictive Zonal 

Search (EPZS), for encoding were used for each video sequence. Disabling 

intra-mode can make sure that there are MVs for all macroblocks. It provides more 

information for motion computation. 

From the statistical output of the encoder, it was found that the average bits per frame 

of the video sequence can increase significantly with intra-mode disabled, as detailed 

in Table 2-1. For instance, the Construction Site sequence has average bitrate of 

2,287.21 and 3,041.92 kb/s when intra-mode is enabled and disabled respectively 

using Full-Search algorithm. The difference is 33.0%. Also, the difference in the 
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average signal to noise ratio (SNR) of the Y component is less than 0.5dB for the 

same video sequence using different search algorithm and different mode. This result 

indicates that intra mode can effectively reduce the bitrate of the encoded sequence. 

The loss in video quality when using different search algorithm is small.  

Table 2-1: Average bitrate of video sequences with intra mode enabled and disabled. The video sequences 
were encoded with H.264 Baseline Profile with different motion search algorithm 

Sequence Mode 
Bitrate 
(kb/s) 

Motion Search Algorithm (H.264 Baseline Profile) 

Full-search UM Hexagon EPZS 

Construction 
site 

Intra-on 

I Slice 197.11 197.11 197.11 
P Slice 2089.89 2216.46 2137.77 
B Slice 0.00 0.00 0.00 
Total 2287.21  2413.78 2335.09 

SNR Y (dB) 37.60 37.62 37.59 

Intra-off 

I Slice 197.11 197.11 197.11 
P Slice 2844.60 2814.96 2593.80 
B Slice 0.00 0.00 0.00 
Total 3041.92 3012.28 2791.12 

SNR Y (dB) 37.51 37.49 37.48 

Crazy Turn 
Left 

Intra-on 

I Slice 84.75 84.75 84.75 
P Slice 582.36 665.44 594.95 
B Slice 0.00 0.00 0.00 
Total 667.32 750.40 679.91 

SNR Y (dB) 40.95 40.81 40.91 

Intra-off 

I Slice 84.75 84.75 84.75 
P Slice 630.41 859.95 646.94 
B Slice 0.00 0.00 0.00 
Total 715.37 944.91 731.90 

SNR Y (dB) 40.87 40.56 40.74 

Dancing 
Light 

Intra-on 

I Slice 94.61 94.61 94.61 
P Slice 808.23 886.27 832.26 
B Slice 0.00 0.00 0.00 
Total 903.05 981.09 927.08 

SNR Y (dB) 38.50 38.49 38.47 

Intra-off 

I Slice 94.61 94.61 94.61 
P Slice 1058.33 1180.74 960.85 
B Slice 0.00 0.00 0.00 
Total 1153.15 1275.56 1055.67 

SNR Y (dB) 38.46 38.36 38.32 

Intern On 
Bike 

Intra-on 

I Slice 68.03 68.03 68.03 
P Slice 304.02 315.85 308.73 
B Slice 0.00 0.00 0.00 
Total 372.26 384.09 376.97 

SNR Y (dB) 41.70 41.60 41.61 

Intra-off 

I Slice 68.03 68.03 68.03 
P Slice 330.35 341.11 336.24 
B Slice 0.00 0.00 0.00 
Total 398.59 409.35 404.48 

SNR Y (dB) 41.67 41.44 41.48 
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With the use of H.264/AVC Baseline Profile, there is no B-frame in the encoded 

sequence. When the four video sequences were encoded using Main Profile with Intra 

mode enabled, and with one B-frame inserted between two P-frames, the resulting 

frame sequence was IBPB. The average bit rate and SNR are shown in Table 2-2. All 

the four video sequences show a lower average bitrate with small loss of SNR when 

Intra mode is enabled. While the SNR losses are less than 0.5dB for all sequences, the 

average bitrate is reduced by at least 14%. Therefore, for low bitrate H.264/AVC 

video encoding, the intra-mode and B-frame insertion should be enabled.  

Table 2-2: Average bitrate of video sequences with intra mode enabled. The video sequences were 
encoded with H.264/AVC Baseline Profile and Main Profile with EPZS search algorithm 

Sequence 
 Search Algorithm 

EPZS @ H.264 
Main Profile 

EPZS @ H.264 
Baseline Profile 

Construction 
site 

I Slice Bitrate (kb/s) 199.97 197.11 
P Slice Bitrate (kb/s) 1292.30 2137.77 
B Slice Bitrate (kb/s) 437.63 0.00 

Total Bitrate (kb/s) 1930.12 2335.09 
SNR Y (dB) 37.04 37.59 

Crazy Turn 
Left 

I Slice Bitrate (kb/s) 139.34 84.75 
P Slice Bitrate (kb/s) 104.95 594.95 
B Slice Bitrate (kb/s) 2.51 0.00 

Total Bitrate (kb/s) 247.02 679.91 
SNR Y (dB) 39.66 40.91 

Dancing Light 

I Slice Bitrate (kb/s) 96.42 94.61 
P Slice Bitrate (kb/s) 615.71 832.26 
B Slice Bitrate (kb/s) 94.67 0.00 

Total Bitrate (kb/s) 807.02 927.08 
SNR Y (dB) 38.19 38.47 

Intern On Bike 

I Slice Bitrate (kb/s) 69.16 68.03 
P Slice Bitrate (kb/s) 213.62 308.73 
B Slice Bitrate (kb/s) 37.93 0.00 

Total Bitrate (kb/s) 320.93 376.97 
SNR Y (dB) 41.43 41.61 

 

2.4.2 Evaluation of Motion Vector  

The MVs around the moving objects in the selected frames are examined. Figure 2-4 

and Figure 2-5 show the MVs of macroblocks in the H.264/AVC encoded video 

streams. Green grid lines in the images in Figures are the macroblock boundaries. The 
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amplitude and direction of motion vectors for each macroblock are represented by the 

length of the green line from the centre of each macroblock. There are macroblocks 

shown with either green or red boundaries, representing macroblocks encoded in 

inter-frame or intra-frame mode respectively.  

For Construction Site and Intern on Bike video sequences, the observing vehicle is 

moving on a straight flat road. It is expected that most of the MVs of macroblocks for 

static objects should apparently be emerging from the area near the centre of the 

image. However, as observed from Figure 2-4(b) and Figure 2-5(h) for the two 

sequences mentioned, there were many MV outliers pointing irregularly, especially on 

the road region where the texture was weak. Since the primary goal of the motion 

estimation algorithm for H.264/AVC encoder is to reduce the amount of information 

between successive frames, the resulting motion vectors are not necessarily 

representing the true motion of the object. When a particular macroblock has a weak 

texture, there is the aperture problem (Trucco and Verri, 1998) resulting in the 

deviation of MVs from the true motion. Also, the change in lighting conditions and 

the Rate-Distortion parameter will affect the block matching result of the motion 

estimation algorithm, leading to estimation error.  
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Sequence Motion Search Algorithm (H.264 Baseline Profile) 

Full-search UM Hexagon EPZS 
(a) 

Construction 
site 

(Intra-on) 

(b) 
Construction 

site 
(Intra-off) 

(c) 
Crazy Turn 

Left 
(Intra-on) 

(d) 
Crazy Turn 

Left 
(Intra-off) 

Figure 2-4: An overview of H.264 encoded snapshot of 2 video sequences. Each video sequence is 
encoded with intra-mode on and off, using three different motion search algorithms. The red and green 
boxes shown in each encoded snapshot are macroblocks encoded in intra-mode and inter-mode 
respectively. The green lines shown at each macroblock indicates the amplitude and direction of the 
motion vector. 

It is also noticed that the road surface usually has a smooth texture. The motion 

estimation algorithm will simply use SKIP mode to represent the motion of these 

macroblocks. This is erroneous to the true motion although it does not affect the 

coding efficiency significantly. 
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(e) 
Dancing 

Light 
(Intra-on) 

   
(f) 

Dancing 
Light 

(Intra-off) 

   
(g) 

Intern On 
Bike 

(Intra-on) 

   
(h) 

Intern On 
Bike 

(Intra-off) 

   
Figure 2-5: An overview of H.264 encoded snapshot of another 2 video sequences. Each video sequence is 

encoded with intra-mode on and off, using three different motion search algorithms. The red and green 
boxes shown in each encoded snapshot are macroblocks encoded in intra-mode and inter-mode 

respectively. The green lines shown at each macroblock indicates the amplitude and direction of the 
motion vector. 

When examining more closely to the areas near the vehicles at the front as shown in 

Figure 2-6 and Figure 2-7, it was found that the mode used for encoding a particular 

macroblock was not necessarily the same when different motion estimation algorithm 

was used. When the vehicle at the front is far away from the camera, its size in the 

image is smaller. Also, since the relative motion between the camera and the vehicle 

at the front is smaller than that between the camera and background stationary objects, 

the encoder tends to encode the area of the front vehicle with larger macroblocks, 

such as 16x16, 8x16 and 16x8. For the Crazy Turn Left sequence shown in Figure 2-4, 
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there are more MVs around the vehicle at the front due to smaller partitions were used 

to represent the motion of the vehicle relative to the movement of the camera. Some 

of the macroblocks of relative slow moving objects can possibly be encoded in 

Intra-mode, leading to a loss of motion information of the moving object. When an 

object is far away from the camera, the number of inter-mode encoded macroblocks 

may be too small to determine whether it is a moving object, or is a static object. 

Sequence Motion Search Algorithm 

Full-search UM Hexagon EPZS 
(a) 

Constructio
n site 

(Intra-on) 

(b) 
Constructio

n site 
(Intra-off) 

(c) 
Crazy Turn 

Left 
(Intra-on) 

(d) 
Crazy Turn 

Left 
(Intra-off) 

Figure 2-6: Macroblocks and encoding mode for different Daimler video sequences. Sequence 
Construction site shows small number of macroblocks to represent the movement of front vehicles. 

Sequence Crazy Turn Left shows MVs due to the left turn action of the subject vehicle. 
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(e) 
Dancing 

Light 
(Intra-on) 

   
(f) 

Dancing 
Light 

(Intra-off) 

   
(g) 

Intern On 
Bike 

(Intra-on) 

   
(h) 

Intern On 
Bike 

(Intra-off) 

   
Figure 2-7: Macroblocks and encoding mode for different Daimler video sequences. Dancing Light and 
Intern On Bike sequences show small number of macroblocks to represent the movement of the front 

vehicles.  

One of the important observations was that the MVs near the focus of expansion (FOE) 

and on relatively slow moving objects are small and not precise. Again, FOE is the point 

where objects in the scene are apparently emerging from when the camera is moving. 

This observation is summarised in the Section 2.4.3. 

FOE is different from the principal point as well as the vanishing point of the camera. 

The Principal point refers to the point in the camera screen that corresponds to the 

optical axis of the camera. Vanishing point can be regarded as the point in the camera 

screen where two physical parallel lines, such as the railway, are merged due to the 

perspective view of the camera. The vanishing point is the same as the principal point 
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when the camera is installed with zero rotational angles. FOE is the same as the 

vanishing point when the camera is moving in straight line along the Z-axis. Assuming 

the camera is installed with zero rotational angles, the difference between FOE and the 

vanishing point (or the principal point in this case) can be expressed as Equation (2.6) 

(Trucco and Verri, 1998), where (x0, y0) is the FOE, (cx,cy) is the principal point, f is the 

focal length of the camera, Vx and Vz are the velocities of the camera in X- and 

Z-direction respectively.  
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2.4.3 MVs Near FOE and on Relatively Slow Moving Ob jects 

Figure 2-8 shows an image overlaid with two consecutive frames with frame interval of 

0.33 seconds. Red lines in the image show the MVs of feature points found by Shi and 

Tomasi method (1994). Green lines in the image show the ideal optical flow field 

emerging from the FOE. Most of the MVs shown are pointing to the FOE although 

there are outliers due to the independently moving vehicle at the front and feature point 

tracking errors.  

Another observation on the image shown in Figure 2-8 is that the MVs near the edges 

of the image have a relatively large amplitude compared to those near the centre of the 

image. Consider the independently moving vehicle at the front near the FOE with 

relatively slow speed to the observing camera, the amplitudes of MVs near the FOE are 

small. It is difficult to distinguish whether the MVs are the result of far static objects or 

the relative slow speed moving vehicle near the FOE.  
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Figure 2-8: Image showing two overlaid consecutive images. Red lines show the optical flow field 

found by generic KLT feature point tracking algorithm. Green lines show the virtual optical flow field 
emerging from a point known as the FOE. 

The MVs obtained by the Shi and Tomasi method are floating point vectors, whereas 

those obtained by H.264/AVC encoders are fixed point with up to a quarter pixel 

precision. Given the limited precision of MVs of the H.264/AVC encoder, the 

amplitudes of MVs of relatively slow moving objects, especially those near the FOE, are 

indistinguishable from the MVs of static objects. This observation is obvious in the 

“Intern-on-Bike sequence” where a P-frame encoded screenshot is shown in Figure 2-9. 

Some of the MVs of macroblocks on the road and the slow relative speed moving 

vehicle are highlighted with red stars and red circles. These MVs have the same or small 

amplitude difference. It is not possible to distinguish the moving object and static 

regions by examining the MVs alone.  
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Figure 2-9: Selected MVs near the FOE on the road and on the slow relative speed moving vehicle. The 
amplitude of MVs is either identical or has small difference, making it difficult to distinguish moving 

objects and static regions. 

2.5 Road Region Detection 

The detection of both lane markings and moving objects on the road can result in false 

detections due to various reasons such as falsely recognised edge features, texts on the 

road, unreliable MVs from the H.264/AVC encoder and the chance of having regions 

with similarities to the features of moving vehicles. 

The ever-changing scenarios on the road make both lane detection and moving object 

detection a challenging task. Knowing that the identification of road regions can help 

reduce the region of interest (ROI) for both lane detection and moving object detection, 

and that the relatively uniform colour and textures of road surfaces can provide a more 

generic set of features for recognition. The road region detection algorithm needs to 

handle situations with different objects on the road. It is also desirable to suppress the 

road detection error due to variations of illumination caused by shadows and reflections. 

It must also be computationally efficient for real-time applications. 
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For monocular vision based road detection algorithms, the road colour is the preferred 

feature to be analysed (He and Wang et al., 2004, Rotaru and Graf et al., 2008, Tan and 

Hong et al., 2006, Sotelo and Rodriguez et al., 2004).  

For colour analysis, the popular colour space used is red-green-blue (RGB) (He and 

Wang et al., 2004, Tan and Hong et al., 2006) or hue-saturation-intensity (HSI) (Rotaru 

and Graf et al., 2008, Sotelo and Rodriguez et al., 2004). Since the HSI colour space has 

separate colour and light intensity components, there is less influence on colour 

recognition caused by the lighting variations of successive images (Ikonomakis and 

Plataniotis et al., 2000). However, the colour representation in HSI colour space is 

unreliable if the intensity component is too low. Therefore the colour analysis in dark 

and shadowed areas in an image is not satisfactory (Alvarez and x et al., 2011). For the 

use of RGB colour space for road region detection, there have been studies on the 

classification of road model by edge detection and perspective transformation (He and 

Wang et al., 2004), histogram of the colour space using green and blue channel only 

(Tan and Hong et al., 2006), illumination modelling by a mixture of Gaussian models 

(Lee and Crane, 2006, Ramstrom and Christensen, 2005). Ramstrom et al. have also 

reported a method with the combined use of different colour spaces, road shape models 

and multiple mixture of Gaussian models for improved road region detection on roads 

with no marking (Ramstrom and Christensen, 2005). However, how the number of 

Gaussians is selected and how the road models should be defined are trade-off questions 

for achieving good performance against different road conditions versus the computation 

cost. 

Also, based on the study on shadow removal by the decomposition of an image into two 

separate images representing the variation in reflectance and the variation in illumination 

(Finlayson and Hordley et al., 2006), Alvarez et al. (2011) proposed a method that 
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combined the use of such shadow removal technique and a likelihood-based classifier 

using the normalised histogram of road region at the bottom part of the image in the HSI 

colour space. Similar to the shadow removal algorithm proposed by Finlayson et al. 

(2006), Alvarez et al.’s method requires a camera calibration procedure to estimate the 

“direction of illuminant variation”. Alvarez et al.’s method reported a computation time 

of 600ms for images of resolution 640x480 using MATLAB code, and an estimated 

computation time of 40ms if the code were implemented in C++.  

Nevertheless, all the methods proposed had cases with unsatisfactory road detection 

results. These cases include images with shadows, over-exposure, under-exposure, as 

well as interferences due to lane markings and worn-out roads. The ability of computing 

the road region in real-time remains a challenge. 

 

2.6 Practical Implications 

Recently, there have been many aftermarket products produced with a forward looking 

camera known as “Car Camera”. They are mounted to the windshield for recording the 

environment during driving for security issues. Some examples of these Car Cameras are 

shown in Figure 2-10. These products are capable of performing real-time H.264/AVC 

video recording to the SD-card inserted into the cameras with resolution ranging from 

640x480 (VGA) to 1920x1080 (HD). 

For ADAS, a camera is also required to be mounted to the windshield. Instead of video 

recording, image processing algorithms are executed for objects and lane detection. 

Warning signal will be issued to alert the driver on the potential hazard. 
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Figure 2-10: Example of Aftermarket Car Cameras. (a) and (b) Built-in Infrared LEDs for night time 

illumination. (c) Inclined angle to fit more tightly to the windshield. (d) Movable lens for easier camera 
adjustment (source: http://www.hktdc.com). 

One of the possible improvements for Car Cameras and ADAS is the shared-use of 

motion vectors for both video encoding and moving object detection. With the optical 

flow evaluation being replaced by the ME function from the video encoder, any 

additional computation induced by moving object detection can be reduced. This implies 

that the functions of Car Cameras can be enriched with ADAS functions without 

significantly increasing the hardware cost. 

Although there have been studies on the recognition of moving object on a moving 

platform by using optical flow, there have been few studies on moving object detection 

on a moving platform using motion vectors (MVs) from the video encoder. 

According to a paper that discussed the marketing strategies of Chinese automotive 

brands (Yan and Xu 2012), the image of Chinese automotive brands are weak. Even 

though the Chinese auto brands are moving upward to the manufacture of more luxury 

cars, Advanced Driver Assistance Systems such as LDWS and FCWS are still lacking. 

Chinese automotive brands are still facing high pressure on the cost and the provision of 
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feature rich functions to compete in the China market. The idea of shared-use of motion 

vectors for video coding and moving object detection can be one of the approaches to 

provide feature-rich ADAS function at a lower cost. According to Zhang et al. (2014), at 

least one Digital Signal Processor is required for real-time optical flow evaluation. It is 

estimated that 30% of the hardware cost can be saved due to the elimination of a Digital 

Signal Processor for optical flow evaluation. 

 

2.7 Research Focus 

With the literature review performed, it was found that the algorithms and techniques for 

object detection for ADAS application and for video coding are advancing rapidly.  

There have been studies on feature based vehicle detection methods. These methods are 

able to achieve a high true-positive detection rate. However, each viewing perspective of 

the vehicle requires a set of feature and classifier for successful detection. This implies 

that a larger number of samples is required for training the classifier for each viewing 

perspective. Also, there is an additional computational cost for detecting vehicles at each 

additional perspective, implying increasing hardware costs to cope with the additional 

detection.  

In this regard, the non-parametric moving object detection based on the use of optical 

flow fields is favourable for its capability on detection without prior knowledge of those 

objects. However, the high computational cost for optical flow field and ego-motion 

estimation using the optical flow results is unfavourable for real-time embedded 

applications.  
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Another observation is on the problem and computational cost for ego-motion estimation 

based on optical flow fields. The ego-motion parameters are required to be evaluated 

frame-by-frame so that ego-motion compensation can be done in each successive frame. 

These methods also require reliable flow fields from successive frames on static objects 

or road surfaces. The availability of these flow fields can be a problem in case that the 

image is occupied mostly by moving objects, or that there is significant change in the 

lighting conditions. Therefore, the research direction is to make use of on-board inertial 

sensors to estimate the ego-motion parameters, targeting to more reliable ego-motion 

estimation and offload the computational resources from the embedded processor.  

On the other hand, it is observed that the motion vectors from a H.264/AVC video 

encoder may be able to replace optical flow fields for non-parametric moving detection. 

H.264/AVC video encoders are widely used in consumer products and are readily 

available from off-the-shelf semiconductor chips.  

Although there have been studies in making use of motion vectors of the H.264/AVC 

video stream for moving object detection in the decoder side, it was found that there are 

few studies related to combining the algorithms for ADAS and video coding in the 

encoder side so that more resources of the embedded microprocessor can be shared 

without a significant impact on the video coding efficiency and object detection 

accuracy. 

The block diagram shown in Figure 2-11 illustrates the ADAS and H.264/AVC video 

recorder 2-in-1 system with shared use of functional blocks. It shows the shared motion 

estimation function and the shared motion vectors. By sharing the motion estimation 

block, the most time consuming and processor demanding part of the system can be 

combined. Successful combination gives a significant saving in computational cost to 
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achieve real-time performance. This also means a significant saving in the hardware 

cost.  

 
Figure 2-11: ADAS and H.264/AVC video encoding 2-in-1 system with shared functional blocks. The 
block diagram shows the motion estimation and motion vector functional blocks are shared for the use 

of video coding and moving object detection. 

Therefore, the research focus was to combine the motion vector estimation for 

H.264/AVC video encoding and moving object detection. The technical challenge was 

on the research and development of suitable algorithms to perform both moving object 

detection and video coding functions in real-time. The resulting system required a 

balanced performance of moving object detection, video coding efficiency and video 

quality. 
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2.8 Chapter Summary 

This Chapter has reviewed the methods commonly used for vehicle detection. These 

methods can be classified as feature based, statistical based and optical-flow based 

methods. It has also described the problems with the use of H.264/AVC MVs for 

moving object detection. In particular, the MVs from H.264/AVC coding have limited 

precision of up to 1/4 pixel only, and the amplitudes on relatively slow speed moving 

objects are small, leading to large ego motion compensation error. Also, the design goal 

of the motion estimation algorithm for H.264/AVC video coding is for the best possible 

video compression rather than the accuracy of movements of objects. All these problems 

hindered the use of the MVs from a H.264/AVC encoder for moving object detection on 

a moving platform.  

This Chapter also covered literature review on techniques associated to MV based 

moving object detection. This includes planar parallax evaluation, ego motion estimation 

and road region detection. Based on the literature review performed, it is confirmed that 

there can be more in-depth research on the shared use of MVs from a H.264/AVC 

encoder for moving object detection, leading to the research focus of this project. 
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3 Algorithm Framework 

Based on the literature review and a series of experiments, an algorithm framework for 

moving object detection with the shared use of MVs from a H.264/AVC encoder is 

proposed. Figure 3-1 shows the major functional blocks of the proposed algorithm 

framework. 

The inputs to the system consist of a camera with a six-degree-of-freedom inertial sensor 

mounted directly to the camera sensor board, and the vehicle speed signal from the 

vehicle speed sensor. They output dynamic parameters which include the 3-axis rotation 

angle, acceleration and angular speed, as well as the vehicle speed. The vehicle speed 

sensor outputs square pulses when the vehicle is moving. The number of square pulses is 

proportional to the moving speed of the vehicle. These dynamic parameters are used for 

ego motion estimation and FOE estimation. By the use of inertial sensors and speed 

sensors for ego motion estimation, uncertainties on the quantity and quality of good 

feature points for image based ego motion estimation can be eliminated. The 

computation cost can also be reduced significantly. 

The camera captures successive colour images, feeding to the H.264/AVC encoder for 

video recording. During the encoding process, MVs are generated. The colour images 

are also used for road region detection. The result of road region detection is used for 

reducing the region of interest (ROI) for moving vehicle detection so that the 

computation can be achieved in a shorter time. The ROI is further reduced by using the 

results from MV output and FOE estimation. By reducing the ROI, the computation time 

can be reduced as only the areas that potential have moving objects will be processed. 

The proposed algorithm has divided the moving objects into two categories; relatively 

fast and relatively slow moving objects respectively. Different algorithms are proposed 
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to detect moving objects in these two categories. This approach is to supplement the 

erroneous and imprecise MVs on relatively slow moving objects, so that the detection 

rate of these objects can be guaranteed. In the mean time, those objects that move 

relatively fast can be taken care of by the relatively fast speed moving object detection 

algorithm. After successful detection of moving objects, a tracking algorithm is applied 

to reduce the frame-to-frame computation time. 

 
Figure 3-1: Major functional blocks of the proposed algorithm framework 
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3.1 System Preparation 

3.1.1 Configuration for Video Encoder 

The proposed algorithm framework requires MVs from a H.264/AVC encoder. The 

JM18.4 open-source encoder (JVT, 2012) was chosen for modification to output the 

required MVs. 

Since the MVs may have different block size, it is more convenient to unify the block 

size that each MV is representing. Off-the-shelf real-time H.264/AVC encoders usually 

sacrifice the minimum block size for motion estimation to 8x8 (TI, 2015a, Freescale, 

2015) rather than the minimum 4x4 block size specified in H.264/AVC encoder, the 

block size of each MV was set to 8x8 during this project. That is, mode 5, 6 and 7 

shown in Figure 2-3 are disabled. With these modes disabled, the block size of MVs in 

a frame will have the size of 8x8, 8x16, 16x8 and 16x16. Those MVs of block size 

larger 8x8 were regarded as multiple blocks of size 8x8 with the same MV value, as 

illustrated in Figure 3-2.  

 
Figure 3-2: Transforming MV for different block size to represent the same block size of 8x8 

During the motion estimation stage, the MVs were exported with block size of 8×8 for 

each inter-frame encoding process. Since blocks encoded in SKIP mode may represent 

weak texture blocks with small relative motion, MVs for these blocks were marked 

when SKIP mode was used.  

The desired video frame rate is 30 frames per second (fps) or above due to the 

persistence of vision of human eyes. The time interval between successive frames is 
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therefore 33ms. This time interval is too short to give sufficiently large MVs for 

moving objects on the road, especially those relatively slow moving objects. Therefore, 

the time interval between frames for motion estimation was increased by inserting one 

B-frame between every two P-frames. Consequently, the time interval between 

P-frames for MV output was 66ms, whereas the video frame rate was kept unchanged 

at 30fps. So, the resulting frame sequence is IBPBP for video encoding. 

3.1.2 Camera Calibration 

The objects appearing in the screen are required to be related to their physical locations 

so that the size and distance of these objects can be estimated for detection 

confirmation. Therefore, the camera needs to be calibrated to relate the screen 

coordinates to the physical World coordinates.  

3.1.2.1 Definition of the Coordinate Systems 

Figure 3-3 illustrates the definitions of World coordinates, camera coordinates, and 

screen coordinates. All the coordinate systems are right-handed. The World 

coordinates W is with the X-, Y- and Z-axis shown on the ground plane. The camera 

coordinates C is with Xc-, Yc- and Zc-axis and there is a transformation from the World 

coordinate system to the camera coordinate system with rotation Rw and translation Tw. 

The rotation about the X-, Y- and Z-axis is shown as xθ , yθ , and zθ  respectively. 

The positive direction is defined as having clockwise rotation when looking from the 

origin of the respective axis.  
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Figure 3-3: Illustration of World coordinates, camera coordinates, and screen coordinates. There are 
Rotation Rw and Translation Tw from the World coordinates to the camera coordinates. The screen 

coordinates start from the top left corner of an image. 

The parameters describing the camera calibration include the intrinsic parameters and 

extrinsic parameters. Intrinsic parameters refer to the focal length, pixel size of the 

camera sensor, and the coordinates of the principal point. Extrinsic parameters refer to 

the height of the camera above the ground plane, pitch ( xθ ), yaw ( yθ ) and row ( zθ ) 

angles of the camera coordinates with respect to the ground plane. 

Since there is only one camera in the system, the depth information or the distance 

between an object and the camera cannot be obtained directly from the two 

dimensional screen coordinates of the image. Instead, the distance of an object is 

estimated by the trigonometric calculation with reference to a flat surface, such as the 

ground plane. Figure 3-4 shows a camera with non-zero pitch angle xθ . The vanishing 

point on the screen can be regarded as the merging point of two parallel lines running 

along the Z-axis direction. If the pitch, roll and yaw angles of the camera are all zero, 

the optical axis is passing through the principal point, and aligning with the vanishing 

point.  
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Figure 3-4: Camera with non-zero pitch angle xθ . The vanishing point on the screen is not aligned with 

the optical axis.  

For a point wP =[ ]T

w w wX Y Z  on the World coordinates, the corresponding point 

on the camera coordinates iscp = [ ]T

c c cx y z . sp = [ ]1
T

s sx y is the 

corresponding point on the screen coordinates. The relationship between wP  and 

cp can be expressed as Equation (3.1).  

 [ ] ( )
Tc

c c c w w wp x y z R P T= = −   (3.1) 

The relationship between sp  and cp  can be expressed as Equation (3.2), where K is 

the intrinsic matrix of the camera. Therefore, Equation (3.3) can be derived by 

substituting Equation (3.1) to (3.2). 

 [ ]1
Ts c

s sp x y Kp= =   (3.2) 

 [ ]1 ( )
Ts

s s w w wp x y KR P T= = −
  

(3.3) 

Equation (3.3) can further be written to Equation (3.4), where t = -RwTw and [ ]wR t is 

the 3x4 matrix representing the rotation and translation of the camera relative to the 

World coordinates. [ ]wR t is known as the extrinsic matrix of the camera. 

 [ ] [ ][ ]1 1
T Ts

s s w w w wp x y K R t X Y Z= =
  

(3.4) 

The Intrinsic matrix K is shown in Equation (3.5), where xf  and yf  are the focal 

length of the camera along the x- and y-axis respectively, xc  and yc  are the principal 

points of the camera along the x- and y-axis respectively. 
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The extrinsic matrices Rw and Tw are shown in Equation (3.6) and (3.7) respectively, 

where Rx, Ry, and Rz are the 3x3 rotational matrices about X-axis, Y-axis, and Z-axis 

respectively, xθ , yθ , and zθ  represent the pitch angle about the X-axis, yaw angle 

about the Y-axis, and the roll angle about the Z-axis respectively, h is the height of the 

camera above the ground plane, d is the horizontal distance along the Z-axis between 

the camera and the origin of the ground plane. Without loss of generality, the distance 

offset d along the Z-axis between the World coordinates and the camera coordinates is 

set to zero. 
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(3.7) 

One point to note is that Equation (3.4) can be re-written as Equation (3.8), where the 

3x4 matrix with element aij is the result of [ ]wK R t . Consider the case with Yw=0, 

meaning that the corresponding coordinates are on the ground level, the 3x4 matrix 
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with element aij can be re-written to a 3x3 matrix shown in Equation (3.9). Equation 

(3.9) relates a point on the ground level in the World coordinates to a point on the 

screen. Since M is a 3x3 matrix, it can be inverted to M-1 so that a point in the screen 

can be related to a point on the ground surface in the World coordinates, as shown in 

Equation (3.10). 
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 [ ] [ ]11 1
T T

w w s sX Z M x y−=
 

(3.10) 

 

3.1.2.2 Calibration Method 

There have been many camera calibration algorithms proposed. There are algorithms 

trying to estimate the camera parameters by 3-D reference objects (Tsai, 1987, 

Heikkila, 2000), 2-D planar objects (Zhang, 2000, Lucchese, 2005) and even 1-D 

objects (Zhang, 2004). Also, there have been attempts to estimate the camera 

parameters by methods known as auto-calibration or self-calibration (Civera and 

Davison et al., 2012, Mitsunaga and Nayar, 1999, Wang and Zhang et al., 2010, Pernek 

and Hajder, 2010). These auto-calibration methods try to use feature points from 

un-calibrated objects from multiple scenes. Auto-calibration methods require reliable 

feature points to get satisfactory results. This requirement cannot be guaranteed in the 

ever-changing environment on the road for automotive application. 
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The method proposed by Zhang (2000) is one of the most popular calibration 

algorithms. It uses a planar checker board that can be prepared by simply printing the 

pattern on a paper. The checker board is then presented in front of a camera in different 

orientations for capturing multiple images. Since the checker board is a planar object, 

the algorithm always assumes all the identified feature points has zero value in one of 

the axes, such as Zw of the World coordinates. 

Therefore, Equation (3.4) can be simplified to Equation (3.11), where r1 and r2 are the 

first and second column of the Rw matrix in Equation (3.4), and [ ]1 2H K r r t=  is 

known as the planar homography matrix. By substituting all identified feature points in 

the screen and World coordinates in each view to Equation (3.11), H can be estimated 

from the over-determined system by least-square optimisation method. 

 [ ] [ ][ ]
[ ]

1 21 1

1

T T

s s w w

T

w w

x y K r r t X Y

H X Y

=

=   
(3.11) 

In order to minimise the computational burden due to camera installation problems, the 

camera was installed so that the rotation angles in the extrinsic matrix were all zero. 

Otherwise, sine and cosine calculations in the extrinsic matrix would introduce 

additional computational cost to the system, hindering the real-time performance. 

Zhang’s camera calibration method can only help determine the intrinsic and extrinsic 

parameters of the camera after installation, it does not provide a method directly for 

camera installation. Therefore, a new camera installation method is proposed. 

The camera module used in this project was designed with a six-degree-of-freedom 

inertial sensor on-board, meaning that the pitch, roll and yaw angles of the camera can 

be measured accurately. The pitch and roll angle readings from the inertial sensor are 

used during the camera installation so that the pitch and roll angle are zero. The yaw 
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angle of the camera with respect to the vehicle body cannot be determined by the yaw 

angle reading, an external checker pattern was used to ensure the proper installation. 

Step 1: Focal Length Estimation 

The focal length was estimated before the camera was installed into the vehicle. This is 

because the distance of the camera to a defined object is difficult to measure after it is 

installed in a vehicle. Figure 3-5 shows the setup for estimating the focal lengths of the 

camera. It includes a checker board pattern printing on a large piece of paper, an 

up-right sign board, a laser distance checker and a PC program for capturing the image 

from the camera. The distance between the up-right board and the camera was 

measured by a laser distance checker. The distance difference of the camera to the 

left-side of the up-right board should be close to that to the right-side of the up-right 

board. This made sure that the up-right board is not skewed to either side of the camera, 

minimising the distance measurement error. 

 

Figure 3-5: Calibration Setup for focal lengths of the intrinsic parameter of the camera 

A simple pin-hole camera model was used for the distance estimation. Figure 3-6 

shows the pin-hole camera model with screen coordinates shown in red, and the World 
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coordinates shown in blue. The green line in Figure 3-6(b) represents the location of 

the camera, with focal length f from the origin. For a point Pw in the World coordinates 

[Xw Yw Zw]T, its corresponding point ps in the screen coordinates at [xs ys f]T can be 

estimated by the simple trigonometry. The relationship is expressed in Equation (3.12), 

where (cx,cy) are the principal point of the camera, indicating that there is an offset 

between the screen coordinates and the World coordinates. The principal point (cx,cy) is 

assumed to be at the centre of the screen. 

 /

/
s x w w x

s y w w y

x f X Z c

y f Y Z c

= +
 = +   (3.12) 

 
Figure 3-6: Simple pin-hole camera model. (a) Definition of camera coordinates system and the screen 
coordinates system. (b) Viewing from X-axis to the origin with the green line representing the image 

plane 

For the checker pattern on the up-right board, the screen coordinates of the three 

control points A, B and C, shown in Figure 3-7, were initially selected manually via the 

computer program. The sub-pixel corner of each selected point is found by searching 

around the selected point with a search window of size 5x5. According to the 

geometrical relationship of a simple camera model, the focal lengths fx and fy can then 

be evaluated by Equation (3.13), where Vd and Hd are the distances in number of pixels 

between control point A and C, and A and B respectively, Dab and Dac are the physical 

distance between the control point A and B, and A and C respectively.  

 
 ,  d w d w

x y
ab ac

H Z V Z
f f

D D
= =

  
(3.13) 
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(a) 

 
(b) 

Figure 3-7: Checker pattern on the up-right board. (a) Physical dimension of the checker pattern. (b) 
Coordinates and  distance between control points in number of pixels.  

After the focal lengths fx and fy were estimated. More control points could be selected 

to check against the value of fx and fy. If the deviation between these sets of values was 

small, the values of fx and fy were accepted. 

Step 2: Finding the Centre Line 

To physically install the camera to the vehicle with zero rotation angles, a simple 

method that makes use of the centre line of the vehicle is proposed. Referring to Figure 

3-9, AL and AR are the locations of two easily identifiable points that are symmetric 

about the centre line LC. They can be the corners between the front bumper and the 

front quarter panels or the left and right corners of the engine hood near the head lamps, 

or similar identifiable points, as illustrated in Figure 3-8. These points are chosen to 

minimise potential miss-location arising from the uncertainty of featured locations 

influencing the calibration result. 
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Figure 3-8: Illustration of good symmetric positions for symmetric geometrical line construction for 
camera calibration. The square boxes shown on the left and right side of the vehicle indicate example 

locations for good symmetrical geometrical line construction. 

With reference to Figure 3-9, the checker banner was place on the ground without 

initially being aligned to the centre line LC of the vehicle. This was because the centre 

line was not known until the markers BC, CC and DC were identified. Two non-elastic 

ropes of equal length are used to make two straight line segments from AL to BC and 

from AR to BC respectively. The meeting point BC of these two lines is marked with a 

pin. The banner was moved so that the pin could be fixed to a corner of the checkers, 

such as at P1 on the banner.  

 
Figure 3-9: Illustration of alignment markings for the centre line for camera installation. The banner with 

checker pattern is not aligned to the centre line until the centre line is found. 

Another pair of ropes of equal length that was longer than the length from AR to BC 

was used to mark the pin point CC. Since the lengths of these two ropes were the same, 

the pin point CC should lie on the same line LC. The banner was moved again so that 

the pin point CC is fixed at a position along the line L1 on the banner. Similarly, pin 
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point DC was marked with another pair of ropes and the banner position was refined so 

that all the three identified pin points BC, CC and DC are fixed on the straight line L1. 

After this procedure, the line L1 was aligned with the centre line Lc. Therefore, the 

centre line of the vehicle LC was found, as shown in Figure 3-10.  

 

Figure 3-10: The camera installation process with the check-board banner aligned to the centre line LC of 
the vehicle 

Step 3: Alignment to Zero Rotational Angle 

After the centre line of the vehicle was found, the installation of the camera is 

continued. Figure 3-11 shows the example snapshot of the real-time video captured 

from the camera. Two perpendicular lines, one is drawing horizontal in red and the 

other is drawing vertically in orange, was overlaid onto the screen by the calibration 

software. When the camera was not installed properly at the beginning, the horizontal 

and vertical lines formed by the checker pattern on the banner placing on the level 

ground were not aligned with the overlaid horizontal and vertical lines. 

The camera was moved to a location where the orange line was aligned with the centre 

line LC on the checker pattern banner. The yaw angle of the camera with respect to the 

vehicle body is zero when the lines are aligned. 
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Similarly, the position of the camera was refined so that the red horizontal line is 

aligned with a horizontal line formed by the checker pattern. The position of the red 

line on the screen was adjustable by the calibration software to facilitate the alignment. 

When both the orange vertical line and the red horizontal line were aligned to the 

checker pattern, the camera was installed with zero roll and yaw angles. 

Finally, the pitch angle of the camera was checked by the on-board sensor reading of 

the camera. By adjusting the pitch angle of the camera until the pitch angle reading 

reaches zero, the installation is completed. 

 
Figure 3-11: An example video display with the scene captured by the camera to be installed. It sees the 
banner with checker pattern on the level ground. An orange line is overlaid in the centre of the screen to 
indicate the line with zero yaw angle. A red horizontal line is also overlaid at the bottom of the screen to 

indicate the zero roll angle. The orange and red line should be aligned vertically and horizontally 
respectively to a line formed by the checker pattern on the banner. 

Step 4: Camera Height Estimation 

The installation height of the camera was estimated by using the banner with checker 

pattern placing on the level ground that was well aligned as described in Step 2 and 

Step 3. Figure 3-12 shows the configuration for camera height calibration based on the 

checker pattern placing on the level ground with the camera installation at zero 

rotational angles. One very important point to note is that the distance Z1 from the 
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camera to the checker pattern does not need to be measured, ensuring more accurate 

calibration result by eliminating the measurement error of Z1. The screen coordinates of 

the control points Ac, Bc, P1, P2, P3 and P4 on the screen are first manually selected. 

Then the exact coordinates are refined to sub-pixel resolution. These control points 

result in a set of Equation shown in Equation (3.14) to (3.19). The left side of these 

equations are all available from the screen coordinates. 

Point Ac 1/a y yy f h Z c= +
 

(3.14) 

Point Bc 1/ ( )b y yy f h Z d c= + +
 

(3.15) 

Point P1 1 1/x xx f d Z c= +
 

(3.16) 

Point P2 2 1/x xx f d Z c= − +
 

(3.17) 

Point P3 3 1/ ( )x xx f d Z d c= + +
 

(3.18) 

Point P4 4 1/ ( )x xx f d Z d c= − + +
 

(3.19) 

The difference of Equation (3.16) and (3.17) yields Equation (3.20). Similarly, the 

difference of Equation (3.18) and (3.19) yields Equation (3.21), and Equation (3.14) 

and (3.15) yields Equation (3.22). 

 
1 2 1

1 1 2

2 /

/ ( ) / (2 )
x

x

x x f d Z

f Z x x d

− =
⇒ = −  

(3.20) 

 
3 4 1

1 3 4

2 / ( )

/ ( ) ( ) / (2 )
x

x

x x f d Z d

f Z d x x d

− = +
⇒ + = −  

(3.21) 
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(3.22) 

By substituting Equation (3.20) and (3.21) into (3.22), Equation (3.23) is obtained. h 

can be evaluated by this equation. 
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(3.23) 
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Figure 3-12: Camera height calibration using a banner with checker pattern placing on the level ground. 

3.2 Ego Motion Estimation 

The movement of the observer, also known as ego motion, has to be compensated in the 

captured image sequence so that the actual motion of objects relative to the ground can 

be obtained. This process is known as ego motion compensation. It is an important step 

to identify moving objects in the scene.  

Although there has been much research on ego motion estimation based on successive 

images captured from a moving camera, there are still many exceptional cases that the 

estimated ego motion is not reliable. For instance, the weak texture of the road region 

can give ambiguous feature points for optical flow field estimation, and there can be 

insufficient number of feature points available for ego motion estimation. Also, there can 

be rapid intensity change in successive images leading to unreliable optical flow 

estimation. 

In addition, ego motion estimation methods mentioned in Chapter 2.3.2 require the 

extraction of feature points, followed by estimating the optical flow fields of these points. 

Because of the block based nature of MVs from the H.264/AVC encoder, the MVs 

cannot be used directly for ego motion compensation. Additional processes such as 
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outlier removal and feature point detection in each block are required before the MVs 

can be used for more reliable ego motion estimation. These processes add computation 

overhead to the system and will affect the real-time performance of the system.  

In order to achieve reliable ego motion estimation and the real-time performance 

requirement, the information provided by the six-degree-of-freedom sensor and the 

speed sensor were utilised. 

The MVs generated from the H.264/AVC video encoder were compensated by the MVs 

due to the ego motion of the camera. The dynamic parameters of the moving camera, 

such as translational and rotational speeds, pitch, roll and yaw angles, are available from 

the six-degree-of-freedom inertial sensor mounting directly to the camera board. The 

vehicle speed of the ego vehicle is also available from the speed sensor readily available 

in the vehicle.  

With the information from the inertial and speed sensors, the orientation and ego motion 

of the camera can be estimated more accurately. 

3.2.1 Planar Homography Estimation 

Given the camera intrinsic and extrinsic parameters are obtained from the initial 

calibration method, the dynamic yaw and pitch angles can be measured by inertial 

sensors with negligible roll angle, and the vehicle speed can be measured by the 

vehicle speed sensor. When the camera operates at a known frame rate, the distance 

travelled by the vehicle on a ground plane can also be calculated. 

Referring to the definition of coordinate systems mentioned in Chapter 3.1.2, a point 

wP  at ( , , )Tw w wX Y Z  on the World coordinates has its corresponding point 1
c
tp −  at 

1 1 1( , , )Tt t tx y z− − − on the camera coordinates at time Tt-1, and c
tp  at ( , , )Tt t tx y z on the 
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camera coordinates at time Tt . The time difference between Tt-1 and Tt is the time 

duration between successive frames. The orientation xθ  represents the pitch angle 

about the X-axis, yθ  represents the yaw angle about the Y-axis, and zθ  represents the 

roll angle about the Z-axis. The transformation from the point 1
c
tp −   to the point c

tp  

is expressed in Equation (3.24), where A is the ground plane homography matrix 

shown in Equation (3.25) (Longuet-Higgins, 1986), Rw is the camera rotation matrix at 

the previous frame which is expressed in Equation (3.26), Rc is the camera rotation 

matrix between the successive frames which is expressed in Equation (3.27), Tc is the 

translation of the camera between successive frames (3.28), nT is the unit normal vector 

to the ground plane in the camera coordinates at time Tt-1 which is expressed in 

Equation (3.29), h is the height of the camera from the ground plane. The rotational 

matrix Rc is actually an approximated matrix where the rotational angles are assumed 

to be small between successive frames.  

 

1 1

1

1

c c T cw c
t c t t
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 (3.27) 

 
c

T

x d y d z dT v t v t v t =    (3.28) 

 

cos sin

cos cos sin sin sin
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y z
T

x z x y z
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n

θ θ
θ θ θ θ θ
θ θ θ θ θ

 −
 = − 
 + 

 
(3.29) 

The normalised image coordinates of ctp  at ( , , )Tt t tx y z is ˆ ( , ,1)c T
t t t tp z x y′ ′=  where 

t t tx x z′ =  , t t ty y z′ = . Let ( )1
Ts

t t tp u v=  and ( )1 1 1 1
Ts

t t tp u v− − −= be the 

coordinates on the screen at time Tt and Tt-1 respectively, Equation (3.24) can be 

rewritten as Equation (3.30), where K is the camera intrinsic matrix expressed in 

Equation (3.31). M=KAK-1 is the homography matrix relating the point on the screen in 

the previous frame and the current frame. 

 1
1 1 1

1
1

ˆ ˆs c s s
t t t t

s s
t t

p KAp KAK p Mp

p M p

−
− − −

−
−

= = =

=
 (3.30) 
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0

0 0 1

x x

y y

f c

K f c

 
 =  
 
   

(3.31) 

3.2.2 Ego Motion Compensation 

The matrix M in Equation (3.30) can be used for ego motion compensation. Figure 

3-13 and Figure 3-14 show the MVs due to ego motion of the camera only. Both 

figures display the MVs at 16x16 pixel interval for higher clarity. The motion of the 

camera in the frame shown in Figure 3-13 consists of straight line motion only, there is 
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a clear FOE from the centre location of the screen. In contrast, the motion of the 

camera in the frame shown in Figure 3-14 consists of forward and angular movement. 

The resulting MV directions are the combined motions due to the forward motion and 

the angular motion. 

One point to note is that the matrix M in Equation (3.30) represents the planar 

transformation between the point in the previous and current frame. All points are 

assumed to be lying on the ground plane only. 

 
Figure 3-13: Display of MVs due to ego motion only. The MVs are displayed at 16x16 pixel interval 

with vehicle speed and camera parameters from frame number 10 of the “Intern on bike” sequence of the 
Daimler sequence. 

 
Figure 3-14: Display of MVs due to ego motion only. The MVs are displayed at 16x16 pixel interval 

with vehicle speed and camera parameters from frame number 202 of the “Crazy Turn” sequence of the 
Daimler sequence. 
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With the presence of the H.264/AVC encoder, an object at point ( )2 2 2 1
Tsp u v=  

on the screen at the current frame is related to a point ( )1 1 1 1
Tsp u v=  in the 

previous frame by Equation (3.32), where Vδ is the MV found by the encoder.  

 
1 2
s s

Vp p δ= +  (3.32) 

The resultant MV Vδ evaluated by the encoder is the combined result of the MV Gδ  

due to the ground truth motion of the independently moving object and the MV Eδ  

due to the ego motion of the observer, as expressed in Equation (3.33). Since Vδ  and 

Eδ  are known from the video encoder and the ego motion of the observer respectively, 

the ground truth MV of the objectGδ , also known as ego-compensated MV, can be 

evaluated using Equation (3.33). 

 
V E Gδ δ δ= +  (3.33) 

3.2.3 Focus of Expansion Estimation 

The Focus of Expansion (FOE) is the point in the screen where static objects are 

virtually emerging from. In the proposed algorithm for MV based moving object 

detection, the FOE is used as the reference point for finding the direction of MVs. 

Static objects have MVs with directions pointing to the FOE. Therefore, MVs with 

direction not pointing to the FOE is an indication of existence of independently moving 

objects. The FOE is evaluated by the on-board inertial sensor rather than the estimation 

methods making use of features points in the captured images. 

When the ego vehicle moves on the road, the camera will experience 3-dimensional 

dynamic motions. By making use of the camera calibration method mentioned in 

Chapter 3.1.2, the camera has been installed with zero pitch, yaw and roll angles when 

the vehicle was stationary on a level road.  
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When the vehicle is moving in a straight line on a level road, the camera’s pitch angle 

relative to the road will vary due to pot holes and un-evenness of the road surface. The 

camera’s roll angle also varies due to the same reason. Similarly, when the vehicle is 

moving around a bend on the road, its roll and yaw angles vary according to the 

angular speed of the vehicle. The roll angle is due to the lateral acceleration during 

cornering leading to change of height of suspensions and tire deformation. The yaw 

angle is due to the angular translation of the vehicle along the bend of the road. 

Since the yaw angle between the camera and the vehicle is fixed by the rigid 

installation, the measured yaw angle between successive frames is solely due to the 

angular translation on the road. Similarly, the roll angle is due to the angular speed 

induced lateral acceleration and the un-evenness of the road.  

The pitch angle is more complicated. It is due to the un-evenness of the road, the ego 

vehicle’s acceleration in the Z-direction, and the inclination of the road relative to the 

earth plane. As illustrated in Figure 3-15 with a vehicle travelling on an inclined road. 

If the camera is installed with zero pitch angle, the angle between the camera optical 

axis and the road plane is zero. However, the pitch angle measured by the inertial 

sensor is actually the angle between the earth plane and the road plane. 

Therefore, the gradient of the road will offset the pitch angle measurement. It has to be 

compensated to reflect the true pitch angle between the camera optical axis and the 

road plane. 
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Figure 3-15: Illustration of a vehicle on an inclined road, the pitch angle measured by the inertial sensor 
is the angle between the road plane and the earth plane rather than the angle between the camera optical 

axis and the road plane. 

The camera pitch angle to the road plane xθ  can be interpreted as the summation of 

instantaneous change and long-term change of pitch angles represented by Equation 

(3.34), where xδθ  is the instantaneous pitch angle measured between successive 

frames, ( )x tθ is the pitch angle reported by the inertial sensor at the current frame, 

Θ is the long-term accumulation of the pitch angle that can be calculated by the 

moving average of the reported pitch angle over the past few frames as formulated in 

Equation (3.35), where n is the number frame for calculating the moving average. The 

instantaneous change is contributed by the un-evenness of the road surface and the 

vehicle’s acceleration. The long-term change is contributed by the gradient of the road 

relative to the earth plane. 

 ( )x x x tθ δθ θ= + − Θ
 

(3.34) 

 1

0

1
( )

n

x
i

t i
n

θ
−

=
Θ = −∑  

(3.35) 

By making use of the built-in inertial sensor of the camera unit, the instantaneous 

change of pitch angle can be obtained by the angular speed reading xω  in the x-axis 

from the sensor, and the time interval tδ  between successive frames. The 

instantaneous pitch angle xδθ can be expressed as Equation (3.36).  

 
x x tδθ ω δ=

 
(3.36) 

Assuming zero translational change in all axes, and knowing that the yaw angle 

between the camera and the vehicle body is zero due to the camera calibration, 
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Equation (3.4) can be simplified to Equation (3.37) and (3.38). The vanishing point 

[x0 y0 1]T can be evaluated by substituting [Xw Yw Zw]T in Equation (3.37) by [0 0 1]T 

(Hartley and Zisserman, 2003) and expressed in Equation (3.39) 

 
[ ] [ ]1
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(3.38) 
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(3.39) 

Recalling that Equation (2.6) indicated that when the camera has zero rotational angles, 

the FOE is ( ) ( )/  / 1
T

x x z y y zc V f V c V f V + +  . So, the FOE is at 

1
T

x yc c   when both Vx and Vy are zero. It differs from Equation (3.39) 

by tany xf θ in the y-axis. Therefore, combining the FOE due to camera rotation with the 

FOE due to ego motion, the FOE can be expressed as Equation (3.40). 
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(3.40) 

Since the vehicle is moving on the road, its vertical speed along the Y-axis can be 

approximated as zero. The FOE expressed in Equation (3.40) can be modified to 

Equation (3.41). 
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(3.41) 

The overall pitch angle xθ  of the camera relative to the road plane is calculated by 

Equation (3.34). Assuming the vehicle is moving at constant speed v with constant 

angular yaw rate ωy, the time difference between successive frames is δt. v can be 

obtained from the vehicle speed sensor, and ωy can be obtained from the angular speed 

reading of the y-axis of the inertial sensor. A simple vehicle model shown in Figure 

3-16 can be used to estimate the linear motion of the ego vehicle along the X- and 

Z-axis. Assuming that the vehicle speed v is constant, the distance travelled by the 

vehicle along the X- and Z-axis is δX and δZ respectively as shown in Equation (3.42) 

and (3.43). 

 ( )1 cosy yX v tδ ω ω δ= −  (3.42) 

 siny yZ v tδ ω ω δ= (3.43) 

For small time difference δt between successive frames, the speed Vx and Vz in 

Equation (3.41) can be approximated by δX/δt and δZ/δt respectively. By substituting 

Equation (3.34), (3.35), (3.36) and (3.42) to (3.41), Equation (3.44) is obtained for 

evaluating the FOE at (x0,y0). 
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Figure 3-16: Simple vehicle motion model in bird’s eye-view. The vehicle travels at speed v, and turning 

at angular rate ωy. The time interval between successive frames is δt.  

3.3 Road Region Detection 

There are several observations from the road region detection methods reviewed in 

Chapter 2.5. 

Firstly, they require considerable computation time. A method that can achieve real-time 

performance is required for the proposed ADAS.  

Secondly, those road detection methods were trying to classify each pixel into a road or 

non-road pixel. This process can be very time consuming. For the application in the 

proposed system, identified road region is an indication to reject falsely detected moving 

objects. Since the detection of moving objects are mostly block based due to the 

block-based nature of MVs from H.264/AVC encoders, it is possible that the road 

detection boundaries can be aligned to the block boundaries of MVs. By using 

block-based instead of pixel-based approach, a lower computation cost is expected.  

Thirdly, the bottom part of the captured image immediately in front of the ego vehicle is 

highly probably a road region, sampling of the characteristics of the road region in this 
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area is a fast and reliable method to determine the road colour model (Lee and Crane, 

2006, Tan and Hong et al., 2006).  

Fourthly, it is more important to detect the road region near the ego vehicle than regions 

that are further away. This is because the MVs from static objects near the ego vehicle 

are having larger distance to the FOE, meaning that the MV amplitudes near the ego 

vehicle are expected to be larger. Figure 3-17 shows a typical captured image with the 

direction and amplitude of MVs shown. The areas highlighted with red circles are closer 

to the ego vehicle. Motion estimation error in these regions will result in erroneous MVs 

of large amplitudes. There can be falsely detected moving object in these areas. Such 

false detection can be eliminated if the road region in this area is identified.  

Finally, the target application of the proposed ADAS is on structured roads. The texture 

of structured roads is usually weak with uniform colour. Therefore, except those areas 

with markings, the variation of road colour should be small, and the colour of adjacent 

area of a particular road region should not deviate by a large amount.  

 
Figure 3-17: Relatively large MVs highlighted in red circles are from static objects near the ego vehicle. 

Based on these observations, a new block based road region detection algorithm is 

proposed with steps as follows. 
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3.3.1 Building Road Colour Model 

A road colour model is prepared by sampling blocks on the road from multiple images. 

The mean ( )x  and standard deviation (σ) of each block are evaluated using Equation 

(3.45) and (3.46), where (x,y) are the starting coordinates of the block, R(u,v), G(u,v) 

and B(u,v) are the intensity of the red, green and blue channel of the pixel at (u,v), and 

Hist(i) is the number of pixels with the average sum of the three colour channels equals 

to i. The block size was set to 16x16 pixels in this case. A set of images with different 

light intensities taken on different roads were selected manually, and blocks on the 

road in each image were also selected manually from the area at the bottom of the 

image immediately in front of the ego vehicle. No block with road marking was 

selected.  
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A total of 2,500 samples were taken from the set of image to build a table that relates 

x  to a range of σ . This table was used as the colour models for initial selection of a 

road patch for region grow. 

3.3.2 Seed Block for Road Region Grow 

When an image is captured, a block near the bottom of the image is evaluated for its 

mean (x ) and standard deviation (σ ). This is because such region is the least likely to 

have any moving object when the ego vehicle is moving. Some blocks may however be 

affected by markings on the road. If either x  or σ  exceeds the values defined in the 

colour model, another block along the row will be chosen for evaluation of x  and σ 
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again until the new x  and σ  of the block can satisfy the colour model. So, x  and 

σ  are compared with the range of allowable value stored in the table described in 

Section 3.3.1, which is the colour model for the road. Figure 3-18 shows a typical 

captured image from the camera mounted on the ego vehicle overlaid with lines of grid 

size 16x16. A road patch of size 16x16 pixels is selected from the bottom left of the 

image that is shown in a blue square. Figure 3-18 also shows a block highlighted in red 

colour near the bottom right of the image. Since this block has road marking on it, the 

value of x  and σ  of this block will exceed the values specified in the road colour 

model and hence it will be rejected as being a seed block. 

 
Figure 3-18: Captured image showing 16x16 grid lines in green colour. The seed block is searched from 

the bottom left to the bottom right of the image until a block is found with satisfactory mean and 
standard deviation. An example block highlighted in orange colour is compared to its neighbour blocks 

marked with number 1 to 8 with purple colour. 

3.3.3 Road Region Grow 

After selecting a block of size 16x16 along the row at the bottom of the captured image, 

the values of mean (x ) and standard deviation (σ ) of this block is stored. Since the 

road surface usually has uniform colour and weak texture, x  and σ  of one block of 

a road region should be close to those of its neighbouring blocks.  

When a block Bi with mean gray level ix  and standard deviation σi along the row of 

block near the bottom of the image is identified as a road region block, the eight 

neighbouring blocks surrounding the block Bi are also evaluated for their respective 

mean kx  and standard deviation kσ  where k denotes one of the eight blocks. A 
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neighbouring block Bk is identified as a road region block if it satisfies (3.47) and 

(3.48), where b and c are predefined thresholds. 

 ikx x b− <  (3.47) 

 ik cσ σ− <  (3.48) 

The region grow method is employed so that the road region can “grow” further by 

comparing the identified road region blocks with their neighbouring blocks. Each 

comparison employs the x  and σ  of the centre block, such as the one highlighted 

orange in Figure 3-18, and one of the eight neighbouring blocks, such as the 8 blocks 

numbered from 1 to 8 in Figure 3-18, until no new road region block can be identified.  

3.3.4 Post Road Region Grow Refinement 

Since there are some blocks on the road that are actually road region but are excluded 

by the road region grow algorithm due to the value of x  or σ  in comparison cannot 

satisfy (3.47) and (3.48), a post processing step that uses a hole filling algorithm is 

proposed to refine the detected road region. 

Figure 3-19 shows a typical detected road region of a captured frame. The detected 

road region is highlighted in white colour. There are some “holes” inside the detected 

road region. The hole-filling algorithm scans each row of the road region detection 

result from the bottom of the image. The minimum and maximum road region block 

column number at each row yb are represented by XMin(yb) and XMax(yb) respectively. 

Similarly, the minimum road region block row number at each column xb is 

represented by YMin(xb).  

The scanning of road region blocks starts from the row below the FOE, with xb 

scanning from left to right, and yb from top to bottom. When a non-road region block at 
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column xb is detected and it is located below YMin(xb), that is, its location number is 

larger than YMin(xb), the block is re-labelled as a road region block. 

 
Figure 3-19: Road region blocks are highlighted in white. The minimum and maximum road region block 
at each row yb are Xmin(yb) and Xmax(yb) respectively. The minimum road region block at each column xb is 

Ymin(xb).  

After the refinement process, the holes inside the road region are filled and re-labelled as 

road region. The result after the refinement process is shown in Figure 3-20. 

 
Figure 3-20: The road region detection result after the hole-filling refinement process. 

3.4 Segmentation of Regions of Interest 

The road detection result using the method mentioned in Chapter 3.3 is combined with 

the amplitude MVs from the H.264/AVC encoder to form the region of interest (ROI) 

for moving object detection. 

As reported in Chapter 2.4.3, MVs near the FOE and moving objects with slow relative 

speed to the ego vehicle can be very small. The small MVs are inaccurate due to the 

limited precision of H.264/AVC encoder. Since performing ego motion compensation on 



 

77 

 

these inaccurate MVs will only result in erroneous representation of moving objects, 

other methods on the detection of relatively slow moving objects are required. 

By making use of the amplitudes of MVs, the ROIs can be segmented into regions with 

relatively slow moving objects and relatively fast moving objects. 

3.4.1 ROI for Slow Relative Speed Objects 

Regions that potentially have slow relative speed moving objects exhibit MVs with 

small amplitudes. Therefore, the ROI for slow relative speed moving object is chosen 

as the regions with small MV amplitudes. In addition, the ROI can be further reduced 

by the detected road region and limiting the ROI to areas below the FOE.  

Figure 3-21(a) shows a typical captured image from the camera. Since the area above 

the FOE is mostly the sky or upper parts of moving vehicles, there is no useful 

information for the detection of moving objects. Therefore, the upper part of the 

capture image is ignored. More precisely, given the y-coordinate of the FOE is y0, the 

area below y0+16 is retained for moving object detection. 

 
(a) 

 
(b) 

Figure 3-21: (a) Typical captured image that has been converted to grayscale image. (b) The FOE and 
the primary ROI is selected as the area below the FOE. 

In addition to the primary ROI below the FOE, the construction of the ROI for slow 

relative speed object detection is further illustrated in Figure 3-22. Figure 3-22(a) 
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shows the road region detected for the captured image shown in Figure 3-21(a) by 

using the method described in Chapter 3.3.1 to 3.3.4. Figure 3-22(b) shows the image 

mask with amplitude of MVs larger than a threshold qm. Since each MV represents a 

block of size 8x8, the mask has regions highlighted in block-by-block basis. The white 

areas in the image mask represent areas with MV amplitudes larger than qm. Figure 

3-22(c) shows the resultant ROI with only the area below the FOE shown. The white 

blocks are areas to be ignored for slow relative speed moving object detection.  

(a) (b) (c) 

Figure 3-22: Illustration of ROI construction. (a) Image mask by road region identification. (b) Image 
mask by filtering MVs with amplitude larger than a threshold. (c) Cropped image that combines the 

image mask (a) and (b). 

The result of ROI construction shown in Figure 3-22(c) still has some areas that are not 

eliminated for relatively slow moving object detection. These areas include those 

highlighted in red circles in Figure 3-23(a). These areas are removed from the ROI by 

noticing the maximum and minimum y-coordinates of highlighted (white) blocks at 

each column of the ROI image similar to the hole-filling method mentioned in Chapter 

3.3.4. If a particular block in a column is inside the maximum and minimum bounds of 

the highlighted blocks, the block is also highlighted to white to indicate it is the block 

to be ignored. After running this refinement process, the modified ROI is shown in 

Figure 3-23(b). 
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(a) (b) 

Figure 3-23: (a) Regions highlighted in red circles are areas that should be ignored. (b) ROI after 
refinement. 

It is observed that the area that remains for detection of slow relative speed vehicles is 

significantly smaller than the area of the original image. For instance, the ROI is only 

122 blocks for the image shown in Figure 3-23. Comparing to the 1,200 blocks for the 

corresponding full-size captured image, the ROI is only 10.2% of the original image. 

This ensures the detection algorithm can be completed in much shorter time by 

examining less area of interest. 

3.4.2 ROI for Fast Relative Speed Objects 

Similar to the ROI construction procedures for slow relative speed moving object 

detection, the ROI for fast relative speed moving object detection is illustrated in 

Figure 3-24. It is composed of the result from road detection shown in Figure 3-24(a), 

and the image mask with regions that the amplitudes of MVs are larger than or equal to 

a threshold qm shown in Figure 3-24(b). Figure 3-24(b) is the inverse binary image of 

Figure 3-22(b). The combined result of Figure 3-24(a) and Figure 3-24(b) is shown in 

Figure 3-24(c). Although Figure 3-24(c) shows only a small portion of the image is 

remained for fast relative speed moving object detection, the area for fast relative speed 

moving object detection depends on whether there are relatively fast speed moving 

objects.  
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(a) 

 

(b) 

 

(c) 

Figure 3-24: Illustration of ROI construction for fast relative speed vehicle detection. (a) Image mask by 
road region identification. (b) Image mask by filtering MVs with amplitude larger than a threshold. 

(c) Cropped image combining image mask (a) and (b). 

3.5 Slow Relative Speed Moving Object Detection 

MVs obtained from the video encoder are the result of both global motion (also known 

as ego-motion) due to the moving camera and the local motion due to moving objects on 

the road. As mentioned in Chapter 2.4.3, the precision of MVs of an H.264/AVC based 

encoder is only up to a quarter pixel, the MVs obtained for moving vehicles with slow 

relative speed to the observing camera will be similar to regions of far-away background 

and weak-texture road regions. This observation has been reported in Chapter 2.4.1. To 

overcome the difficulty of detecting slow relative speed moving objects, the method 

proposed in this research is to split the detection task to relatively slow speed and 

relatively fast speed moving object detection.  

This Chapter proposes the method to detect rear-view vehicles with slow relative speed 

to the ego vehicle. The proposed method is suitable for use in conjunction with MV 

based moving object detection. The major contribution of this work is to use the MVs 

from the H.264/AVC encoder, dividing the region of interest for slow relative speed 

vehicle detection. 
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3.5.1 Slow Relative Speed Vehicle Detection Method 

The functional flow chart of the proposed slow relative speed vehicle detection method 

is shown in Figure 3-25. It consists of steps to find the true horizontal gradient, detect 

horizontal and U-shape contours. A tracking algorithm is also proposed, making use of 

an expanded detection window based on the detection window in the previous frame 

and the evaluation of vertical and horizontal gradients.  

The region of interested is constructed according to the method mentioned in Chapter 

3.4.1. Only the area outside the detected road region with amplitudes of MVs smaller 

than a threshold qm is retained. 

 
Figure 3-25: Functional block diagram of the slow relative speed vehicle detection algorithm 

3.5.2 Binary Image Creation 

During the road region identification stage, the maximum maxx  and minimum minx  

grey-scale levels of the road region have been evaluated. Each pixel inside the ROI of 

the cropped input grey-scale image is compared with minx  to create a binary image. If 
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a pixel inside the ROI of the grey-scale image is brighter than minx , the corresponding 

pixel in the binary image is set to ‘0’; otherwise it is set to ‘1’. The resultant binary 

image is shown in Figure 3-26(a) where the white zone represents the area that is 

darker than minx . Figure 3-26(b) shows the binary image overlaid on the ROI image. 

The horizontal contours of the rear-view of vehicles can be seen clearly. 

(a) (b) 

Figure 3-26: (a) Binary image with those white areas representing regions that are darker than the 
minimum graylevel of the road region. (b) Binary image in (a) overlaid to the ROI of the captured image. 

Those horizontal contours along the rear part of vehicles at the front are identified. 

3.5.3 Vehicle Detection 

Besides the identified darkest area of the image as shown in Figure 3-26, a Sobel filter 

is also applied to the cropped grey-scale input image to find the horizontal gradient and 

vertical gradient inside the ROI. The Sobel kernels for finding horizontal and vertical 

gradients are shown in Figure 3-27(a) and Figure 3-27(b) respectively. 
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(b) 
Figure 3-27: (a) Sobel kernel for finding horizontal gradients. (b) Sobel kernel for finding vertical 

gradients. 

The result of finding horizontal gradient and vertical gradients are shown in Figure 

3-28(a) and Figure 3-28(b) respectively. Figure 3-28 (b) shows that there are many 

horizontal contours for vehicles on the road. Since the vehicle body is similar to a box 

shape when looking from the rear, there are also vertical contours found by applying 

the horizontal gradient kernel (Figure 3-28(a)). Some found “vertical” contours in 

Figure 3-28(a), such as the lane markings, are not truly vertical contours. They are 
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further eliminated by comparing the pixel in the vertical gradient image shown in 

Figure 3-28(b) with the corresponding pixel in the horizontal gradient image shown in 

Figure 3-28(a) using Equation (3.49), where Pvv, Ph and Pv are the resultant pixel value 

at screen coordinates (x,y), pixel value in the horizontal gradient image and pixel value 

in the vertical gradient image respectively. Dhv is a predefined threshold for 

comparison. The resultant image is shown in Figure 3-29. 

 

(a) (b) 

Figure 3-28: Grayscale image with Sobel filtering. (a) Resultant image after applying horizontal gradient 
Sobel kernel. (b) Resultant image after applying vertical gradient Sobel kernel. 

Figure 3-30 is the combined result of the detected vertical contours in Figure 3-29 and 

the detected darkest region in the image shown in Figure 3-26(a). The white area in 

Figure 3-26(a) is replaced by red in Figure 3-30(a) for higher clarity. It shows clearly 

the position of a vehicle at the front with the U-shape highlighted by the green bracket 

in Figure 3-30(b).  
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Figure 3-29: Resultant image of true vertical contour image, after using Equation (3.49). 
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The proposed algorithm is to detect the U-shape which is the result of horizontal and 

vertical contours of the vehicle. The algorithm starts by searching for the position of 

horizontal lines from the bottom of the binary image shown in Figure 3-26(a). If a 

horizontal line L with two end points (x1,y1) and (x2,y2) is detected, the width of the 

horizontal line is evaluated by converting the two endpoints of the line in the screen 

coordinates to the corresponding World coordinates, (Xw1, Yw1) and (Xw2,Yw2) 

respectively, using Equation (3.10). If the resulting width (W=Xw2-Xw1) is longer than 

WU and shorter than WL, where WU  and WL are predefined upper and lower limits of 

the width threshold respectively, the line will be discarded. 

 
(a) (b) 

Figure 3-30: (a) Combined result of the true detected vertical contours (shown in white colour) and the 
detected darkest region in the image (shown in red colour). (b) U-shape bracket drawn in green colour, 

indicating the found U-shape due to the vehicle. 

If the line L falls within WL and WU, it is more likely that this line is produced by a 

vehicle than by the environment. The line is further evaluated by examining the ratio 

between the width and the height. The height is obtained by the difference between the 

line location and the vanishing line location (y0) in the screen coordinates. If the ratio 

RWH is within a predefined range RWHL and RWHU, the rectangular area as shown in 

Figure 3-31 that is around the line location, will be further examined to confirm if there 

is a vehicle.  
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Figure 3-31: Illustration of the area shown in green rectangle identified for examination of whether a 

vehicle exists. 

Further evaluation is performed to examine if there are two distinguished vertical 

contours near the left and right sides of the identified rectangular area, and if the 

average vertical gradient exceeds a predefined threshold.  

The sum of gray levels S(x) is calculated by Equation (3.50) at each horizontal position 

from x+e to x-e, where e is a predefined constant and I(x,y) is the gray level at screen 

coordinate (x,y). Both the left side and the right side of the rectangle are evaluated. 

A plot of S(x) against the horizontal position is shown in Figure 3-32(b). The maximum 

S(x) for the left and right sides is found separately by comparing all S(x) in their 

corresponding side.  If the maximum S(x) on both sides of the rectangle exceeds a 

predefined threshold Sh, the existence of the vertical contours is confirmed.  

The left and right sides of the rectangle will be replaced by the identified positions of 

the maximum S(x). The existence of a vehicle in the red rectangular box indicated in 

Figure 3-32(a) is further confirmed by evaluating the average vertical gradient V(x) 

inside the new rectangular box using Equation (3.51), where  x1’  and x2’  are the new 

horizontal position of the rectangle. If the value of V(x) exceeds a predefined threshold 

Vh, a vehicle at the rectangular position is confirmed as detected. 
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(a) 

 
(b) 

Figure 3-32: Illustration of the vertical projection of the horizontal gradient image around the rectangular 
position where a vehicle potentially exists. (a) Horizontal gradient image and the rectangular area under 

evaluation. (b) Corresponding vertical projection near the red rectangular area. 

3.5.4 Vehicle Tracking 

Since the detection of slow relative speed vehicles requires the examination of 

qualified line features inside the ROI, the processing speed will vary according to the 

number of potential line features detected. There is the possibility that the detection 

algorithm cannot be completed within the duration between successive frames. Since 

the vehicles to be detected are moving relatively slowly, their size and position would 

not deviate by a large amount across several frames. Therefore, even though there are 

chances of skipped frames, the accuracy of the detection algorithm will not be affected.  

Nevertheless, the computational cost can be reduced by the use of a tracking algorithm. 

Since the initial position of a detected vehicle is known from the detection algorithm, 

the tracking algorithm can check for some invariant features inside a search window of 

reasonable size with reference to the detected vehicle position. The conceptual 

flow-chart of the tracking algorithm is shown in Figure 3-33. 
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Given the slow relative speed vehicle detection algorithm has identified the vehicle on 

the screen bounded by a rectangle at (xleft , ytop) to (xright , ybottom), a new image is 

captured by the system and is converted to a grayscale image. The Sobel kernels for 

finding horizontal and vertical gradients shown in Figure 3-27(a) and Figure 3-27(b) 

respectively are used to generate the horizontal and vertical gradient images. Since 

only the area near the bounded rectangle is used by the tracking algorithm, the Sobel 

kernels are applied to the area inside (xleft - 2ex , ytop - 2ey) to (xright + 2ex , ybottom + 2ey) 

only, where ex and ey are the number of pixels to expand in the x- and y-coordinate of 

the screen respectively.  

 
Figure 3-33: Conceptual flow-chart of the tracking algorithm for slow relatively speed moving vehicles 

In the next phase, the horizontal projection inside the rectangle (xleft , ybottom - ey) to 

(xright , ybottom + ey) is evaluated by making use of the vertical gradient image. S(y) in 
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Equation (3.52) evaluates the value of horizontal projection at each y-coordinate inside 

the selected boundary.  
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The gradient at each y-coordinate inside the boundary is found by Equation (3.53). The 

maximum gradient SGMAX(y) is found by comparing SG(y) inside the boundary.  
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Similarly, the horizontal contour projection for the left-side is evaluated inside the 

rectangle ,
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horizontal gradient image. SG(x) in Equation (3.54) evaluates the value of the vertical 

contour projection at each x-coordinate inside the selected boundary. It essentially 

accumulates the intensity vertically along the y-axis with a reduced value according to  

the difference between two pixels. This can help reduce the sensitivity to the 

discontinuity in a vertical line. The maximum SGMAX(x) is found by simply comparing 

the values of SG(x).  The horizontal contour projection for the right-side is similar to 

that for the left-side. The difference is that the boundary changes to 
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The values of SGMAX(．) are compared with predefined thresholds. If they are within the 

allowable range, the tracking of the vehicle is successful. The bounding rectangle is 

then updated for being used in the next frame for continued vehicle tracking. Therefore, 
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assuming the detected vehicle does not deviate from the last position by a large amount, 

the tracking algorithm only needs to evaluate three small regions to identify the left, 

right and bottom sides of the vehicle. If the tracking fails, the detection algorithm 

mentioned in Chapter 3.5.3 will be used. 

3.5.5 Distance and Speed Estimation 

After confirming the position of the vehicle, its true moving speed is estimated by the 

MVs at the bottom line of the rectangle. In a Driver Assistance System, the potential 

risks of identified moving objects to the driver are related to the time-to-collision 

between the ego vehicle and the moving objects. Unlike stereo cameras that can 

estimate the object distance by disparity estimation (Brown and Burschka et al., 2003), 

the distance estimation for monocular vision system used in this research relies on the 

geometric information available from the captured image.  

The concept of distance estimation reported in Chapter 3.1.2 for camera calibration can 

also be applied to real-time distance estimation for use in the proposed system. 

The distance estimation has to make use of points on the ground plane for correct 

trigonometric calculation. By substituting the camera mounting height h to Equation 

(3.12), the distance Zw and Xw between the camera and the detected object can be 

estimated as expressed in Equation (3.55) and (3.56). The y-coordinate of the point on 

the screen must be larger than the principal point cy, otherwise the calculated result is 

invalid. 
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With reference to Figure 3-32(a), the bottom corners of the bounding rectangle of the 

identified vehicle are (x1, y1) and (x2, y2). y1 equals to y2 as they are lying on the same 

horizontal line. The centre position on the bottom line of the bounding rectangle, which 

is at 1 2
1,

2

x x
y

+ 
 
 

, is used as the reference point for estimating the distance of the 

vehicle. The distance can be calculated by Equation (3.55) and (3.56). However, they 

are only valid when the camera’s rotational angles to the ground plane are zero, which 

is not true when the ego vehicle has motion induced non-zero rotational angle. 

A more accurate distance estimation can make use of Equation (3.38), and take only 

pitch angle xθ  into account. This is because the roll angle is the rotation about the 

Z-axis, its effect on the distance along the Z-axis is minimal. Yaw angle is zero due to 

the installation of the camera. Further assuming that the pitch angle is small, sin xθ  

can be approximated by xθ , cos xθ can be approximated as 1. Taking all these 

assumptions and substituting the installation height h of the camera to Equation (3.38), 

it is simplified to Equation (3.57). After expansion, the distance on the World 

coordinates (Xw, Zw) can be calculated by Equation (3.58) and (3.59). Therefore, by 

substituting xs and ys by 1 2

2

x x+
and y1 respectively, the position of the vehicle in the 

World coordinates can be estimated. 
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For the speed estimation of a slow relative speed moving vehicle, it can be erroneous if 

using only one MV at the point 1 2
1,

2

x x
y

+ 
 
 

for ego motion compensation. Since the 

amplitude of MVs of relative slow moving vehicle is small, a small error in the MV 

will result in an inaccurate estimation of the true ground motion of the detected vehicle. 

Therefore, the moving speed of the detected vehicle is calculated by binning multiple 

MVs along the bottom line of the rectangle bounding the detected vehicle to improve 

accuracy.  

Figure 3-34 shows a detected vehicle bracketed in a green rectangle. The image also 

shows the boundaries of image block of size 8x8. The MVs of blocks, highlighted in 

red dots in Figure 3-34, along the bottom line of the green rectangle, are read to 

calculate the position on the World coordinates in the current frame and the previous 

frame. 

 
Figure 3-34: Speed measurement based on binning of the MVs along the bottom line of the rectangle 

bracketing the detecting vehicle. Red dots in the image indicate the MV samples for true ground speed 
evaluation. 

Equation (3.58) and (3.59) are used to calculate the World coordinates of the block in 

the current frame and in the previous frame.  If the screen coordinates of the block in 

the current frame are (xs,ys), its coordinates in the previous frame are (xs+mvx, ys+mvy), 

where (mvx, mvy) are the MV from the H.264/AVC encoder.  

Since the video frame rate and the ego vehicle speed are known, the speed ui of each 

block i along the bottom green line can be calculated by Equation (3.60), where v is the 
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speed of the ego vehicle, ∆t is the time interval between two successive frames, ZW1 

and ZW2 are the distance along Z-axis of block i found by Equation (3.58) for the 

previous frame and current frame respectively. 

2 1W WZ t Z
i t

vu + ∆ −
=

∆
 (3.60) 

The deduced speed of each block along the bottom green line of the rectangle will vary 

because of the error in MVs. To determine the speed of the vehicle, the first step is to 

make sure all ui obtained are of the same direction. Only the majority will be taken if 

some ui are positive and some are negative. The average values of those ui are 

evaluated to represent the moving speed of the detected vehicle.  

3.6 Fast Relative Speed Moving Object Detection 

A flow-chart showing the functions of the proposed algorithm for fast relative speed 

moving object detection is shown in Figure 3-35. The detection of fast relative speed 

moving object is based on a two-step approach, namely the Hypothesis Generation 

(HG) and the Hypothesis Verification (HV) steps. The MVs from the H.264/AVC 

encoder is used in the HG mode for planar parallax residual evaluation. When certain 

criteria are met, a template for comparison is formed and the algorithm will switch to 

the HV mode.  

In HG stage, a rectangular region inside the image is identified as being potentially 

having a moving object. The rectangular region is used as a template for matching in 

the HV stage. During the HV stage, the template is searched for a best match in the 

successive frames. If a match is found and the displacement of the template is 

consistent to the previously estimated displacement, a moving object is confirmed, i.e. 

the yellow box in Figure 3-35. The template is updated with the newly found 

rectangular area and tracking is performed based on template matching.  



 

93 

 

This two-step approach is proposed to address the problem of erroneous MVs 

generated by the H.264/AVC encoder. If the MVs are erroneous in the current frame 

that are not the result of the actual movement of a moving object, the consistency 

check on the displacement of the MVs between successive frames during the HV stage 

will fail. Therefore, the HV stage can reject this kind of erroneous MVs to reduce the 

false detection rate. 

In order to evaluate the planar parallax residual vector (PPRV), ego-motion 

compensation is required to get the true ground movement of the object involved. The 

concept on planar parallax residual and the steps involved in HG are described in more 

details in the following Sections. 

 
Figure 3-35: Conceptual algorithm flow chart for fast relative speed moving object detection 
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3.6.1 Planar Parallax Residual 

As mentioned in Chapter 2.3.1, the amount of planar parallax residual can be used to 

detect independently moving objects.  

Recalling that Equation (3.30) is used to map the pixel position on the ground plane at 

time Tt-1 from its corresponding pixel position at time Tt, the relationship for points 

lying outside the ground plane is yet to be described. The relationship of a point on the 

World coordinates and its corresponding point on the screen can be represented by the 

planar parallax diagram shown in Figure 2-2 (Baehring and Simon et al., 2005). The 

green plane is the camera plane at the current frame at time Tt, the red plane is the 

camera plane at the previous frame at time Tt-1, Pw is a point above the ground plane, p1 

and  p2 are the projected point of Pw on the image planes at time Tt-1 and Tt 

respectively, 1
GP  and 2

GP  are the points on the ground plane due to Pw when viewing 

by camera at Ct-1 and Ct respectively, 2Gp  is the point virtually projected to the image 

plane at Tt-1 due to 2
GP  on the ground plane. Substituting 2Gp  and p2 to Equation 

(3.30), Equation (3.61) is obtained. 

 1
2 2Gp M p−=  (3.61) 

Therefore, using the planar homography matrix M-1 is able to get the point 

correspondence of the projected point on the ground plane only, rather than the true 

point correspondence at p1 in the previous frame. Since 2Gp  only maps the projected 

ground point 2
GP of Pw to the screen at time Tt-1, any point Pw above the ground plane 

will result in a difference 2 1Gp pµ = −  known as planar parallax residual (Baehring 

and Simon et al., 2005). Referring to the derivation from Baehring et al. (2005) and 

Trucco et al. (1998), the planar parallax residual µ  can be expressed as Equation 
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(3.62), where td is the time duration between successive frames, Vx and Vz are the speed 

of the ego vehicle in X- and Z-axis direction respectively, ( , )x yc c  is the principal 

point of the camera, 0 0( , )x y is the FOE defined in Equation (3.63), Zc and c
GZ are the 

Z-coordinate of a point and its corresponding projection point on the ground plane in 

the camera coordinates, ps =(xs, ys) is the corresponding point in the screen coordinates 

of the point P=[Xc  Yc  Zc]T in the camera coordinates.  
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 (3.62) 
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(3.63) 

According to Equation (3.62), MVs lying on the ground plane exhibit zero planar 

parallax residual because c c
GZ Z= . Also, for stationary objects above the ground plane, 

the corresponding planar parallax residual vectors (PPRVs) point towards the FOE at 

0 0( , )x y . For a camera mounted at height h above the ground plane with zero pitch, row 

and yaw angle, Equation (3.62) can further be simplified to Equation (3.64), where 

[X  Y  Zw]T are the camera coordinates of a point P. Zw=Zc in this case because there is 

no rotational angle and translation difference between the two coordinate systems. The 

proposed algorithm makes use of Equation (3.64) to derive the threshold of planar 

parallax residual to determine if there is independently moving object.  
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For potential collision with the ego vehicle, a static point at [X  Y  Zw]T in the camera 

coordinates will collide with the vehicle at time ttcT  evaluated by Equation (3.65) 

 /ttc w zT Z V=  (3.65) 

Substituting Equation (3.65) to Equation (3.64), a value of planar parallax residual can 

be expressed as Equation (3.66). 
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 (3.66) 

The amplitude of minµ from Equation (3.66) can be used as the minimum threshold for 

moving object detection. That is, when the resultant amplitude of the planar parallax 

residual vector at a particular screen point (xs, ys) is smaller than the amplitude of 

minµ from Equation (3.66), the corresponding planar parallax residual vector can be 

ignored. 

 

3.6.2 Hypothesis Generation 

Hypothesis generation is a process to identify an area in the image that potentially has a 

moving object. The ROI for relative fast moving object detection is identified by the 

method mentioned in Chapter 3.4.2, where the ROI is reduced by eliminating the 

detected road region and the area with small MVs. Ego motion compensated vectors 

that possess strong planar parallax residual are used to indicate the presence of 

relatively fast moving objects. 

3.6.2.1 Evaluation for Vectors with Strong Planar Parallax 

Each MV exported from the H.264/AVC encoder represents an image block of size 

8x8. The MVs inside the ROI found by the method mentioned in Chapter 3.4.2 are 

compensated by the ego motion of the observing vehicle.  
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3.6.2.2 Ego Motion Compensation and Planar Parallax Residual Vector 

Given the screen coordinates of a point at (x2, y2) in the current frame, its point 

correspondence in the previous frame is (x1G, y1G), estimated by Equation (3.30) and is 

expressed as Equation (3.67). 

 [ ] [ ]1
1 1 2 21 1

T T

G Gx y M x y−=  (3.67) 

One point to note is that Equation (3.67) assumes points are lying on the ground plane. 

Therefore (x1G, y1G) is the corresponding point of the ground plane projection of (x2,y2) 

in the previous frame. 

If the true MV of point (x2, y2) is (mvx, mvy), the point correspondence in the previous 

frame is (x1, y1) and their relationship is expressed in Equation (3.68) and (3.69). 

 1 2 xx x mv= +  (3.68) 

 1 2 yy y mv= +
 

(3.69) 

According to the definition of planar parallax residual mentioned in Chapter 3.6.1, the 

planar parallax residual vector is ( , )x yµ µ µ= , which is expressed in Equation (3.70) 

and (3.71). 

 1 1x Gx xµ = −  (3.70) 

 1 1y Gy yµ = −
 

(3.71) 

   

3.6.2.3 Filtering of Planar Parallax Residual Vector 

The proposed filtering method makes use of three constraints to retain only useful 

planar parallax residual vectors (PPRVs) inside the ROI. These three constraints are 

Amplitude, Position and Direction constraints. 
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Constraint 1: Amplitude 

After PPRVs inside the ROI are evaluated, some of these PPRVs are erroneous due to 

various reasons, such as motion estimation error due to the motion estimation 

algorithm of the H.264/AVC encoder, the use of SKIP mode for motion estimation, 

occlusion and change of light intensity. These erroneous PPRVs are required to be 

excluded for more reliable moving object detection. 

Equation (3.66) represents the minimum amplitude of planar parallax residual at each 

point in the screen with time-to-collision taking into account. min ( , )x yµ at each point 

(x, y) can be calculated by substituting Y=0 and Tttc=2 to Equation (3.66). Y=0 means 

the expected height of the moving object is h, the same as the mounting height of the 

camera, Tttc=2 means the time to collision for detection is two seconds. Therefore, 

min ( , )x yµ  can be expressed as Equation (3.72). 
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 (3.72) 

One point to note is that a longer Tttc will result in a smaller min ( , )x yµ , and an object of 

height smaller than the camera mounting height will also result in a smaller Tttc. Since 

the MVs from the H.264/AVC encoder are block based with limited precision, 

min ( , )x yµ  cannot be too small, or otherwise there will be too many false detections.  

Similarly, the value of min ( , )x yµ  near the FOE (x0,y0) is also very small as the time 

duration td between successive frames is only 66ms. Therefore, the detection criteria of 

PPRVs with strong planar parallax for moving object detection are the amplitude of the 

PPRV at (x,y) is larger than min ( , )x yµ  and a threshold thresµ . 
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Constraint 2: Position 

Since the PPRVs represented by Equation (3.70) and (3.71) are the direction of motion 

of the screen coordinates (x2 , y2) at the current frame after ego motion compensation, it 

can be used to estimate the position of its corresponding screen coordinates after a time 

period T. If an area in the image is defined as an alert zone and a PPRV enters into the 

zone after time T, the corresponding object can be regarded as entering the dangerous 

area after time T which may collide with the ego vehicle. 

Figure 3-36 shows a screen shot of a vehicle moving from the left to the right. A point 

at (x2,y2) has a resulting planar parallax residual vector of (µx, µy). Ty is the time for the 

y-component of the PPRV µy to travel from position y2 to the top y-axis position Yu of 

the alert zone, and is calculated by Equation (3.73). The corresponding x-coordinate at 

xa of (x2,y2) after time Ty is calculated by Equation (3.74). td is the time duration 

between successive frames. µy must be positive for it to become nearer to the ego 

vehicle. 

 
2( )u d
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=  (3.73) 
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(3.74) 

 
Figure 3-36: Illustration of MV position after time Ty 
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Therefore, if the position of xa is also inside the alert zone, the PPRV is accepted for 

further processing. Otherwise, the PPRV is discarded. 

Constraint 3: Direction 

After examining the amplitudes of PPRVs and their positions after time Ty, another 

detection criterion is the direction of the PPRVs. As mentioned in Chapter 3.6.1, 

objects with PPRVs pointing to the FOE are moving in parallel to the ego vehicle or 

belonging to static objects. They can be vehicles with slow relative speed to the ego 

vehicle travelling in parallel, or be stationary objects on the road. Nevertheless, PPRVs 

pointing to the FOE should be excluded. This is because the ROI has eliminated 

objects with small amplitudes due to relatively slow moving speed vehicles, and these 

PPRVs are highly likely to belong to static objects.  

A PPRV at point (x,y) can be excluded if the slope between the PPRV and the slope of 

the point to the FOE are smaller than a threshold mthres. 

3.6.2.4 Clustering of Planar Parallax Residual Vector 

After having determined valid PPRVs, they are further clustered to represent different 

objects. Since PPRVs on the same objects should have similar amplitude and direction, 

the clustering of PPRVs can be done by comparing the amplitude, direction and 

distance of PPRVs to some thresholds. 

For a PPRV µj, where j is an integer smaller than the total number of PPRVs available 

for clustering, is compared to the mean amplitude and direction of all clusters, starting 

from cluster C1. µj is grouped to cluster Ci , where i is an integer with value smaller 

than the total number of clusters, if it meets all the three constraints listed in Table 3-1, 

where ( )im C and ( )ia C  are the mean slope and mean amplitude of the cluster Ci, 

m(µj) and a(µj) are the slope and amplitude of PPRV µj respectively. 
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Otherwise, a new cluster is created to store µj. The mean amplitude ( )ia C  and slope 

( )im C  of all PPRVs in a cluster Ci are updated if the size of the cluster is changed. 

Table 3-1: The three constraints for clustering decision for PPRVs sj. 
“D” 

Direction 
constraint 

Slope comparison. m(µj) and ( )im C  differ by less than the threshold 

mdiff. 

“A” 
Amplitude 
constraint 

Amplitude comparison. a(µj) and ( )ia C  differ by less than the 

threshold adiff. 

“S” 
Spatial 

constraint 

Distance comparison. ( , )ci j kλ is smaller than a threshold λthres.  

The distance ( , )ci j kλ  between any point ( , )j x yµ  inside the 

cluster Ci to the point at ( , )k x yµ , denoted by ( , )ci j kλ  where j is 

an integer with value smaller than the size of cluster Ci, k is an 
integer with value smaller than the number of PPRVs, i.e. 

( ) ( )2 2
( , ) ( ) ( ) ( ) ( )ci j k j kj k x x y yλ µ µ µ µ= − + − .  

 

3.6.2.5 Cluster Refinement 

After all PPRVs are clustered, the maximum size of a bounding rectangle that can 

include all the points in the cluster is evaluated. The coordinates of the bounding 

rectangle are also stored in this process. 

The refinement is started from the bottom side of the bounding rectangle. The bottom 

row of blocks of the rectangle, each of size 8x8, is examined for “homogeneity”. 

Homogeneity is a measure to determine if the texture in a block is rich. A simple 

method is used in this algorithm by summing the corresponding area of the block 

inside the Canny edge image obtained by applying Canny edge filter to the grey-scale 

image converted from the captured colour image. If the sum is smaller than a threshold, 

the block is regarded as having weak texture. A block is marked as ‘invalid’ either if it 

is having weak texture or is a block of the road (recalling that road region is found 

using the method mentioned in Chapter 3.3). If the number of ‘invalid’ blocks exceeds 

two-third of the total number of blocks along the bottom row of the rectangle, the 
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whole row at the bottom of the rectangle is excluded from the cluster. Then, the next 

bottom row is compared for homogeneity. A maximum of eight rows can be excluded 

in this process.  

The top-side refinement is simply performed by extending the top side of the rectangle 

to eight pixels below the FOE. This is because moving objects in front of the ego 

vehicle will appear to have vertical span beyond the y-axis of the FOE. 

Similar to the refinement done towards the bottom side of the rectangle, the blocks at 

the left and right sides are also compared for homogeneity. If the total number of 

invalid blocks on one side is larger than two-third of the total number of blocks on the 

side of the rectangle, the column of blocks on one side is excluded from the cluster. 

Finally, the size of the bounding rectangle is updated according to the refinement 

result. 

3.6.2.6 Cluster Selection 

After all PPRVs are clustered and refined, the clusters are checked for overlapping. 

Overlapping clusters are removed from the cluster list leaving only the cluster of the 

largest area among the overlapped clusters. Among all remaining clusters after 

overlapping cluster removal, only the cluster with the largest area will be kept for HV 

in the proposed algorithm. 

3.6.2.7 Template Registration 

For the selected cluster with the largest area, the image inside the cluster is cropped for 

being used in the Hypothesis Verification stage. The corresponding position 

( ),s
Ci Ci Cip x y=  in the image, mean amplitude ( )ia C  and direction ( )im C of the MVs 

of the selected cluster are also stored for comparison purposes in the Hypothesis 

Verification stage. 
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3.6.3 Hypothesis Verification 

For the selected cluster in the HG mode, the mean MV amplitude ( )ia C  and direction 

( )im C  are used as the target displacement of the template to be matched in the next 

captured frame. The target displacement is expressed in Equation (3.75). 

 ( ) cos( ( ))

( )sin( ( ))
i i

i i
t

a C m C

a C m C
s

 
=  
 

 (3.75) 

A search window of size 16x16 is defined as the search range around the position 

indicated by the target displacement st and direction of the selected cluster, as 

expressed in Equation (3.76).  
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s s
j k
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p p s j k

k

 
= + ∀ ∈ Ζ − + 

 
 (3.76) 

The search is performed spirally inside the search window. Sum of Absolute 

Difference (SAD) between the template stored from the last frame and a candidate 

template in the search window is used to indicate a potential match. The template 

matching is successful if the SAD is within a predefined threshold and a local 

minimum is found inside the search window. The resultant displacement ( , )rs u v=  of 

the match template from the initial position of the cluster at s
Cip is compared with the 

target displacement st. 

When a match is found and the percentage difference between the resultant 

displacement and the target displacement is smaller than a threshold, the hypothesis 

verification is successful. A moving object is therefore identified. This process reduces 

the number of false detection due to the inaccuracy of H.264/AVC MVs. The resultant 

displacement sr of the template is stored as the target displacement in the successive 

frame for tracking purposes. The bottom row of the template is also expanded for one 
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more row, in order to account for potential change in dimension of the selected object 

on the screen due to the perspective change of the moving object. 

3.6.4 Tracking 

After successful Hypothesis Verification, the size of the template is refined by the 

method mentioned in Chapter 3.6.2.5. The image inside the template is cropped for 

being compared with the successive captured images. Being the same as the 

Hypothesis Verification stage, template matching with 16x16 search window around 

the target displacement sr continues to be used. The tracking is successful if the 

percentage difference between the resultant displacement and the target displacement is 

within a defined threshold. The tracking mode is only used for one successive frame 

after the Hypothesis Verification stage. This is to make sure the system can be 

responded more swiftly to the change of scene so that new moving objects can be 

detected and tracked.  

The template matching method is proposed as one of the simplest methods for 

identifying similar pattern in the successive frames for hypothesis verification and 

tracking. The advantage of using a simple template matching method is its low 

computational cost that fulfils the real-time processing requirement.  

However, the template matching method cannot account for significant perspective 

change of the target object effectively. That is, the matching may fail if the target has a 

significant perspective change in successive frames. Since the time duration between 

successive frames is only 66ms, the perspective change of the target object is assumed 

to be small, therefore template matching is regarded as an effective method for 

hypothesis verification given the assumption is valid. 
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3.7 Chapter Summary 

This Chapter has described the proposed algorithm framework in details. It also 

mentioned the proposed technique on camera calibration which is one of the important 

preparation steps for successful application of the proposed algorithm. The algorithm is 

proposed based on the identified problems on using H.264/AVC MVs for moving 

object detection, and the requirement on the real-time performance for being used as an 

ADAS. The proposed algorithm includes the technique on ego motion estimation, road 

region detection, segmentation of regions of interest, slow relative speed moving object 

detection, and fast relative speed moving object detection.  
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4 Test and Evaluation 

A series of tests were performed to evaluate the effectiveness of the proposed algorithm 

framework for moving object detection.  

4.1 Evaluation of Camera Calibration Results 

The goal of the calibration process was to obtain an accurate estimation of the point 

correspondence in the World coordinates from the screen coordinates. The accuracy of 

distance estimation is the parameter of the performance of the calibration method. 

4.1.1  Focal Lengths and Principal Point Estimation  

Figure 3-5 shows the setup for intrinsic parameter calibration. The setup consisted of a 

computer and software to capture the image from the camera, a flat checker board 

pattern fixing vertically to an up-right board, and a laser distance checker. The 

computer software was able to overlay horizontal and vertical lines on the screen for 

easier alignment of the checker pattern to the desired positions. The checker pattern 

shown in Figure 3-7 was used.  

Figure 3-7 also shows the physical dimension and screen coordinates of the checker 

board pattern printed on the paper. The checker pattern was created with the dimension 

of Dab and Dac equal to 0.447m and 0.894m respectively. The distance of the checker 

board from the camera was measured as 4.582m. The left- and right-side distances of 

the checker board to the camera were both 4.604m. Since the difference in the left- and 

right-side distance was almost zero, the checker board was regarded as being placed 

perpendicularly to the camera. 
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Sub-pixel search for the corners at control points A, B and C shown in Figure 4-1 was 

performed by the calibration program. The values of these control points are shown in 

Table 4-1.  

Table 4-1: The control points values for calibration. 

Control point Screen Coordinates 
A = (ua,va) (266.973, 205.074) 

B = (ub,vb) (372.417, 204.913) 

C = (uc, vc) (266.261, 417.258) 

Hd= ub -ua 105.444 

Vd= vc –va 212.184 

Recalling Equation (3.13), the focal lengths fx and fy were calculated as 1080.853 and 

1087.504 respectively.  

 
Figure 4-1: Sub-pixel coordinates of control point A, B and C on the upright board 

For simplicity reasons during the experiment, the principal point was set to the centre 

of the image. Sirisantisamrid et al. (2011) has shown that the influence of principal 

point on the calibration result is minimal when the lens distortion of the camera is 

small. Since the resolution of the selected camera is 640x480, the centre of the camera 

was at (319.5, 239.5).  
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4.1.2  Intrinsic Parameter 

With the focal lengths and principal point available, the camera intrinsic parameter 

could be expressed as the 3x3 matrix K shown in Equation (4.1). Since the difference 

in focal length fx and fy is very small, the average value of fx and fy , which is 1084.179, 

could be used as the overall focal length f for the camera. 

 1080.8530 0 319.5

0 0 1087.504 239.5

0 0 1 0 0 1

x x

y y

f c

K f c

   
   = =   
   
   

 (4.1) 

4.1.3  Camera Installation 

Figure 4-2 shows the captured screen after the camera was installed correctly. The 

correct installation is indicated by the aligned horizontal and vertical lines to the edges 

of checkers on the screen, and the near-to-zero roll and pitch angles read by the 

computer software. 

 
Figure 4-2: Captured image with aligned horizontal and vertical line. The roll and pitch angles are almost 

zero. 
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4.1.4  Extrinsic Parameter Estimation 

The extrinsic parameters were estimated using the method mentioned in Chapter 3.1.2. 

Since the camera was installed carefully so that the rotational angles are all nearly zero, 

the extrinsic parameters in this case include only the installation height h of the camera. 

The screen coordinates of checker corner points labelled in Figure 3-12 are shown in 

Table 4-2. The physical dimension of each square in the banner was d, which was 

equal to 0.5m in this setup.  

By using Equation (3.23), the camera installation height h was estimated as 1.08m. 

Table 4-2: Screen coordinates of checker corner points 

Point 
label 

Screen 
Coordinates 

Sub-pixel value 

Ac ( ),a ax y
 

(319.229, 444.131) 

Bc ( ),b bx y
 

(319.200, 427.001) 

P1 ( )1 1,x y
 

(416.442, 443.763) 

P2 ( )2 2,x y
 

(222.503, 444.500) 

P3 ( )3 3,x y
 

(408.627, 426.187) 

P4 ( )4 4,x y
 

(230.384, 427.522) 

By using Equation (3.20), the distance Z1 between the camera and the checker point P1 

and P2 can also be calculated. The estimated value of Z1 was 5.57m in this setup. 

Since the installation height h of the camera has been calculated and the installation 

method has set the rotation angles to nearly zero (smaller than 0.1 degree in the 

experiment), the extrinsic parameters of the camera can be represented by the 3x4 

matrix shown in Equation (4.2). 

 

[ ]
1 0 0 0

0 1 0 1.08

0 0 1 0
wR t

 
 =  
  
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4.1.5  Distance Accuracy Evaluation 

With the intrinsic and extrinsic parameters found, a point on the screen coordinates 

could be related to its corresponding point in the World coordinates according to 

Equation (3.11). Equation (3.11) is expanded and shown in Equation (4.3). Since points 

are lying on the ground, Yw can be set to zero. Then Equation (4.3) is modified to 

Equation (4.4), where M is the planar homography matrix.  
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(4.4) 

So, the corresponding point on the World coordinates is evaluated by Equation (4.5) 

which is obtained by multiplying M -1 on both sides of Equation (4.4). 
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(4.5) 

M -1 in this case is equal to that shown in Equation (4.6). It has been normalised for 

easier matrix multiplication at later times. 
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The matrix M -1 is then used to estimate the World coordinates of points on the ground 

surface. The error comparing to the World coordinates obtained from physical 

measurement is shown in Table 4-3. For points that were farer away from the camera, 

the estimation error was larger. This is because the unit of distance representing by 

each pixel for far away objects is larger, leading to larger estimation error. 

Nevertheless, the accuracy for distance of control points can be kept below 3.5%, 

which is within the expected accuracy of the system. 

Table 4-3: The deviation of calculated World coordinates from the measured World coordinates 

Screen Coordinates 

Measured 
World 

Coordinates 
(X,Z) 

Calculated 
World 

Coordinates 
(X,Z)

 

Estimation 
Error 

(Z- direction) 

( ),a ax y = (319.229, 444.131)
 

(0, 5.57) (-0.0014, 5.74) 3.05% 

( ),b bx y = (319.200, 427.001)
 

(0, 6.07) (-0.0017, 6.26) 3.13% 

( )1 1,x y =(416.442, 443.763)
 

(0.5, 5.57) (0.516, 5.75) 3.23% 

( )2 2,x y =(222.503, 444.500)
 

(-0.5, 5.57) (-0.514, 5.73) 2.87% 

( )3 3,x y =(408.627, 426.187)
 

(0.5, 6.07) (0.518, 6.29) 3.62% 

( )4 4,x y =(230.384, 427.522)
 

(-0.5, 6.07) (-0.515, 6.25) 2.97% 

 
 

4.1.6  Comparison to Zhang’s Method 

Zhang’s calibration method (Zhang, 2000) is a well known method for generic 

calibration of cameras. The method proposed in this study is a simplified version of 

Zhang’s method. Zhang’s method implemented in OpenCV was evaluated for 

comparison to the result obtained by using the new proposed method. Figure 4-3 shows 

nine captured images for input to Zhang’s algorithm for calibration.  

Since the camera’s principal point is assumed to be at the centre of the screen, the 

calibration program from OpenCV was run with fixed principal point. The result of the 
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estimated intrinsic matrix was 

1094.04272 0 319.5

0 1093.78186 239.5

0 0 1

 
 
 
  

. The values of fx 

and fy shown in Chapter 4.1.2 found by the proposed method was very close to that 

found by Zhang’s method. They differ by less than 1.3%. 

 

  

  

  
Figure 4-3: Checker board images used for the estimation of intrinsic parameters of the camera using 

Zhang’s method. 

For the extrinsic parameter estimation using Zhang’s method, the image shown in 

Figure 4-2 was used. The OpenCV program was used for the evaluation. The 

determined rotation angles in radian about X-, Y- and Z-axis were 0.0095813, 

-0.0012957 and -0.0085325 respectively. These results were close to the ideal rotation 

angles of zero. The translations in meter from X-, Y- and Z-axis were 4.47x10-6, 1.05, 

and 5.09 respectively. Therefore, the estimated mounting height of the camera was 
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1.05m which was the translation along the Y-axis. Similarly, the distance of the first 

control point Ac on the banner was 5.09m, which was the translation along Z-axis.  

Compared to the results with the proposed method, the deviation in the estimated 

camera height was 2.86%. The deviation in the estimated distance to the control point 

Ac was 8.62%. The intrinsic and extrinsic parameters estimated by Zhang’s method 

were used to calculate the world coordinates from the supplied screen coordinates. The 

result shown in Table 4-4 revealed that the estimated translation of 5.09m along the 

Z-axis was not so accurate as the estimation error was larger than 12% for all points. 

Although the result from the proposed calibration method was close to the result 

obtained by Zhang’s method, it is more preferable to use the proposed method for more 

accurate estimation of World coordinates from the screen coordinates. In addition, the 

proposed method has addressed the problem of installing the camera correctly into a 

vehicle. 

Table 4-4: Deviation of calculated World coordinates from the measured World coordinates using Zhang’s 
method 

Screen Coordinates 

Measured 
World 

Coordinates 
(X,Z) 

Calculated 
World 

Coordinates 
(X,Z)

 

Estimation 
Error 

(Z- direction) 

( ),a ax y =(319.229, 444.131)
 

(0, 5.09) (-0.0014, 5.77) 13.36% 

( ),b bx y = (319.200, 427.001)
 

(0, 5.59) (-0.0017, 6.30) 12.70% 

( )1 1,x y = (416.442, 443.763)
 

(0.5, 5.09) (0.512, 5.78) 13.56% 

( )2 2,x y = (222.503, 444.500)
 

(-0.5, 5.09) (-0.510, 5.76) 13.16% 

( )3 3,x y = (408.627, 426.187)
 

(0.5, 5.59) (0.515, 6.33) 13.24% 

( )4 4,x y = (230.384, 427.522)
 

(-0.5, 5.59) (-0.512, 6.28) 12.34% 
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4.2 Verification of Ego Motion Compensation 

To verify the ego motion compensation algorithm, a simple synthesized sequence was 

produced to serve the purpose. Figure 4-4 shows four image frames of a simple image 

sequence. The frame to frame duration was 160ms. The sequence was synthesized with 

an ego vehicle moving at 20m/s. A moving object of physical size 2m x 2m that was 

represented by the square at the centre of the screen was moving forward at 10m/s. A 

house on one side of the road with physical dimension shown in Figure 4-5 was located 

at 5.5m left from the centre line. It was at 80m from the ego vehicle at the beginning. 

The camera focal length and principal point were 830 and (320, 240) respectively. The 

mounting height of the camera was 1.26m with zero rotational angles.  

  

  

Figure 4-4: Simple image sequence containing a static (the house) and a moving object (the square box). 
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Figure 4-5: The physical dimension of the house in the simple synthesized sequence. The World 

coordinates of vertices of the house are shown. Values are shown in meter. Zw is the distance of the house 
from the ego vehicle. Negative X-axis value means the object is on the left-hand side of the World 

coordinates. 

The equation concerned for ego motion compensation is shown in Equation (3.30) in 

Chapter 3.2.1. It relates a point on the ground plane in the screen coordinates between 

the current and the previous frames. The evaluation was performed by examining the 

screen coordinates of selected points of successive frames, comparing the difference in 

the calculated screen coordinates and the actual observed coordinates. The matrix A in 

Equation (3.30) is evaluated in Equation (5.6) by substituting the parameters from 

Equation (5.2) to (5.5). Then matrix M -1 can be found by Equation (5.6) and (5.1) as 

shown in Equation (5.7). 

 
0 830 0 320

0 0 830 240

0 0 1 0 0 1

x x

y y

f c

K f c

   
   = =   
   
   
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(5.7) 

Figure 4-6 shows two successive frames of the synthesized sequence. The lower right 

corner of the house, which is a point on a static object in the sequence, was used to 

verify the equation for ego motion compensation. As seen from the current frame shown 

in Figure 4-6(b) the screen coordinates of the lower right corner of the house is 

(261, 259). It is substituted to Equation (3.30) to find the corresponding point in the 

previous frame. The calculated point correspondence in the previous frame was 

(264.24, 257.96), as shown in Equation (5.8). The calculated result is close to the actual 

coordinates at (264, 258) recognising directly from the image. Therefore, the equation 

for ego motion compensation is verified.  

 
1

1

 1 0.979155 -234.9971 261 264.24

0 1.734366 -176.2478 259 257.96

0 0.003060 0.265634 1 1

s s
t tp M p−
− =

     
     = =     
          
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Figure 4-6: Two successive frames of the synthesized sequence. The coordinates of the lower right corner 
of the house is read from the image. The coordinate reading for the previous frame is compared with the 

calculated result. 

 

4.3 Slow Relative Speed Vehicle Detection and Tracking Method 

The effectiveness of the proposed slow relative speed vehicle detection algorithm and its 

computational speed are summarised in this Chapter.  

4.3.1 Region of Interest Formation 

The region of interest (ROI) in the captured image is the area outside the detected road 

region and having small MV amplitude. Figure 4-7 shows the sequence of images on 

the formation of the ROI for relative slow speed vehicle detection. Figure 4-7(a) is the 

original captured image. The road region in front of the ego vehicle is identified and 

shown in white colour blocks in Figure 4-7(b). The white blocks in Figure 4-7(c) 

represent those with MV amplitude larger than a threshold qm. qm is set to 12 according 

to the experiment results. Figure 4-7(d) shows the result of combined road region mask 

in Figure 4-7(b) and the MV region mask in Figure 4-7(c). It is noticed that there are 

many small black blocks surrounded by the white mask. These small black blocks are 

removed from the image mask by a hole-filling algorithm mentioned in Chapter 3.3.4. 

The result is shown in Figure 4-7(e). The resulting ROI with the upper part of the 
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image cropped is shown in Figure 4-7(f). Therefore, only the lower half of the image 

with areas outside the image mask would be evaluated by the algorithm for relatively 

slow moving objection detection. 

The example shown in Figure 4-7 is a typical scenario on the road. The image area to 

process is less than 20% of the original image size. Therefore the reduced ROI can 

lower the computational time to help achieve the real time performance requirement of 

the system. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-7: Illustration of road region detection and exclusion of areas with large MV amplitude. (a) 
Original captured image. (b) Result of block based road region detection. White colour represents the 

detected road region. (c) Blocks with MV amplitude larger than a threshold with white colour. (d) 
Combined mask from road region and large MV areas. (e) Combined region mask with holes filled. (f) 

Final ROI overlaid to the original image. ROI is the regions outside the white colour mask. 
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4.3.2 Detection and Tracking 

The detection algorithm was evaluated against different kinds of vehicles. This 

included passenger cars, minivans, buses and trucks. Figure 4-8 shows some of the 

vehicles that were detected in the video sequences captured from different roads in 

Hong Kong. The rectangular bounding boxes are able to locate the bottom and the 

sides of the detected vehicles. The upper bound of the rectangle is obtained by the 

aspect ratio of the rectangle or the y-coordinate of the FOE. Therefore, the computation 

time for finding the upper bound of the vehicle can be reduced. It is also noticed from 

the examples shown in Figure 4-8 that the light intensity of the scenes varies quite 

significantly. Even if there are shadows and strong sunlight on the road, the vehicles 

can still be detected. 

The threshold values for successful vehicle detection are listed in Table 4-5. qm, the 

threshold for segmenting the region of interest according to the amplitude of MVs, was 

determined with the assumption that relatively fast speed moving objects have 

relatively large MV amplitudes. It was set to 12, which is 1.5 times of the block size 

used. A larger value of qm will mean increasing the region of interest for relatively 

slow speed moving object detection, and vice versa. Dhv is the threshold for comparing 

point correspondence in the vertical gradient and horizontal gradient images in order to 

eliminate non-horizontal contours in the vertical gradient image. The main noise to 

eliminate in a vertical gradient image is the lane markings on the road. This parameter 

should be adjusted if the focal length of the camera is changed. For instance, if a 

camera with smaller focal length is used, the camera field of view will be increased. 

Lane markings will appear to be more ‘horizontal’. This means the lane markings will 

have larger amplitudes in the vertical gradient image, A smaller value of Dhv should be 

used in this regard. WU and WL are the upper and lower limits of the width of vehicles 
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to be detected. They were determined according to the actual width of vehicles that will 

appear on the road. Similarly, RWHU and RWHL are the upper and lower limits of the 

width to height ratio of the detected vehicle. These values should be set according to 

the actual width and height of vehicles appearing in the image. A smaller range will 

reduce the true-positive and false positive rates. e is the parameter that defines the 

range of x-coordinates for evaluating the vertical projection near the end points of the 

horizontal line at the bottom of the detected vehicle. This parameter was set according 

to the observation that most vertical edges of vehicles would fall within this search 

range. A larger value of this parameter will increase the search range. This may include 

more vertical edges that are not belonging to the detected vehicles. On the other hand, a 

smaller value of this parameter may be insufficient to include the vehicle edges in the 

search range, leading to reduced detection rate. Vh is the threshold to confirm that a 

vehicle exists if it is smaller than the average vertical gradient in a bounded rectangle. 

This value is determined by observations in experiments conducted. A smaller value 

will result in increased false positive rate. ex and ey are number of pixels to expand the 

bounding rectangle in the x- and y-coordinate of the screen respectively for tracking of 

detected vehicle in successive frames. They were determined according to observations 

during experiments with the ego-vehicle travelling in straight line, following a vehicle 

at the front at constant speed. Increasing these values will increase the search range, 

and hence increasing the chance of successful tracking. But this will also increase the 

computation time during tracking. On the other hand, more false positive tracking is 

expected due to the inclusion of more sources of interference in the increased search 

range.  

Although reducing the ROI by MV amplitude and road region detection can 

successfully reduce the computation time for vehicle detection, the detection time is 
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still affected by how many vehicles are identified in each captured image. Since the 

detected vehicle will not disappear immediately in successive frames, a tracking 

algorithm that largely limits the search window can reduce the computational cost. 

 

Table 4-5: The parameters used in the algorithm for successful detection of vehicles. These parameters are 
determined by repeated testing to the video sequences taken in Hong Kong for this project. 

 Parameter Description Value 
1 qm Parameter mentioned in Chapter 3.4.1. It is the threshold 

in number of pixels for segmentation of the image to 
regions for relatively slow and fast speed vehicle 
detection.  

12 

2 Dhv Parameter mentioned in Chapter 3.5.3. It is for the 
comparison between vertical gradient image and 
horizontal gradient image for the elimination of unwanted 
vertical contours.  

50 

3 WL and WU Parameter mentioned in Chapter 3.5.3. They are 
predefined lower and upper limits of the width of 
detected horizontal line. The width must be within WL 
and WU. 

1.0 
and 
2.5 

4 RWHL and 
RWHU 

Parameter mentioned in Chapter 3.5.3. They are the ratio 
between the width and the height of the detected vehicle.  

0.5 
and 
4.1 

5 e Parameter mentioned in Chapter 3.5.3. It is the range of 
x-coordinate for evaluating vertical projection near the 
end point of the detected horizontal line. 

10 

6 Vh Parameter mentioned in Chapter 3.5.3. It is the threshold 
for confirming the existence of strong vertical edge from 
the vehicle. 

40 

7 ex and ey Parameter mentioned in Chapter 3.5.4. The number of 
pixels to expand the bounding rectangle in the x- and 
y-coordinate of the screen respectively for tracking of 
detected vehicle in successive frames 

3 and 
5 
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(1) Bus 

 
(2) Bus 

 
(3) Minivan 

 
(4) Minivan 

 
(5) Minivan 

 
(6) Minivan 

 
(7) Minivan 

 
(8) Minivan 

 
(9) Minivan 

 
(10) Truck 

 
(11) Truck 

 
(12) Truck 

 
(13) Truck 

 
(14) Truck 

 
(15) Truck 

 
(16) Truck 

 
(17) Truck 

 
(18) Passenger car 

 
(19) Passenger car 

 
(20) Passenger car 

 
(21) Passenger car 

 
(22) Passenger car 

 
(23) Passenger car 

 
(24) Passenger car 

Figure 4-8: Detection of different vehicles on the road. 
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4.3.3 Detection Rate 

The detection and tracking algorithms were evaluated with self-prepared video 

sequences. These video sequences are listed in Table 4-6. These sequences were 

prepared with the simplest scenario and shortest duration as in Sequence A, and to 

more complex scenarios and longer duration as in Sequence F and G. The challenges 

contained in these sequences are illustrated in Figure 4-9. They include shadows from 

the environment, broken road with non-uniform colour, text or symbol on the road, 

fences on the road side, increasing or decreasing of distance to the front vehicle, and 

lane change due to the front vehicle or the ego vehicle.  

Table 4-6: Video sequences with different challenges to the proposed algorithm 
Sequence Shadow Broken 

road 
Road- 

side fence 
Far to 
close 

Close to 
far 

Lane 
change 

Symbol / 
Text 

Seq. A    ●    

Seq. B  ●  ●    

Seq. C ●     ●  

Seq. D  ● ●     

Seq. E  ●  ● ●   

Seq. F ●  ●  ● ●  

Seq. G ● ●  ●   ● 

The image sequences were then encoded by the JM18.4 H.264/AVC encoder. The 

block size of MVs in a frame was configured so that it varied from 8x8 to 16x16. 

Those MVs of block size larger than 8x8 were regarded as multiple blocks of size 8x8 

with the same MV value, as proposed in Chapter 3.1.1. 
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(a) 
 

(b) 

(c) 
 

(d) 
Figure 4-9: Challenges appeared in the test video sequences. (a) Road-side fence and shadows. (b) Texts 

on the road. (c) Broken road. (d) Symbol on the road. 

 

Different Quantization Parameters (QP) of value 9, 17, 28, 35 and 45 were chosen to 

test the sequences from low to high compression with target bit-rate ranging from 

8.0Mb/s down to 1.5Mb/s. The smaller is the QP, the higher is the video quality. The 

MVs from the encoder with different QP have similar patterns. With higher QP for 

higher compression, larger block size MVs and more SKIP mode blocks are used. This 

can be observed from Figure 4-10(i) versus Figure 4-10(a). The number of 

macroblocks using 16x8 and smaller partitions is higher for lower QP, but the resulting 

ROI for moving object detection was similar, as illustrated in the right side of Figure 

4-10. The resulting video quality using QP35 and QP45 are nearly un-usable, but the 

MV amplitudes around the relatively slow speed vehicles at the front are small, not 

being affected by the selected QP value.  
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One point to note is that the detection algorithm is run on a system with an H.264/AVC 

encoder, the source image is available for being used by the algorithm. Since the 

source image is used for the identification of road region and the U-shape feature of 

vehicles, the degraded video quality due to compression will not affect the detection 

result. 

For the detection result, it was categorised into true-positive, false-positive and 

un-successful detection. True positive detection is achieved by either successful 

detection or tracking of vehicles. The detection results are summarised in Table 4-7. 

The last row of Table 4-7 combines the result of Sequence A to G by summing all the 

frames in the sequences.  

Table 4-8 shows the combined detection rate of all these sequences. The results show 

that the true-positive detection can reach more than 90%, while the false-positive rate 

remains at very low level of less than 1%. Figure 4-12 to Figure 4-18 show a snapshot 

of the image sequences.  

It is noted that the detection rate remained relatively stable with all QP values used. 

There is no significant gain in detection rate with the increase in video quality. This is 

because the source image was used for object detection. Therefore, the detection 

algorithm was not affected by the degradation in picture quality due to video 

compression. Since the source image was the same, the difference in detection rate in 

the same sequence with different QP was because of erroneous MVs on the vehicles at 

the front. Some region of the vehicle was masked during the ROI evaluation as 

illustrated in Figure 4-11. This led to corrupted U-shape features, affecting the 

detection algorithm. 
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(a) 
QP9 

 

(b) 
QP9 

 

(c) 
QP17 

 

(d) 
QP17 

 

(e) 
QP28 

 

(f) 
QP28 

 

(g) 
QP35 

 

(h) 
QP35 

 

(i) 
QP45 

 

(j) 
QP45 

 
Figure 4-10: The left side shows MVs of macroblocks of a typical frame with different QP. (a) QP=9, (c) 
QP=17, (e) QP=28, (g) QP=35, (i) QP=45. The right side shows the corresponding ROI with different QP 
constructed by using the amplitudes of MVs and the identified road region. It is observed that more coarse 
macroblocks (16x16) were used with higher QP, but the resulting ROI was essentially the same, 
preserving the regions with relatively slow speed vehicles at the front. 
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Table 4-7: Detection result of seven image sequences. The last row shows the combined result of sequence 
A to G. 

Sequence 
Total 
frame 

True-positive False-positive Unsuccessful 
QP 
9 

QP 
17 

QP 
28 

QP 
35 

QP 
45 

QP 
9 

QP 
17 

QP 
28 

QP 
35 

QP 
45 

QP 
9 

QP 
17 

QP 
28 

QP 
35 

QP 
45 

A 42 42 42 42 42 42 0 0 0 0 0 0 0 0 0 0 
B 100 97 97 97 97 97 0 0 0 0 0 3 3 3 3 3 
C 246 239 239 239 237 237 1 1 1 1 1 6 6 6 8 8 
D 275 262 262 261 262 262 0 0 0 0 0 13 13 14 13 13 
E 440 425 425 399 399 399 1 1 1 1 1 14 14 40 40 40 
F 208 188 188 189 188 188 0 0 0 0 0 20 20 19 20 20 
G 342 331 331 332 331 331 0 0 0 0 0 11 11 10 11 11 

A to G 1653 1584 1584 1559 1556 1556 2 2 2 2 2 67 67 92 95 95 

 

Table 4-8: Detection rate of the seven image sequences. The last row shows the detection rate of the 
sequence combined from A to G 

Sequence Total frame 
Detection rate % 

QP9 QP 17 QP 28 QP35 QP45 
A 42 100 100 100 100 100 
B 100 97.0 97.0 97.0 97.0 97.0 
C 246 97.2 97.2 97.2 96.3 96.3 
D 275 95.3 95.3 94.9 95.3 95.3 
E 440 96.6 96.6 90.7 90.7 90.7 
F 208 90.4 90.4 90.9 90.4 90.4 
G 342 96.8 96.8 97.1 96.8 96.8 

A to G 1653 95.8 95.8 94.3 94.1 94.1 

 

 
(a) Seq. C frame 121  

 
(b) Seq. E frame 159 

 
(c) Seq. F frame 83 

Figure 4-11: Illustration of images with un-successful detection. These images show the region of interest 
in grey which was constructed by combining the detected road region and the region with MV amplitude 
larger than a threshold.  All images show significant masking of the U-shape feature of these vehicles, 
leading to unsuccessful detection. 
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(a) 

 
(b) 

 
(c) 

Figure 4-12: A snapshot of sequence A at frame 84. (a) Binary threshold and the vertical gradient images. 
(b) Filtered horizontal gradient image and its corresponding horizontal projection near the edges of the 
front vehicle. (c) Original image with the overlaid rectangle representing the identified position of the 

detected vehicle. 

 

(a) 
 

(b) 
 

(c) 
Figure 4-13: A snapshot of sequence B at frame 4. (a) Binary threshold and the vertical gradient images. 
(b) Filtered horizontal gradient image and its corresponding horizontal projection near the edges of the 
front vehicle. (c) Original image with the overlaid rectangle representing the identified position of the 

detected vehicle. 

 

(a) (b) (c) 
Figure 4-14: A snapshot of sequence C at frame 92. (a) Binary threshold and the vertical gradient images. 

(b) Filtered horizontal gradient image and its corresponding horizontal projection near the edges of the 
front vehicle. (c) Original image with the green rectangle representing the identified position of the 

detected vehicle. 
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(a) (b) (c) 
Figure 4-15: A snapshot of sequence D at frame 6. (a) Binary threshold and the vertical gradient images. 
(b) Filtered horizontal gradient image and its corresponding horizontal projection near the edges of the 

front vehicle. (c) Original image with the green rectangle representing the identified position of the 
detected vehicle. 

 

(a) (b) (c) 
Figure 4-16: A snapshot of sequence E at frame 790. (a) Binary threshold and the vertical gradient images. 

(b) Filtered horizontal gradient image and its corresponding horizontal projection near the edges of the 
front vehicle. (c) Original image with the green rectangle representing the identified position of the 

detected vehicle. 

 

(a) (b) (c) 
Figure 4-17: A snapshot of sequence F at frame 228. (a) Binary threshold and the vertical gradient images. 

(b) Filtered horizontal gradient image and its corresponding horizontal projection near the edges of the 
front vehicle. (c) Original image with the green rectangle representing the identified position of the 

detected vehicle. 
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(a) (b) (c) 
Figure 4-18: A snapshot of sequence G at frame 742. (a) Binary threshold and the vertical gradient images. 

(b) Filtered horizontal gradient image and its corresponding horizontal projection near the edges of the 
front vehicle. (c) Original image with the green rectangle representing the identified position of the 

detected vehicle. 

4.3.4 Computation Time Analysis 

Since the proposed algorithm was targeted for real-time application in automobiles, the 

computation load of the algorithm is also analysed. 

The algorithm was developed in C++ language and was tested with a PC with x86 

processor running at 2.6GHz clock speed. Captured image sequences of size 640x480 

each were stored to the PC for offline processing. The JM18.4 H.264/AVC video 

encoder (JVT, 2012) was used for offline encoding the video to H.264 format. The 

video encoder was modified to output MV map for each P-frame and was stored in the 

PC. Furthermore, the encoder was set to IBPBP frame structure, with frame rate of 

30fps, using EPZS motion estimation algorithm, with intra-frame encoding in P-frame 

disabled and macroblock partition smaller than 8×8 disabled.  

The program read the captured image sequence, and the corresponding dynamic data 

and MV file from the harddisk of the PC. The main functions for low relative speed 

vehicle detection include finding the ROI and the detection of the vehicle. After 

successful detection, the tracking function was used without running the detection 

algorithm.  
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The average time for processing the seven test sequences mentioned in Table 4-6 is 

shown in Table 4-9. It was found that the processing time for finding the ROI and for 

vehicle tracking was relatively low with a maximum of 21.5ms. However, the average 

processing time for relatively slow vehicle detection varied from 15.7ms to 192.9ms. 

The large deviation in the detection time was due to the existence of multiple regions 

with U-shape features.  For instance, Figure 4-19(a) shows the binary image of frame 

66 of Sequence F with white areas representing regions that are darker than the 

minimum gray level of the detected road region. Figure 4-19(b) highlights the areas in 

red circles that are required to run vehicle detection algorithm. Since the area is 

relatively large when comparing with the case with only one vehicle at the front, extra 

time was spent on the vehicle detection function. 

With the H.264/AVC encoder set to IBPBP frame structure and 30fps, the interval 

between P-frame for ROI detection is 1/15 second, i.e. 66.7ms. If the cycle time for 

vehicle detection is less than 66.7ms, the detection cycle is fast enough to catch up with 

the designed video frame rate.  

Ignoring the file input/output (I/O) time (IV in Table 4-9) that can be eliminated in the 

future real-time system where the image and MV are read directly from the memory, 

the tracking cycle time (I+III) is less than 24ms. It is fast enough to match with the 

desired video frame rate.  

Table 4-9: Average processing time in ms for low relative speed vehicle detection. The time for finding 
ROI and tracking is relatively stable. The detection time varies due to the difference in area for potential 

vehicle detection. 

Sequence 
I II III IV Cycle Time 

Finding ROI Detection Tracking File I/O I+II+IV I+II I+III 
A 5.6 15.7 4.3 126 147.3 21.3 9.9 
B 10.5 16.5 4.7 76 103 27.0 15.2 
C 7.2 51.5 4.5 67 125.7 58.7 11.7 
D 11.6 31.8 9.9 89 132.4 43.4 21.5 
E 12.7 75.2 7.3 89 176.9 87.9 20 
F 11.1 192.9 5.7 83 287 204.0 16.8 
G 17.2 52.7 6.3 102 171.9 69.9 23.5 
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(a) 

 
(b) 

Figure 4-19: (a) Binary image with white colour representing the area that is darker than the minimum 
grey-level of the identified road region. (b) Multiple regions for potential vehicle detection, circled in red 

colour. 

It was noticed that the cycle time for vehicle detection (I+II) can vary from tens of 

milliseconds to hundreds of milliseconds. This is why the tracking algorithm was 

required to shorten the computational time upon successful detection of a vehicle so 

that more computation resources can be reserved for the need of other processes. 

Nevertheless, if the detection takes hundreds of milliseconds to complete, the detection 

algorithm is still effective for a real-time application. This is because the expected 

movement of low relative speed vehicles across several frames is small, the ROI is still 

valid across several frames for detection even if the detection algorithm is skipped for a 

few frames. 

The computation time increases with increase in the number of U-shape features that 

indicates the number of potential vehicles in the image. Since the algorithm tries to find 

U-shapes by scanning the ROI in the image, the increase in the image resolution and 

the number of pixels in the ROI will also increase the computation time for vehicle 

detection. The worst timing in those sequences were taken as the worst case figures for 

estimating the detection time and ROI evaluation time with increase in number of 

vehicle and image resolution. There were up to four U-shapes in the entire ROI in 

Sequence F requiring 192.9ms for detection. So each U-shape requires 48.2ms to 

process. The time taken for ROI evaluation was 17.2ms in Sequence G, and the time 

for tracking was 9.9ms in Sequence D. The experiment was carried out with an image 
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resolution of 640x480, the corresponding processing time at higher resolutions was 

projected from this resolution according to the percentage change in resolution. The 

time required for processing the image at different resolutions for one vehicle is shown 

in Table 4-10. Considering that there are multiple vehicles to detect in the same image 

and only one vehicle is tracked after the detection, a plot of processing time versus the 

detection cycle time is shown in Figure 4-20. It shows that the increase in image 

resolution can impact the detection cycle time significantly. For instance, the 

processing cycle time for only 1 vehicle in the image at 1920x1080 can exceed 500ms. 

Further increase in the number of vehicle in the image will make the detection time 

being unpractical for real-time application. However, the algorithm is able to maintain 

the cycle time at less than 500ms for up to 9 vehicles, which is usable for real-time 

applications. Nevertheless, the algorithm computation time can be improved by 

employing methods proposed in Chapter 7. 

Table 4-10: Processing time of the algorithm at different resolutions. The processing time for 1280x720 
and 1920x1080 was projected from the result at 640x480. 

 @640x480 @1280x720 (x3) @1920x1080 (x6.75) 
Time to find ROI  17.2 51.6 110.9 
Detection Time per vehicle 48.2 144.6 325.4 
Tracking per vehicle 9.9 29.7 66.8 

 

 

Figure 4-20: Processing time for multiple vehicles in an image at different image resolution. 
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4.3.5 Comparison of Results 

Since the test results from other publications were making use of different test 

sequences for evaluations, direct comparison to results from this project was not 

possible. The algorithm proposed in this report requires to use the information from the 

inertial sensors and the vehicle speed sensor, using the publicly available database for 

evaluation directly was also not possible.  

However, the comparison can still give a reference for the performance of the proposed 

algorithm. Monocular vision based algorithms using feature based methods (Wang and 

Lien, 2008, Jazayeri and Hongyuan et al., 2011) and statistical based methods (Sun and 

Bebis et al., 2006, Chang and Cho, 2010, Sivaraman and Trivedi, 2010, Yuan and 

Thangali et al., 2011, Chen and Chen et al., 2013, Wen and Shao et al., 2015, Cheon 

and Lee et al., 2012) that were published in recent years were selected for comparison.  

Table 4-11 shows the comparison among the selected algorithms for the detection rate 

and false positive rate. The detection rate of the algorithm proposed in this study shown 

in Table 4-11 is the combined detection rate on test sequence A to G mentioned in the 

last row of Table 4-7. 

Within the comparison, the detection rate and false positive rate of the proposed 

algorithm is on a par with the detection rate of other algorithms in the comparison. One 

of the reasons for the high detection rate and low false positive rate is the elimination 

of non-vehicle objects by limiting the ROI to the regions with small MV. Another 

reason is the good image threshold value obtained during the road region detection 

stage which was used for constructing a binary image with essentially the dark 

contours of vehicles and their respective shadows. 
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Table 4-11: Comparison on the detection rate and false-positive rate of the proposed algorithm vs. other 
selected algorithms from renowned journals. 

Research 
Study 

Description Detection 
Rate 

False 
Positive 

Rate 

Remarks 

Sun et al. 
(2006) 

Statistical based vehicle detection using 
HOG and Gabor features, followed by 
SVM and neural network classification 

96.1% 2.29%  

Wang and 
Lien (2008) 

Feature based vehicle detection using 
local features of vehicles, extracted by 
principal component analysis (PCA) 
and independent component analysis 
(ICA) for hypothesis generation. 
Hypothesis verification is done by a 
posterior probability function. 

95.6% <0.5% Evaluation is 
done on selected 
static images. 
8.7fps was 
achieved. 

Chang and 
Cho (2010) 

Statistical based detection using 
Haar-like feature and Adaboost 
classification. It also features on-line 
continuous learning to refine the trained 
classifier 

96% 8%  

Sivaraman 
and Trivedi 
(2010) 

(Similar to Chang et al.). Statistical 
based detection using Haar-like feature 
and Adaboost classification. It also 
features on-line continuous learning to 
refine the trained classifier 

95% 6.4%  

Yuan et al. 
(2011) 

Statistical based using HOG features 
and SVM classification.  

82% 1 per 
frame 

 

Jazayeri et 
al. (2011) 

Motion based using optical flow, 
followed by feature based hidden 
Markov model classification 

86.6% 13.2%  

Cheon et al. 
(2012) 

Statistical based using HOG symmetry 
features and a classifier based on total 
error rate minimisation using reduced 
model. 

93% 5%  

Chen et al. 
(2013) 

Road modelling followed by Haar-like 
feature and eigencolour based detection 
using Adaboost classifier 

94.32% 5.52%  

Wen et al. 
(2015) 

Haar like feature based followed by 
SVM 

94.1% 3.26%  

Proposed 
Algorithm 

Vehicle detection by road region 
estimation, MV amplitude for ROI 
selection, horizontal contours, 
horizontal projection and vertical 
projection. 

95.8% <0.5% True-positive 
detection rate of 
all the test 
sequences A to G 
using QP=17 for 
video coding. 
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4.4 Fast Relative Speed Vehicle Detection and Tracking Method 

The effectiveness of the proposed fast relative speed vehicle detection algorithm and its 

computational speeds are summarised in this chapter. 

4.4.1 Region of Interest Formation 

The region of interest (ROI) for relatively fast moving object detection is the area that 

is outside the detected road region and having MV amplitude larger than the threshold 

qm. Figure 4-21 shows the sequence of images in the formation of the ROI for relative 

fast speed vehicle detection. Figure 4-21 (a) is the original captured image. The road 

region in front of the ego vehicle is identified and shown in white blocks in Figure 

4-21(b). The white blocks in Figure 4-21(c) represent those with MV amplitude larger 

than a threshold qm. qm is set to 12 according to the experiment results. Figure 4-21(d) 

shows the result of combine the road region mask in Figure 4-21(b) and the MV region 

mask in Figure 4-21(c). It is noticed that there are many small black colour blocks 

surrounded by the white mask. Unlike the ROI for slow relative speed object detection 

in which these black blocks were removed by a hole filling algorithm mentioned in 

Chapter 3.4.1, these small black blocks were not removed from the image mask so that 

more blocks were retained. This increased the number of blocks with larger amplitude 

for better relatively fast speed moving object detection. Figure 4-21(e) shows the 

resultant ROI for fast relative speed moving object detection overlaid with the original 

captured image. Figure 4-21(f) is the ROI of the lower half of the image overlaid with 

the original captured image. It is the image mask used for relatively fast moving 

objection detection. As clearly seen from Figure 4-21(f), the ROI contains essentially 

the vehicle moving from the left to the right of the screen. There were some outliers 

due to the motion estimation error of the H.264/AVC encoder. Some blocks on the 



 

138 

 

moving car body were also masked. This is because of the motion estimation error of 

the H.264/AVC encoder to blocks with weak texture or repetitive pattern. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-21: Illustration of road region detection and exclusion of areas with small MV amplitude. (a) 
Original captured image. (b) Result of block based road region detection. White colour represents the 

detected road region. (c) Blocks with MV amplitude smaller than a threshold filling with white colour. (d) 
Combined mask from road region and small MV areas. (e) Combined region mask. (f) Final region of 
interest, with only the areas in the lower half of the image that are not filled with white. The overlaid 

image shows that most of the MVs on the relatively fast moving object are not masked. 
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It was observed that the ROI using MV amplitude alone as shown in Figure 4-21(c) 

contains many disconnected blocks in the areas corresponding to the road region. After 

combining with the detected road region, the ROI could be reduced to minimise the 

computational time for moving object detection, as well as to reduce the false detection 

rate. 

4.4.2 Setup of Experiments 

For normal driving on the road, most vehicles are moving at similar speed to the ego 

vehicle. However, there are occasions when some vehicles are moving relatively fast 

and are not necessarily moving at the same direction as the ego vehicle. Table 4-12 and 

Figure 4-23 show the description and a snapshot respectively of eight video sequences 

for the evaluation of the fast relative speed moving object detection algorithm. These 

video sequences were created with a test vehicle moving across junctions, or driving at 

the front of the ego vehicle with sudden lane changes. In addition, two sequences V 

and W were created with an air inflatable dummy vehicle as a fast relative speed 

moving object and with the ego vehicle having head-on collision to it, to investigate the 

effectiveness of the algorithm.  

The inflatable dummy vehicle is shown in Figure 4-22. The size of the dummy vehicle 

was similar to a standard compact private car. Since the mass of the dummy vehicle 

was small, typically less than 5kg, no damage was introduced to the ego vehicle during 

collisions. Also, there was no motorised component in the dummy car, it was required 

to be pulled by a human across the road during the test. 
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Table 4-12: Video sequences with different challenges to the proposed algorithm 

Sequence Description 
Seq. P Two vehicles move from the left to the right in the screen. The ego vehicle is moving 

with distance of around 10-20m from these vehicles 

Seq. Q One vehicle moves from the left to the right in the screen. The ego vehicle is moving with 
distance of around 10-20m from the vehicle. 

Seq. R One vehicle moves from the right to the left in the screen. The ego vehicle is moving with 
distance of around 20-30m from the vehicle. 

Seq. S One vehicle is moving from opposite lane and is crossing the road from the right to the 
left in the screen. The ego vehicle is moving with distance of around 30-45m from the 
vehicle. 

Seq. T One vehicle is moving on the left side of the ego vehicle, then changing lane from left to 
right. It then changes its lane again from the right to the left. The ego vehicle is moving 
with distance of around 10-20m from the vehicle. 

Seq. U One vehicle is moving at the front of the ego vehicle, then changing lane from the centre 
to the right and then back to the centre lane again. The ego vehicle is moving with 
distance of around 10-20m from the vehicle. 

Seq. V One dummy vehicle is moving from the left to the right, the ego vehicle is having direct 
collision with the dummy vehicle. The ego vehicle is accelerating hardly from standstill, 
whereas the motion of the dummy vehicle is pulled by human force with moderate 
acceleration only. 

Seq. W One dummy vehicle is moving from the right to the left, the ego vehicle is having direct 
collision with the dummy vehicle. The ego vehicle is accelerating hardly from standstill, 
whereas the motion of the dummy vehicle is pulled by human force with moderate 
acceleration only. 

 

 
(a) Left-side view 

 
(b) Right-side view 

 
(c) Front view 

 
(d) Rear View 

Figure 4-22: The air inflatable dummy car used for testing in this project. Its size is similar to a compact 
private car as shown in the pictures. 
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One point to note is that the detection of fast moving objects is targeted to identify part 

of the object for generating a warning alert. It is not possible to detect the whole 

moving object in real-time. This is because of the erroneous MVs from the H.264/AVC 

encoder mentioned in Chapter 2.4. Also, the different MV amplitude and direction on 

the object due to perspective transformation would lead to the same object being 

clustered into different objects for verification. Another problem is the additional 

computational resources required to interpret the image and to cluster correctly with 

real-time performance. Nevertheless, the driver only needs to know that an object may 

pose danger to his driving direction. Therefore, the target of successful detection is to 

detect only part of the moving object so that the driver can be alerted of potential 

danger during driving. 

Since only moving objects that may collide with the ego vehicle need to be detected for 

a warning output to be given to the driver, those ego motion compensated MVs that 

represent objects moving away from the ego vehicle were discarded. The detection 

criteria were the same as that proposed in Chapter 3.6.2, which include the amplitude, 

position and direction constraints. 

 

 

 

 

 

 



 

142 

 

 
(a) Seq. P  

 
(b) Seq. Q  

 
(c) Seq. R 

 
(d) Seq. S 

 
(e) Seq. T 

 
(f) Seq. U 

 
(g) Seq. V 

 
(h) Seq. W 

Figure 4-23: Eight video sequences to evaluate the proposed fast relative speed moving object detection. 
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4.4.3 Detection Results 

The parameters for relative fast speed moving object detection are listed in Table 4-13. 

qm is the threshold for segmenting the region of interest according to the amplitude of 

MVs. It was determined with the assumption that relatively fast speed moving objects 

have relatively large MV amplitudes. It was set to 12, which is 1.5 times of the block 

size used. A larger value of qm will mean increasing the region of interest for relatively 

slow speed moving object detection, and vice versa. Yu is the parameter to determine 

the y-position in the image where the alert zone starts. Since the origin starts from the 

top left corner, a smaller Yu means a larger alert zone, accepting more PPRVs for 

processing. Yu was set to 350 in the experiments conducted. This represents around 

3.5m from the ego vehicle, which is approximately twice the distance between the 

camera and the front nose of the test vehicle. Ty is the time to collision. It was set to 2 

seconds to provide enough of a time buffer between the ego-vehicle and the moving 

object. A larger Ty will also mean accepting more PPRVs for processing. xa is the 

x-position of the PPRV after entering the alert zone. xa was set to 650, a larger value 

than the maximum range of the x-coordinate of 639, in order to retain more PPRVs for 

processing. mthres is the parameter to determine the gradient difference between the 

point to the FOE and the corresponding PPRV at the point concerned. mthres was set to 

30 degrees. A larger value of this parameter means that less PPRVs will be retained for 

processing. The setting of 30 degrees is a balance between the number of PPRVs to be 

included for processing, and the number of outliers belonging to static objects but with 

erroneous MVs. mdiff is the parameter for slope comparison in clustering. It was set to 

15 deg in the experiments. A smaller threshold that used for filtering PPRVs can 

further narrow down the difference in MVs. But to account for the existence of 

erroneous and the limited precision of MVs, smaller value will result in many clusters 
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with only a few PPRVs. λthres is the parameter for distance comparison in clustering. It 

was set to 3, meaning that PPRVs will belong to different cluster if they are more than 

3 blocks of size 8x8 apart. Setting a smaller value will result in more clusters being 

adjacent to each other. adiff is the amplitude comparison for clustering. Of the amplitude 

of a PPRV is less than that of the average amplitude of the PPRVs in a cluster for 

comparison by adiff, it will be included in the cluster. A larger value of this parameter 

will allows larger difference among PPRVs in a cluster, It was set to 15% to account 

for the precision and erroneous MVs from the encoder.  

 

Table 4-13: Parameters for relative fast speed moving object detection 

 Parameter Description Value 
1 qm It is the threshold in number of pixels for segmentation of 

the image to regions for relatively slow and fast speed 
vehicle detection. It is the same parameter used in 
relative slow speed moving object detection. 

12 

2 Yu y-position in the image where the alert zone starts.  
 

50 

 Ty Ty is the time to collision associated with the PPRV 
entering the alert zone.  

2 s 

 xa xa is the x-position of the PPRV after entering the alert 
zone. 

650 

3 mthres  
 

Parameter to determine the gradient difference between 
the point to the FOE and the corresponding PPRV at the 
point concerned.  mthres. was set to  30 deg.  
A larger value means that less PPRVs will be retained for 
processing. 

30 
deg. 

4 mdiff  
 

Parameter for gradient comparison in clustering. .  15 
deg. 

5 λthres  
 

Parameter for the distance between clusters.  3 

6 adiff   
 

Threshold for amplitude comparison for clustering.  15% 

 

Figure 4-24 to Figure 4-31 show the detection result for Seq. P to Seq. W. Figure 

4-24(a) shows the detection result for Seq. P. The detected moving object indicated by 
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the coloured rectangle includes part of the moving vehicle from the left to the right of 

the screen. The overlaid rectangle shown in Figure 4-24(a) indicates a successful 

Hypothesis Generation (HG). The content inside the rectangle is used as the template 

for matching with the most similar pattern in the next frame for Hypothesis 

Verification (HV). Figure 4-24(b) shows a rectangle indicating a successful HV with 

the template defined in the previous frame. Detection of relatively fast moving object 

was confirmed when the template matching was successful in Figure 4-24(b). The 

template update was continued for matching in the next frame for tracking purpose, as 

shown in Figure 4-24 (c) and Figure 4-24 (d).  

(a) Frame #46, 
successful HG well 
before collision may 

occur. 

(b) Frame #48, 
successful HV. 

Detection is confirmed. 

(c) Frame #50, continued 
tracking 

(d) Frame #52, continued 
tracking 

Figure 4-24: Detection Result for Seq. P. 

Being similar to the detection result of Seq. P, the result for Seq. Q and Seq. R shown 

in Figure 4-25 and Figure 4-26 also reveals the successful detection of part of the 

relatively fast moving vehicle at the front.  
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(a) Frame #12, successful 
HG well before collision 

may occur. 

(b) Frame #14, successful 
HV. Detection is 

confirmed. 

(c) Frame #16, continued 
tracking. 

(d) Frame #18, continued 
tracking. 

Figure 4-25: Detection Result for Seq. Q. 

(a) Frame #42, successful 
HG well before collision 

may occur. 

(b) Frame #44, successful 
tracking. Detection is 

confirmed. 

(c) Frame #46, continued 
tracking. 

(d) Frame #48, continued 
tracking. 

Figure 4-26: Detection Result for Seq. R. 

Being different from Seq. P, Q and R with relatively fast moving object travelling from 

the left to the right or vice versa, Figure 4-27 shows the result for Seq. S that has a 

relatively fast moving object moving in opposite direction to the ego vehicle. It 

changed its direction and moved across the driving lane, causing danger to the ego 

vehicle. Figure 4-27(a) shows the successful HG using the constraints mentioned in 

Chapter 3.6.2. Figure 4-27(b) shows the successful HV of the relatively fast moving 

object after successful template matching. Figure 4-27(c) and (d) show the successful 

tracking for two more frames after successful HV. 



 

147 

 

(a) Frame #132, 
successful HG. 

(b) Frame #134, 
successful HV. Detection 

is confirmed. 

(c) Frame #136, 
continued tracking. 

(d) Frame #138, 
continued tracking. 

Figure 4-27: Detection Result for Seq. S. 

Figure 4-28 and Figure 4-29 show the detection results for the case of a moving vehicle 

at the front that changes its driving lane suddenly. Both sequences show positive 

detection results. It is also noticed that the area of the part for template matching of the 

detected vehicle varies, depending on the result of initial detection based on the 

constraints to PPRVs. 

(a) Frame #46, 
successful HG. 

(b) Frame #48, 
successful HV. Detection 

is confirmed. 

(c) Frame #50, successful 
tracking. 

(d) Frame #52, 
successful tracking 

continued. 

(e) Frame #310, 
successful HG. 

(f) Frame #312, 
successful HV. Detection 

is confirmed 

(g) Frame #314, 
successful tracking. 

(h) Frame #316, 
successful tracking 

continued. 
Figure 4-28: Detection Result for Seq. T. 
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(a) Frame #310, 
successful HG. 

(b) Frame #312, 
successful HV. 

Detection is confirmed 

(c) Frame #314, 
successful tracking. 

(d) Frame #316, 
successful tracking 

continued. 
Figure 4-29: Detection Result for Seq. U. 

The test condition for the scenarios shown in Figure 4-30 and Figure 4-31 was that the 

ego vehicle was accelerating quickly from stand still towards the moving dummy 

vehicle for a direct collision. The dummy vehicle was also stationary at the beginning. 

It was pulled manually by a running human so it accelerated gradually to around 6ms-1.  

The result shown in Figure 4-30 indicates successful HG, HV and tracking, although 

the size of the template indicated by the coloured rectangles in Figure 4-30(a) to (c) has 

changed significantly. The size change is due to the intended expansion of the 

rectangle in the algorithm to accommodate potential increase in the size of the detected 

object due to camera perspective change and the distance of the object from the camera. 

The result shows that it can alert the driver before the collision may occur, leaving 

enough time for the driver to react.  

For the result shown in Figure 4-31, the HG and HV were successful, meaning that the 

dummy vehicle was successfully identified. The dummy vehicle was also detected 

before the collision may occur, leaving enough time for the driver to react. However, 

the tracking was not successful after the HV stage. This was because both the dummy 

vehicle and the ego vehicle were accelerating. The predicted MV amplitude and 

direction have not been estimated with acceleration taking into account. This leads to a 
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relatively large deviation in the predicted displacement and the actual displacement, 

and hence the unsuccessful tracking. 

   
(a) Frame #176, successful HG. (b) Frame #178, successful HV. (c) Frame #180, successful 

tracking. 
Figure 4-30: Detection Result for Seq. V 

   
(a) Frame #156, successful HG. (b) Frame #158, successful HV.  (c) Frame #160, tracking failed. 

Switching back to HG mode in the 
next frame. 

Figure 4-31: Detection Result for Seq. W. The tracking after HV shown in (c) is not successful. 

4.4.4 Exception of Detections 

Despite the true-positive detections shown in Chapter 4.4.3, there were false-positive 

detections and unwanted loss-of-track after successful detection of a potential moving 

object. 

Loss-of-track 

Figure 4-31 shows the successful HG and HV result with failed tracking of the detected 

object in Figure 4-31(c). Since the ego and the dummy vehicles were moving under 

acceleration, the actual displacement of the object appearing on the screen deviated 
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beyond the allowable range of the predicted displacement. Therefore, the tracking 

failed. The detection process went back to HG stage to start the detection again in the 

next frame. 

Figure 4-32 shows another lost-track case in which the initial clustered region included 

a large portion of static object in the scene. Figure 4-32(a) shows the undesirable 

clustering result in which a large area of the wall in front of the ego vehicle was 

included. The rich and repetitive texture of the wall resulted in many irregular MVs 

being evaluated by the H.264/AVC encoder. The clustering algorithm grouped the 

MVs wrongly due to unexpected similarities in amplitudes and directions. 

Subsequently, the area enclosed in the rectangle in Figure 4-32(a) was used as the 

template for block matching in Figure 4-32(b). Due to the repetitive pattern of the wall, 

the block matching algorithm returned a positive matching result as shown in Figure 

4-32(b). When the vehicle moves further, the block matching algorithm returns 

negative result as the similarity falls below a pre-defined threshold. This ended the 

tracking mode and the HG mode was used in the successive frames.  

(a) Frame #38, successful 
HG. 

(b) Frame #40, successful 
HV. 

(c) Frame #42, tracking 
lost. Go back to HG 

mode in the next frame 

(d) Frame #44, HG mode. 
No detection. 

Figure 4-32: Loss-of-track after entering tracking mode.  
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False-Positive Detection 

There were cases of detecting non-moving objects on the road. Figure 4-33 (a) shows a 

false-positive detection result. Because of the rich texture and repetitive pattern of the 

wall, the H.264/AVC encoder outputs MVs violating the amplitude and direction of the 

estimated MVs for ego motion. The template found in the HG mode in Figure 4-33(a) 

was used for the HV and it was successfully verified in Figure 4-33(b). It was noticed 

that the resultant displacement of the matched template from Figure 4-33(a) to Figure 

4-33(b) was around eight pixels horizontally and vertically, and the horizontal 

displacement was negative, meaning that the matched template was actually moving 

away from the ego vehicle. Since the displacement of the matched template has not 

been verified for its validity of being an object that may give rise to danger to the ego 

vehicle, it resulted in the false positive HG and HV. The false detection can further be 

eliminated if the matched template appears to be moving away from the ego vehicle. 

Similarly, the false detection results shown in Figure 4-34 and Figure 4-35 were 

because of the erroneous MVs output from the H.264/AVC encoder. These MVs had a 

large deviation from the expected displacement due to ego motion. The clustering 

algorithm identified the region in Figure 4-34(a) and Figure 4-35(a) as potential 

moving objects. Because of the similarity of the region in successive frames, HV was 

successful with the use of the block matching algorithm where the actual displacement 

was within a predefined percentage from the expected displacement. The displacement 

of the template from Figure 4-34(a) to Figure 4-34(b), and Figure 4-35(a) to Figure 

4-35(b) actually indicated that the object identified by HG was moving away from the 

ego vehicle. The false detection can further be eliminated if the displacement direction 

is taken into account. 
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Since the MV based moving object detection does not depend on the shape of the 

object, prior assumption on the size, shape and features of the object are not available. 

The wrongly detected object during HG cannot be rejected by methods related to the 

features of the detected object. Therefore, the HV stage is proposed to reject objects 

with inconsistent temporal motion. The false detection rate can be reduced further by 

re-designing the motion estimation algorithm of the H.264/AVC encoder using the ego 

motion information available from the built-in inertial sensor of the camera and the 

signal from the vehicle speed sensor. 

(a) Frame #90, 
false-positive HG. 

(b) Frame #92, 
false-positive HV. 

(c) Frame #94, 
false-positive tracking. 

(d) Frame #96, tracking 
lost. 

Figure 4-33: False-positive detection of the wall on the road. 

 

(a) Frame #108, false 
positive HG. 

(b) Frame #110, false 
positive HV. 

(c) Frame #112, false 
positive tracking. 

(d) Frame #114, tracking 
lost. 

Figure 4-34: False-positive detection of the tree shadow on the road.  
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(a) Frame #98, 
false-positive HG. 

(b) Frame #100, 
false-positive HV. 

(c) Frame #102, tracking 
lost. 

(d) Frame #104, 
true-negative HG. 

Figure 4-35: False-positive detection of the fence on the side of the road.  

 

4.5  Computation Time Analysis 

The computation load of the algorithm was analysed for its suitability for being used in 

real-time systems for practical application in automobiles. 

The algorithm was developed in the same C++ language as that for the slow relative 

speed vehicle detection algorithm. The test platform was also the same. There are many 

common procedures for both relatively fast and relatively slow moving object detection 

algorithms. These common procedures include the capturing of image of size 640x480 

each for storing to the PC for offline processing, using a JM18.4 video encoder for 

offline encoding the video to H.264/AVC format. The video encoder was modified to 

output MV map for each P-frame. The MV map was also stored in the PC. Furthermore, 

the encoder was set to IBPBP frame structure, with frame rate of 30fps, using the EPZS 

motion estimation algorithm, with intra-frame encoding in P-frame and macroblock 

partition smaller than 8×8 disabled. 

Since the system will finally be implemented as an embedded system where the file 

input and output overhead for obtaining captured images and reading MVs will be 

eliminated, the timing analysis was focused on the computational loading of the 

algorithm rather than the time for input and output access.  
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The average time for processing the eight test sequences mentioned in Chapter 4.4.2 is 

shown in Table 4-14. It was found that the processing time for identifying the ROI and 

for HG only were having small variation. The ROI evaluation took approximately 30ms 

±10% to complete, and the HG took approximately 4ms±10% to complete. However, the 

execution time for the HV or tracking algorithm varied from 20.1ms to 27.9ms. This was 

because the HV algorithm essentially consists of the block matching algorithm. It 

required longer time to complete when the block size was increased. For instance, the 

detected moving object was relatively small in Seq. T, hence the time required for block 

matching was relatively short. Also, the number of iterations required to find the 

matching block depends on the match result under the spiral search. If the matching 

block can be found earlier, the time required for HV and tracking becomes smaller. That 

is, if the estimated displacement is close to the actual displacement, the block matching 

algorithm used in HV and tracking can be completed earlier. 

Table 4-14: Average processing time in ms for fast relative speed vehicle detection 

Sequence Finding ROI HG HV or Tracking 
Seq. P 27.6 3.6 27.9 
Seq. Q 30.7 3.8 21.3 
Seq. R 27.8 4.0 20.1 
Seq. S 28.6 3.8 21.1 
Seq. T 30.5 4.3 17.4 
Seq. U 32.2 4.0 20.3 
Seq. V 29.5 4.0 26.4 
Seq. W 31.1 4.2 27.3 

Currently, the block matching algorithm is a simple spiral full-search, the search 

algorithm can be improved in the future by using more intelligent search algorithm. 

Since the cycle time for vehicle detection can be finished within 66.7ms, the detection 

cycle is fast enough to catch up with the frame rate of 30fps for the H.264/AVC encoder 

with IBPBP frame structure. This means the video frame rate needs not be lowered to 

facilitate the detection, preserving the smoothness of the recorded video.  
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For a single system to have relatively fast and slow moving object detection functions, 

the system should be designed so that the fast and slow relative speed object detection 

algorithms are running alternatively, or in parallel with the use of multi-core 

system-on-chip.  

4.6 Cost Analysis 

The proposed system architecture of the MV based ADAS is shown in Figure 4-36. It 

consists of a CMOS camera sensor unit, a six degree-of-freedom inertial sensor, a 

Digital Signal Processor System-on-Chip (DSP SOC), an SD-Card interface and a 

display and warning device. The six degree-of-freedom inertial sensor is mounted 

directly to the printed circuit board for the CMOS camera sensor in a position which is 

close to the optical centre of the CMOS camera sensor. The inertial sensor is able to 

measure the three-dimensional acceleration and angular motion of the camera. Therefore, 

the instantaneous tilt, roll and yaw angle of the camera relative to the earth plane can be 

obtained. The signal from the vehicle speed sensor is also fed into the DSP SOC. 

Therefore, the travelled distance by the vehicle can be calculated from the vehicle speed 

sensor and the time interval between successive image frames. The SD card interface is 

for H.264/AVC video recording. The display and warning device is for alerting the 

driver of a dangerous situation, such as when the time-to-collision is less than two 

seconds. The DSP SOC is the heart of the system. It is responsible for executing all 

algorithms for lane detection and moving object detection.   
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Figure 4-36: System architecture of the proposed MV based ADAS 

The DSP SOC used in this project was DM3725 from Texas Instruments (TI, 2013). The 

SOC has an embedded ARM Cortex A8 processor core, a TMS320C64x DSP core and a 

dedicated hardware logic for H.264/AVC encoding. According to the official website of 

Texas Instruments, the reference unit price of the SOC was US$27.20 at an order 

quantity of 1,000pcs (TI, 2015b). For vision based ADAS utilising optical flow 

technique (Giachetti and Campani et al., 1998, Klappstein and Stein et al., 2006), an 

additional DSP is expected to be used for the optical flow evaluation (Zhang and Gao et 

al., 2014). An estimate of the additional cost for the DSP is US$26.53 (TI, 2015c). 

Similarly, feature-based ADAS can share-use the DSP SOC for both rear-end vehicle 

detection and H.264/AVC recording. However, the detection of vehicles or objects that 

have different shapes to the vehicles looking from the rear requires an additional DSP 

for the additional feature detection. Table 4-15 summarises the number of processors 

required to achieve the moving object detection and video recording functions using the 

solution proposed in this project, optical flow based methods, and feature based 

methods. 
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Table 4-15: Required processors for different ADAS solutions 

Function Proposed solution Optical flow solution Feature-based solution 

Relatively fast speed 

object detection 

1x DSP SOC DM3725 

1x DSP for optical flow 

evaluation 

1x DSP for handling 

additional feature 

recognition 

Relatively slow speed 

object detection 
1x DSP SOC DM3725 1x DSP SOC DM3725 

H.264/AVC Video 

Recording 

Based on the number of embedded processors required for different ADAS solutions, the 

cost comparison of these solutions is shown in Table 4-16. The price for each 

component was reference to the official websites of the components, retail electronics 

component websites such as digikey.com, or quotations from component distributors. 

The comparison assumes that each embedded processor requires a set of SDRAM and 

NOR flash in order to function correctly. Therefore, the size of SDRAM and NOR flash 

memory were doubled in both the optical flow and feature based solutions. The 

comparison shows that the proposed solution is 50% less expensive than the optical flow 

or feature based solution.  

Therefore, the proposed solution can achieve a lower cost than typical solutions making 

use of optical flow or feature based techniques. One point to note is that the research 

project is supported by the funding from the Innovation and Technology Commission of 

Hong Kong (ITC, 2015), and part of the funding of the project is supported by industry 

contributions. Conscientious and careful vetting processes have been gone through when 

the funding for the project was approved. The justifications on the cost competitiveness 

of the proposed solution have also been considered.  
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Table 4-16: Cost comparison for different ADAS solutions 

Major component Proposed solution Optical flow solution Feature-based solution 

Embedded Processor $27.20 (1x DSP SOC) 
$53.73 (1x DSP + 1x 

DSP SOC) 

$53.73 (1x DSP + 1x 

DSP SOC) 

Inertial sensor $4.02 (Invensense, 2015) -- -- 

Camera sensor $20 $20 $20 

Power regulators $5 $5 $5 

SDRAM $17.78 (256MB x 2) $35.56 (256MB x 4) $35.56 (256MB x 4) 

NOR Flash $14.0 (256MB) $28.0 (512MB) $28.0 (512MB) 

Passive components $10.0 $10.0 $10.0 

Total $98 $152.29 $152.29 

 

4.7 Chapter Summary 

This Chapter reported the test and evaluation results of the proposed algorithm for 

moving object detection, and the evaluation of the proposed camera calibration method.  

With the techniques proposed in the algorithm to eliminate the problems with the 

imperfect MVs from typical H.264/AVC encoders, the detection performance is on a par 

to other methods found in the literature. The detection rate is higher than 90% under real 

and practical environment in Hong Kong. The computation time analysis shows the 

ability of the proposed algorithm for running in real time. The cost analysis shows the 

potential 50% reduction in cost with the use of the proposed algorithm and ADAS 

solution. 
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5 Commercialisation 

A project “Development of Advanced Collision Avoidance (ITT/006/12AP)” to trial of 

the proposed solution has been conducted in Hong Kong with the funding support of 

amount HK$800,000 from the Innovation and Technology Commission of Hong Kong. 

The objectives of the trial project were to collect the user experience to ADAS, and to 

identify problems of the hardware and software so that improvements could be done 

prior to mass production. 

My major role was to develop the vehicle detection algorithm for this trial project for 

running in an embedded Digital Signal Processor (DSP). The calibration method 

proposed in this study was also applied to install the cameras to the wide variety of car 

models in this trail. The lane detection function (LDW) and the blind spot zone detection 

function (BSDS) that were developed by other colleagues in my organisation were also 

included in this trial project. The trial period was from February 2014 to August 2014. 

This project has invited four government departments and two non-governmental 

organisations (NGOs) to test the engineering prototypes. These government departments 

and NGOs included Fire Service Department (FSD), Water Supplies Department (WSD), 

Hong Kong Police Force (HKPF), Government Logistics Department (GLD), Hong 

Kong Society for Rehabilitation (HKSR), and the Neighbourhood Advice-action Council 

(NAAC). The car models that were used for testing the prototypes are shown in Figure 

5-1.  

This trial has provided a very good opportunity to refine the algorithm for running in 

real-time in a low-cost embedded Digital Signal Processor. It also has provided a chance 

to test the robustness of the algorithm and the embedded system for different road 

conditions in Hong Kong. Because of the tight schedule of the trial project and the 
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moving object detection algorithm was still under development, the moving object 

detection for trial included only the relatively slow speed moving vehicle detection 

algorithm in which the MV information for ROI reduction was omitted. This was 

because efforts were still in progress at that time to enable the MV output from the 

H.264/AVC encoder from the selected DSP. When the system was ready for trail, the 

relatively slow speed vehicle detection algorithm was able to run at 10fps in the 

embedded DSP. Although the processing speed could further be improved by utilising 

the hardware resources of the embedded DSP, such as its image pre-processing hardware 

for image colour conversion, image cropping, and histogram evaluation, there was no 

enough time for such engineering optimisation to be done. Nevertheless, the algorithm 

was able to work as expected due to the change of position of relatively slow speed 

moving vehicle is small in successive frames. 

Figure 5-2 shows the components of ADAS for installation to test vehicles. These 

components include a camera installing to the windshield, a warning device for audible 

alert output and an embedded hardware prototype for running the algorithm. 

The typical mounting position of the camera is shown in Figure 5-2(a). It was placed 

behind the rear-view mirror in the vehicle to prevent obstructing the view of the driver. 

The installation and calibration methods mentioned in Chapter 3.1.2 enabled our 

engineers to install the camera efficiently. The method also has provided a means to 

make sure of the installation quality and the correct estimation of the installation height 

of the camera. The warning device shown in Figure 5-2(b) was able to display and 

output audible warnings when the time-to-collision between the front vehicle and the 

ego vehicle were too close, or when lane departure events were detected. Figure 5-2(c) 

shows the embedded hardware prototype which was equipped with an embedded DSP 
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from Texas Instruments. Figure 5-2(d) shows the enclosure for the embedded hardware 

prototype, installing beneath a passenger seat in a test vehicle. 

 
Figure 5-1: Government departments and NGOs that had participated in the Trial Project. (a) Hong Kong 

Police Force. (b) Water Supplies Department. (c) Hong Kong Society for Rehabilitation. (d) The 
Neighbourhood Advice-action Council. (e) Fire Services Department. (f) Government Logistics 

Department. 

The drivers of those selected vehicles from different government departments and NGOs 

had the chance to evaluate the prototype on normal roads of their daily duties. There was 

no designated route assigned to the drivers, hoping to collect as many opinions from the 

drivers as possible. The evaluation results were collected by the Government Logistics 

Department and a trial evaluation form was returned after the trial period. According to 

the collected evaluation forms, the drivers commented that the system was useful. They 

also reported that there were false alarms, especially on single carriageways. This was 

because MV based ROI reduction technique mentioned in Chapter 3.4.1 was not used in 

the trial. Those vehicles driving in opposite directions to the ego vehicle were detected 

because of the existence of generic line features mentioned in Chapter 3.5.3. This led to 

undesirable excessive false detections. 
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The drivers also reported that the warning output could be annoying when there were 

warnings from both the three functions. Therefore, it is necessary to research on the 

warning output strategy due to the FCW, LDW and BSDS functions so that they can be 

harmonised to minimised unwanted distraction. 

Many drivers reported that the hardware was not stable. It needed to be turned off for a 

while before turning it on again. This was because the embedded DSP was over-heated 

after prolonged operation, and the connectors used in this project were loosely due to 

shocks and vibrations. A heat-sink was installed to the embedded DSPs to dissipate the 

generated heat more efficiently. Better automotive grade connectors should also be used 

to make sure of the electrical and signal connectivity. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-2: (a) Camera mounted to the windsheild behind the rear-view mirror. (b) Warning device to 
output audible alerts to the driver. (c) Embedded DSP hardware prototype. (d) Prototype installation 

location. 
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5.1 Chapter Summary 

This Chapter described the project that has been done to facilitate the commercialisation 

of the research results of this project. In particular, the project has tried out the 

developed algorithms for ADAS in different car models provided by the Hong Kong 

government. The tests were conducted on roads in Hong Kong. Drivers that have tried 

the system felt the system was useful. There was accumulated experience from this trial 

project. It provides useful information for continuous improvement of the system. 



 

164 

 

6 Publications and Patents 

During the course of this research, two international conference papers and one 

international journal paper were either published or accepted, and one international 

journal was under preparation for submission.  One of the two conference papers was 

published, and the other one was accepted. The submitted journal paper was also 

accepted for publication.  

Published Conference Paper 

Wong, C.-C., Siu, W.-C., Barnes, S. & Jennings, P. Low relative speed moving vehicle 

detection using motion vectors and generic line features.  IEEE International 

Conference on Consumer Electronics, 9-12 Jan. 2015 Las Vegas, pp. 208-209.  

This paper summarised the interim result of the research of this study. It proposed the 

region of interest construction by making use of the amplitudes of MVs from a 

H.264/AVC encoder, and the detection of relatively slow moving objects using generic 

line features. 

Accepted Conference Paper 

Wong, C.-C., Siu, W.-C., Barnes, S. & Jennings, P. Shared-Use Motion Vector 

Algorithm for Moving Objects Detection for Automobiles. IEEE International 

Conference on Consumer Electronics, 8-11 Jan. 2016 Las Vegas, forthcoming. 

This paper summarised the algorithm framework proposed in this research on the shared 

use of MVs for moving object detection. It mentioned the techniques for dividing the 

detection task into the detection of relatively slow moving objects and relatively fast 

moving objects. The algorithm for relatively slow speed object detection and tracking, as 

well as that for relatively fast moving object detection and tracking were also mentioned 
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in details. This paper also included the test results on some challenging image sequences. 

The result indicated that the proposed method has detection rate above 90% which is on 

a par with state of the art methods proposed by other authors. The computation time was 

also analysed, indicating a real-time performance capability with typical cycle time of 

less than 66ms. 

Accepted Journal Paper 

Wong, C.-C., Siu, W.-C., Jennings, P., Barnes, S. & Fong, B. forthcoming 2015. A 

Smart Moving Vehicle Detection System Using Motion Vectors and Generic Line 

Features. IEEE Transactions on Consumer Electronics. 

This journal paper mentioned the algorithm on the shared use of H.264/AVC MVs for 

relatively slow speed vehicle detection in details. It also outlined the algorithm for 

relatively fast speed moving object detection. Test results with image sequences 

containing challenging road conditions such as shadows, broken road and road-side 

fence were presented. It revealed the performance are on a par to algorithms proposed by 

other authors in terms of detection rate, and is computationally efficient for being used 

in a real-time system. 

Journal Paper under Preparation 

A journal paper of title “A Smart Block Based Road Region Detector for use in Vision 

Based Advanced Driver Assistance Systems” is under preparation. It will report the 

novel algorithm on block based road region detection mentioned in Chapter 3.3, as well 

as the improvements mentioned in Chapter 5.2.1. 
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Patents  

A Hong Kong Short-term patent of title “A Method and a Device for Detecting Moving 

Object” has been granted successfully. The application and grant numbers are 

15106442.4 and 120328A respectively. In the mean time, the patent search report 

conducted by the State Intellectual Property Office (SIPO) of the People’s Republic of 

China (PRC) indicates that the invention is novel and innovative without any finding on 

infringement to intellectual properties. The invention therefore fulfils the criteria for 

patent registration to SIPO of PRC. The invention patent is under registration to the 

SIPO of the PRC at the time of writing this report.  

 

6.1 Chapter Summary 

This Chapter mentioned two international conference papers and one international 

journal paper that are either published or accepted. It also mentioned an invention patent 

is filed in Hong Kong and is preparing to file in mainland China. One additional 

international journal paper is under preparation. 
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7 Future Improvements 

There is room for improvements of the proposed algorithm framework for higher 

true-positive and lower false-positive detection rate, as well as for faster computation. 

The improvements will be done continuously by myself and my research team in the 

future. 

7.1  Camera Calibration Method 

Since the selected road surface may not be exactly on a flat level ground, the pitch angle 

measured by the inertial sensor inside the camera module may include the gradient of the 

road. Therefore, the offset due to the road gradient should be compensated so that the 

pitch angle of the camera with respect to the road surface is close to zero. 

7.1.1 Road Gradient Compensation 

Figure 7-1 shows the situations where the vehicle is on a road with non-zero gradient. 

Figure 7-1(a) and (b) show the case with the car pointing upwards and downwards 

respectively. A method is proposed to remove the offset pitch angle due to the 

inclination of the road. The proposed method is to place the vehicle on the same road 

segment for two times with 180 degree opposite heading. The measured pitch angle for 

these two different headings can then be compensated for the offset due to the road 

inclination.  

The pitch angle measured by the inertial sensor is θ. Equation (7.1) and (7.2) show the 

measured sensor readings for the vehicle pointing uphill and downhill respectively.  

Therefore, for the same road segment with the same vehicle facing in one direction, a 

value of θ can be measured. After that, the same vehicle is facing another direction that 

is 180 degree opposite to the previous direction, another value of θ can be measured. 
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The actual pitch angle of the camera can be estimated by combining Equation (7.1) and 

(7.2), where θ0 is the inclination of the road, θx is the camera pitch angle with respect to 

the road surface, and θu is the pitch angle measured by the inertial sensor. Equation (7.3) 

and (7.4) are the results of combining Equation (7.1) and (7.2). They represent the 

formulae for calculating the camera pitch angle with respect to the road surface and the 

inclination of the road. By noticing the direction of the vehicle during calibration, the 

offset due to the road gradient can be eliminated. For example, the estimated road 

gradient is θ0=0.5 degree, the target pitch angle θx is zero, then the target reading from 

the inertial sensor θ  should be 0.5 degree.  

 0u xθ θ θ= +
 

(7.1) 

 0d xθ θ θ= −  (7.2) 

 
2

u d
x

θ θθ +=  (7.3) 

 0 2
u dθ θθ −=  (7.4) 

 
Figure 7-1: Illustration of road gradient affecting the measured pitch angle for the camera installation. 
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7.2  Road Region Detection 

7.2.1 Use of Temporal Information 

The computation time for road region estimation can be reduced by incorporating 

temporal information. Since the captured frames are continuous and the time interval 

between successive frames is small (typically 66ms), the road region will not be changed 

significantly from frame to frame. 

Therefore, the road region identified in the previous frame can be reused so that the 

number of blocks to process for road region estimation can be reduced. By reducing the 

number of blocks to process, the computational time can be reduced. In this regard, 

some of the blocks along the boundaries of the identified road region can be invalidated 

according to the moving path of the ego vehicle.  

The proposed improvement algorithm is illustrated in Figure 7-2 and Figure 7-3. Figure 

7-2(a) shows the identified road region shaded in grey using the block based road region 

detection algorithm mentioned in Chapter 3.3. Figure 7-2(b) shows only the identified 

road region. The identified road region is reduced by one block along the road region 

contour. The yellow contour shows the difference between the original road region 

boundary and the diminished road region boundary. Figure 7-3 shows the diminished 

road region in Figure 7-2(b). The region growth algorithm will start from a block along 

the yellow contour. Since the number of blocks for processing is reduced, the road 

region identification algorithm can be completed in a shorter time.  
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(a)  

 
(b)  

Figure 7-2: Road region identified in a captured frame and the corresponding diminished road region for 
use in the next frame. (a) Captured frame with identified road region. The identified road region is shaded 
with grey colour blocks. (b) Extracted road region from (a). The boundary is diminished by 1 block along 

the contour. The yellow contour is the difference between the original and diminished contours. 

 
Figure 7-3: Overlaid road region found from the previous frame. The region growth algorithm will start 

from 1 block along the yellow contour, reducing the required computation time due to reduced number of 
blocks to process. 

7.3 Segmentation Method for Relatively Slow and Fast Objects 

Currently, the proposed method splits the ROI into relatively slow and fast moving 

objects by means of the amplitude of the MVs only. A more intelligent segmentation 

method can be proposed to improve the ROI segmentation accuracy. For instance, the 

threshold of MV amplitude can be adaptive to the ego vehicle speed. That is, the 

threshold can be increased for higher speed.  

The segmentation can also take other parameters into account. For instance, when there 

is a relatively slow speed vehicle detailed in the previous frame, the ROI in the current 
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frame can assume the region near the previously detected region is still the ROI for 

relatively slow speed moving objects.  

7.4 Slow Relative Speed Moving Object Detection Algorithm 

The false-positive detection of invalid objects on the road can further be reduced by 

evaluating the symmetry of the area concerned.  

There has been research on symmetry feature detection algorithms (Kuehnle, 1991, 

Marola, 1989, Zielke and Brauckmann et al., 1992). In particular, a symmetry 

measurement function by comparing the summed intensity value of the greyscale image 

for the left and right part of a selected region is described by Broggi and Cerri et al. 

(2004). They combined the symmetry measurement with Adaboost algorithm as the 

vehicle detector (Friedman and Hastie et al., 2000). Adaboost algorithm makes use of a 

series of weak classifiers that were trained by a set of data, to compare with a set of new 

data obtained in the current image. When the new set of data is not rejected by all the 

weak classifiers, the set of new data is accepted. Cheon and Yoon et al. (2012) 

introduced the symmetry measurement method by the histogram of oriented gradients 

(HOG). Each region of interest was divided into four regions, namely upper left, upper 

right, lower left and lower right. The HOG feature was then trained by the total error rate 

reduction polynomial model (TER-RM) proposed by Toh and Eng (2008). 

For application to a real-time system, an objective comparison will be conducted before 

a suitable symmetry detection algorithm is selected. The selection will be based on the 

computation load and the associated symmetry detection performance.  
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7.5  Fast Relative Speed Moving Object Detection Algorithm 

7.5.1 Predictive Displacement Estimation 

Currently, the region for template matching is limited to 16x16 pixels around the 

averaged amplitude and direction of MVs of the identified region which may contain 

relatively fast moving objects. Since the target object is moving, the average amplitude 

and direction of the MVs should be compensated by the predicted speed change (or 

acceleration) of the object. The change in speed of the detected object can be predicted 

by the amplitude of MVs of previous frames. With a basic kinematic model for the 

movement of the moving object, the prediction can be refined by the use of Kalman 

filter. 

7.5.2 The Use of Bi-Prediction Motion Vector 

In the current implementation, the MVs from P-frames were used to evaluate the 

movements of objects in successive images. As discussed in Chapter 2, MVs from 

H.264/AVC can be erroneous as they were used primarily for video compression rather 

than precision object motion estimation. One of the very important pieces of 

information in B-frames is bi-prediction motion vectors of some macroblocks. The 

bi-prediction MVs can be used to refine the accuracy of MVs in P-frames. By taking 

into account the spatial and temporal consistency of object movements in successive 

frames, MV outliers can be detected and eliminated. In this connection, the false 

positive rate can further be reduced.  

One point to note is that MVs are estimated using the current frame as the coordinate 

reference. The coordinates in the current frame are always in integer form, aligning to 

the macroblock boundaries. For a bi-predictive macroblock in a B-frame, each pixel in 

the macroblock is the average sum of the pixels in the displaced coordinates according 
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to the two bi-predictive MVs. The bi-predictive MVs can be of sub-pixel units of up to 

1/4 precision rather than integer. Also, they are not limited to be aligned to the 

macroblock boundaries.  

Therefore, to utilise the bi-predictive MVs in B-frames to improve the reliability of 

MVs in P-frames, the coordinate reference of the MVs in the B-frame has to be 

changed to use the current P-frame as reference. This involves the construction of a 

MV map by rounding or truncating the sub-pixel MVs to integer pixels. After that, the 

MV map can be used to compare with the MVs obtained from the current P-frame. 

MVs in the current P-frame can be discarded if the discrepancies are larger than certain 

thresholds, indicating they are temporally inconsistent to the corresponding MVs found 

in the previous B-frame.   

7.5.3 The Algorithm for Template Matching 

Currently, the search algorithm for template matching is performed by simple 

exhaustive spiral search about the estimated displacement from the position in the 

previous frame. The search can be computationally inefficient especially when a match 

template cannot be found inside the defined search range. The speed of the search 

algorithm can be improved by employing smarter search algorithm. Similar fast search 

algorithms for H.264/AVC motion estimation can be considered, such as the Diamond 

Search algorithm (Tham and S. et al., 1998), UMHexagonS algorithm (Chen and Xu et 

al., 2006), and Image Edge Assisted Search algorithm (Chan and Siu, 2001). According 

to the test results of these authors, all these fast search algorithms can reduce the 

computation cost by at least 80%.  

Also, the decision on successful template matching relies on the evaluation of sum of 

absolute difference (SAD) of the image region under comparison. The computation 
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cost for SAD evaluation can be reduced by using integral image (Schweitzer and Bell 

et al., 2002, Viola and Jones, 2001). The properties of Integral Image allow rapid and 

efficient computation. Figure 7-4 illustrates how the Integral Image can facilitate rapid 

computation of sums and differences of rectangular regions. Figure 7-4(a) shows a 

rectangle at location from Po(0,0) to P(x,y). The sum of pixel values above and on the 

left of P(x,y) is Px,y as expressed in Equation (7.5). 

 ,
' , '

( ', ')x y
x x y y

P i x y
≤ ≤

= ∑  (7.5) 

where ( )', 'i x y  is the pixel value at point ( ', ')x y . The relationship of area A, B, C 

and D to the point P1, P2, P3 and P4 as shown in the Integral image in Figure 7-4(b) 

can be expressed as Equation (7.6). 

 1 2 3 4,  ,  ,  P A P A B P A C P A B C D= = + = + = + + +  (7.6) 

By solving these equations, D can be expressed as Equation (7.7). 

 1 4 2 3D P P P P= + − −  (7.7) 

So, the area D can be evaluated very quickly by knowing the sum of pixel values at the 

four corners of D.  

 

Figure 7-4: Integral image. (a) sum of pixel values above and left of P(x,y), (b) sum of pixel values above 
and left of P4(x,y) = A+B+C+D 
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In addition to the use of search algorithm, the moving direction of the identified 

template can also be estimated from the MVs from the H.264/AVC encoder. During 

the HV mode, the template identified from HG mode can be evaluated for the moving 

direction of blocks inside the template by referring to the MVs from the H.264/AVC 

encoder. Since the MVs from H.264/AVC encoder are referring to the movement from 

the current frame to the previous frame, a reverse MV map needs to be constructed so 

that the movement of the blocks in the template from the previous frame to the current 

frame can be evaluated. After that, if the resultant movement of the whole template is 

consistent to the estimated movement, the HV can be regarded as successful. Similarly, 

tracking can perform in a similar way as in the HV mode. 

7.5.4 Reducing False-Positive Detection 

As mentioned in Chapter 4.4.4, there were cases of false-positive HG and HV for MV 

based moving object detection. The false-positive hypothesis can pass the HV stage 

because the identified displacement in the HV stage is within the allowable limit of the 

estimated displacement evaluated in the HG stage, even though the estimated 

displacement found in HG is erroneous.  

The false positive detection can be reduced by evaluating the direction of movement of 

the template in HV stage. If the movement of the template from the HG frame to the 

HV frame is moving away from the ego vehicle, the HV can be treated as failed. And if 

the direction of movement of the template is pointing to the FOE, and the amplitude of 

the displacement is the same as the displacement due to ego motion, the HV can also 

be regarded as unsuccessful. 
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7.6 The Use of Stereo Camera 

With the use of stereo camera, a scene can be captured by two cameras simultaneously. 

The depth information of objects in the scene can be obtained by evaluating the pixel 

disparity between the two images. Disparity refers to the displacement of pixels on the 

same object appearing on the pair of images captured simultaneously by the two 

cameras. 

The disparity evaluation can be done in the un-compressed image domain using 

different block matching techniques. The most trivial matching cost is to evaluate the 

difference between pixels one by one along the epipolar line. However, this trivial 

method requires absolute intensity constancy of images taken by the two cameras. Such 

absolute intensity constancy is not achievable in practice because of the manufacturing 

tolerances of components for the cameras such as lens, sensors and mechanical 

enclosure, as well as the fact that the light reflecting from objects reaching the two 

cameras can be different. Most stereo matching cost functions are block based so as to 

reduce the effect of intensity difference of the two cameras. Common matching cost 

functions used for finding stereo correspondence are the sum of absolute difference 

(SAD), sum of squared difference (SSD), normalised cross correlation (NCC) and the 

sampling insensitive absolute difference or known as BT algorithm (Birchfield and 

Tomasi, 1998). 

In addition to evaluating disparity in the image domain, it can also be evaluated in the 

compressed domain. H.264/AVC encoders support efficient stereo camera video 

encoding using the Stereo High Profile. In stereo view scenarios, there are many 

similarities between the two camera views. Coding efficiency gain can be achieved by 

using one of the camera inputs as reference, and storing the difference of the input 

from the second camera by either P-frame or B-frame encoding. Disparity of stereo 
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images can be evaluated by looking into the MVs between the pair of images. Hence, 

the depth maps of the pair of video can be obtained. Although there are few research on 

depth map estimation using stereo H.264/AVC stream, Pourazad et al. (2010) showed 

that it is possible in a published paper.  

With the availability of depth information, more MVs that potentially are outliers can 

be discarded. For instance, the clustering process can include the depth information as 

an input parameter so that only MVs of similar depth will be considered for the same 

cluster. Also, the selection of the final cluster for hypothesis verification can be based 

on the distance to the ego-camera, selecting the one that is closest to the ego-vehicle. 

7.7 Improving H.264/AVC Motion Estimation 

The motion estimation algorithm used in the H.264/AVC encoder involves some 

search and evaluation methods to find the most appropriate motion vectors in order to 

achieve the lowest bit rate possible.   

Since the ego motion of the camera can be estimated from the built-in inertial sensor 

and the signal from the vehicle speed sensor, the motion estimation algorithm can be 

improved by making use of the information from these sensors. In particular, fast 

motion estimation algorithms available in the JM18.4 H.264/AVC encoder, such as 

MVFAST (Tourapis and Au et al., 2000), UMHS (Chen and Zhou et al., 2002) and 

EPZS (Tourapis and Cheong et al., 2005), use predictive information from the video 

stream to reduce the computation cost on block based motion search. The predictive 

information is obtained from the spatial and temporal movements of adjacent blocks in 

successive frames. The movement of a particular block cannot be obtained from 

adjacent blocks at the boundaries of independently moving objects. 
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There has been research on the use of inertial sensors for video encoding (Chen and 

Zhao et al., 2011, Angelino and Cicala et al., 2013, Wang and Ma et al., 2012). The 

experimental results by Chen and Zhao et al. (2011) showed that the computational 

cost for motion estimation can be reduced significantly by transforming the camera 

motion into the predictor for motion estimation. Since the search direction and search 

range can be reduced, the computational cost is reduced. According to the experiment 

result of Angelino and Cicala et al.’s sensor-assist motion estimation method, the 

computation time for motion estimation can be reduced by at least 50% comparing to 

the UMHS fast search method. 

Further research on this direction can reduce the computational cost as well as the 

accuracy of the output motion vectors to represent actual object movement without 

sacrificing the video coding efficiency. The computational cost can be reduced because 

the motion search direction and range can be estimated from the inertial sensors and 

the vehicle speed sensor, allowing less number of tries for finding the best match. 

Similarly, the motion vector accuracy can be improved because the first guest for 

direction and amplitude of motion can be estimated from the inertial sensor and the 

vehicle speed sensor, reducing the chance of trapping into an irrelevant local minimum. 

7.8 Extension to Next Generation Video Encoder 

The proposed algorithm relies on the MV output from video encoders that conform to 

the H.264/AVC standard, it is likely that the encoder will be phased out sometime in 

the future and be replaced by encoders of newer standard to cope with the ever 

increasing demands for higher screen resolution and coding efficiency. The block 

based MV output format used in the proposed algorithm ensures the extensibility of the 

algorithm to work with next generation video encoders. 
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7.8.1 Comparison to H.265/HEVC Encoding Standard 

Comparing with H.264/AVC standard, the emerging High Efficiency Video Coding 

(HEVC) standard can reduce video bit rate to up to 50% without loss of video quality 

(Sullivan and Ohm et al., 2012). The different arrangements in block structure for the 

two encoding standards are shown in Figure 7-5. As shown in the figure, the major 

difference between H.264/AVC and HEVC standard is that the coding block size in 

H.264/AVC is fixed at 16x16, while it can be 8x8 to 64x64 in HEVC. The variable 

block size in HEVC is known as Coding Unit (CU) that shown in the Quadtree Coding 

Structure in Figure 7-5. The selection of block size for motion estimation in HEVC 

standard is arranged in a coding tree unit (CTU) and coding tree block (CTB) structure. 

One frame is divided into a series of non-overlapped CTU. The size of a CTB can be 

chosen as 16x16, 32x32 or 64x64 samples. The CTB may contain one or multiple 

coding units (CUs). Similarly, each CU may contain one or multiple prediction units 

(PUs). The size of each PU varies from 64x64 down to 4x4 samples (Sullivan and Ohm 

et al., 2012).  

 
Figure 7-5: Comparison of block structure for H.264/AVC and HEVC 

In addition to the motion estimation process to find the MV to relate the current frame 

to previous frames, there is a special mode known as SKIP mode in H.264/AVC 
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encoders. No motion information is present in this SKIP mode. The information for the 

block concerned is obtained from the co-located block in the previous frame. In 

contrast, MVs in HEVC are evaluated by either spatial or temporal approach. For an 

intercoded PU, the encoder can decide to use motion estimation mode or motion merge 

mode. 

The motion estimation mode is the same as that in H.264/AVC encoders. It evaluates 

the motion vectors according to images from previous frames. Motion merge mode is 

newly introduced in HEVC, which is an improvement on SKIP mode. A set of 

previously coded neighbouring PUs is used to form a list of candidates that are either 

spatially or temporally close to the current PU. After deciding which candidate in the 

list is suitable to be used, the motion information of the selected candidate is used 

directly for the current PU. Therefore, the index of the selected candidate in the list is 

encoded; no intensive motion search algorithm is required. By encoding only the index, 

very few bits are required to code the difference between frames. 

Bi-prediction motion estimation is employed in both H.264/AVC and HEVC. It makes 

use of two sets of motion data to generate two MVs from different reference images. 

The resultant motion compensated block is the weighted sum of the two motion 

compensated blocks using the two MVs. Different weight can be applied to the two 

motion compensated blocks in order to accommodate for different scenarios, such as 

reflections and sudden light intensity changes.  

Although there are different motion estimation algorithms available in the free 

reference software for HEVC and H.264/AVC encoders, they are provided for 

reference only. Among the motion estimation algorithms available in the reference 

encoder software, Test Zone Search (TZS) algorithm is provided as a reference fast 

search algorithm to speed up the motion estimation process (Tourapis, 2002). Since 



 

181 

 

there is no specified motion estimation algorithm for the video standards, many motion 

estimation methods have been studied and proposed by many researchers to achieve 

different computation complexity and video quality targets. 

The increased coding efficiency in HEVC is the result of increased encoder complexity. 

The high computational cost on mode decision and motion estimation require 

parallelised hardware and more computationally efficient algorithms to enable the 

HEVC encoders to be used for real-time applications. 

7.8.2 Shared-Use of Motion Vector from HEVC Encoder  

Although the complexity of the HEVC encoder has considerably increased to achieve a 

higher coding efficiency, it can be regarded as an improvement based on the 

experience gained from previous coding standards, such as H.264/AVC. One of the 

most important observations is that both H.264/AVC and HEVC encoders work by 

dividing one frame into multiple non-overlapping small blocks. The motion estimation 

process will also output MVs with different block size to best represent the underlying 

motions of objects in the screen. 

The block size of MV used in the proposed algorithm is 8x8 samples, the HEVC 

encoder can be modified to output inter-frame MV of block size 8x8, using the method 

proposed in Chapter 3.1.1. With the MV output from the HEVC encoder following the 

format proposed in this project, the algorithm can be extended to be used in newer 

generation video encoders. The computation cost for motion estimation in the HEVC 

encoder can also be enhanced by making use of the information from the inertial 

sensors and vehicle speed sensor. The efforts paid on enhancing H.264/AVC encoders 

can therefore be re-used in the new HEVC encoder.  
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7.9 Chapter Summary 

This Chapter has elaborated the potential improvements that can be made to the 

proposed algorithm. These include an improved camera calibration method, road region 

detection with temporal consistency consideration, adaptive ego vehicle speed region of 

interest segmentation and adding symmetry detection for slow relative speed vehicle 

detection. For relatively fast speed moving object detection, adding predictive algorithm 

to the estimation of displacement of MVs, faster template matching algorithm, and 

rejection of non-critical detected objects by temporal movement evaluation, can be 

considered to improve the detection rate and computational speed, as well as to reduce 

the false alarm rate. Improvements to the motion estimation algorithm in the H.264/AVC 

encoder, and future extension in using the MVs from the newer HEVC encoder are also 

considered. With continuous efforts putting to the research on ADAS, these suggested 

improvements will be tested and evaluated in the near future. 
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8 Future R&D Directions 

The future R&D direction will be to refine the performance of the developed algorithms 

in terms of detection rate, false positive rate, as well as computation efficiency. Potential 

improvements mentioned in Chapter 7 will be realised to improve the performance.  

Since HEVC is the standard for next generation high-definition video, the future R&D 

direction will be on better integration of the developed algorithm with HEVC. There 

have been studies on the use of inertial sensors to reduce the computational cost on 

motion estimation for video encoders (Chen and Zhao et al., 2011, Angelino and Cicala 

et al., 2013, Wang and Ma et al., 2012). It is expected that the use of inertial sensors and 

speed sensors can reduce the computation cost of HEVC for automotive applications. 

Since the motion prediction can be taken from these sensors, it is expected that the 

resulting MVs can describe the movements of objects more accurately without loss of 

video compression efficiency. A new System-on-Chip with HEVC encoding making use 

of sensor inputs can be less computationally expensive. The power consumption for 

video encoding can also be reduced. This design will not only be beneficial to 

automobiles looking for lower power consumption, but also to battery powered handheld 

devices such as cameras and smartphones. 

Working with multiple systems in a vehicle is another direction that needs to be 

addressed. Currently, the system assumes there is no other system that outputs warnings 

or overrides controls from the driver. The complicated on-board automobile system will 

include a human-machine-interface that integrates all warnings, system status, and 

available user preferences. The strategies on warning outputs, communication and 

coordination among different driver assistance systems are also required to be 

developed. 
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9 Further Works on Product Commercialisation 

The algorithms developed are porting to an embedded system for commercialisation. 

Since the image resolution has been increased to 1280x720 in the target system from 

640x480 during the development for commercialisation, optimisation on the algorithms 

is required to perform the detection in real-time. The target product is a complete ADAS 

with lane departure warning (LDW), relative slow speed vehicle detection and relative 

fast speed moving object detection. The porting of LDW and relative slow speed moving 

object detection has been completed. While the first trial samples for the embedded 

hardware has been developed, second trial samples are under development with 

modifications to correct the problems found in the first trial samples. In parallel to the 

hardware development, the integration of relative fast speed moving object detection 

algorithm is also in progress. At the same time, there are other supporting functions, 

such as image quality, lens dirt detection, adverse weather detection and night time 

detection, are required to be included in the system to help determine whether the 

detection result is reliable.  

In addition, the image pre-processing functions available from the embedded 

System-on-Chip will also be utilised to reduce the computation overhead. Imaging 

functions such as colour space conversion, resizing, cropping and image histogram 

evaluation can be done by the hardware for use by different algorithms in the system. 

Since multiple algorithms are required to run in parallel, the system will utilise the 

multi-core System-on-Chip to run multiple threads in parallel. The optimisation on 

processor load of multiple cores as well as the utilisation of the memory bandwidth is 

also ongoing. 
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To further improve the reliability of the detection, a self-testing and auto-calibration 

algorithm will also be developed. This algorithm aims to detect if the camera is mounted 

correctly, and if the inertial sensors are working properly. This is because there is chance 

that the camera will be misaligned due to long term usage. When misalignment is 

detected, the system can self-calibrate itself to make sure the orientation of the camera is 

usable. Otherwise, a fault should be reported to ask for repair or servicing.  

In the meantime, a demonstration system will also be built to show the features of the 

system to facilitate the commercialisation. 
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10 Conclusions 

The objective of this research was to develop a low-cost Advanced Driver Assistance 

System by the shared-use of motion vectors from a H.264/AVC encoder. It was 

identified via the literature review on vision based ADAS. This project was funded by 

the Innovation and Technology Commission of Hong Kong via a conscientious and 

careful vetting process.  

The challenges of using MVs from the H.264/AVC encoder included the difficulty in 

detecting moving object due to small and imprecise MVs on moving objects with 

relatively slow moving speed to the ego vehicle, and the erroneous MVs due to the fact 

that the motion estimation algorithm of the H.264/AVC encoder is designed for highest 

video compression ratio rather than for precise motion estimation of objects in the scene. 

The main contributions of this research are the methods proposed for moving object 

detection given the limitations of MVs from H.264/AVC encoders. By separating the 

captured image into ROI for relatively slow and fast moving object detection 

respectively, the proposed algorithm has solved the problem of difficult object detection 

due to small MV on moving objects with relatively slow speed to the ego vehicle. 

Relatively slow moving objects are detected by the proposed algorithm with the use of 

generic line features of vehicles. It allows a wide variety of vehicles with different shape 

and size to be detected, such as passenger cars, minivans, trucks, coaches and buses. The 

resulting detection rate and false positive rate are on a par to other state-of-the-art 

algorithms proposed and published by other authors. Analysis also shows that the cost of 

the proposed system is 50% less expensive than systems utilising optical-flow or 

feature-based techniques. 
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The algorithm for fast relative speed object detection works in conjunction with the 

detection of moving objects that may not be covered by the slow relative speed moving 

object detection algorithm. The detection is based on the amplitude and direction of 

planar parallax residuals of MVs of the macroblocks inside the ROI. The detection phase 

consists of a Hypothesis Generation stage for finding the template dynamically for 

matching in the Hypothesis Verification stage in the next frame. Hypothesis Verification 

is achieved by the template matching algorithm and dynamic template re-generation in 

the successive frames. This algorithm solves the problem of erroneous MVs generated 

by the H.264/AVC encoder that will lead to wrongly detected moving object.  

The road region detection algorithm serves to reduce the ROI for moving object 

detection, thereby reducing the computational time and the chance of having false 

positive detection. The threshold value for creating the binary image for initial vehicle 

location determination and for the Canny edge image for template matching is also 

determined during the process of road region detection. The innovation of the proposed 

road region detection algorithm is based on the use of block based rather than pixel 

based evaluation. This approach reduces the required computational cost to help achieve 

the real-time performance.  

A six-degree-of-freedom inertial sensor is incorporated in the camera module. The 

sensor is able to measure the three dimensional angular speed, acceleration and 

orientation of the camera. By making use of the readings from the sensor, the 

transformation matrix between the camera coordinates and the World coordinates can be 

deduced more accurately for ego motion compensation. The sensor is also utilised in the 

camera calibration method proposed in this study. 
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As the system was targeted to operate at real-time, the computational cost was also 

evaluated. The result shows that the algorithm can be completed in 66ms, within the 

time duration of successive frames.  

A new camera calibration method was also proposed in this study to facilitate the 

practical needs of consistent camera installation quality and the accurate estimation of 

camera intrinsic and extrinsic parameters. 

A trail project has also been carried out for commercialisation preparation. Although a 

prototype with all the features proposed in this project could not be put into trail due to 

the time constraints, the collection of user experience and identification of areas for 

improvements will be useful to the future commercialisation. 

A Hong Kong Short-term patent was filed successfully. The associated patent search 

report indicates that the invention is innovative and there is no infringement to 

intellectual properties. The invention is under registration to the SIPO of the PRC. 

Finally, there remain some areas where the algorithm can be improved in terms of 

computational cost, detection rate and false positive rate. These include the use of 

temporal information to speed up the road region detection algorithm, using a better 

strategy for splitting the ROI for relatively fast and slow moving objects, adding 

symmetry evaluation to further reduce the false alarm rate, predictive displacement 

estimation of relatively fast moving object during successive tracking, faster search 

algorithm for template matching, and improvement to the motion estimation algorithm 

of H.264/AVC encoder using the information from the inertial sensor and vehicle speed 

sensor. These improvements to the algorithm will be investigated by the author and the 

research team in his organisation. 
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The specific conclusions from this research are as follows: 

� A low-cost ADAS that share-uses MVs from the H.264/AVC encoder has been 

developed. It matches with the objective of this research. Analysis shows that the 

cost of the proposed system is 50% less expensive than systems utilising other 

techniques 

� An original and novel algorithm to address the problems of the use of MVs from 

the H.264/AVC encoder for moving object detection has been proposed. Test 

results show that the detection rate is on a par to state-of-the-art algorithms 

proposed by other authors. This is also the main contribution of this research. 

� A six-degree-of-freedom inertial sensor was built into the camera unit to assist the 

ego motion estimation and focus of expansion.  

� A novel camera calibration procedure was developed. It has provided a systematic 

approach for engineers so that the camera can be installed and calibrated 

consistently. 

� The novelty of this research is illustrated by the successful publications of a peer 

review journal paper and a conference paper, a successfully filed short-term patent 

in Hong Kong with the patent search report mentioning the eligibility of the 

invention for registration towards the SIPO of the PRC.  

� A trial project has been carried out to collect the user feedback and identify 

problems of the system prototype. The algorithm has proven to be useful and 

improvements to the system will be made continuously during the 

commercialisation of the system.  
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