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Abstract

Over the past decades, statistical models have been established as an im-
portant tool for understanding the transmission dynamics of infectious diseases.
Inference in such models can be challenging due to the strong dependencies in the
actual epidemic process, as well as the fact that observations often rely in diag-
nostic tests that have imperfect sensitivities. Moreover, samples are often taken
with very low temporal resolution, which leads to the actual dynamics being only
partially observed. Data augmentation techniques implemented within the frame-
work of Markov chain Monte Carlo (MCMC) methods can tackle these problems by
taking into account the unobserved dynamics of transmission and thus have been
widely employed in practice. Despite the methodological advances in the context
of partially observed epidemic models, there are still several open challenges that
remain to be addressed. One of the key challenges is the establishment of model
comparison techniques that can be efficiently applied in problems involving a large
amount of missing information. In this thesis, we describe a framework based on
importance sampling which provides estimates of the marginal likelihood and is well
suited for applications in this complex setting. Until recently, the study of infectious
diseases in large scale populations has been challenging due to the computationally
intensive methods needed to these models. One further contribution of this the-
sis is the development of a data augmentation MCMC algorithm that can be used
in both Markovian and non-Markovian epidemic models. Our algorithm achieves
good computational efficiency and therefore can be viewed as an alternative to ex-
isting approaches, particularly for applications on big datasets. The last part of the
thesis is concerned with epidemic data containing additional information regarding
the strain of a pathogen with which individuals are infected. Quantifying the in-
teractions between the different strains of pathogens is crucial in order to obtain
a complete understanding of the disease but statistical methods for this type of
problem are still in the early stages of development. Motivated by this demand, we
construct a model that incorporates this additional information and propose a sta-
tistical algorithm for inference. The model improves upon existing methods in the
sense that it allows for both imperfect diagnostic test sensitivities and strain mis-
classification. Finally, extensive simulation studies are conducted in order to assess
the performance of our methods, while the utility of the developed methodologies is
demonstrated on data obtained from two longitudinal studies of Escherichia coli in
cattle.
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Chapter 1

Introduction

1.1 Epidemic background

1.1.1 The need for epidemic modelling

Infectious diseases have been historically, and remain, one of the major causes of

human mortality and suffering. For instance, the Black Death pandemic of the 14th

century killed about one fourth of the population in Europe, while in 1520 half of

the population of Aztecs lost their lives due to smallpox (Bailey, 1975). Another

notable example is the global spread of the human immunodeficiency virus (HIV),

which nearly 35 years after its first reported case continues to be one of the main

causes of death worldwide. In 2014, 1.2 million died of illnesses related to HIV

and it is believed that there were 2 million new infections (UNAIDS, 2015). More

recently, the influenza pandemic caused by the H1N1 virus spread rapidly to over 30

countries during the first few weeks of its surveillance (Smith et al., 2009), leading

to over 18,000 deaths1. At present, the World Health Organisation estimates in its

latest report that over 6 million people die annually due to infectious and parasitic

diseases, which represents 10% of the total deaths per year2.

The examples above highlight the need for epidemic models in order to gain

a better understanding of the transmission dynamics of an infectious disease. Math-

ematical models allow us to capture the features that drive the spread of the disease

and obtain estimates of several important epidemiological quantities. These can be

subsequently used to predict the progression of an epidemic and hence guide the

development of real-time control strategies to prevent a potential outbreak (see e.g.

Bailey, 1975; Keeling and Rohani, 2008). Given a particular question of interest,

epidemic models can further contribute to formulate what data should be collected

in order to answer this question (Isham, 2005).

1 Pandemic (H1N1) 2009 - update 103. Disease Outbreak News. World Health Organization.
2010-06-04. (http://www.who.int/csr/don/2010_06_04/en/)

2Global Health Estimates 2013: deaths by cause, age and sex; estimates for 2000–2012. Geneva:
World Health Organization; 2014. (http://www.who.int/healthinfo/global_burden_disease/
en/)

http://www.who.int/csr/don/2010_06_04/en/
http://www.who.int/healthinfo/global_burden_disease/en/
http://www.who.int/healthinfo/global_burden_disease/en/
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1.1.2 History of epidemic modelling

The history of mathematical models for infectious diseases starts in 1760 with a

paper by Bernoulli (1760), who developed a model to evaluate the effectiveness of

inoculation against the smallpox virus. However, it was not until the 20th century

that the field was established. In 1906 Hamer (1906) studied a discrete time deter-

ministic model for measles epidemics, introducing the principle of mass action or

homogeneous mixing which assumes that the probability of a new infection in the

next time point is proportional to the product of the total number of susceptible

and infected individuals in the population. This idea was then extended to the con-

tinuous time case with the works by Ross (1911, 1916), Ross and Hudson (1917a,b)

and Kermack and McKendrick (1927). In the latter, Kermack and McKendrick pro-

posed the first complete mathematical model, which is known as the deterministic

general epidemic model.

During the same period, some stochastic models were developed in order

to account for the randomness observed in real-life epidemics, starting with the

continuous time model of McKendrick (1926) which is a stochastic variant of the

general epidemic model. Another model that received considerable attention was the

discrete time chain-binomial model proposed by Reed and Frost for the purposes of

a series of lectures given in 1928, see e.g. Abbey (1952). In the Reed-Frost model the

number of infected individuals at any given time point has a binomial distribution

with the probability of infection depending on the number of carriers at the previous

time point. In a landmark paper, Bartlett (1949) studied McKendrick’s model and

since then the literature on stochastic epidemic models began to grow exponentially.

Some textbook references include Bailey (1975), Becker (1989) and Andersson and

Britton (2000), whereas Isham (2005) and Britton (2010) provide comprehensive

reviews of the topic.

Several studies within the aforementioned references classify individuals into

compartments according to their disease states. Such approaches are referred to

as compartmental models. The most characteristic example within this class is

the Susceptible-Infected-Removed model (SIR, McKendrick, 1926; Whittle, 1955;

Barbour, 1975, for example) where individuals can be susceptible if they do not have

the disease but can acquire it, infected if they carry the disease and can transmit it

to susceptible individuals or removed when they have recovered from the disease and

cannot be infected by it again. There exist many extensions of the SIR model, one

of the most widely used being the SEIR model (see e.g. Bartlett, 1956; Gibson and

Renshaw, 1998; Lekone and Finkenstädt, 2006) in which the additional exposed state

represents individuals who have the disease but are not infectious. Another example
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is the SIS model (Bartlett, 1957; Weiss and Dishon, 1971; N̊asell, 2002, among

others) which assumes that cleared individuals become available for re-infection

immediately after recovery.

The majority of the works listed so far assumes a community of homogeneous

individuals mixing uniformly. Nevertheless, this is often unrealistic in practice due

to variations induced by the characteristics of the population or the disease. As

a result, significant efforts have been made towards relaxing this assumption by

accounting for different sources of heterogeneity. Individual heterogeneities allow

for the members of the population to have different risks of becoming infected or

transmitting the disease according to their attributes. For instance, children are

more susceptible to influenza compared to adults. Numerous other factors exist, in-

cluding gender (especially for sexually transmitted diseases), vaccination status and

previous exposure to the disease. These factors can be used to categorise individu-

als into different types, assuming that individuals of the same type exhibit identical

behaviour (Becker and Marschner, 1990; Andersson and Britton, 1998; Hayakawa

et al., 2003). Similar ideas can be applied to model heterogeneities in the parasite

itself, which occur for example when several strains of the same virus are observed

(Ball and Clancy, 1995; Ferguson et al., 2003). In such cases it is essential to model

interactions between strains since infection by one type may lead to immunity or

partial immunity to the other types of the disease.

Another source of heterogeneity may arise when the population under study

is organised into small groups, for example households or schools. Typically the

mixing within these groups occurs at a higher rate than with the rest of the popula-

tion, and therefore it is of vital importance to take this structure into consideration.

In the majority of the applications it is plausible to assume that individuals mix

homogeneously within each group. The simplest approach is to exclude the pos-

sibility of infection from the community and focus on the dynamics of the disease

within each household. An alternative approach is to assume that each individual

avoids infection from the population at large (global infection) with a single fixed

probability, implying that households are independent of one another (Longini and

Koopman, 1982). In some scenarios it is more realistic to allow for two levels of mix-

ing, where infectious contacts take place both at a local (within group) level and at

a global level (Ball et al., 1997; Demiris and O’Neill, 2005). The difference with the

previous model is that households are no longer independent and in particular the

probability of avoiding global infection depends on the number of infected individu-

als in the community. A generalisation of the model with two levels of mixing is the

multilevel model where individuals belong to more than one group simultaneously,
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see for example Cauchemez et al. (2008) and Britton et al. (2011).

Another direction that researchers have taken in order to make models more

accurately represent the realities of disease progression concerns the infection period

that is, the time that an individual remains infected. The general stochastic epi-

demic model uses the Markov property which states that the probability of recovery

is constant over time. This is achieved by assuming that the infection period follows

an Exponential or a Geometric distribution in continuous and discrete time, re-

spectively. However, in some diseases individuals’ chances of being cleared increase

with the time of infection, for example because they develop immunity. Consider-

able progress has been made in relaxing the Markovian assumption, see for example

O’Neill and Becker (2001) who used a Gamma distribution for the infection period

and Streftaris and Gibson (2004) who adopted the Weibull distribution.

There are various other ways in which epidemic models can be extended. For

instance, one can use geographical information regarding the incidences of a disease

known as spatial epidemiology; we refer the reader to Lawson (2013) and Lawson

et al. (2016) for an extensive treatment of the topic. A number of approaches in the

literature utilise network theory to represent the interactions within a population

during an epidemic; see for example Anderson et al. (1999), Danon et al. (2011) and

the references therein. However, such models are not further discussed here.

1.1.3 Statistical inference and model selection for stochastic epi-

demic models

So far, we have focused on reviewing some of the existing work on modelling the

dynamics of an infectious disease. From this point on, we restrict our attention on

stochastic epidemic models which are the key theme of the thesis. In this section,

we summarise available tools for drawing inference about parameters in such mod-

els. Inference in epidemics is not a trivial problem and therefore requires a special

methodology. One of the main difficulties is the existence of dependencies in the

data that arise because of the contacts made between individuals. A further compli-

cation is the fact that the actual process of infection is in most cases only partially

observed, in the sense that times of acquiring and clearing infection are not known

exactly. Moreover, the tests that are used to detect the disease may be imperfect,

thus leading to data of lower quality. For all these reasons, it is often difficult to

analytically evaluate the likelihood because its calculation involves integrating out

all unobserved quantities.

When the full data are available, i.e. the times of infection and recovery are

known, one can use standard techniques to obtain estimates of the parameters of
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interest. One example is given by maximum likelihood methods, see e.g. Becker

(1989). However, since data are typically incomplete, most of the literature deals

with methods that tackle the problem of inference in partially observed epidemics.

Initial approaches use martingale theory to obtain method of moments estimates

for the model parameters (Becker, 1989; Rida, 1991; Becker and Hasofer, 1997).

Nevertheless, it is hard to extend these methods to the complex models that are

used in practice. Instead, it is more common to employ data augmentation methods,

which treat the missing data as additional model parameters. Such models can be

handled with the Expectation-Maximisation (EM) algorithm (Becker, 1997; Becker

and Britton, 1999), but are more often fitted under the Bayesian paradigm using

Markov chain Monte Carlo (MCMC) methods. More details on the basic concepts

of Bayesian inference and MCMC are given in Section 1.2.

The first data augmentation MCMC algorithms were developed by Gibson

and Renshaw (1998) and O’Neill and Roberts (1999) for statistical analysis of the

continuous time SEIR and SIR models, respectively. After that, several works

adapting MCMC techniques with data imputation appeared in the literature of

which we quote a few key references. O’Neill (2002) studied a simple household

model with independent groups, while Demiris and O’Neill (2005) first presented

a Bayesian methodology for the model with two levels of mixing. Hayakawa et al.

(2003) extended the basic model to incorporate host heterogeneity and develop an

MCMC algorithm for parameter estimation. O’Neill and Becker (2001) and Stre-

ftaris and Gibson (2004) were among the first to apply MCMC in models with a

non-Markovian infection period. Smith and Vounatsou (2003) demonstrate the use

of discrete time hidden Markov models (discussed in more detail in Section 1.3) for

modelling longitudinal epidemiological data, which can effectively account for im-

perfect diagnostic tests and are used in the present work. The framework extends

to partially observed continuous time epidemic models, see for example Fearnhead

and Meligkotsidou (2004). Numerous other papers performed inference in epidemics

with partial observations using data augmentation MCMC including Auranen et al.

(2000), Morton and Finkenstädt (2005), Jewell et al. (2009), Kypraios et al. (2010),

Erästö et al. (2012) and Spencer et al. (2015).

A class of techniques that have growing popularity in several scientific fields,

along with epidemiology, are the so-called simulation-based methods. These include

approximate Bayesian computation (ABC, McKinley et al., 2009), sequential Monte

Carlo (SMC, Ionides et al., 2006; Dukic et al., 2012), SMC ABC (Toni et al., 2009;

Toni and Stumpf, 2010) and pseudo-marginal methods (McKinley et al., 2014). For

a description of ABC, SMC and pseudo-marginal approaches we refer the reader to
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the previously mentioned papers and the references therein.

Finally, there has been some work on Bayesian model selection (see Section

1.2.4 for a brief overview) in the context of stochastic epidemic models. Initial work

was based on reversible jump MCMC (RJMCMC), such as Neal and Roberts (2004)

who compared alternative models for measles epidemics and O’Neill and Marks

(2005) who presented an application on a gastroenteritis outbreak. Clancy and

O’Neill (2007) demonstrated the usefulness of rejection sampling as an alternative

to RJMCMC. More recently, Knock and O’Neill (2014) and O’Neill and Kypraios

(2014) used path-sampling and mixture modelling, respectively, to tackle the prob-

lem. Lastly, there are examples of studies exploring the use of ABC for model choice

in epidemic applications (Toni et al., 2009; Lee et al., 2015; Sun et al., 2015).

1.1.4 Open problems

Despite the methodological advances that we described earlier in Section 1.1.3, there

are still several open challenges in the area of stochastic epidemic models with par-

tially observed data that remain to be addressed. For example, even though model

selection has received fair attention, it is challenging to apply some of these methods

when there are large amounts of missing data. Moreover, it is often necessary (e.g.

for RJMCMC) to re-run the analysis when additional candidate models are consid-

ered leading to a significant increase in computational effort. Another issue is the

lack of studies that assess the performance of existing approaches under different

setups.

Even though enormous progress has been made in Bayesian data imputation

techniques, most of the applications so far have been on moderate sized populations.

Nevertheless, statical inference in high-dimensional missing data problems remains

challenging. For example, such problems arise in individual-based models and in

particular when data are gathered longitudinally from the same group of individuals

for a long time period. Some noticeable developments have been made by authors

such as Jewell et al. (2009) and Kypraios et al. (2010) but there is still room for

improvement.

For some pathogens there exist testing procedures that can be used to dis-

tinguish among different strains. Due to the growing availability of such data,

multi-strain models have increased in popularity over the past years. Inference for

this class of models requires special attention due to the need to estimate several

strain-specific parameters, for example acquisition or recovery rates, and to account

for interactions between different strains. The fact that a carrier can be misclassi-

fied not only as being susceptible but also as being colonised by some other type
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rather than the true, further complicates the analysis. Although this involved setup

can be handled using Bayesian techniques, there are only few tools available for

practitioners.

The objective of this thesis is to attempt addressing some of the shortcomings

just discussed. The methods that we propose rely upon tools from Bayesian statistics

and hidden Markov models, and therefore we provide some fundamental theory

behind these concepts in Sections 1.2 and 1.3, respectively. Section 1.4 contains an

outline of the thesis.

1.2 Fundamentals of Bayesian methods

1.2.1 Bayes’ theorem

Bayesian statistics build upon Bayes’ theorem which for data y and model param-

eters θ states:

π(θ | y) =
π(y | θ)π(θ)∫

θ
π(y | θ)π(θ) dθ

. (1.1)

In Equation (1.1), π(θ) is the distribution that reflects our prior beliefs regarding

the parameter vector θ, possibly high dimensional, π(y | θ) is the likelihood that

follows from the model that we assume and the denominator is essentially the nor-

malising constant. The quantity of interest is the posterior distribution π(θ | y)

that describes the updated information regarding the model parameters in light of

the observed data. When available in closed form, the posterior distribution can be

used to perform inference on θ. For example, the expectation of a function f(·) of

the parameters can be calculated as:

E [f(θ)] =

∫

θ
f(θ)π(θ | y) dθ.

Nevertheless, posterior distributions cannot be solved analytically unless in very

simple models and therefore inference is typically not straightforward. The main

reason is that the integral involved in the calculations is typically intractable. One

solution to this problem can be the use of Markov chain Monte Carlo methods which

we briefly explain in the following Section 1.2.2.

1.2.2 Markov chain Monte Carlo

Markov chain Monte Carlo is a general technique that is used to generate samples

from a distribution π, the target distribution, which is known up to a proportionality
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constant. The idea is to construct a Markov chain that has π as its stationary

distribution and then use the chain to estimate functions of the target distribution.

Within the Bayesian framework the target is the posterior distribution of the model

parameters π(θ | y). MCMC encompasses a broad range of algorithms; we present

the ones that are relevant to our work. For a more detailed review of the topic, as

well as theoretical results we refer the reader to Gilks et al. (1995), Roberts and

Tweedie (2005) and Brooks et al. (2011).

1.2.2.1 The Gibbs sampler

The Gibbs sampler (Geman and Geman, 1984) tackles the problem of simulating

from a high dimensional distribution by breaking it into a collection of lower di-

mensional, more manageable simulations. Let θ = (θ1, θ2, . . . , θd), where d is

the dimension of the posterior distribution. The algorithm successively and re-

peatedly simulates the components θi from the conditional distributions π(θi |
θ1, . . . , θi−1, θi+1, . . . , θd, y), which we call the full conditionals. An overview is

given in Algorithm 1.

Algorithm 1: The Gibbs sampler

1 Initialise θ(0) =
(
θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
d

)
;

2 for j = 1, 2, . . . , J do

3 Draw θ
(j)
1 ∼ π

(
θ1 | θ(j−1)2 , θ

(j−1)
3 , . . . , θ

(j−1)
d , y

)
;

4 Draw θ
(j)
2 ∼ π

(
θ2 | θ(j)1 , θ

(j−1)
3 , θ

(j−1)
4 , . . . , θ

(j−1)
d , y

)
;

5 Draw θ
(j)
3 ∼ π

(
θ3 | θ(j)1 , θ

(j)
2 , θ

(j−1)
4 , θ

(j−1)
5 , . . . , θ

(j−1)
d , y

)
;

6 . . .

7 Draw θ
(j)
d ∼ π

(
θd | θ(j)1 , θ

(j)
2 , . . . , θ

(j)
d , y

)
;

8 end

When implementing the Gibbs sampler it is common to update one com-

ponent at a time. However, it is possible to group relative parameters in blocks

and update them jointly from their full conditional distribution given the data and

remaining parameters.
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1.2.2.2 The Metropolis-Hastings algorithm

Implementation of the Gibbs sampler requires the full conditional distribution of

the components of θ to be available in closed form. However, for many models

this is not possible. An alternative approach is the general Metropolis-Hastings

(MH) algorithm introduced by Hastings (1970). The method proceeds as shown in

Algorithm 2.

Algorithm 2: The Metropolis-Hastings algorithm

1 Initialise θ(0) =
(
θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
d

)
;

2 for j = 1, 2, . . . , J do

3 Given θ(j−1), draw a candidate value θ∗ from the proposal density

q
(
θ(j−1), ·

)
;

4 Calculate α
(
θ(j−1),θ∗

)
= min



1,

π (θ∗ | y) q
(
θ∗,θ(j−1)

)

π
(
θ(j−1) | y

)
q
(
θ(j−1),θ∗

)



;

5 Draw u ∼ Uni(0, 1);

6 if u ≤ α
(
θ(j−1),θ∗

)
then

7 Set θ(j) = θ∗

8 else

9 Set θ(j) = θ(j−1)

10 end

11 end

There are several choices for the proposal distribution, the simplest being to

allow q to depend only on its first argument that is, q
(
θ(j−1),θ∗

)
= q(θ∗). This

leads to the independence sampler. Another popular choice is to select a proposal

of the form q
(
θ(j−1),θ∗

)
= q

(∣∣θ(j−1) − θ∗
∣∣
)

which is known as the symmetric

random walk Metropolis and was first introduced by Metropolis et al. (1953). In

the one-dimensional case, q is usually set to be a N
(
θ(j−1), σ2

)
. The choice of

the proposal distribution is crucial as it affects the performance of the Metropolis-

Hastings algorithm. For example, setting the variance σ2 of the Normal random walk

Metropolis proposal too high may lead to very few proposed values being accepted,

whereas setting it too low might result into high acceptance rate and hence slow

convergence of the chain. For this reason there have been many attempts to develop

adaptive algorithms automatically tune the proposal distribution, see for example

Haario et al. (2001) and Roberts and Rosenthal (2009).
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The MH algorithm can be used in conjunction with the Gibbs sampler for

updating components for which the full conditionals are not available. This approach

is known as the Metropolis within Gibbs algorithm.

1.2.2.3 Data augmentation

Data augmentation is broadly used when performing Bayesian analysis with unob-

served data or latent variables. In such cases, it may be hard to integrate out the

missing data x and therefore it is often more convenient to augment the parameter

space by including x, and use the joint posterior π(θ,x | y) as the target distribu-

tion. The reason is that one can then apply a two stage Gibbs sampler alternating

between simulations of θ from π(θ | x,y) and x from π(x | θ,y), which are more

tractable than simulating from π(θ | y).

1.2.2.4 Practical implementations

The theory of MCMC guarantees convergence to the correct target distribution

but the rate of convergence cannot be typically known in advance. Therefore, in

practical applications it is advisable to examine the output of MCMC in order to

check whether the chains have reached their stationary distribution. Convergence

can be assessed by visual inspection of traceplots or using existing formal diagnostic

tests which include Gelman and Rubin (1992), Geweke (1992) and Raftery and Lewis

(1992). Moreover, in order to ensure that the samples taken are representative of the

target posterior, the early values in the chain are usually discarded as a burn-in. The

length of the burn-in generally depends on the starting values since it will take more

iterations to reach stationarity when the initial state of the algorithm is far from the

posterior mode. Finally, a further issue concerning MCMC implementation is the

autocorrelation within chains. If the output exhibits strong autocorrelation then

the samples contain less information regarding the desired distribution compared to

when being independent. Also, chains with high autocorrelation may require more

iterations to sufficiently explore the parameter space. When dealing with highly

correlated chains, one common practice is to do thinning that is save the output

every k-th iteration. However, it must be noted that there should be a balance

between the amount of thinning and the cost of sampling.

1.2.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC, Duane et al., 1987; Neal, 2011) mimics the evo-

lution over time of a Hamiltonian system that is characterised by its position (q)
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and momentum (p). For the purposes of simulating from a posterior distribution

of interest, q = θ and p is introduced artificially from a Nd(0,M) distribution.

Samples for θ are obtained by simulating the dynamics of the system which are

described by Hamilton’s set of differential equations. However, solving Hamilton’s

equations is not possible in most practical applications and therefore integration is

typically done with the leapfrog integrator which for stepsize ε, updates the current

state (θ(t),p(t)) to a new state (θ(t+ ε),p(t+ ε)) as follows:

p
(
t+

ε

2

)
= p (t) +

ε

2
∇θ log π (θ(t) | y)

θ (t+ ε) = θ (t) + εM−1p
(
t+

ε

2

)

p (t+ ε) = p
(
t+

ε

2

)
+
ε

2
∇θ log π (θ(t+ ε) | y).

Note that an accept/reject step needs to be introduced at the end of integration

in order to account for the error introduced by the discretisation. Usually, leapfrog

integration is repeated for several number of steps L; the special case where L = 1

corresponds to the Metropolis-adjusted Langevin algorithm (Roberts and Rosenthal,

1998).

HMC gains efficiency by using gradient information from the target posterior

and can outperform many MCMC algorithms under various scenarios, particularly

in high dimensional problems (Neal, 2011; Girolami and Calderhead, 2011). Imple-

mentation of the method may be challenging since it requires the specification of the

parameters ε, L and M but there has been work showing how these can be tuned

automatically, see for example Hoffman and Gelman (2014).

1.2.4 Bayesian model selection

1.2.4.1 Bayes factor

The traditional approach to Bayesian model selection is concerned with the following

situation. Suppose that the observed data y have been generated by some model

Mk ∈ M, where M is a finite or countable set of competing models indexed by

a parameter k ∈ K. Each model Mk has it own vector of unknown parameters

θk ∈ Θk of dimension dk, where dk may vary from model to model. Let π(k) be

the prior probability of model Mk such that
∑

k∈K π(k) = 1. A choice between

two models, say Mk and Mr (k 6= r), often is based on the Bayes factor (Kass and
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Raftery, 1995) defined as the ratio of posterior to prior odds in favour of modelMk:

Bkr =
π(k | y)/π(r | y)

π(k)/π(r)
, (1.2)

where π(k | y) is the posterior probability of model Mk given by:

π(k | y) =
π(k)π(y | k)∑

r∈K
π(r)π(y | r)

. (1.3)

In the above equation π(y | k) is the marginal likelihood of model Mk obtained as:

π(y | k) =

∫

θk

π(y | k, θk)π(θk | k) dθk.

where π(y | k, θk) is the likelihood function and π(θk | k) is the model-specific prior

distribution of θk. Combining Equations (1.2) and (1.3) we get,

Bkr =
π(k | y)/π(r | y)

π(k)/π(r)
=
π(y | k)

π(y | r) ,

showing that the marginal likelihoods could also be considered as the quantities of

key interest. Bayes factor may be interpreted as a measure of the evidence provided

by the data in favour ofMk relative toMr; values for the Bayes factor greater than

one support Mk, whereas a Bayes factor less than one supports Mr.

The integral involved in the computation of the Bayes factor can be evalu-

ated analytically only in specific examples and therefore in any other case, one needs

to employ asymptotic approximations or other computational methods. However,

the standard MCMC algorithms cannot be applied because moves from one model

to another involve changes in the dimension of the parameter space and thus gen-

eralised MCMC algorithms are required. Existing methodologies are based either

on the estimation of the marginal likelihoods or equivalently on the estimation of

the posterior probabilities for the competing models. In the following sections, we

present some of the algorithms that are widely employed, focusing on the ones that

are more relevant to our application.
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1.2.4.2 Importance sampling

The problem of estimating the marginal likelihood of a modelMk can be re-written

as:

π(y | k) =

∫

θk

π(y | k, θk)
π(θk | k)

q(θk)
q(θk) dθk

= Eq(θk)

[
π(y | k, θk)π(θk | k)

q(θk)

]
,

where q(θk) is called the importance density. Hence, an unbiased importance sam-

pling (IS) estimator of the marginal likelihood can be obtain as (Ripley, 1987):

P̂IS(y | k) =
1

N

N∑

i=1

π
(
y | k, θ(i)k

) π
(
θ
(i)
k | k

)

q
(
θ
(i)
k

) ,

where θ
(i)
k are independent and identically distributed (iid) samples from the proposal

density q(θk). The efficiency of the estimator depends on how well q(θk) approx-

imates the true posterior. Further, it needs to be ensured that q(θk) has heavier

tails compared to the unnormalised posterior π(y | k, θk)π(θk | k) in order for the

variance of the importance sampling estimator to be finite (Frühwirth-Schnatter,

2006).

1.2.4.3 Harmonic mean

An alternative way to write the marginal likelihood is:

π(y | k) =

{∫

θk

q(θk)

π(y | k, θk)π(θk | k)
π(θk | y, k) dθk

}−1

=

{
Eπ(θk|y,k)

[
q(θk)

π(y | k, θk)π(θk | k)

]}−1
.

By taking q(θk) = π(θk | k) leads to the harmonic mean (HM) estimator (Newton

and Raftery, 1994):

P̂HM (y | k) =


 1

N

N∑

i=1

1

π
(
y | k, θ(i)k

)



−1

,
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where θ
(i)
k , i = 1, 2, . . . , N , are draws from the posterior distribution. This estimator

is widely used because it can be directly calculated from the output of an MCMC

algorithm. However, the harmonic mean estimator is known to exhibit large or even

infinite variance for some models (Newton and Raftery, 1994).

1.2.4.4 Bridge sampling

Meng and Wong (1996) introduced the bridge sampling (BS) approach for computing

ratios of normalising constants. The key identity for bridge sampling is,

π(y | k) =
Eq(θk)

[
α(θk)π

∗(θk | y, k)
]

Eπ(θk|y,k)
[
α(θk)q(θk)

] ,

where α(θk) is an arbitrary function, π∗(θk | y, k) is the unnormalised posterior and

q(θk) is a normalised density. The formula leads to the bridge sampling estimator:

P̂BS(y | k) =

1

L

L∑

`=1

α
(
θ̃
(`)
k

)
π∗
(
θ̃
(`)
k | y, k

)

1

N

N∑

i=1

α
(
θ̂
(i)

k

)
q
(
θ̂
(i)

k

) ,

where θ̃
(1)
k , θ̃

(2)
k , . . . , θ̃

(L)
k are iid samples from q(θk), and θ̂

(1)

k , θ̂
(2)

k , . . . , θ̂
(N)

k are

MCMC draws from the posterior, π(θk | y, k). The authors show that an asymp-

totically optimal choice of α(θk) in terms of expected relative error can be obtained

using iid draws from both q(θk) and π(θk | y, k),

α(θk) ∝
1

Lq(θk) +Nπ(θk | y, k)
.

Meng and Wong (1996) suggest the following iterative procedure to calculate the

bridge sampling estimator of the marginal likelihood:

P̂
(t)
BS(y | k) = P̂

(t−1)
BS (y | k)

1

L

L∑

`=1

π̃(t−1)
(
θ̃
(`)
k | y, k

)

Lq
(
θ̃
(`)
k

)
+N π̃(t−1)

(
θ̃
(`)
k | y, k

)

1

N

N∑

i=1

q
(
θ̂
(i)

k

)

Lq
(
θ̂
(i)

k

)
+N π̃(t−1)

(
θ̂
(i)

k | y, k
)

,
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where π̃(t−1)(θk | y, k) = π∗(θk | y, k)/P̂
(t−1)
BS (y | k). The recursion is repeated

until convergence, using some other marginal likelihood estimator, e.g. importance

sampling, to find the initial value P̂
(0)
BS (y | k).

1.2.4.5 Chib’s method

Chib’s method (Chib, 1995) is based on a rearrangement of Bayes’ theorem:

π(y | k) =
π(y | k, θk)π(θk | k)

π(θk | y, k)
,

which holds for all θk in the support of the posterior π(θk | y, k). Therefore, for a

fixed θk = θ∗k the log marginal likelihood can be estimated using:

P̂Chib(y | k) =
π(y | k, θ∗k)π(θ∗k | k)

π̂(θ∗k | y, k)
.

Even though the estimator is valid for any θ∗k, such that π(θ∗k | y, k) > 0, it is more

efficient to choose a point of high posterior density. As suggested by the author,

estimation of the posterior ordinate π(θ∗k | y, k) can be achieved by breaking the

parameter vector into Dk ≤ dk blocks:

π(θ∗k | y, k) = π(θ∗k,1 | y, k)× π(θ∗k,2 | y,θ∗k,1, k)

× · · · × π(θ∗k,Dk | y,θ
∗
k,1,θ

∗
k,2, . . . ,θ

∗
k,Dk−1, k).

To calculate each term in this product, a separate MCMC is run in which only

the unconditioned blocks of θ∗k,j , j = 1, 2, . . . , Dk, are updated and the appropriate

remaining blocks are fixed at the high posterior density points. In Chib (1995), it is

required that the full conditionals of each block are given in closed forms. Chib and

Jeliazkov (2001) extended the methodology in order to allow for some of the blocks

to be updated with MH steps.

1.2.4.6 Power posteriors

The power posterior (PP) approach to estimating the marginal likelihood (Friel and

Pettitt, 2008) uses samples from the power posterior, defined as:

π(θk | y, k, t) ∝ π(y | k, θk)t π(θk | k),

where t ∈ [0, 1] is a temperature parameter. Borrowing ideas from path sampling

allows the log of the marginal likelihood to be represented in terms of the thermo-
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dynamic integral:

log π(y | k) =

∫ 1

0
Eθk|y,k,t

[
log π(y | k, θk)

]
dt,

where the expectation of the mean deviance is taken with respect to the power pos-

terior at temperature t. The integral can be calculated numerically by discretising

the temperature range as 0 = t0 < t1 < . . . < tn = 1, and then the log marginal

likelihood can be approximated by the trapezium rule as:

log P̂PP (x) =
n−1∑

i=0

(ti+1 − ti)
Eθk|y,k,ti+1

[
log π(y | k, θk)

]
+ Eθk|y,k,ti

[
log π(y | k, θk)

]

2
.

For each ti, the expectation Eθk|y,k,ti
[

log π(y | k, θk)
]

are estimated using sam-

ples from the corresponding power posterior π(θk | y, k, ti), which can be obtained

with MCMC. The variability of the power posterior estimator depends on the total

number and spacing of the ti’s. However, choosing a large number of tempera-

tures requires considerably more computational effort. Finally, the precision of the

estimate also depends on the total number of MCMC samples for each temperature.

1.2.4.7 Reversible jump MCMC algorithm

Reversible jump MCMC was introduced by Green (1995) as a generalisation of

the MH algorithm. The method includes the model indicator k as an additional

parameter and uses the joint posterior distribution,

π(k,θk | y) =
π(y | k, θk)π(k, θk)

∑

k′∈K

∫

θk′

π(y | k′, θk′)π(k′, θk′) dθk′
∝ π(y | k, θk)π(θk | k)π(k),

as the target. The method can move between the candidate models as follows.

Suppose that the current state of the Markov chain is (k, θk); a move to a new

state (k′, θk′) is proposed by generating a random vector u from a proposal density

q and setting (k′, θk′) = gk,k′(k, θk,u), where gk,k′ is some invertible function. The

reverse move is implemented using a random vector u′ ∼ q′ and setting (k, θk) =

gk′,k(k
′, θk′ ,u′), where gk′,k = g−1k,k′ . Note that vectors u and u′ play the role of

matching the dimensions of θk and θk′ , such that dk + du = dk′ + du′ . To achieve

the correct limiting distribution, a proposed move from model k to model k′ is

accepted with probability α
[
(k,θk), (k

′,θk′)
]

= min
(
1, Akk′

)
, where Akk′ is given
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by:

Akk′ =
π(y | k′, θk′)π(θk′ | k′)π(k′)Pk′,k q′(u′)
π(y | k, θk)π(θk | k)π(k)Pk,k′ q(u)

∣∣∣∣
∂(k′, θk′ ,u′)
∂(k, θk,u)

∣∣∣∣ , (1.4)

Pk,k′ being the probability of a move from model k to model k′ and the final term is

the Jacobian resulting from the transformation from (k, θk,u) to (k′, θk′ ,u′). The

reverse move proposal, from k′ to k, is accepted with probability,

α
[
(k′,θk′), (k,θk)

]
= min

(
1, A−1kk′

)
.

In contrast to all previously described methods, RJMCMC does not approxi-

mate the marginal likelihoods but instead provides estimates of the posterior model

probabilities. For each of the competing model, these are obtained as the proportion

of iterations that the chain has spent in that model. The proposal densities q and q′

must be well designed such that a sufficiently large proportion of transdimensional

moves is being accepted. Note that for problems involving nested models, the stan-

dard practice is to set du or du′ equal to zero, depending on which model has fewer

parameters. Finally, when the proposed model k′ is the same as the current model

k we use a standard MCMC updates for the model parameters θk.

1.3 Hidden Markov models

Hidden Markov models (HMMs) consist of an unobserved state process of interest

X = [Xt]t=1,2,...,T and an process Y = [Yt]t=1,2,...,T of partial observations of X taken

at successive time points t = 1, 2, . . . , T (MacDonald and Zucchini, 1997). The

former is a first order Markov chain and is typically assumed to have a discrete and

finite state space Xs = {0, 1, . . . , ns}. The latter, can be any discrete or continuous

process, possibly multivariate, depending on the application. Standard theory deals

with homogenous HMMs, for which the transition probabilities of the hidden states

Pij from a state i to a new state j are constant over time and can be arranged in

(ns + 1)× (ns + 1) transition matrix P with elements:

P(Xt = j | Xt−1 = i,X1:t−2) = P(Xt = j | Xt−1 = i) = Pij , for i, j ∈ Xs,

where t = 2, 3, . . . , T , X1:t−2 = (X1, X2, . . . , Xt−2). To complete the characterisa-

tion, we need to define the initial distribution of the hidden states at time t = 1,

P(X1 = i). Further, the model assumes that the distribution of any observation Yt

depends only on Xt and therefore given Xt, Yt is conditionally independent of all re-
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maining observations and hidden states. Figure 1.1 provides a graphical illustration

of a hidden Markov model.

The standard HMM just described can be extended in several ways. One

way to extend the model is to assume that the transition probabilities of the hid-

den states depend on the times which lead to the non-homogenous HMM. Another

generalisation is the coupled hidden Markov model which is a collection of multiple

HMMs of which the hidden states are coupled with some dependence structure. An

example of an coupled hidden Markov model consisting of 2 interacting HMMs is

shown in Figure 1.2. Finally, one can obtain a hidden semi-Markov model by as-

suming that the probability of a new state depends on the time already spent on

the current state.

Figure 1.1: An illustration of a hidden Markov model showing the hidden states, xt, and
the observations, yt.

xt−1 xt xt+1xt−2 xt+2

yt yt+1 yt+2yt−1yt−2

Figure 1.2: An illustration of a coupled hidden Markov model showing the hidden states,

x
[c]
t , and the observations, y

[c]
t , for c = 1, 2.
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1.4 Outline of the thesis

In this chapter, we have provided a brief background on current approaches for

stochastic modelling of infectious diseases, emphasising problems where the un-

derling epidemic process is only partially observed and have motivated the use of

Markov chain Monte Carlo techniques, which we use as a tool for the methodology

developed in this thesis.

The rest of the thesis is seeking to address some of the open problems de-

scribed in Section 1.1.4 and is structured as follows. In Chapter 2 we perform an

explanatory analysis of our datasets obtained from two independently conducted

longitudinal studies of Escherichia coli (E. coli) O157:H7 in cattle. These datasets

are used for our illustrations in subsequent work. Note that even though we use E.

coli as an example, our methods can be easily applied to the analysis of numerous

other infectious diseases.

Chapter 3 introduces an individual-based SIS model for the spread dynamics

of an infectious disease among a population of individuals partitioned into house-

holds. The proposed hidden Markov model, that naturally accounts for partially

observed data and imperfect test sensitivity, is used as the basic model for the

methods developed throughout the thesis. Special attention is given to the data

augmentation MCMC algorithm that is used to facilitate inferences for this model.

In Chapter 4 we consider the problem of Bayesian model selection in the

presence of high-dimensional missing data, focusing on epidemiological applications

where observations are gathered longitudinally and the population under investi-

gation is organised in small groups. In particular, we outline an algorithm that

combines ideas of MCMC, importance sampling and filtering to provide estimates

of the marginal likelihood, and is well suited for small-scale epidemics. Even though

several alternative approaches exist, there are currently only few studies assessing

the performance of model selection methods in such settings. Hence, one of the

main contributions of this chapter is the comparison of the proposed method with

existing approaches, achieved through an extended simulation study on synthetic

data generated in order to resemble real-life epidemiological problems. The impor-

tance of model selection procedures is further demonstrated in Chapter 5, where

we successfully apply these methods to uncover new insights into the transmission

dynamics of E. coli O157:H7 in cattle.

As discussed in Section 1.1.3, statistical inference for epidemic models of-

ten relies on data augmentation techniques for imputation of the hidden infection

process. As a result, considerable progress has been made on developing such tech-
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niques, mainly using MCMC methods. However, as the dimensionality and complex-

ity of the data increases some of these methods become inefficient, either because

they produce chains with high autocorrelation or because they become computation-

ally intractable. Motivated by this fact, in Chapter 6 we develop a novel MCMC

algorithm, which is modification of the forward filtering backward sampling algo-

rithm (Carter and Kohn, 1994), that achieves a good balance between computational

complexity and mixing properties, and thus can be used to analyse epidemics on

large populations. Even though our approach is developed under the assumption of

a Markovian model, we show how this assumption can be relaxed leading to minor

modifications in the algorithm. The performance of our method is assessed on both

simulated and real data, considering models with simple structure but also complex

dynamics, e.g. a model allowing for interactions between households.

The methodology developed in Chapter 6 permits us to extend the basic

model in Chapter 7, in order to account for carriage of a disease with different

serotypes. The growing availability of such data has lead to an increased demand for

statistical tools that enable us to make use of this additional information. Our model

addresses some of the limitations of the existing approaches, by simultaneously

allowing for imperfect test sensitivities and serotype misclassification. The method

is applied to a real dataset in order to further our understanding regarding the

dynamics of various serotypes of E. coli O157:H7 in cattle, as well as to investigate

between-serotype competition.

Finally, Chapter 8 summarises the contributions of the thesis and discusses

some possible directions for future research.
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Chapter 2

Motivating Escherichia Coli

O157:H7 Datasets

2.1 Introduction

In this chapter, we present the two datasets that motivate our work and which will

be analysed in the subsequent chapters of this thesis. The datasets are obtained

from longitudinal studies regarding the presence of E. coli O157:H7 in cattle that

were grouped in pens. The main difference between the two is that in the second

dataset pens were sharing waterers, whereas in the first dataset no direct contact was

possible between pens. E. coli O157:H7 is an important public health concern and

cattle have been considered as the major animal reservoir of the pathogen (Ferens

and Hovde, 2011; Wells et al., 1991). It is therefore important to investigate the

dynamics of E. coli O157:H7 transmission in cattle.

The chapter is organised as follows. In Section 2.2 we provide the details

of experimental design as well as data collection for each dataset. This is followed

by a preliminary analysis in Section 2.3, which focuses on aspects of the datasets

such as the proportion of positive samples over the sampling period and associations

between individuals. For dataset 1, there exists additional information regarding the

serotypes in which the bacterium appears; this is presented in Section 2.4. Finally,

in Section 2.5 we discuss our main findings and summarise the questions that arise.

2.2 Experimental data collection

In this section we present the datasets that motivate our analyses throughout the

thesis. The first dataset is presented in Section 2.2.1 and the second dataset in

Section 2.2.2.
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2.2.1 Dataset 1

A longitudinal study of natural rectoanal junction (RAJ) colonisation and faecal

excretion of E. coli O157:H7 was conducted in feedlot cattle (Cobbold et al., 2007,

for the full details). In this study 160 cattle, randomly assigned to twenty pens

(eight animals each), were maintained and sampled within experimental research

pens located at Canada on a working commercial feedlot with over 10,000 animals on

the premises. Figure 2.1 is a schematic map with the locations of all the pens in this

study. As can be seen, the pens were separated by an empty pen, ensuring that no

direct contact was possible between animals of different pens. In addition, each pen

had an individual water supply and a separate feed bunk. The animals were housed

in North and South pens measuring 6m × 17m and 6m × 37m, respectively. The

cattle included in the study were mixed breed, mixed sex and weighed approximately

350 kg.

Animals were sampled approximately twice per week, commencing approxi-

mately 3 days following pen assignment, over a 14-week period from 21 July to 27

October 2003. Briefly, at each sampling date two samples were collected from each

animal: a recto-anal mucosal swab (RAMS) sample and a sample of freshly passed

manure. The presence or absence of E. coli O157:H7 in each sample was deter-

mined by using Polymerase chain reaction (PCR). Therefore, the longitudinal data

comprises of a set of result sequences from the two different tests, namely RAMS

and faecal test. The test result of each individual was recorded at each day as 1, if

the result was positive, 0 if it was negative and “NA” when either the sample was

not taken or the animal withdrawn from the study before the completion, due to

physical or behavioural problems in repeated handling. Figure A.1 in the Appendix

is the graphical representation of the longitudinal data collected in E. coli O157:H7

dataset 1.

2.2.2 Dataset 2

Full details of the design and conditions of the experiment, as well as the collected

data are described in details in Cernicchiaro et al. (2010), and we now summarise

the salient points. Briefly, 168 Angus-cross beef steers, initially weighing 250 to

340 kg, were randomly allocated to a 24 pen beef feedlot research facility (seven

animals each) located at the Ohio Agricultural Research and Development Center

in Wooster, Ohio. All pens, constructed with metal gates and cables, had the same

dimensions namely 5.4m × 5.4m. Pens 1-12 were placed adjacently from left to right,

with the remaining 12 pens being exactly behind them counting at the opposite
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Figure 2.1: Canada Experimental Feedlot Pen Configuration. Bold lines along the
feed alley represent concrete-based feed bunks. Double lines represent 20% porosity wind
shelter. Coloured boxes indicates the pens used during the study period whereas white
boxes represent empty pens.
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direction, as we can see in Figure 2.2. Food was automatically distributed through

the feed bunks, which were located between the two rows of pens. However, the

orientation of the feed bunks did not allow any animal-to-animal contacts. In total

12 waterers were placed, and each one of these was shared between two adjacent

pens, such that for example pens 1 and 2 had a common water supply. All the

facilities, including waterers and feed bunks, were cleaned before the initiation of

the experiment.

In the study, one RAMS and at least 10g of faecal grab samples were col-

lected from each animal at 14-days interval, throughout a 22-week period from 21

November 2005 to 25 April 2006. Recovering the complete test results of the study

was not possible; instead we observe whether an individual had been tested positive

by at least one of the test which we denote by 1 or if both tests were negative which

we denote by 0. Missing values were also recorded and we denote these by “NA”. A

graphical representation of dataset 2 can be found in Figure A.2 of the Appendix.

Figure 2.2: Ohio agricultural feedlot research pen configuration. Waterers are shared
between groups of two adjacent pens; blue coloured rectangles. Bold line between the two
rows of pens represents the feed bunk.
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2.3 Exploratory data analysis

In this section we perform a preliminary analysis, to gain some insight on the at-

tributes of the data that we wish to examine in the investigations of the following

chapters. The attributes that we study are listed below. For both datasets, we

first summarise the proportion of positive outcomes among the test results. This

information can be indicative of the true prevalence of the disease in the population

of individuals considered. Further, for dataset 1 it may suggest some difference in

the sensitivity of the 2 diagnostic tests considered.

Moreover, we investigate associations between cattle in the same pens as well

as cattle in different pens. In particular, we use Kendall’s rank correlation coefficient

(τ) to detect similarities in the test results of an individual compared to other
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individuals in the same pen but also individuals in different pens. For comparing

the distribution of correlation coefficients within and among cattle pens we use non-

parametric bootstrapping of the data (Efron, 1979), where R independent replicate

datasets are obtained from the null hypothesis model and for each r-th realisation

the appropriate test statistic value t∗ is calculated, denoted by t∗1, t
∗
2, . . . , t

∗
R. A

bootstrap p value corresponding to the test of alternative (t∗ > 0) against the null

(t∗ = 0) may then be estimated by the proportion of bootstrap samples that yield

a statistic greater than the observed statistic tobs (Davison and Hinkley, 1997):

pboot =
1 + #{t∗r ≥ tobs}

R+ 1
.

A significance threshold of 0.05 is used for all hypothesis testing.

Finally, we study if there are more similarities in individuals housed in pens

that are located close one to another in comparison to those further apart. To

achieve so, we use Kendall rank correlation coefficient for pairwise comparisons and

the log odds ratio for a pair of pens defined as:

log

(
n00 n11
n01 n10

)
,

where nij denotes the total number of days where an individual from the first pen was

tested i while an individual from the second pen was tested as j, where i, j ∈ {0, 1}.
Large values of the log odds ratio indicate strong association between pens and near

zero values reveal little or no association. Note that for dataset 1, we define label 1

an individual that was found positive by at least one of the RAMS and faecal tests,

similar to the information that is available for dataset 2.

2.3.1 Dataset 1

The picture of the collected data for individual cattle by sampling day is given in

Figure A.1 in the Appendix. Note the presence of missing data in between sampling

intervals; over the sampling period of 99 days samples were collected only on 27 days.

Of the 20 pens that were tested, all pens have one or more samples identified as

positive for E. coli O157:H7. Forty three cattle were tested negative by the RAMS

test and fifty two by the faecal test throughout the 14-week study, even though at

least one animal within the same pen was shedding the organism.

A total of 4266 pairs of faecal and RAMS samples were collected from all

pens over the sampling period. A frequency table was generated from the subset of

non missing data (Table 2.1). In agreement with previous reports (Gansheroff and



Chapter 2. Motivating Datasets 26

O’Brien, 2000; Low et al., 2005), the majority of the samples were negative for E.

coli O157:H7. Results from RAMS samples are in agreement with the faecal samples

in 3948 (219 + 3729) of the 4266 samples (92.55%). It was also found that in 64

samples, the faecal sample tested positive and the RAMS sample tested negative,

and the opposite occurred in 254 samples where the faecal sample tested negative

and the RAMS sample was positive.

Table 2.1: Observed data from RAMS and faecal tests for the detection of E. coli O157:H7
in dataset 1, where tests stated as positive (1) or negative (0) according to the result of each
individual animal.

Faecal test
Total

1 0

RAMS test
1 219 254 473

0 64 3729 3793

Total 283 3983 4266

The proportion of E. coli O157:H7 positive tests for each sample date over

the entire study period is presented in Figure 2.3. A pattern can be seen in the

proportion of positive RAMS and/or faecal samples (black squares), whereby the

first 6 weeks of the sampling period the proportion of positive samples increase,

reaches the highest rate in day 36 and decreases during the last 8 weeks of the study.

The same pattern can be observed for each test individually. However, we also note

that the proportion of cattle detected shedding E. coli O157:H7 by the RAMS swabs

is significantly higher than the proportion of positive faecal samples (p < 0.001,

as determined by the Wilcoxon signed rank test). This result is consistent with

previous reports (Greenquist et al., 2005; Rice et al., 2003) and may implies a better

sensitivity for the RAMS test.

Difference in average within-pen correlation (mτwithin) and average between-

pen correlation (mτbetween) is assessed with a bootstrap test using t∗ = mτwithin −
mτbetween as a test statistic. The test is significant (p = 0.002), meaning that there is

evidence that within-pen correlation is higher compared to between-pen correlation.

The bootstrap distribution of the difference between the two means is shown in

Figure 2.4, with the observed difference indicated by the black dot.

Testing t∗ = mτwithin = 0 yields a p-value of < 0.001 suggesting that there is

evidence of non-zero within-pen correlation, see also right panel of Figure 2.5. This
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fact is supported by visual inspection of the data in Figure A.1. For example, in pen

number 15 positive samples are clustered within the interval 22-53. At the beginning

of the study the samples collected from the animals are all tested negative and then,

individual 3 began shedding a detectable level of the organism as demonstrated

by the positive RAMS sample. This resulted in more positive samples for other

cattle. Therefore, when modelling the spread of infection, it is important to capture

dependencies among different animals living in the same pen.

In contrast, we find that the hypothesis t∗ = mτbetween = 0 cannot be rejected

with a p-value of 0.0645 suggesting that there is evidence of small between-pen

correlation (see Figure 2.5, left panel). Plots of log odds ratios and correlations

between all pairs of pens against centroid distance are displayed in Figure 2.6 and

lead to a similar conclusion since they all lie close to zero. However, we observe

a slight decrease of both log odds ratio and correlations for pens more 25 meters

apart.

Figure 2.3: Proportion of RAMS swabs (triangles) and faeces samples (circles) that were
positive for E. coli O157:H7 in feedlot cattle of dataset 1 over the sampling period. White
vertical lines represent the days in which samples were taken.
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2.3.2 Dataset 2

A picture of the whole study population is shown in Figure A.2 in the Appendix.

We see that samples were taken in sparse time intervals of 2 weeks, thus representing

only 12 days of the entire study duration of 156 days. Note that several individuals
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Figure 2.4: Histogram of t∗ = mτwhithin
−mτbetween

values from R = 1999 re-samples of
E. coli O157:H7 dataset 1. The unshaded area of the histogram corresponds to the values
of t∗ larger than the observed value (black dot).
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Figure 2.5: Histogram of correlation t∗ values of within-pen (right panel) and between-
pen (left panel) from R = 1999 re-samples of E. coli O157:H7 dataset 1. The unshaded area
of the histogram corresponds to the values of t∗ larger than the observed value (black dot).

p - value : 0.0645
p - value : 5e-04

Between-pen correlation Within-pen correlation

0

50

100

150

200

0

50

100

150

200

250

-0.04 -0.02 0.00 0.02 -0.02 0.00 0.02

Correlation t∗

F
re
q
u
en
cy

are withdrawn from the study before the completion, and in particular 70% (16/24)

of the pens were not tested towards the end of the study. In total, 90% of the pre-

scheduled tests were carried out. Of the 1828 samples collected, only 245 (13.40%)

were found positive. Two pens, pens 5 and 22, have no occurrences of positive tests

for any individual during the observation period. The proportion of positive test
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Figure 2.6: Median (over all pens with the same distance) log odds ratios (left panel)
and Kendall rank correlation coefficients (right panel) against distance, E. coli O157:H7
dataset 1.
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outcomes over the study shows a similar pattern compared to dataset 1; in particular,

we observe an increases of positive results around day 50 which gradually drops by

the end of the study (Figure 2.7).

Figure 2.7: Proportion of RAMS swabs and/or faeces samples that were positive for E.
coli O157:H7 in feedlot cattle of dataset 2 over the sampling period. Vertical white lines
represent the observation days.
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For this dataset, within-pen correlation is again found significant with boot-

strap p < 0.0001 (right panel of Figure 2.8). Pen 18 (see Figure A.2) is indicative of

the interactions of individuals within a pen. The first individual found positive is

individual 2 at the third pre-scheduled sampling day and after that all individuals

in the pen acquire the disease at some point within the following days.

Contrary to the first dataset, we found a non-zero between-pen correlation

(p = 0.003, left panel of Figure 2.8). Moreover, the median log odds ratios for

pairs of pens over centroid distance can be seen in the left panel of Figure 2.9. The

figure shows a clear decrease in the log odds ratio with distance, with the largest log

odds ratio corresponding to the smallest distance and the smallest log odds ratio

corresponds to the largest distance. It is also noticeable that the magnitudes of the

median log odds ratios in dataset 2 are considerably bigger than those in the dataset

1; only one (as compared with all) falls below 0.1. Similar pattern showing decrease

in correlations with distance is observed in the right panel of Figure 2.9, with the

five highest log odds ratios also have the highest correlation. These associations can

be explained by the fact that several pens shared waterers and/or boundaries which

potentially facilitate transmission of the disease. We formally test this hypothesis

in Chapter 5.

Figure 2.8: Histogram of correlation t∗ values of within-pen (right panel) and between-
pen (left panel) from R = 1999 re-samples of E. coli O157:H7 dataset 2. The unshaded area
of the histogram corresponds to the values of t∗ larger than the observed value (black dot).
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Figure 2.9: Median (over all pens with the same distance) log odds ratios (left panel)
and Kendall rank correlation coefficients (right panel) against distance, E. coli O157:H7
dataset 2.
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2.4 Serotype Data

Additional information for dataset 1 is available in the form of serotype data, com-

prising of a classification of the bacterium according to the structure of its isolate

using pulsed-field gel electrophoresis (PFGE) as described by Tenover et al. (1997).

More specifically, 12 positive samples (either RAMS or faecal) were randomly se-

lected to be serotyped from each pen of the study. For 5 of the pens in the dataset

the total number of serotyped samples varied from 5-11, either because less than

12 positive samples were obtained or because serotyping was unsuccessful. Over-

all, there were a total of 223 serotyped samples among the 756 positive samples, a

proportion of almost 30%.

A total of 48 different serotypes were identified in the study population which

we arbitrarily label according to the order in which they appeared in the PFGE

typing. Of these, 24 appeared only once. Figure 2.10 illustrates the frequencies of

serotypes, ranked from the most common to least common one, excluding the 24

serotypes that were unique. The following 7 serotypes represented the majority of

positive samples: O, A, T, P, G, M and C.

Among the 160 cattle examined in the study, 106 (66.25%) gave at least

one serotyped sample. For these, the median number of serotyped samples was 2

(min-max: 1-9). Figure 2.11 presents data collected in a subset of 4 pens. The

data shown allows us to comment on the micro-epidemics of a serotype within a
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Figure 2.10: Frequencies of serotypes identified in E. coli dataset 1, ranked from the
most common to least common one, excluding the 24 serotypes that captured only once.
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pen. For example, at the beginning of the study serotype T was detected in the

samples collected from individual 5 in pen number 8, and then a micro-epidemic was

observed with at least 5 individuals carrying serotype T during the following period.

Note that, several individuals were never selected for serotyping (e.g. animal 7, pen

8).

Moreover, of the 223 serotyped samples, 22 pairs of positive samples were

chosen to be serotyped, where as pair we define RAMS and faecal isolates from

the same individual on the same sampling date. Of these, there were 19 occasions

in which an animal was observed to carry the same serotype by RAMS and faecal

isolates, and the remaining 4 were pairs of different serotypes (e.g. animal 5, pen

6 at day 88); this could be attributed to misclassification errors of the serotyping

procedure, or it could be evidence of co-infection.

2.5 Discussion

In this chapter we have presented the datasets that motivate our analyses throughout

the thesis. An exploratory look at the data revealed some interesting attributes that

require further investigation. First of all, we found that our diagnostic tests often

disagreed as to whether an individual was a carrier of the E. coli O157:H7 bacterium

or not. This could be the consequence of imperfect tests and therefore needs to be

accounted for. Further, strong correlations were detected for individuals belonging

to the same pen. In particular, we saw that animals within a pen tended to give

similar results on a given day of examination. Therefore, the development of a
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Figure 2.11: RAMS and faecal samples (top red and bottom blue respectively) collected
in pens 1, 2, 6 and 8 participating in the study. “o” indicates negative sample, “+” indicates
that the sample was positive but not chosen for serotyping; otherwise, serotype name is
given.
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model for these data should consider interaction between animals of the same pen.

In Chapter 3 we build the basic model that describes the transmission of E. coli

O157:H7 and incorporates the two previously mentioned characteristics.

For the second dataset, our analysis suggested positive between-pen corre-

lation. In addition, we found that between-pen correlations were stronger for pens

that were fewer metres apart. Notably, the highest associations arose from pens that
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shared either waters or boundaries. Hence, one could claim that one of these factors

or both facilitate the transmission of the disease. However, formal assessment of

such hypotheses requires more sophisticated tools compared to our approach in this

chapter. In Chapter 4 we develop a framework which allows for hypothesis testing

through model selection in the context of epidemiology and the proposed tools are

applied to datasets 1 and 2 in Chapter 5.

Finally, PFGE analysis revealed several E. coli O157:H7 serotypes which

possibly exhibit heterogeneity in transmissibility or the period for which they remain

at the host. Another interesting question is whether there is competition between

the subtypes. In Chapter 7 we propose a model for E. coli O157:H7 transmission

that uses serotype information and also allows for serotype misclassification.
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Chapter 3

A Non-Homogeneous Hidden

Markov Model For Household

Epidemic Data

3.1 Introduction

Escherichia coli O157:H7 is an important public health concern and it was first

identified as a human pathogen in 1982 (Riley et al., 1983). Infections in humans

can result in diarrhea, haemorrhagic colitis, haemolytic uraemic syndrome, and

even death (Teunis et al., 2004; Karch et al., 2005). Cattle have been considered

as the major animal reservoir of the pathogen and play a significant role in the

epidemics of human infection (as reviewed by Hussein and Sakuma (2005)). Human

infections may arise from direct contact with cattle, indirectly via faecal material in

the environment, contaminated food or other unknown sources (Mead et al., 1997).

Therefore, researchers have stressed that study of the disease in cattle is of vital

importance in order to control the rate of the disease in humans (Rice et al., 2003).

In general, understanding the dynamics of an infectious disease, that is the

rate at which individuals acquire and recover from it, is crucial to control its spread.

Longitudinal studies can be particularly informative for this aspect since they pro-

vide important insights into the transmission dynamics of a pathogen within a pop-

ulation. Household studies have also received considerable attention because they

allow study of the dynamics of infection within a group of individuals as well as

between groups within a community. However, estimating transmission parameters

using this type of data presents numerous challenges.

A key facet of the problem is that the data are usually incomplete, in the sense

that the times of acquiring and clearing infection are not directly observed. This is

because individuals are often tested in sparse time intervals and the laboratory tests

that are used to detect the disease are typically imperfect. In addition, epidemic

studies are complicated because there are dependencies within the epidemic process
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(for example, the risk of acquiring infection might depend on the number of other

colonised individuals) and much of the data can be missing (for example as a result

of individual dropouts).

The aforementioned issues perplex statistical inferences since the evaluation

of the likelihood involves summation over all possible infection states of individuals

making this calculation highly involved. Therefore, many exact and approximate

approaches have been developed, see O’Neill (2002) for an extended review. Several

of the proposed methods consider the use of data imputation methods, in which the

missing infection states are treated as additional model parameters. For example,

Becker and Britton (1999) and Becker (1997) tackle the problem with an EM algo-

rithm. An alternative approach is the use of MCMC methods which are currently

popular techniques for analysing data on partially observed infectious diseases (Gib-

son and Renshaw, 1998; O’Neill and Roberts, 1999; Auranen et al., 2000; Smith and

Vounatsou, 2003; Cauchemez et al., 2004; Streftaris and Gibson, 2004; Jewell et al.,

2009, for example).

Some of the literature focuses on hidden Markov models which assume that

the observed process (the diagnostic test results) is associated with a hidden process

(the true infection status) which itself can be described as a Markov chain (Bureau

et al., 2003; Smith and Vounatsou, 2003; Cooper and Lipsitch, 2004; Fearnhead and

Meligkotsidou, 2004). Therefore, HMMs provide a natural framework to analyse

infection dynamics in longitudinal studies where the observed data are subject to

potential testing error due to poor sensitivity of the diagnostic used. Another ad-

vantage of this approach includes the ability to account for missing observations and

testing intervals that are not equally spaced.

In relation to E. coli O157, previous mathematical modelling of the transmis-

sion dynamics includes both deterministic and stochastic frameworks (Turner et al.,

2003; Liu et al., 2005; Matthews et al., 2006a,b; Turner et al., 2006, 2008; Ayscue

et al., 2009; Spencer et al., 2015). However, the majority of these methodologies

do not account for the fact that the detectability of E. coli O157 is not perfect.

To overcome this limitation, we propose the use of a hidden Markov model to de-

scribe the transmission dynamics of E. coli O157 infection among a population of

cattle which is partitioned into pens (households). The method is developed un-

der the Bayesian framework which is facilitated by the use of the forward filtering

backward sampling algorithm (Carter and Kohn, 1994) to impute the unobserved

carriage states and hence infer epidemiological parameters relating to the duration

and transmissibility of E. coli O157:H7 infection, as well as the test sensitivities.

Our methodology provides an alternative to standard techniques for the study of
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E. coli O157 transmission and is used as the basis for our studies in the following

chapters.

The rest of this chapter is structured as follows. Section 3.2 contains details

of the stochastic model for E. coli O157:H7 transmission in cattle, and in Section

3.3 we show the likelihood of this model. In Section 3.4 we develop the MCMC algo-

rithm that is used for posterior simulations. Simulation studies are documented in

Section 3.5. In Section 3.6 we apply the proposed method to the motivating datasets

described in Section 2.2. Finally, we conclude with a discussion on limitations of

the current model and possible extensions for further research in Section 3.7.

3.2 Model

We now introduce the basic model of E. coli O157:H7 transmission that is used

throughout the thesis. We consider a population of individuals partitioned into

pens of various sizes, so that each individual belongs to only one pen for entire

period of the study. We employ a discrete time Susceptible-Infected-Susceptible

model (Anderson and May, 1991) for the spread of infection in a pen. In the SIS

model, each individual in the population is assumed to belong to one of two states

for each day in the study: either susceptible or colonised (infected). Susceptible

animals are those who do not have the disease and are able to be colonised by it;

colonised animals have the disease and are able to infect susceptible animals.

Because infection with E. coli O157:H7 is usually harmless to cattle, we

assume that individuals that are cleared from the disease can immediately re-acquire,

without any period of immunity. More precisely, let X
[c, p]
t ∈ Xs = {0, 1} denote the

true colonisation status of individual c ∈ {1, 2, . . . , npc} in pen p ∈ {1, 2, . . . , P} at

day t ∈ T c, p = {1, 2, . . . , T c, p}, where X
[c, p]
t = 0 represents the non-carriage state,

X
[c, p]
t = 1 the colonised state and T c, p is the individual observation period of subject

c in pen p. The individual observation period is defined as the time between the

first sample taken from the subject and the last sample. For simplicity, we assume

that the observation period is the same for all individuals within the same pen such

that T c = {1, 2, . . . , T c} ⊆ {1, 2, . . . , T}, starting from day 1 and T being the last

day of the entire study. In Section B.2 of the Appendix we relax this assumption to

account for dropouts.

Susceptible individuals can acquire colonisation via two possible routes: ei-

ther from sources outside of the pen or through direct or indirect contact with other

colonised individuals from inside the pen. Indirect infection within the pen occurs

when a susceptible individual gets colonised through a source that was contaminated
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by a colonised individual such as faeces; any infection that cannot be attributed to

a cause from within the pen is considered external transmission.

The probability that a susceptible individual is colonised from some external

source on any given day is 1− e−α. Therefore, individuals avoid colonisation with a

constant external colonisation probability e−α, which is equal to the probability of

there being no events in a Poisson process with rate α. Hence, α can be viewed as the

external colonisation rate. We further assume that at a given day t a susceptible

individual has a probability e−βX
[c, p]
t of avoiding colonisation on day t + 1 from

an infected individual c in the pen; therefore the overall probability of avoiding

colonisation from all colonised individuals within the pen at time t is e−β
∑n

p
c
c=1X

[c, p]
t .

Once an individual is colonised, they remain so for a number of days called

the colonisation (infection) period. In this model, we assume that the duration of

carriage has a Geometric distribution with mean m, that is common to all colonised

individuals. Note that the Geometric distribution is the discrete-time analogue of

the exponential distribution, which is typically used to model colonisation period in

continuous-time stochastic epidemic models. Moreover, like its continuous analogue,

the Geometric has the memoryless property, that is, the probability of leaving the

colonised state is constant in time, and thus is a mathematically convenient choice

for modelling the duration of colonisation.

Based on these assumptions, the actual hidden carriage process for each

individual c in a given pen p, is modelled as a discrete-time two-state Markov process

with transition probabilities between states defined as:

P
[c, p]

x
[c, p]
t−1 , x

[c, p]
t , t

:= P
(
X

[c, p]
t = x

[c, p]
t | X [c, p]

t−1 = x
[c, p]
t−1 , X

[−c, p]
t−1 = x

[−c, p]
t−1 , α, β,m

)

=





1− exp
{
− α− β

npc∑

c′=1

x
[c′, p]
t−1

}
if x

[c, p]
t−1 = 0 and x

[c, p]
t = 1,

exp
{
− α− β

npc∑

c′=1

x
[c′, p]
t−1

}
if x

[c, p]
t−1 = 0 and x

[c, p]
t = 0,

m− 1

m
if x

[c, p]
t−1 = 1 and x

[c, p]
t = 1,

1

m
if x

[c, p]
t−1 = 1 and x

[c, p]
t = 0,

(3.1)

for t = 2, 3, . . . , T p, where α > 0 and β > 0 denote the external and within-

pen colonisation rates, respectively, and m ≥ 1 denotes the mean colonisation pe-
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riod. Also, X
[−c, p]
t−1 denotes the vector X

[c, p]
t−1 =

(
X

[1, p]
t−1 , X

[2, p]
t−1 , . . . , X

[npc , p]
t−1

)
excluding

X
[c, p]
t−1 . The first and the last case in Equation (3.1) correspond to the colonisation

(0 7→ 1) and clearance (1 7→ 0) probabilities, respectively. This parameterisation

defines a non-homogeneous Markov model since it allows the probability of coloni-

sation to depend on a sufficient statistic of the previous state of all individuals,

namely the number of colonised individuals. Finally, since individuals were ran-

domly assigned to pens, we assume that at the beginning of the study each animal

is colonised independently with probability P
(
X

[c, p]
1 = 1 | ν

)
= ν. Figure 3.1 is a

graphical representation of the individual-based SIS transmission model for a given

pen.

However, as noted above, the underlying carriage process is not directly

observed. Instead, for each individual we obtain the results of 2 diagnostic tests

that are taken on pre-specified discrete times. Let Oc,p ⊆ T p denote the set of pre-

scheduled observations times of individual c in pen p, c = 1, 2, . . . , npc , p = 1, 2, . . . , P

and let U c,p = T p \Oc,p denote the times that the individual was not tested for the

presence of the colonising organism. Therefore our model allows for the possibility

that individuals may be tested on different days or not tested at all in some occasions.

Such instances are very common in household epidemic data where the members of a

family may not be tested on the same day. Nevertheless, in our applications animals

were tested at common time points. Let Y
[c, p]
t =

(
R

[c, p]
t , F

[c, p]
t

)
be the observed

results, possibly misclassified, of the two diagnostic tests, R
[c, p]
t for RAMS and F

[c, p]
t

for faecal. At each day t ∈ Oc, p an individual c at pen p is classified as 1, if the

test result is positive or 0, if we have a negative result. When t ∈ U c, p we have a

missing value which we denote by “NA”. We assume that the observed test results

in each individual are independent Bernoulli variables, with the probability of a

positive outcome depending on the underlying true colonisation status, as well as

the probabilities of correctly or incorrectly classifying the observed outcome given

Figure 3.1: Possible routes of transitions between different states of an individual c in
pen p. A susceptible animal (0) can become infected (1). Animals can recover to become
susceptible again. The respective arrow annotations denote the transition probabilities.

0 1

1− e−α−β
∑n

p
c
c′=1

x
[c′, p]
t−1

1
m

e−α−β
∑n

p
c
c′=1

x
[c′, p]
t−1

m−1
m
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the true state. More specifically:

fR
x
[c, p]
t

(
r
[c, p]
t | θR

)
:=P

(
R

[c, p]
t = r

[c, p]
t | X [c, p]

t = x
[c, p]
t , θR

)

=





(
x
[c, p]
t θR

)r[c, p]t
(

1− x[c, p]t θR

)1−r[c, p]t
if t ∈ Oc, p,

1 if t ∈ U c, p,
(3.2)

fF
x
[c, p]
t

(
f
[c, p]
t | θF

)
:=P

(
F

[c, p]
t = f

[c, p]
t | X [c, p]

t = x
[c, p]
t , θF

)

=





(
x
[c, p]
t θF

)f[c, p]t
(

1− x[c, p]t θF

)1−f[c, p]t
if t ∈ Oc, p,

1 if t ∈ U c, p,
(3.3)

f
x
[c, p]
t

(
y
[c, p]
t | θR, θF

)
:=fR

x
[c, p]
t

(
r
[c, p]
t | θR

)
× fF

x
[c, p]
t

(
f
[c, p]
t | θF

)
, (3.4)

where θR = P
(
R

[c, p]
t = 1 | X [c, p]

t = 1
)

is the sensitivity of the RAMS test and

θF = P
(
F

[c, p]
t = 1 | X [c, p]

t = 1
)

is the sensitivity of the faecal test. These prob-

abilities are assumed to be the same for all individuals at all observation times.

The formulation implies that the test specificities P
(
R

[c, p]
t = 0 | X [c, p]

t = 0
)

and

P
(
F

[c, p]
t = 0 | X [c, p]

t = 0
)

are both 100%. Moreover, Equation (3.4) indicates that

the two tests are statistically independent conditional on the true colonisation status

of the subject. This assumption means that knowledge of the outcome of one diag-

nostic test does not provide any information about the outcome of other diagnostic

tests, conditional on the true disease status (Toft et al., 2005).

Note that by letting X
[1:npc , p]
t =

(
X

[1, p]
t , X

[2, p]
t , . . . , X

[npc , p]
t

)
denote the vector

of the hidden states of all individuals in pen p at given day t, we can convert the

model to a single HMM for each pen, in which X
[1:npc , p]
t ∈ X npcs = {0, 1}npc denotes the

state of the model at time t. Therefore, for a pen with npc interacting individuals, the

equivalent HMM will have a state space of size 2n
p
c and its transition probabilities

can be decomposed as:

P
(
X

[1:npc , p]
t = x

[1:npc , p]
t | X[1:npc , p]

t−1 = x
[1:npc , p]
t−1 , α, β,m

)

=

npc∏

c=1

P
(
X

[c, p]
t = x

[c, p]
t | X [c, p]

t−1 = x
[c, p]
t−1 ,X

[−c, p]
t−1 = x

[−c, p]
t−1 , α, β,m

)

=

npc∏

c=1

P
[c, p]

x
[c, p]
t−1 , x

[c, p]
t , t

, for t ∈ 2, 3, . . . , T p. (3.5)



Chapter 3. A HMM For Household Epidemic Data 41

Moreover, the initial distribution on the state is assumed to factorise as:

P
(
X

[1:npc , p]
1 = x

[1:npc , p]
1 | ν

)
=

npc∏

c=1

P
(
X

[c, p]
1 = x

[c, p]
1 | ν

)
=

npc∏

c=1

ν x
[c, p]
1 (1− ν)1−x

[c, p]
1 .

(3.6)

Finally, since the observation of each individual at any time is independent

of other observations and states given the state of that subject at that time, we can

write:

f
x
[1:n

p
c , p]

t

(
y
[1:npc , p]
t | θR, θF

)
:= P

(
Y

[1:npc , p]
t | X[1:npc , p]

t = x
[1:npc , p]
t , θR, θF

)

=

npc∏

c=1

f
x
[c, p]
t

(
y
[c, p]
t | θR, θF

)
. (3.7)

Therefore taken together Equations (3.5)–(3.7) constitute a non-homogenous hidden

Markov model with multivariate hidden states X
[1:npc , p]
t and multivariate observa-

tions Y
[1:npc , p]
t . An illustration of this HMM is given in Figure 3.2 for a pen with 3

individuals.

Figure 3.2: A hidden Markov model represented as a dynamic Bayesian network, with
three individuals for a given pen (nc = 3) and possibly several missing observations. Red
nodes denote hidden states and blue nodes denote observations.
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3.3 Likelihood computation

Let Xp =
[
X

[c, p]
t

]
c=1,2,...,npc ; t=1,2,...,T p

denote the collection of hidden states for all

individuals in pen p and X denote the collection of Xp, p = 1, 2, . . . , P . We de-

fine Rp,Fp,R,F in a similar fashion so that Yp = (Rp,Fp) is the observed data

for pen p and Y = (R,F) denotes the full observed data. For each pen p with

T p timepoints and npc subjects, there are 2n
p
c×T p possible status sequences. Let

X npc×T ps = {0, 1}npc×T p be the space of possible states taken by Xp, p = 1, 2, . . . , P .

Therefore for pen p, the likelihood of the observed data given the model parameters

can be written as:

π(Yp | θ) =
∑

ωp ∈Xn
p
c×Tp

s

P(Yp | Xp = ωp,ϑ)P(Xp = ωp | φ)

=
∑

ωp ∈Xn
p
c×Tp

s




npc∏

c=1

T p∏

t=1

f
ω
[c, p]
t

(
y
[c, p]
t | θR, θF

)

×
npc∏

c=1

(
P
(
X

[c, p]
1 = ω

[c, p]
1 | ν

) T p∏

t=2

P
[c, p]

ω
[c, p]
t−1 , ω

[c, p]
t , t

)

,

where φ = (α, β,m, ν) denotes the vector of transmission parameters, ϑ = (θR, θF )

is the vector of observation parameters and θ = (φ,ϑ) denotes the complete model

parameters.

Since we assume that pens are independent one of another, the likelihood of

the full observation data, Y given θ, is given by the product of the individual pen

likelihoods:

π(Y | θ) =
P∏

p=1

π(Yp | θ). (3.8)

Direct evaluation of Equation (3.8) involves summation over all possible colonisa-

tion states of individuals which in practice is computationally feasible only for very

small pen sizes, total number of pens and short sampling periods. In most applica-

tions, including ours, calculation of the likelihood above is intractable in practice.

The approach adopted in this work to overcome this difficulty is to use Bayesian

inference, in particular MCMC techniques. The exact methodology is described in

the following section.
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3.4 Posterior sampling algorithm

We aim to make inferences on the model parameters given the observed data. The

task is complicated by the fact that evaluation of the model likelihood is intractable

since the true colonisation process is unobserved. We therefore consider this un-

observed process as an additional parameter and estimate it along with the model

parameters. Model fitting is performed within the Bayesian framework by imputing

the unobserved colonisation states. Hence, our objective is to explore the joint poste-

rior density of the augmented disease process and the model parameters conditional

upon the observed test results, given by:

π(X, α̃, β̃, m̃, ν, θR, θF | Y) ∝ π(Y | X, θR, θF ) π(X | α̃, β̃, m̃, ν)π(θ̃),

where π(θ̃) is the prior of the transformed model parameters θ̃ = (φ̃,ϑ) = (α̃, β̃,

m̃, ν, θR, θF ), α̃ = log(α), β̃ = log(β) and m̃ = m − 1. The model parameters are

assigned the following prior distributions, independent one of another. We choose

Gamma priors α ∼ Ga(bα, cα), β ∼ Ga(bβ, cβ) and m̃ ∼ Ga(bm̃, cm̃), since these

parameters are restricted to (0,∞). Note that the probability density function

of U ∼ Ga(b, c) is given by πU (u) =
(
cb/Γ(b)

)
ub−1e−cu for u > 0 and b, c > 0.

Additionally, we use Beta priors for the remaining parameters, which are restricted

to [0,1], that is, V ∼ Beta(b, c), with probability density function given by, πV (v) =

vb−1(1−v)c−1. This family of distributions has the advantage of being the conjugate

prior distribution to the Binomial likelihood (Altman, 1990). Using these prior

specifications we have that:

π(θ̃) =
[
πα
(
eα̃
)
× eα̃

]
×
[
πβ
(
eβ̃
)
× eβ̃

]
× πm̃(m̃)× πν(ν)× πθR(θR)× πθF (θF ).

We consider a hybrid Gibbs sampler to obtain samples from the marginal

posterior distribution of each parameter. Some of the full conditionals are not

given in closed form; for these we resort to HMC, as described in Section 1.2.3.

The hidden carriage process is simulated from its full conditional using the forward

filtering backwards sampling algorithm. Our prior specifications for ν, θR and θF

are conjugate and therefore these parameters are directly sampled from their Beta

full conditionals. The remaining model parameters α̃, β̃ and m̃ are jointly updated

with HMC. An overview of the MCMC algorithm can be found in Algorithm 3.

The main interest lies in the update of the hidden process X, for which we give the

details in the following Section 3.4.1; for the remaining updates the reader can refer

to Appendix B.1.
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Algorithm 3: MCMC algorithm for the hidden Markov model

1 Initialise θ̃
(0)

=
(
α̃(0), β̃(0), m̃(0), ν(0), θ

(0)
R , θ

(0)
F

)
and generate

X(0) ∼ π
(
X | θ̃(0)

)
;

2 for j = 1, 2, . . . , J do

3 Draw X(j) ∼ π
(
X | α̃(j−1), β̃(j−1), m̃(j−1), ν(j−1), θ(j−1)R , θ

(j−1)
F ,Y

)
;

4 Perform a HMC to update
(
α̃(j), β̃(j), m̃(j)

)
according to

π
(
α̃, β̃, m̃ | X(j), ν(j−1), θ(j−1)R , θ

(j−1)
F ,Y

)
;

5 Draw ν(j) ∼ π
(
ν | X(j), α̃(j), β̃(j), m̃(j), θ

(j−1)
R , θ

(j−1)
F ,Y

)
;

6 Draw θ
(j)
R ∼ π

(
θR | X(j), α̃(j), β̃(j), m̃(j), ν(j), θ

(j−1)
F ,Y

)
;

7 Draw θ
(j)
F ∼ π

(
θF | X(j), α̃(j), β̃(j), m̃(j), ν(j), θ

(j)
R ,Y

)
;

8 end

3.4.1 Updating the hidden states

Using the Markov property of the model, one can use the forward filtering backwards

sampling (FFBS) method, as described by Carter and Kohn (1994), to perform

single block sampling for each Xp, p = 1, 2, . . . , P independently one of another.

The method is based on the factorisation of P(Xp | Yp, θ̃), as:

P(Xp | Yp, θ̃) = P
(
X

[1:npc , p]
T p | Yp, θ̃

) T p−1∏

t=1

P
(
X

[1:npc , p]
t | X[1:npc , p]

t+1:T p ,Y
p, θ̃
)
.

Under the conditional independence assumptions of our model (see Figure 3.2), the

expression P
(
X

[1:npc , p]
t | X[1:npc , p]

t+1:T p ,Y
p, θ̃
)

reduces to P
(
X

[1:npc , p]
t | X[1:npc , p]

t+1 ,Y
[1:npc , p]
1:t , θ̃

)
,

for t = 1, 2, . . . , (T p − 1), and can be calculated:

P
(
X

[1:npc , p]
t = k | X[1:npc , p]

t+1 = x
[1:npc , p]
t+1 ,Y

[1:npc , p]
1:t , θ̃

)

∝ P
(
X

[1:npc , p]
t+1 = x

[1:npc , p]
t+1 | X[1:npc , p]

t = k,Y
[1:npc , p]
1:t , θ̃

)
P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t , θ̃
)

= P
(
X

[1:npc , p]
t+1 = x

[1:npc , p]
t+1 | X[1:npc , p]

t = k, φ̃
)
P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

)
, (3.9)

where k ∈ X npcs = {0, 1}npc . Therefore, the algorithm is based upon a forward recur-

sion which calculates P
(
X

[1:npc , p]
t | Y[1:npc , p]

1:t ,
)

(the second mass function in Equation

(3.9)), called the filtered probabilities, for t = 1, 2, . . . , T p, using the recursive fil-

tering equations by Anderson and Moore (1979). This is followed by a backward
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simulation step that first generates X
[1:npc , p]
T p from P

(
X

[1:npc , p]
T p | Yp, θ̃

)
and then

simulates the remaining X
[1:npc , p]
t ’s by progressing backwards, simulating in turn

X
[1:npc , p]
t from P

(
X

[1:npc , p]
t | X[1:npc , p]

t+1 ,Y
[1:npc , p]
1:t , θ̃

)
, for t = (T p − 1), (T p − 2), . . . , 1.

More specifically, the forward recursion is initialised at t = 1 with:

P
(
X

[1:npc , p]
1 = k | Y[1:npc , p]

1 , θ̃
)

=
P
(
X

[1:npc , p]
1 = k | ν

)
fk

(
y
[1:npc , p]
1 | ϑ

)

∑

ω ∈Xn
p
c

s

P
(
X

[1:npc , p]
1 = ω | ν

)
fω

(
y
[1:npc , p]
1 | ϑ

) ,

for k ∈ X npcs . Then for t = 2, 3, . . . , T p in a forward recursion, we first compute the

one-step ahead predictive probabilities, by the law of total probability,

P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t−1 , θ̃
)

=
∑

ω ∈Xn
p
c

s

P
(
X

[1:npc , p]
t = k | X[1:npc , p]

t−1 = ω, φ̃
)
P
(
X

[1:npc , p]
t−1 = ω | Y[1:npc , p]

1:t−1 , θ̃
)
, (3.10)

and then we compute the filtered probabilities,

P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t , θ̃
)

=
fk

(
y
[1:npc , p]
t | ϑ

)
P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t−1 , θ̃
)

∑

ω ∈Xn
p
c

s

fω

(
y
[1:npc , p]
t | ϑ

)
P
(
X

[1:npc , p]
t = ω | Y[1:npc , p]

1:t−1 , θ̃
) , for k ∈ X npcs . (3.11)

Once the filtered probabilities have been calculated and stored in a forward sweep,

the hidden states can be simulated in a backward sweep starting with the simulation

of a value for X
[1:npc , p]
T p from the filtered probability at time T p, P

(
X

[1:npc , p]
T p | Yp, θ̃

)
.

Then for t = (T p−1), (T p−2), . . . , 1 we iteratively sample a value for X
[1:npc , p]
t given

our simulated value for X
[1:npc , p]
t+1 , from:

P
(
X

[1:npc , p]
t = k | X[1:npc , p]

t+1 = x
[1:npc , p]
t+1 ,Y

[1:npc , p]
1:t , θ̃

)

=
P
(
X

[1:npc , p]
t+1 = x

[1:npc , p]
t+1 | X[1:npc , p]

t = k, φ̃
)
P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t , θ̃
)

∑

ω ∈Xn
p
c

s

P
(
X

[1:npc , p]
t+1 = x

[1:npc , p]
t+1 | X[1:npc , p]

t = ω, φ̃
)
P
(
X

[1:npc , p]
t = ω | Y[1:npc , p]

1:t , θ̃
) ,

for k ∈ X npcs .
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3.4.2 Implementation details

In what follows, we use the following prior specifications unless otherwise stated. We

assume mutually independent prior distributions for model parameters, specifically

that α, β ∼ Ga(1, 1), m̃ ∼ Ga(0.01, 0.01) and ν, θR, θF ∼ Beta(1, 1), which is the

same as the Uniform distribution on the interval [0,1]. These priors are chosen in

order to be weakly informative, that is, provide limited information about the values

of the unknown parameters.

In all implementations we run the MCMC for a total of 75,000 iterations.

We then discard the first 25,000 as a burn-in period and of the remaining 50,000 we

record the output at every 10 iterations to obtain a samples of size 5,000 from the

posterior distribution. The convergence of the chains is assessed by visual inspection

of the posterior traceplots and also tested with the Geweke criteria (Geweke, 1992).

3.5 Simulation studies

A simulation study is conducted to evaluate the performance of the proposed esti-

mation method for the parameters of the model. To study the impact of disease

characteristics on algorithm performance, we specify 3 different scenarios for the

spread of infection through a pen. In all 3 scenarios, the external and within-pen

colonisation rates, as well as the initial probability of colonisation remained con-

stant. More specifically, simulated data are generated with external colonisation

rate α equal to 0.01, within-pen transmission rate β equal to 0.0125 and the initial

probability of infection is set to ν = 0.1. For the mean duration of carriage, the

following three scenarios are considered: m = 5 (S1), m = 10 (S2) and m = 15 (S3),

which correspond to low, moderate and long disease duration. Also, the RAMS

and faecal test sensitivities are assumed to be 0.8 and 0.5, respectively, same for all

different scenarios.

The simulation proceeds as follows. We generate a complete dataset of car-

riage status for 127 days, one for each scenario, which corresponds to the average

observation period of two motivating datasets described in Section 2.2. Given the

true carriage states, RAMS and faecal test results are simulated for each individual

for the entire period of 127 days. For each scenario, we then extract two separate

longitudinal datasets from the complete set of test observations, with sampling fre-

quency twice per week and once every two weeks, resulting in 37 and 10 pairs of

RAMS and faecal samples for each individual respectively. The intervals resemble

the actual sampling frequencies in the two motivating longitudinal studies. Using 2

different sampling intervals allows us to investigate how testing frequency can alter
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inferences, especially since the complete disease data are shared. To avoid sampling

biases, for each scenario and sampling interval, 40 epidemics were simulated in a

subset of 20 pens, each containing 8 individuals.

In Figure 3.3 we show the posterior medians along with 95% credible intervals

over the 40 realisations of the two sampling schemes, under the 3 different scenarios.

The true parameter values are also shown in the figure. Overall, we see that all

credible intervals include the true parameter values suggesting that our algorithm

succeeds at estimating these parameters. As we expected, the performance depends

on the sampling frequency. In particular, longer sampling intervals (in green) are

associated with greater variability. This is due to fact that there are less observations

when the sampling interval is sparse and hence less information to impute the hidden

states.

When samples are taken twice per week, the true mean duration of the

disease does not greatly affect our parameter estimates. However, issues arise when

the sampling interval is much longer compared to the mean duration of the disease.

This can be seen in scenario 1, when the mean duration is 5 days and the sampling

interval is set to 2 weeks. In this case, the duration of colonisation is underestimated

and both the external and within-pen colonisation rates are overestimated. The

reason for this behaviour is demonstrated in Figure 3.4. In this figure we plot the

posterior probability of colonisation for all individuals in a randomly selected pen;

those are obtained for every day as the proportion of iterations of the MCMC in

which the carriage state of a given individual was imputed as 1 (colonised) by the

FFBS algorithm. We see that there are occasions where an individual is colonised

after a testing day and is subsequently cleared before the next samples are taken.

Therefore, small periods of carriage remain completely unobserved. As an example,

see individual 5 at the period between days 43 and 57. In contrast, such incidents

are less prevalent with a sampling frequency of twice per week, see Figure 3.5.

Convergence of the hidden carriage states is assessed by visual inspection

of posterior colonisation probabilities over the sampling period, shown for example

in Figure 3.5 for one randomly selected pen. For reference, we also display the

observed results of RAMS (red) and faecal (blue) tests taken twice per week, as well

as the daily true carriage states (black squares). The estimated probabilities match

the true states very well, indicating that the algorithm accurately reproduces the

dynamics of the disease. Notice that when an individual has a positive RAMS and/or

faecal sample then the posterior probability of colonisation is equal to 1 due to the

assumption of perfect test specificity: a subject whose test indicated as positive

actually has the disease. On the other hand, when both test results are negative
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Figure 3.3: Comparison of the distributions of the posterior median estimates of param-
eters based on 40 simulated datasets with different sampling intervals under three epidemic
scenarios. For each scenario the red dashed lines indicate the true values of the corre-
sponding model parameter. Boxplots give the quantiles 2.5%, 25%, 50%, 75%, and 97.5%,
respectively.
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Figure 3.4: Posterior probability of colonisation (grey solid line) for individuals in the
simulated dataset under the first scenario (m = 5), over the entire sampling period of 127
days. Black squares represent the true colonisation states (1 for colonised, 0 for non-carrier).
For reference we also show test results taken every two weeks; ”·” indicates negative sample
and ”+” indicates that the sample was positive. White vertical lines represent the days in
which samples were taken.
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Figure 3.5: Posterior probability of colonisation (grey solid line) for individuals in the
simulated dataset under the first scenario (m = 5), over the entire sampling period of 127
days. Black squares represent the true colonisation states (1 for colonised, 0 for non-carrier).
For reference we also show test results taken twice per week; ”·” indicates negative sample
and ”+” indicates that the sample was positive. White vertical lines represent the days in
which samples were taken.
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the posterior probability of infection can be any value between and including 0

and 1. In addition, sequences of positive results separated by negative results can

either attributed to lack of sensitivity or to true conversions. This results in our

method being uncertain as to whether an individual is an undetected carrier or has

re-acquired the disease and hence we observe spikes in the posterior probabilities,

e.g. animal 5 at day 99 and animal 8 at day 29, respectively.

Given the posterior probability of colonisation for an individual at any time

during the study period, one can classify the individual as carrier if the probability

exceeds a given threshold. A colonised individual correctly classified by the algo-

rithm as carrier is a true positive finding whereas a false positive occurs when the

method misclassifies a susceptible individual as a carrier. Therefore we can further

evaluate the performance of our method for imputing the hidden carriage states us-

ing the receiver operating characteristics (ROC) curve. The ROC curve is a plot of

the true positive rates against false positive rates, calculated over different threshold

values on the posterior colonisation probabilities. We consider the area under curve

(AUC) as a measure of performance of our method. In Figure 3.6 we plot the median

ROC curves produced over 40 replicates of each scenario and sampling interval; the

corresponding AUCs are presented in Table 3.1 along with 95% credible intervals.

With the twice per week sampling frequency, the AUC exceeds 96%, confirming the

good performance of the method that was observed in Figure 3.5. However, with

longer sampling interval (once every 2 weeks) the performance drops. The effect of

m is clearly demonstrated in Table 3.1: increasing m associates with higher AUC.

This trend is stronger with sparse sampling frequency.

Further simulation studies were constructed in order to resemble our real

data. The simulations were designed to have the following attributes the same

as the data: total number of pens, total number of individuals per pen, sampling

days and missing observations per individual. The results are similar to the results

obtained in the simulation study shown earlier and can be found in Figure B.1 of

Table 3.1: Median area under the ROC curve, as obtained from 40 simulated datasets
under different sampling intervals and 3 duration scenarios S1-S3. The 95% credible intervals
are shown in parentheses.

Scenario
Sampling interval

Twice per week Every 2 weeks

S1 0.96 (0.95, 0.97) 0.81 (0.75, 0.84)

S2 0.98 (0.97, 0.99) 0.89 (0.87, 0.91)

S3 0.98 (0.98, 0.99) 0.91 (0.89, 0.93)
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Figure 3.6: Median ROC curves obtained from 40 simulated datasets, under different
sampling intervals and scenarios. Red lines represent a sampling interval of twice per week
whereas green lines correspond to one testing day per 2 weeks. Scenarios 1, 2 and 3 are
represented by solid, dashed and dotted lines respectively.
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the Appendix.

3.6 Applications

In this section we apply the Bayesian approach presented in Section 3.4 to the real

data analysis problems. The datasets that we consider are the E. coli O157:H7

datasets 1 and 2 described in Section 2.2. This allows us to obtain estimates for

epidemiologically important parameters and draw conclusions of the prevalence of

E. coli O157:H7 in cattle. Except from inferential results our study includes sensi-

tivity analyses, as well as model checking which is based on comparing predictive

distribution with the observed data.

Prior specifications and details of the MCMC implementation are given in

Section 3.4.2, except for when stated otherwise. A point which is worth emphasising

is that cattle withdrawn from the study are removed from the model on their dates

of drop-out. Therefore missing carriage states from these animals are not imputed

since they do not play further role in the spread of the epidemic (see Section B.2 of

the Appendix for more details).
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3.6.1 Dataset 1

3.6.1.1 Results

Convergence of the chains is done by visual inspection of traceplots for the model

parameters, shown in Figure B.2 of the Appendix. These plots indicate that the

model behaves well with good mixing for all 6 parameters, which appear to reach

stationarity. We check that estimates are robust to a change in the initial values by

running three different Markov chains; all runs result to the same posterior densities

as shown in Figures B.4 and B.3 of the Appendix.

Posterior summaries and parameter interpretations are given in Table 3.2.

The posterior median of the colonisation rate between an infected and a susceptible

animal within the same pen in one day is 0.011 (95% CI, 0.007 to 0.014). This

implies that a susceptible animal acquires infection from a given infected animal on

average every 92 days (1/0.011). The posterior median rate of external transmission

is 0.009 per day (95% CI, 0.006 to 0.012); a susceptible individual acquires infection

from other environmental sources on average every 111 days (1/0.009). We find

that the ratio β/α = 1.2. Since the value is close to 1 we conclude that infectious

pressure exercised by one single carrier of E. coli O157:H7 within a pen is as strong

as all of the external sources of colonisation. The mean duration of colonisation is

9.4 days (95% CI, 8 to 11). The initial probability of colonisation is 0.099 with a

95% credible interval of 0.056 to 0.154.

Regarding the diagnostic test sensitivities, we estimate that RAMS test has

probability of successful disease detection equal to 77.7% (95% CI, 73.1 to 81.6%)

while the sensitivity of the faecal test is estimated to be 46.5% (95% CI, 42.1 to

50.7%), indicating that the latter leads to many false negatives. These results sug-

gest that the RAMS technique achieves a much higher sensitivity of detecting E. coli

O157:H7 in cattle than the faecal method. This finding is consistent with previous

studies (Greenquist et al., 2005; Rice et al., 2003). Overall, our parameter estimates

are in close agreement with results obtained by Spencer et al. (2015) who previously

analysed the same data.

Of particular interest is the estimation of the basic reproduction number R0

of E. coli O157:H7, which is defined as the expected number of secondary infections

produced from one infected individual when introduced into a susceptible population

(Anderson and May, 1991). In finite populations, dealing with R0 presents a number

of difficulties. For each pen p, we define R0 as m
(
1− e−β

)
(npc − 1), where m is the

expected lifetime of infection,
(
1− e−β

)
is the probability of transmission given

contact of a susceptible and an infected individual and npc − 1 is the number of
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Table 3.2: Interpretation and posterior medians (posterior standard deviations) of the
model parameters for the analysis of E. coli O157:H7 dataset 1. Values in brackets indicate
95% credible interval (CI).

Interpretation Symbol
Posterior median (sd)

[95% CI]

External colonisation rate (days−1) α 0.009 (0.001) [0.006, 0.012]

Within-pen colonisation rate (days−1) β 0.011 (0.002) [0.007, 0.014]

Mean colonisation duration (days) m 9.419 (0.757) [8.032, 11.04]

Probability colonised initially ν 0.099 (0.025) [0.056, 0.154]

Sensitivity of RAMS θR 0.777 (0.022) [0.731, 0.816]

Sensitivity of faecal test θF 0.465 (0.022) [0.421, 0.507]

susceptible individuals in the pen, excluding the initially infected. A weakness of

the definition that we choose is that if there are multiple infectious contacts after

the first one, the contacted individual may still be infected and therefore this is

the maximum value that basic reproduction number can take. However, this is a

relatively rare event and therefore we expect that the estimated R0 will be only

slightly higher compared to estimates obtained using other definitions of the basic

reproduction number. A key application of R0 is its use as a threshold parameter,

such that a major outbreak can only occur if R0 is more than 1. In our case, the

within pen basic reproduction ratio is estimated 0.69 (95% CI, 0.50 to 0.91) which

is below the threshold at which new infections tend to increase and thus a major

outbreak can not occur within the pen. This implies that E. coli O157:H7 is not able

to successfully spread in a cattle pen without reintroduction from sources external

to the pen.

Since our approach involves estimating unobserved infection status with

FFBS algorithm, we can also estimate quantities such as the prevalence of the

disease. The overall prevalence of E. coli O157:H7 for our data, which takes into ac-

count colonised animals that failed to test positive, is estimated to be 14.57% (95%

CI, 13.99 to 15.22%). Relying on the available results for the RAMS and faecal

tests, we further create the plot of the posterior probability of colonisation for every

animal in every day of the study. As an example, in Appendix B.4 we show these

quantities for pens 3 and 19 in Figures B.5 and B.6 respectively.
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3.6.1.2 Model Checking

Following Gelman et al. (1996), we use posterior predictive checks to assess our

model fit. This is done by comparing posterior predictive data to the actual obser-

vations. The diagnostics that we consider are presented as follows. The first is the

detection duration using a particular diagnostic test, which is defined as the number

of consecutive days an animal is tested positive by the test. Since visits were not

conducted every day, the duration is calculated by determining the interval (in days)

between the first and last consecutive sample visits that yielded positive samples

and adding 1 day. The second and third diagnostics are the total numbers of pos-

itive test results and the total number of animals that never tested as positive for

a particular test. The latter diagnostic is interesting from an epidemic perspective

since it can be used to assess a potential weakness of our model, namely that all

individuals are homogeneous in susceptibility.

For each iteration of the MCMC algorithm, we simulate faecal and RAMS

samples from individual cattle according to the actual sampling dates and condi-

tional on the model parameter samples at this iteration and calculate the quantities

described above. This is done for 5,000 iterations in total. We then plot distri-

butions of these quantities and check whether the observed data values are placed

within the 95% posterior predictive intervals.

Results for the three diagnostics can be found in Figure 3.7. For the RAMS

test, the data mean of detection duration is 5.66, which falls inside the 95% CI of

the predictive distribution (4.02 to 5.94). Similarly, for the faecal test the mean

detection duration of the real data is 3.15 and is again placed within the 95% CI

of the posterior predictive samples (2.31 to 3.37). However, both of these quan-

tities lie close to the upper limit border, which might suggest that the Geometric

distribution is inappropriate to model the duration of colonisation. We might need

to consider a more flexible distribution for the colonisation period, for example the

Negative Binomial distribution, which is an extension of the Geometric model. The

remaining observed data values are all placed well within the 95% credible intervals

in the predictive distribution, and thus we conclude that there is no evidence of

heterogeneities in susceptibility between individuals. Overall, the model fit appears

adequate.

3.6.1.3 Prior sensitivity

We repeat the analysis of dataset 1 with different prior specifications to investigate

the effects on posterior estimates. Sensitivity is only examined for three parameters
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Figure 3.7: Model assessment plots for E. coli O157:H7 dataset 1. Posterior predictive
distribution of the mean duration (top panel) and total number (middle panel) of positive
samples, and total number of animals that never tested as positive (bottom panel) for RAMS
(left panel) and faecal samples (right panel), respectively. Black dashed line indicate the
observed value of the corresponding summary. Shaded area corresponds to the 95% credible
interval. The results are based on 5,000 posterior predictive simulations having the same
structure as in the original dataset.
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namely the mean duration of colonisation, external and within-pen transmission

rates. For each of these parameters, we use 4 different Gamma priors, 1-4, with

constant mean equal to 1 and variance equal to 1, 10, 100 and 1000 respectively.

Each time, the prior of only one parameter is changed.

In Figure 3.8 we plot the marginal posterior distributions of the parameters

under investigation, for the different choice of priors. No major change is observed in

the posterior median and quantiles of neither external nor within-pen transmission

rates. The duration of the colonisation is somewhat sensitive to its prior distribution:

the posterior distribution is shifted roughly 0.5 days upwards when replacing the

most informative Ga(1, 1) with one of the other 3 alternatives.

Figure 3.8: Sensitivity to the prior distribution on the colonisation rates and the mean
colonisation duration for E. coli O157:H7 dataset 1. We use 4 different Gamma priors, 1-4,
with constant mean equal to 1 and variance equal to 1, 10, 100 and 1000 respectively. Each
time, the prior of only one parameter is changed.
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3.6.2 Dataset 2

3.6.2.1 Implementation details

As already mentioned, the results for the two diagnostic tests for this study are

not fully available; we instead observe the Y
[c, p]
t = max

(
R

[c, p]
t , F

[c, p]
t

)
for each

individual c in pen p on a given observation day t ∈ Oc,p. Therefore, the conditional

distribution of the observed data given the hidden carriage states is given in terms

of the sensitivities of both diagnostic tests as follows:

f
x
[c, p]
t

(
y
[c, p]
t | θR, θF

)
=





(
1− (1− θF )(1− θR)

)
if x

[c, p]
t = 1 and y

[c, p]
t = 1,

(1− θF )(1− θR) if x
[c, p]
t = 1 and y

[c, p]
t = 0,

0 if x
[c, p]
t = 0 and y

[c, p]
t = 1,

1 if x
[c, p]
t = 0 and y

[c, p]
t = 0.

The test sensitivities are no longer identifiable so we fix these parameters θR and θF

to 0.729 and 0.686, respectively, following the initial analysis of this study (including

data that was not available to us) by Cernicchiaro et al. (2010).

3.6.2.2 Results

We run 3 chains starting from diverse initial values. Convergence is assessed via vi-

sual inspection of the sample chains (traceplots shown in Figure B.7 of the Appendix)

which suggest that the chains have reached their common stationary distribution.

Marginal posterior density means, posterior standard deviations and 95%

credible intervals for the 4 model parameters are shown in Table 3.3. The posterior

median for the within-pen colonisation rate is 0.011 per day (95% CI, 0.008 to 0.014)

which is identical to our estimate for the first dataset. Differences are found with

respect to the remaining parameters, though. The estimated external transmission

rate for this dataset is 0.004, roughly 2 times smaller compared to dataset 1. The

ratio β/α is 2.75 which implies that the disease is more transmissible from within-

pen contact. Mean duration of colonisation is estimated 6 days longer than dataset

1 (15.7 versus 9.4); however, the estimate is associated with larger variability. We

find that 5% of the animals are colonised at the start of the study, half of the value

found in dataset 1.

The within-pen basic reproduction number R0 for this dataset is 1.03 with

95% credible interval of [0.76, 1.28]. The result suggests that the infection will be

able to spread and be maintained in the pen in contrast to the first dataset. Finally,
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the prevalence of the disease is found 14.88% (95% CI [14.01, 15.85]), similar to

dataset 1.

Table 3.3: Interpretation and posterior medians (posterior standard deviations) of the
model parameters for the analysis of E. coli O157:H7 dataset 2. Values in brackets indicate
95% credible interval (CI).

Interpretation Symbol
Posterior median (sd)

[95% CI]

External colonisation rate (days−1) α 0.004 (0.001) [0.003, 0.006]

Within-pen colonisation rate (days−1) β 0.011 (0.002) [0.008, 0.014]

Mean colonisation duration (days) m 15.69 (1.791) [12.59, 19.62]

Probability colonised initially ν 0.049 (0.018) [0.022, 0.090]

3.6.2.3 Model Checking

In order to check the model adequation to the data, we use the same diagnostics as

with dataset 1. In the simulations the observed test results are generated conditional

on the simulated hidden states given the fixed test sensitivities, and the maximum

value is recorded as done in the real data. Results provide no evidence against the

fit of our model since all of the observed summary statistics lie within the 95%

predictive credible intervals. Plots can be found in Figure B.8 of Appendix.

3.6.2.4 Prior sensitivity

The analysis of the dataset is repeated using 4 different values of the prior parameters

as was done with the first dataset, and the results are shown in Figure B.9 of

Appendix. No profound effect can be seen in the posterior distributions except for

the duration of the colonisation (m) when the prior was a Ga(1, 1). In particular,

we find that the period of colonisation was 2 days shorter compared to the other

priors. Overall, the results are consistent with ones obtained for dataset 1.

3.7 Discussion

In this chapter we have described a discrete-time non-homogeneous hidden Markov

model that can be used to analyse the infection dynamics in longitudinal studies of E.

coli O157:H7 among a population of cattle which is partitioned into pens. Although

the application presented here considers E. coli O157:H7, it could be easily be
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adapted to model the transmission of other pathogens in other livestocks, or humans

organised in households within a community. The hidden Markov model basis upon

which our model is built provides a way to allow for the possibility of misclassification

due to imperfect testing procedures. A significant merit of our approach is that

it can easily handle missing data due to, for example, sparse sampling intervals

or individual dropouts. Since the likelihood of the observed data given the model

parameters is computationally intractable, we used a Bayesian method, in which the

unobserved carriage process is included as an additional parameter, and inference is

achieved with a hybrid Gibbs MCMC algorithm.

The model has been fitted to synthetic data and was found successful in

accurately estimating the model parameters but also retrieve the hidden carriage

process. A sensitivity analysis suggests that the accuracy of the estimates obtained

by our method are less precise as the sampling interval becomes more sparse. Ap-

plication on two longitudinal studies of E. coli O157:H7 in cattle has allowed us to

estimate useful parameters regarding the dynamics of the disease. Also, it provided

us with estimates of the sensitivity of test used in the studies. The results suggest

that RAMS sampling is more sensitive at detecting E. coli O157:H7 in feedlot cattle

than faecal sampling. Our finding is in agreement with the previous report by Rice

et al. (2003).

There are several ways in which our model can be extended. First of all,

our assumption of a Geometrically distributed colonisation period is not epidemi-

ologically motivated for many diseases, although it makes the statistical analysis

easier. A more flexible probability distribution is the Negative Binomial distribu-

tion, which allows the period for which an individual remains colonised to change

over time. Moreover, in the above modelling framework we assumed that the risk of

acquiring the infection from sources within and outside the pen is the same for all

pens. However, in reality these parameters may vary between pens. An extension

of this work will consider a hierarchical model in which each pen is allowed to have

its own individual internal and external transmission parameters. Finally, one may

consider an alternative model in which it is possible to have interactions between

pens; e.g. dataset 2 where the pens share some border or their water supply. In the

following chapters, we develop a set of stochastic epidemiological models that con-

sider several of the aforementioned extensions and build a framework that enables

comparison between these candidate models.



61

Chapter 4

Efficient Model Comparison

Techniques For Models

Requiring Large Scale Data

Augmentation

This chapter is adapted from a joint paper with

Naif Alzahrani, Peter Neal, Simon E.F. Spencer and

Trevelyan J. McKinley (Touloupou et al., 2015).

4.1 Introduction

The central pillar of Bayesian statistics is Bayes’ Theorem. That is, given a para-

metric model M with parameters θ = (θ1, θ2, . . . , θd) and data y = (y1, y2, . . . , yn),

the joint distribution of (θ,y) satisfies

π(θ | y)π(y) = π(y | θ)π(θ). (4.1)

The four terms in Equation (4.1) are the posterior distribution π(θ | y), the marginal

likelihood or evidence π(y), the likelihood π(y | θ) and the prior distribution π(θ).

The terms on the right hand side of Equation (4.1) are usually easier to derive

than those on the left hand side. The statistician has considerable control over

the prior distribution and this can be chosen pragmatically to reflect prior beliefs

and to be mathematically tractable. For many statistical problems the likelihood

can easily be derived. However, the quantity of primary interest is usually the

posterior distribution. Rearranging Equation (4.1) it is straightforward to obtain

an expression for π(θ | y) so long as the marginal likelihood can be computed. This
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involves computing:

π(y) =

∫

θ
π(y | θ)π(θ)dθ, (4.2)

which is only possible analytically for a relatively small set of simple models.

A key solution to being unable to obtain an analytical expression for the

posterior distribution is to obtain samples from the posterior distribution using

MCMC (Metropolis et al., 1953; Hastings, 1970). A major strength of MCMC is

that it circumvents the need to compute π(y) and this has led to its widespread use

in Bayesian statistics over the last 25 years or so. However, Bayesian model choice

typically requires the computation of Bayes Factors (Kass and Raftery, 1995) or

posterior model probabilities, which are both functions of the marginal likelihoods

for the competing models. In Chib (1995) a simple rewriting of Equation (4.1) was

exploited to obtain estimates of the marginal likelihood using output from a Gibbs

sampler. This has been extended in Chib and Jeliazkov (2001) and Chen (2005)

to be used with the general Metropolis-Hastings algorithm. Importance sampling

approaches to estimating the marginal likelihood have also been suggested (Gelfand

and Dey, 1994), along with generalisations such as bridge sampling (Meng and

Wong, 1996), which ‘bridges’ information from posterior and importance samples.

More recently approaches have exploited the ‘thermodynamic integral’ such as power

posterior methods Friel and Pettitt (2008). Alternative methods such as Sequential

Monte Carlo (e.g. Zhou et al., 2016) and nested sampling (Skilling, 2004) do not

require any MCMC: computation of the marginal likelihood and samples from the

posterior distribution are produced simultaneously. A potential drawback for many

of the above approaches to marginal likelihood estimation is that it may not be

obvious how to apply them efficiently to models incorporating large amounts of

missing data.

It should be noted that there are model comparison techniques such as re-

versible jump MCMC (Green, 1995) which can be used to compare models without

the need to compute the marginal likelihood. RJMCMC works well for nested

models where it is straightforward to define a good transition rule for models with

different parameters. However, in the case where we have large amounts of missing

data it is often necessary to use some form of data augmentation technique, where

the missing information is inferred alongside the other parameters of the model.

Using RJMCMC becomes much harder in these cases since the dimension of the pa-

rameter space (including the augmented data) becomes large. This is exacerbated

further when the missing information between the competing models has a different
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structure. In this latter case the use of intermediary (bridging) models (Karagiannis

and Andrieu, 2013) to move between the models of interest is a possibility.

Here, we consider the problem of comparing a set of candidate models in a

formal Bayesian model selection framework with focus on epidemiological data. In

the context of epidemics, each model reflects an epidemiologically important hypoth-

esis and the evidence in favour of each hypothesis (model) can be then measured

using Bayes factors. However, as we explain in Chapter 3, data emerging from

infectious disease outbreaks typically involve large amounts of missing data (the

infection process is itself unobserved) and hence we need to find an effective way of

estimating the Bayes factors in the presence of this missing information.

Despite the methodological advances in parameter estimation for stochastic

models of disease transmission, there is limited off-the-shelf methodology for model

selection. In Neal and Roberts (2004) and O’Neill and Marks (2005), model selec-

tion for the models of disease transmission have been studied using reversible jump

MCMC, whilst Clancy and O’Neill (2007) use rejection sampling to avoid conver-

gence difficulties that are associated with MCMC algorithms. Some more recent

examples include Knock and O’Neill (2014), where Bayes factors are computed us-

ing path sampling-based algorithms to compare competing models, and O’Neill and

Kypraios (2014) who consider the competing models as components of a mixture

distribution and then estimate the mixing probabilities which relate to the Bayes

factors. Finally, there is growing interest in the use of approximate Bayesian com-

putation methods in model choice problems for epidemic datasets, see for example

Toni et al. (2009), Lee et al. (2015) and Sun et al. (2015).

The aim of the current chapter is to demonstrate a straightforward mecha-

nism for estimating the marginal likelihood of models with large amounts of missing

data. The idea combines MCMC, importance sampling and filtering in a natural and

semi-automatic manner to produce marginal likelihood estimates. The details of the

algorithm developed are given Section 4.2. In Section 4.3 we show how the method

can be adopted for general applications with household epidemic data and describe

the longitudinal pneumococcal carriage study motivating this analysis. Simulated

data are provided in Section 4.4 to illustrate the implementation, performance and

applicability of our algorithm and its comparative performance against a range of

alternatives. Finally in Section 4.5 we briefly discuss extensions and limitations of

the algorithm.
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4.2 Algorithm

4.2.1 The importance sampling estimator

The first observation is that we can rewrite Equation (4.2) as

π(y) =

∫

θ
π(y | θ)

π(θ)

q(θ)
q(θ) dθ, (4.3)

where q(θ) denotes a d-dimensional probability density function. We assume that

if π(θ) > 0 then q(θ) > 0. Then an unbiased estimator, P̂q of π(y) is obtained by

sampling θ(1),θ(2), . . . ,θ(N) from q(θ) and setting

P̂q =
1

N

N∑

i=1

π
(
y | θ(i)

) π
(
θ(i)
)

q
(
θ(i)
) . (4.4)

Thus P̂q is an importance sampled (see, for example, Ripley, 1987) estimate of

π(y), and the effectiveness of the estimator given by Equation (4.4) depends upon

the variability of π
(
y | θ(i)

)
π
(
θ(i)
)
/q
(
θ(i)
)

.

The optimal choice of q(θ) is π(θ | y), the posterior density but if we knew

this then π(y) would also be known. A simple solution is to use output from an

MCMC algorithm to inform the proposal distribution, Clyde et al. (2007). For

most statistical models the likelihood times the prior is unimodal for sufficiently

large number of observations n. In these circumstances, the posterior distribution

of θ is almost always approximately Gaussian with mean θ̂, the posterior mode,

and covariance matrix Σ = −I(θ̂)−1, where I(θ) denotes the Fisher information

evaluated at θ. That is, we have a central limit theorem type behaviour similar

to that observed for maximum likelihood estimators as n → ∞. This central limit

theorem approximation is implicitly behind the Laplace approximations of integrals

used in Tierney and Kadane (1986) and Gelfand and Dey (1994). This underpins

the simple suggestion in Clyde et al. (2007) of using a multivariate t-distribution as

an importance sampling distribution with location and scale parameters estimated

from MCMC output. In what follows we found that using a mixture of a multivariate

Gaussian distribution, estimated from the MCMC output, and the prior, a “defense

mixture” (Hesterberg, 1995) worked well in practice guarding against the proposal

density decreasing to 0 faster than the target density.
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4.2.2 Missing data

Thus far we have not addressed the issues of computing π(y | θ) or dealing with miss-

ing data. If π(y | θ) is analytically available then the above importance sampling

procedure will often work well as long as d is small. However, in many situations

π(y | θ) is not available. Nonetheless, it is often possible, with the addition of

augmented data x, to obtain an analytical expression for π(y,x | θ). This can then

be utilised within an MCMC algorithm to obtain samples from the joint posterior

π(θ,x | y). Devising an importance sampling proposal distribution q(θ,x) approx-

imating π(θ,x | y) will not be practical if x is high-dimensional, such as in the

examples considered in Section 3.6 where x has elements on the order of thousands.

The solution that we propose is to use the marginal MCMC output from π(θ | y) to

inform the proposal distribution q(θ) in the importance sampling above, and then

to separately consider the computation of π(y | θ), for which the augmented data

x are required.

For the datasets that are analysed in this chapter there is a temporal struc-

ture to the data y which can be exploited in the estimation of π(y | θ). Moreover,

filtering methods are particularly well suited to this fixed parameter scenario. In the

epidemic model described in Section 4.4, x represents the unobserved infectious sta-

tus of individuals with respect to Streptococcus pneumoniae carriage and the FFBS

algorithm can be used to calculate π(x | y,θ), and hence π(y | θ). More details are

given in Section 4.3.3.

4.2.3 Variance of the importance sampling estimator

The variance of the importance sampling estimator given in Equation (4.4) is given

by:

Var(P̂q) = N−1
∫

θ

(
π(y | θ)

π(θ)

q(θ)
− π(y)

)2

q(θ) dθ

= N−1π(y)2
∫

θ

(
π(θ | y)

q(θ)
− 1

)2

q(θ) dθ,

which highlights that the importance proposal q(θ) should be made to resemble

the posterior π(θ | y) as closely as possible. As the dimension of θ increases the

variance of the estimator will typically grow due to the curse of dimensionality (see

Doucet and Johansen (2011), page 671 for an explanation). For data augmentation

problems the dimension of the missing data is often much larger than the number

of model parameters, and so if the missing data are treated in the same way as the
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parameters then this importance sampling approach fails. However if π(y | θ) can

be calculated, either directly or by using suitable missing data x, then the variance

of the importance sampling estimator does not depend on the dimension of the

missing data and the importance sampling approach can be applied efficiently, even

for large scale data augmentation problems.

If π(y | θ) is not available then it must again be estimated, and one can

attempt a similar importance sampling approach. Since:

π(y | θ) =

∫

x
π(y | x,θ)π(x | θ) dx,

then the following importance sampling estimator provides an unbiased estimate for

π(y | θ):

P̂r =
1

M

M∑

j=1

π
(
y | x(j),θ

) π
(
x(j) | θ

)

r
(
x(j) | θ

) ,

where the x(j)’s are sampled from some proposal distribution r(· | ·). This is the

approach used in pseudo-marginal methods (Beaumont, 2003; Andrieu and Roberts,

2009; McKinley et al., 2014) for estimating the likelihood in the presence of missing

data. For estimating the marginal likelihood we can integrate these ideas in one of

two ways:

P̂rq =
1

N

N∑

i=1

π
(
y | x(i),θ(i)

)
π
(
x(i) | θ(i)

)
π
(
θ(i)
)

r
(
x(i) | θ(i)

)
q
(
θ(i)
) , (4.5)

where θ(i) ∼ q(·) and x(i) ∼ r
(
· | θ(i)

)
, or

P̃rq =
1

NM

N∑

i=1

M∑

j=1

π
(
y | x(i,j),θ(i)

)
π
(
x(i,j) | θ(i)

)
π
(
θ(i)
)

r
(
x(i,j) | θ(i)

)
q
(
θ(i)
) , (4.6)

where θ(i) ∼ q(·) and x(i,j) ∼ r
(
· | θ(i)

)
. These are both unbiased and consistent

estimators of π(y), with P̂rq the special case of P̃rq with M = 1. In the Appendix

C.1 we show that for a fixed computational effort, the optimal choice (i.e. the one

with the lowest variance) is always P̂rq. The variance of Equation (4.5) is given by:

Var
(
P̂rq

)
=
π(y)2

N

∫

θ

∫

x

(
π (x | θ,y)π (θ | y)

r (x | θ) q (θ)
− 1

)2

r (x | θ) q (θ) dxdθ, (4.7)
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and this will nevertheless scale with the amount of missing information in the system,

which further highlights the need for the proposal distribution for x to resemble as

closely as possible the full conditional π(x | θ,y).

4.3 Epidemic model

4.3.1 Pneumococcal carriage study and transmission model

A longitudinal household study of preschool children under 3 years old and all

household members was conducted in the United Kingdom from October 2001 to

July 2002 (Hussain et al., 2005). The size of the families varied from 2 to 7, although

in the most there were 3 or 4 members. All family members were examined for

Streptococcus pneumoniae carriage using nasopharyngeal swabs once every 4 weeks

over a 10-month period. The carriage status of each individual was recorded at each

occasion as 1, if a carrier or 0, if a non-carrier.

Following Melegaro et al. (2004), we consider a model for transmission of

pneumococcal nasopharyngeal carriage (Pnc) within a household. At any given time,

an individual is assumed to be in either the susceptible non-carrier state 0, or the

infectious carrier state 1. The population is divided into two age groups, children

under 5 years old and everyone else greater than 5 years (whom for brevity we refer to

as ‘adults’), denoted by i = 1, 2, respectively. Let I1(t) and I2(t) denote the numbers

of carrier children and carrier adults in the household at time t. The transition

between state 0 and 1 is referred to as an infection and the reverse transition is

referred to as clearance. The transition probabilities between states in a short time

interval δt are defined for an individual in the age group i:

P(Infection in (t, t+ δt])=1−exp

{
−
(
αi +

β1i I1(t) + β2i I2(t)

(z − 1)w

)
δt

}
(4.8)

P(Clearance in (t, t+ δt])=1−exp(−µi · δt), (4.9)

where µi and αi are the clearance and the community acquisition rates respectively

for age group i and z is the household size. The rate βij is the transmission rate

from an infected individual in age group i to an uninfected individual in age group

j. The term (z− 1)w in Equation (4.8) represents a density correction factor, where

w corresponds to the level of density dependence and (z− 1) is the number of other

family members in a household size z. For example, w = 1 represents frequency

dependent transmission, where the average number of contacts is equal for each

individual in the population. Finally, the probability of infection at the initial swab
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is assumed to be νi for age group i. We refer to this model as M1.

These definitions allow the carriage within a household to be viewed as a

discrete time Markov chain, with time step δt, where the carriage status of each

individual depends only on the carriage status of all household members at the

previous time point. Because of the dependency between individuals in the same

household, a state in the Markov chain consists of the binary vector of states of

all of the individuals in the household. The presence of unobserved events, that

may have occurred in between swabbing intervals, has been discussed previously

by Auranen et al. (2000), and must be considered in setting up the model. The

approach adopted here to overcome this issue is to use Bayesian data augmentation

methods. Model fitting is performed within a Bayesian framework using an MCMC

algorithm, imputing the unobserved carriage states of each household.

Let Op ⊆ {1, 2, . . . , T} denote the set of prescheduled observation times of

household p = 1, 2, . . . , P , and let Up = {1, 2, . . . , T} \ Op denote the unobserved

times. Let ypt be the binary vector of carriage states for individuals in household p

at observation time t. The observed longitudinal data y =
[
ypt
]
t∈Op; p=1,...,P

consists

of the household carriage statuses ypt at the observation times. Similarly let xpt be

the corresponding latent carriage status of household p at time t ∈ Up, and form

the corresponding missing data matrix x =
[
xpt
]
t∈Up; p=1,...,P

. Let θ denote the

vector of model parameters, including the rates of acquiring and clearing carriage,

the density correction w and the initial probabilities of carriage.

4.3.2 Markov chain Monte Carlo algorithm

In the Bayesian approach, the missing data is represented as a nuisance parameter

and inferred from the observed data like any other parameter. The joint posterior

density of the latent carriage states x, and the model parameters θ can be factorized

as:

π(x,θ | y) ∝ π(x,y | θ)π(θ) = π(θ)
P∏

p=1

T∏

t=1

π
(
zpt | zpt−1,θ

)
,

where zpt equals ypt if t ∈ Op; xpt if t ∈ Up and ∅ if t = 0. This factorisation is based

on the assumption that conditionally on the model parameters, the carriage process

is assumed to be independent across households.

In order to simulate from the posterior distribution, we construct an MCMC

algorithm that employs both Gibbs and Metropolis-Hastings updates. The main

emphasis is on sampling the unobserved carriage process x, which we do using a
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Gibbs step via the forward filtering backward sampling algorithm, as described in

Section 3.4.1. In the first part of this algorithm, recursive filtering equations are

used to calculate P
(
xpt | zpt+1,y

p
Op∩{1:t},θ

)
for each t ∈ Up working forwards in

time. The second part then works backwards through time, simulating xpt from

these conditionals, starting with t = max(Up) and ending with t = min(Up). The

model parameters ν1 and ν2 are updated using Gibbs updates and the remaining

parameters are updated jointly using an adaptive Metropolis-Hastings random walk

proposal (Roberts and Rosenthal, 2009).

4.3.3 Marginal likelihood estimation via importance sampling

The availability of the full conditional distribution of the missing data π(x | y,θ)

from the FFBS algorithm allows the missing data component x to be updated using

a Gibb’s step in the MCMC algorithm. This full conditional can be exploited further

in the estimation of the marginal likelihood. We require π(y | θ) in order to form

the importance sampling estimator in Equation (4.4). Using Bayes’ Theorem we

can rewrite this as

π(y | θ) =
π(y | x,θ)π(x | θ)

π(x | y,θ)
=
π(y,x | θ)

π(x | y,θ)
, (4.10)

for any x such that π(x | y,θ) > 0. Therefore evaluation of π(y | θ) at the point θ

can be done by evaluating the right-hand-side of Equation (4.10) with any suitable

x. A suitable x is guaranteed if it is sampled from the full conditional distribution

x | (y,θ).

Our approach proceeds as follows. In step 1 we use MCMC to obtain sam-

ples from the joint posterior of θ and x. In step 2 we fit a multivariate normal

distribution to the posterior samples for θ only, and use it to construct a normalised

proposal density q(θ). In step 3, we obtain N samples from q(θ) and for each sample

θ(i) we obtain a corresponding sample for the missing data x(i) using the forward

filtering backward sampling algorithm. We then use these samples to calculate the

importance sampling estimator of the marginal likelihood:

P̂q(y) =
1

N

N∑

i=1

π
(
y,x(i) | θ(i)

)

π
(
x(i) | y,θ(i)

)
π
(
θ(i)
)

q
(
θ(i)
) . (4.11)

The choice of q(θ) is important for the accuracy and computational efficiency of the

importance sampling approach. As discussed in Section 4.2.3, we want q(θ) to be a

good approximation of π(θ | y) but with heavier tails to ensure that the variance of
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P̂q is small. We therefore investigate a range of proposals distributions based on a

fitted multivariate normal distribution with mean µ and covariance matrix Σ based

on the MCMC output. These include drawing θ from ISNj : N (µ, jΣ) (j = 1, 2, 3),

a multivariate Normal distribution with different variances; IStv : tv(µ,Σ) (v =

4, 6, 8), a multivariate Student’s t distribution with v degrees of freedom, mean µ and

covariance matrix v
v−2Σ (if v > 2) and ISmix : q(θ) = 0.95×N (θ;µ,Σ)+0.05×π(θ)

(mixture of a multivariate Normal density and the prior).

4.4 Simulation studies

4.4.1 Marginal likelihood estimation

We consider the problem of estimating the marginal likelihood under the model

introduced in Section 4.3, using the methods described above. These estimators

were evaluated on synthetic data analogous to the real data in Melegaro et al.

(2004). More specifically, the parameter values were based on the maximum like-

lihood estimates from the analysis of Pnc data; parameters were chosen to be

α1 = 0.012, α2 = 0.004, β11 = 0.047, β12 = 0.005, β21 = 0.106, β22 = 0.048, µ1 =

0.020, µ2 = 0.053, w = 1.184, ν1 = 0.425 and ν2 = 0.095. We set the time-interval

δt = 7. Only complete family transitions, where the infection state of all house-

hold members was known on two consecutive observations, were used previously

by Melegaro et al. (2004) (51% of the full dataset). Although our approach could

easily handle the missing data, for comparability we match the number of complete

transitions by family size and number of adults to generate our data set; a total of

66 families comprising 260 individuals including 94 children under 5 years. The sim-

ulations were designed so that real and simulated datasets have the same sampling

times. The hidden variable x consists of 1650 xpt ’s, comprising 6500 unobserved

binary variables in total.

We compare the proposed importance sampling approach for estimating the

marginal likelihood (based on the 7 proposal densities) with bridge sampling (Meng

and Wong, 1996) (using the importance samples from ISmix), harmonic mean (New-

ton and Raftery, 1994), Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001) and

the power posteriors method (Friel and Pettitt, 2008). Details of the computation of

these estimators are given in Section C.2 of the Appendix. To compare the different

methods on a fair basis, we chose to dedicate equivalent amounts of computational

effort for estimation of the log marginal likelihood, instead of fixing the total number

of samples.

Implementation details are given as follows. The construction of the impor-
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tance density was based on 25,000 MCMC samples after a burn-in of 5,000, obtained

from the MCMC sampler described in Section 4.3.2. These posterior samples were

used to estimate the reference parameters µ and Σ for a multivariate Student’s t or

normal proposal density. The marginal likelihood estimate was then based on 25,000

importance sampling draws from the obtained proposal density q(θ), using the es-

timator in Equation (4.11). To produce the bridge sampling estimate, the 25,000

samples from ISmix were combined with 250 thinned samples from the MCMC. In

order to apply Chib’s methods, the same posterior samples were used for computing

the high posterior density point. The log marginal was estimated by generating

22,000 draws in each complete and reduced MCMC run, with the first 2,000 draws

removed as burn-in. Harmonic mean analysis was based on 50,000 posterior sam-

ples, following a 3,000 iteration burn-in. For the power posterior method, it was

necessary to specify the temperature scheme and a pilot analysis (not counted in

the computation cost) was used to choose 20 partitions on the unit interval. The

MCMC sampler was run for 2,650 iterations for each temperature in the descending

series, omitting the first 650 as burn-in, finishing with 2,650 samples at t = 0 (the

prior).

Each procedure was repeated 50 times to provide an empirical Monte Carlo

estimate of the variation in each approach. We also vary the total running time

in order to investigate the effect of this on the accuracy of the marginal likelihood

estimates. For each analysis method we used the same priors: Ga(0.01,0.01) for the

density factor w; Beta(1,1) for the initial probabilities of infection ν1 and ν2 and

Ga(1,1) for the remaining parameters.

Figure 4.1 shows the variability of the eleven marginal likelihood estimators.

Except for the harmonic mean, all the methods appear to have produced consistent

estimates of the marginal likelihood. Chib’s method produced better estimates of the

marginal likelihood than the power posterior method, which is more computationally

expensive than the other methods and therefore uses a small number of MCMC

samples at each temperature, leading to large uncertainty. However as seen in Figure

4.1, the bridge sampling and the importance sampling methods offer significant

improvements in precision over the other methods. Moreover, increasing the number

of MCMC samples, led to a decrease in the Monte Carlo standard errors of order

O(
√
n), see Table 4.1, indicating that the variances of the corresponding estimators

are finite.

The success of the importance sampling approach is not surprising since it

explores the posterior distribution of parameters more efficiently than the other

methods due to the independence of the samples drawn from the proposal density.
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Figure 4.1: Variability of the log marginal likelihood estimates for model M1 over 50
replicates for each the methods. Each of the methods have roughly the same computational
cost.
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More surprisingly we were unable to use the bridge sampling technique to improve

substantially on the standard errors, which dropped from 0.0196 for ISmix to 0.0179

for BSmix. The bridge sampling estimator attempts to combine information from the

MCMC and importance samples, however the optimal estimator is derived assuming

that independent samples from the posterior were available, which we approached by

applying a thinning of 100 to the samples. With low levels of thinning (results shown

in Figure C.2 of the Appendix) we found that bridge sampling actually increased

the standard error of the marginal likelihood estimate.

On the basis of this example, the lowest variance importance sampling esti-

mator was obtained using the proposal density ISmix – a mixture of the prior and the

normal fitted to the posterior samples. Therefore, from now on we use this proposal

density when estimating the log marginal likelihood via importance sampling.

4.4.2 Model comparison

In this section, we apply the marginal likelihood estimation approaches to the prob-

lem of Bayesian model choice. We focus on their ability to distinguish between

biologically motivated hypotheses concerning the dynamics of Pnc transmission.

In particular we compare their performance against the established technique of re-
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Table 4.1: Monte Carlo (MC) standard errors of log marginal likelihood estimates for
different number of Markov chain samples. Standard errors are given across 50 replicates
for each of the methods. Each of the methods have roughly the same computational cost.

Method
MC MC MC MC MC MC

samples error samples error samples error

ISN1 10000 0.053 25000 0.033 50000 0.025

ISN2 10000 0.064 25000 0.036 50000 0.025

ISN3 10000 0.107 25000 0.061 50000 0.042

ISt4 10000 0.037 25000 0.025 50000 0.020

ISt6 10000 0.064 25000 0.034 50000 0.023

ISt8 10000 0.034 25000 0.035 50000 0.024

ISmix 10000 0.030 25000 0.020 50000 0.012

BSmix 10000 0.029 25000 0.018 50000 0.011

Chib 8000 0.736 20000 0.486 40000 0.312

PP 20×1600 2.906 20×2150 1.936 20×3200 1.547

HM 37000 5.548 50000 5.331 72000 4.850

versible jump Markov chain Monte Carlo and then demonstrate that the importance

sampling approach can solve problems that are extremely challenging with RJM-

CMC. We show that using our approach it is possible to answer epidemiologically

important questions such as whether there is heterogeneity in transmission rates and

if household size is related to transmission. Finally we consider how the accuracy

of the importance sampling approach is affected by the amount of missing data.

4.4.2.1 Heterogeneity in community acquisition rates

Suppose that we wish to evaluate the evidence in favour of the community acqui-

sition rates being equal for adults and children, in the hope of developing a more

parsimonious model. We call the model described in Section 4.3, in which children

have community acquisition rate α1 and adults have rate α2, modelM1. The nested

model, in which α1 = α2 is called M2. We generated realistic simulated datasets

from each of these models and then used importance sampling, bridge sampling,

Chib’s method, power posteriors, the harmonic mean and reversible jump MCMC

to estimate the Bayes factor in favour of M1, denoted by B12. As before, we used

approximately the same computational effort for each of these approaches. ForM1

we assumed α1 = 0.012 and α2 = 0.004, whilst forM2 we assumed α1 = α2 = 0.008.

Details of the RJMCMC algorithm for selecting between models M1 and
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M2 are given in Section C.2.5 of the Appendix. As before, the MCMC samples

used for estimating Bayes factors with RJMCMC were designed to be comparable

in computational effort with the other methods. Therefore, the RJMCMC chain

was allowed a 30,000 burn-in followed by 76,000 samples. When the evidence is

strongly in favour of one model, the RJMCMC will not move between models very

often and can provide poor estimates of the Bayes factor. A variant of the method,

called RJMCMC corrected (RJcor), can tackle this issue by assigning higher prior

probability to the model that is visited less often. This probability is estimated as

π(k) = 1− π̂(k | y), where π̂(k | y) is obtained from a pilot run of RJMCMC with

initial π(k) = 0.5, for k = 1, 2. For RJcor we did 30,000 pilot iterations and then

another 76,000 iterations, of which 30,000 were discarded as a burn in.

Figure 4.2 provides a graphical representation of the variability in log(B12)

over 50 repeats of each Monte Carlo approach. The plot highlights that the estima-

tors based on importance sampling and bridge sampling were the most accurate in

both scenarios. The left panel of Figure 4.2 gives results for data generated from

M1. Importance sampling, bridge sampling, Chib and RJ methods lead to simi-

lar estimates, whereas power posterior and harmonic mean overestimated the log

Bayes factor. Moreover, RJcor produced slightly more accurate estimates of the log

Bayes factor than vanilla RJMCMC. All methods selected the correct model, with

largest variation from the harmonic mean estimator. In the right panel of Figure

4.2, the results use data generated from model M2. Due to the huge variance in

log(B12), the harmonic mean sometimes favoured the wrong model. Although the

remaining methods correctly identified the true model, the importance and bridge

sampling methods again produced the most precise estimates of the Bayes factor;

the standard errors provided by the two methods are almost identical.

Figure 4.3 demonstrates the log Bayes factor in favour of M1 as a function

of computation time using data generated from M1. The importance sampling

estimator (in blue) converges much more rapidly than the other estimators, showing

very tight credible intervals. Chib’s method (in green) and corrected RJMCMC (in

red) appear to converge to the same value, but more slowly and have wider CIs.

The power posterior method gradually approaches the consensus estimate, requiring

significantly more samples to stabilise. The harmonic mean estimator was heavily

unstable and also provided much wider credible intervals than the other methods.

4.4.2.2 Heterogeneity in household transmission rates

We wish to evaluate whether or not there is heterogeneity in the household trans-

mission rates. More precisely, we wish to compare the full model M1 with the
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Figure 4.2: Variability of the log Bayes factor estimates based on 50 Monte Carlo re-
peats for the importance sampling method with mixture proposals (ISmix), bridge sampling
method with mixture proposals (BSmix), Chib’s method, reversible jump MCMC (RJ), cor-
rected reversible jump MCMC (RJcor), power posteriors (PP) and harmonic mean (HM)
methods.
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Figure 4.3: Evolution of log Bayes factor estimates in favour of modelM1. The solid lines
corresponds to the median and the shaded areas give the 95% credible intervals, estimated
from 50 replicates. Yellow represents the harmonic mean method, grey is for the power
posterior, red and green correspond to RJMCMC corrected and Chib’s methods respectively
and blue represents the importance sampling approach with the mixture proposals.
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special case in which the within-household acquisition rates are identical between

the two age groups, i.e. β11 = β12 = β21 = β22 = β (say), which we call model

M3. This kind of question is extremely challenging to answer using reversible jump

methodology because it is difficult to move efficiently between models when this

involves a large change in dimension. Again we generated two datasets, one from

M1 using the parameters given in Section 4.4.1, and one fromM3 with β = 0.0515,

the average of β11, β12, β21 and β22. For both datasets, we calculated Bayes factors

using importance sampling, bridge sampling, Chib’s method, power posteriors and

the harmonic mean. Our objective was to check that the correct model was chosen

by the Bayes factors criterion in this setting.

Table 4.2 presents the marginal likelihood estimates and the corresponding

Monte Carlo standard errors for each method, where bold entries show the pre-

ferred model. The importance sampling, bridge sampling, Chib and power posterior

methods all agreed and were able to discriminate the true model. The estimates of

the log marginal likelihoods are similar within Monte Carlo error, with importance

and bridge sampling being the most precise. As was previously observed in Section

4.4.1, the harmonic mean overestimated the log marginal likelihoods and yielded

inaccurate results, favouring the wrong model in both scenarios.

Table 4.2: Bayes factors and log marginal likelihoods of the main and reduced models for
the two simulation designs. The Monte Carlo standard errors over 50 replicates are shown
in parentheses. Entries in bold show the selected model for each method and simulation
design.

Simulation
Method

Log marginal of Log marginal of
logB13

design model M1 model M3

ISmix -1267.102 (0.018) -1268.843 (0.020) 1.742 (0.031)

Data BSmix -1267.104 (0.018) -1268.844 (0.019) 1.744 (0.029)

from M1 Chib -1266.999 (0.261) -1268.075 (0.619) 1.190 (0.729)

PP -1262.957 (1.926) -1266.150 (2.107) 3.215 (2.465)

HM -931.320 (3.882) -929.168 (5.444) -3.562 (6.507)

ISmix -1512.107 (0.011) -1505.058 (0.015) -7.048 (0.019)

Data BSmix -1512.101 (0.011) -1505.060 (0.013) -7.042 (0.021)

from M3 Chib -1512.110 (0.326) -1505.021 (0.290) -7.156 (0.445)

PP -1509.138 (2.003) -1500.616 (2.089) -8.833 (2.495)

HM -1184.755 (5.150) -1195.668 (6.252) 9.273 (7.552)
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4.4.2.3 Density-dependence in within-household transmission

Melegaro et al. (2004) investigated the relationship between transmission rates and

household size via the density correction factor (z − 1)w in the transmission rates,

Equation (4.8), where z is the household size. Since their confidence interval for w

included 1 they were unable to determine whether transmission increased (w < 1)

or decreased (w > 1) with household size. Moreover, the value w = 1 corresponds to

frequency dependent transmission, where the average number of contacts is the same

irrespective of household size. We wish to determine whether frequency dependent

transmission (w = 1, which we call model M4) could be identified from the data.

Bayesian model comparison problems of this kind often suffer from Lindley’s

paradox (Robert, 2001), where the choice of prior for w in the more complex model

has undue influence on the resulting Bayes factor. To reduce (but not remove) the

impact of Lindley’s paradox we consider two priors for w in M1: Ga(1,1) (referred

as the local prior) and the inverse moment prior for logw (referred as the non local

prior), with densities respectively given by:

πL(w) =
bawa−1e−wb

Γ(a)
, a = 1, b = 1,

πNL(w) =
ρτυ/2

w Γ(υ/2ρ)

(
log(w)

)−(υ+1)
exp

[
−
{(

log(w)
)2

τ

}−ρ]
,

with ρ = 1, υ = 1 and τ = 0.173 (for more details see Johnson and Rossell, 2010).

The density functions of the two priors are shown in Figure 4.4. The figure illustrates

the fact that the non local prior has density zero at w = 1.

To determine if evidence in favour or against M4 could be determined from

the study of Melegaro et al. (2004) we simulated datasets of equivalent size with

values for w from 0.5 through to 2, increasing by 0.1 each time. For each value of w

we obtained an estimate of the posterior probability of M1 along with its standard

error, based on 100 simulated datasets. Results are shown in Figure 4.5. For values

of w close to 1, the non local prior provided on average stronger evidence in favour

of the simple model even though model M1 was technically the correct model. For

values of w within the interval [0.6, 1.4] both priors supported M4, but only the

non local prior provided positive support for M4. Whereas when w went from 1.5

to 2, both priors favoured M1, with the non local prior providing equal or higher

posterior probability in favour of the correct model than the alternative local prior.

Melegaro et al. (2004) estimated w = 1.18 and in this region we expect weak support

for frequency dependent transmission, model M4.
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Figure 4.4: Prior distributions on the density correction factor w.
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Figure 4.5: Posterior probability of the full model using two different prior specifications;
the local prior ( · · ) and the non local prior ( ). Error bars represent the Monte
Carlo standard error based on 100 simulations.
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4.4.2.4 Amount of missing data

In this section we are interested in assessing the accuracy and efficiency of the

proposed method as a function of the total number of hidden states. One way to vary

the amount of missing data without diluting the information content of the dataset

is to vary the time interval δt. The larger δt is, the smaller the number of hidden

states that need to be imputed. For example when δt = 1, 60840 hidden states need

to be imputed, whereas we have only 3900 when δt = 10. For δt = 1, 2, . . . , 10,

we generated 10 synthetic datasets according to M1. For each dataset we fitted 10

different models, one for each possible value of δt, and calculated the log marginal

likelihood.

For brevity, Figure 4.6 presents results only for the data generated by δt =

1, 5, 10 and methods IS and Chib. In all three cases, the log marginal likelihood

curves are peaked at the true value of δt, the one used to create the data (Figure

4.6). The marginal likelihood estimates from Chib’s method are also maximised at

true values, but since the standard errors are much higher, more samples would be

required to distinguish between the competing models.

Figure 4.7 shows how the Monte Carlo standard errors in Chib’s method

and the importance sampling method increase as a function of the total number

of hidden states. The graph shows that the Monte Carlo standard errors from the

importance sampling method appear very stable as the dimensionality of the hidden

states is increased.

4.5 Conclusions

In this chapter, we have introduced a simple three-stage algorithm for efficiently

estimating the marginal likelihood in applications with several missing data. The

key components are an MCMC algorithm for obtaining samples from the posterior

distribution, π(θ | y), an approximating distribution q(θ) to sample from and an

effective estimate of the likelihood π(y | θ). The first observation is whilst an

MCMC algorithm will often be relatively straightforward to construct, alternative

methods for sampling from the posterior distribution could be equally considered.

Moreover, it is not important if a sample from an approximate posterior distribution

(for example, Monte Carlo within Metropolis, O’Neill et al., 2000) is used since all

that is required for computation of the marginal likelihood is to be able to make a

reasonable choice of q(·).
Furthermore the importance sampling and the associated estimation of the

likelihood is trivially parallelisable which can be utilised to speed up implementation.
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Figure 4.6: Sensitivity to δt, the time interval. The figure shows the variability of the
log marginal likelihood estimation when using data generated by (a) δt = 1, (b) δt = 5 and
(c) δt = 10. Blue and green colors represent the importance sampling and Chib’s methods
respectively.
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(a) Data generated from δt = 1.

-1
23

8
-1
23

6
-1
23

4
-1
23

2

1 2 3 4 5 6 7 8 9 10

29120 13260 8060 5460 3900

δt

Number of hidden states

(b) Data generated from δt = 5.
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(c) Data generated from δt = 10.

In cases where the likelihood can easily be computed the algorithm becomes a simple

add-on to MCMC to compute the marginal likelihood. An additional advantage of

the IS approach is that even if we consider a further model, we can apply the method

relatively quickly as we only need to calculate the log marginal likelihood for this

extra model, without recomputing the marginal likelihoods of the other models. In

contrast, in a RJMCMC setting such analysis might be computationally expensive

since there is a need to run the algorithm including the new model and design new
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Figure 4.7: Monte Carlo standard error of the proposed importance sampling and Chib’s
methods for different number of hidden states and values of time interval δt.
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efficient jump proposals.

The key limitation to using this approach is effective estimation of the like-

lihood π(y | θ) in cases where it is not analytically tractable. For the epidemic

examples considered in this chapter we have been able to exploit the temporal na-

ture of the data to use filtering methods to estimate π(y | θ). However, the method

is applicable to longitudinal data more generally. Another application where the

method that we describe can be of significant utility is time series data in which

case particle filtering can be used to obtain estimates of π(y | θ), see Touloupou

et al. (2015) for more details.

We have applied the methodology to data simulated from a household epi-

demic model, comparing our algorithm to existing methods for computing the

marginal likelihood. For a fixed computational budget, the IS method provides

estimates of similar quality to the bridge sampling approach and outperforms the

remaining of the methods that we consider. Further, it was demonstrated how these

estimates can be used to deliver epidemiological questions of interest using model

comparison to choose between several competing hypotheses. Finally, we found that

estimates of the marginal likelihood using IS were very stable (in terms of variabil-

ity) as a function of the total amount of missing data as opposed to Chib’s method

with which it was compared.
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Chapter 5

Bayesian Model Selection For

Evaluation Of

Epidemiological Hypotheses:

The Epidemiology of

Escherichia Coli O157:H7 In

Cattle

5.1 Introduction

In epidemics, it is often challenging to design and validate an appropriate model

for the data under study, particularly in diseases for which relatively little is known

regarding the transmission process. Therefore, models are usually chosen based on

expert knowledge, authors’ judgements or information regarding a similar disease.

However, these decisions may lead to mathematical models that are either very sim-

ple or very complex to represent the data properly. For example, early epidemic

models assumed that individuals of a community mix homogeneously that is, have

the same infectivity and susceptibility to a disease (Bailey, 1975). Such a simpli-

fication may not be plausible for all studies, e.g. when additional heterogeneities

could arise due to characteristics of individuals such as age or social contacts. One

possible way to address this complication is to compare several transmission models

in order to further our understanding regarding the dynamics of a disease.

In this chapter, we demonstrate the usefulness of the statistical tools for

model comparison that were developed in Chapter 4, by uncovering new insights

into the transmission dynamics of E. coli O157:H7 in cattle. In our application,

each one of the competing models represents an important hypothesis regarding the

epidemiology of the disease, for which relatively little is known. These questions of
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interest are either biologically motivated or naturally arise due to the experimental

design of datasets 1 and 2, to which we apply our methods. When possible, we

validate our findings by applying the reversible jump MCMC algorithm, additionally

to our importance sampling approach.

The first hypothesis that we are interested in testing is whether cattle develop

immunity to E. coli O157:H7 over time. This question relates to the distribution of

the colonisation period. We therefore compare two distributions, where in the first

the probability of recovery is constant over time whereas in the second, this prob-

ability depends on how long an individual has been carrying the disease. We then

assess the extent to which pen-specific factors are important in the disease spread.

For example, we consider factors such as the size and the geographic location, which

may differ depending on the pen and could affect its members risk of colonisation.

As a third study, we investigate potential routes of infection between pens that are

located within close distance of each other. In the datasets that we consider, such

routes include shared waterers, feed bunks and boundaries and we aim to identify

which one (if any) mostly contributes to the spread of the disease.

The rest of this chapter is structured as follows. In Sections 5.2, 5.3 and 5.4

we apply model selection procedures to investigate the three hypotheses concerning

the transmission of E. coli O157:H7 that we introduced above. In each of these

sections, we explicitly state the competing models, provide the algorithm imple-

mentation details and interpret the results of each analysis. Finally, in Section 5.5

we summarise our findings and propose some directions for future research.

5.2 Investigating the distribution of the colonisation pe-

riod

5.2.1 Competing models

The colonisation period of disease is defined as the number of consecutive days that

an individual remains colonised by it. The majority of research on stochastic epi-

demic models assumes that the colonisation period is a Markov random variable that

is, the probability of an individual being cleared is constant over time. This choice

is not always epidemiologically motivated but is nevertheless employed because it

makes the statistical analysis easier. A common choice is the Geometric distribution

or its continuous time analogue the Exponential distribution, which both have the

memoryless property. For many diseases however, it is more plausible to assume

that the probability of recovery varies according to how long an animal has been
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infected. In such cases a Negative Binomial distribution or the Gamma distribution

for continuous time models are more well suited for the colonisation period.

In this section we compare the Geometric (described in Section 3.2) with the

Negative Binomial model in order to determine which of the two is more appropriate

for E. coli O157:H7 based on our dataset 1. Therefore, two candidates models are

presented, corresponding to different assumptions concerning the distribution of the

colonisation period Z,

Model M1: the colonisation period is assumed to be Geometrically distributed

with mean m, Z ∼ Geom(m).

Model M2: Z follows a Negative Binomial distribution with mean m and disper-

sion parameter κ, Z ∼ NB(m,κ).

For clarity of notation, in both models we have used parametrization in terms

of the mean and therefore the two corresponding probability mass functions for the

Geometric and Negative Binomial model, are given respectively by:

π1(ζ;m) := P1(Z = ζ) =

(
m− 1

m

)ζ−1
× 1

m
,

π2(ζ;κ,m) := P2(Z = ζ) =

(
κ

κ+m− 1

)κ Γ(κ+ ζ − 1)

(ζ − 1)! Γ(κ)

(
m− 1

κ+m− 1

)ζ−1
,

which are supported on the integers ζ ∈ {1, 2, . . .}, wherem ≥ 1 is the mean duration

of the disease and κ > 0 is the dispersion parameter. Note that Z denotes a discrete

random variable that represents the duration time of a completed colonisation, and

therefore, under the Negative Binomial model, if an individual is found colonised at

the first day of the study and we assume that they have just acquired the disease

then the duration will appear shorter than it is and will bias our estimate. Similar

bias is introduced if we assume that an individual that is colonised on the last day of

the study cleared the disease on that day. In order to correct for such left and right

censoring, we propose the use of the size-biased sampling density function (Rao,

1965), given by:

πs2(ζ;κ,m) =
ζ × π2(ζ;κ,m)

E(Z)
.

Under this assumption, the probability that an individual is colonised at the begin-

ning of the study and remains so for ζ∗ days is given by,

P2(Z
∗ = ζ∗) =

∞∑

ζ=ζ∗

P2(Z
∗ = ζ∗ | Z = ζ)× πs2(ζ;κ,m)
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=
∞∑

ζ=ζ∗

1

ζ
× ζ × π2(ζ;κ,m)

E(Z)
=

∞∑

ζ=ζ∗

P2(Z = ζ)

m

=
P2(Z ≥ ζ∗)

m
,

where following Cox et al. (2005) we assume that the conditional distribution of

the observed colonisation time Z∗ is uniform over {0, 1, . . . , ζ} given the complete

duration of colonisation Z = ζ. When an individual is found to be in the colonised

state at time t = T (the last day of the study), the starting time of the colonisation

is known but not the time that the individual is cleared. Therefore, in this case we

have:

P2(Z
∗ = ζ∗) = P2(Z ≥ ζ∗).

We remark that the Negative Binomial model includes the Geometric model

as a special case for κ = 1. The mean of both distributions is m, but the variances

differ between the two models. In particular, the variance is m(m− 1) for the Geo-

metric distribution whereas it is (m−1)+ (m−1)2
κ for the Negative Binomial. Hence,

the Negative Binomial allows for a more flexible shape as shown in Figure 5.1 for

κ = 0.5, 1, 2, 10 and m = 10.

Figure 5.1: Probability mass functions of the Negative Binomial distribution with mean
10 and four different values of the dispersion parameter κ = 0.5, 1, 2, 10. Lower values of κ
correspond to more over-dispersed distributions.
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5.2.2 Implementation details

In Section 3.4 we have shown how posterior samples can be obtained for the SIS

model under a Geometrically distributed colonisation period. Our MCMC algo-

rithm takes advantage of the fact that the full conditional distribution of the un-

observed colonisation states for each pen p (which we denote πH (Xp | Yp,θ1),

θ1 = (α1, β1,m1, ν1, θR1 , θF1) being the parameters of model M1) can be found

in a closed form and thus we can use a Gibbs step to update Xp
1, for p = 1, 2, . . . , P .

However, under the Negative Binomial model, the history of each individual must

be represented explicitly in the model and therefore it is hard to compute the full

conditional of Xp
2, the hidden process of colonisation under M2.

Instead of having a Gibbs step, we use πH as a proposal distribution in

a Metropolis-Hastings step. In particular, we consider an independence sampler

where for each p = 1, 2, . . . , P we propose Xp ∗ ∼ πH and the move is accepted with

probability:

min

(
1,

πH
(
Xp

2 | Yp, κ = 1,θ−κ2

)

πH
(
Xp ∗ | Yp, κ = 1,θ−κ2

) × π2
(
Xp ∗,θ2 | Yp

)

π2
(
Xp

2,θ2 | Yp
)
)
,

where θ2 = (α2, β2,m2, ν2, θR2 , θF2 , κ), θ−κ2 = θ2 \ {κ} and π2
(
Xp

2,θ2 | Yp
)

is

the posterior distribution of model M2 given in Section D.1 of the Appendix. The

approximate full conditional essentially assumes that κ = 1 and therefore the perfor-

mance of the algorithm depends on how close the true value of κ is to 1. Parameters

ν, θR and θF are updated as in the Geometric model with Gibbs steps, and the

remaining parameters α, β,m and κ are updated jointly with Hamiltonian Monte

Carlo (see Appendix D.1 for derivative expressions).

Model comparison is carried out with the importance sampling approach

that was introduced in Chapter 4. For comparison, we also apply the RJMCMC

method which has been broadly used in the context of model selection for epidemic

models. We first give details of the RJMCMC procedure using the notation of

Section 1.2.4.7. The probability of jumping from model k to k′, where k, k′ ∈ {1, 2}
is fixed at 0.5. A priori, we assume that π(k = 1) = π(k = 2) = 0.5. There are four

types of move: (1) Geometric to Geometric, (2) Geometric to Negative Binomial, (3)

Negative Binomial to Geometric, and (4) Negative Binomial to Negative Binomial.

Only moves 2 and 3 are trans-dimensional; for moves 1 and 4 we use MCMC updates

described above. An important aspect regarding the efficiency of RJMCMC is the

specification of the proposal distribution and the transformation function g1,2. Here

we consider three approaches for constructing the dimension increasing proposal.
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The first proposal is suggested by Hastie and Green (2012). Suppose the

Markov chain is in the Geometric model; then, jumping to the Negative Binomial dis-

tribution (move 2) can be done by generating u from a Normal density, u ∼ N (0, σ2)

with σ fixed but well chosen in order to achieve good mixing between models.

For the transformation function they use ψ2 = (X2, α2, β2,m2, µ2, θR2 , θF2 , κ) =

g1,2(ψ1, u) =
(
ψ1, λ exp(u)

)
, with λ fixed and ψ1 = (X1, α1, β1,m1, ν1, θR1 , θF1).

With this choice we keep X, α, β,m, µ, θR, θF fixed when switching between models

and the parameter κ is a Lognormal random variable centered at λ. The Jacobian

of the transformation is λ exp(u).

For the reverse move 3 we go back to the Geometric space and therefore there

is no need to generate a random variable since the parameter space is reduced. It

sufficient to use the inverse transformation of g1,2, that is g2,1 = g−11,2, to transform

the variables back to the Geometric model. This is achieved by taking (ψ1, u) =

g2,1(ψ2) = (X2, α2, β2,m2, µ2, θR2 , θF2 , log κ
λ). The Jacobian of the transformation

is then 1
κ .

Therefore, for the move from model M1 to model M2, the probability of

accepting the jump is given by min(1, A12) where:

A12 =
π(k = 2,ψ2 | Y)

π(k = 1,ψ1 | Y)

{
1

σ
√

2π
exp

[
− u2

2σ2

]}−1
λ exp(u),

whereas for the reciprocal move from M2 to M1, the probability of accepting the

jump is given by min(1, A21) where:

A21 =
π(k = 1,ψ1 | Y)

π(k = 2,ψ2 | Y)

{
1

σ
√

2π
exp

[
−
(

log(κ/λ)
)2

2σ2

]}
1

κ
.

A second option is to keep parameters that appear in both models fixed,

and set the additional parameter κ = u, where u ∼ Exp(ξ). This is equivalent

to taking the matching functions g1,2(ψ1, u) = (ψ1, u) and g2,1(ψ2) = ψ2, as the

identity functions. This is appropriate since the Geometric model is nested within

the Negative Binomial model and its parameters have identical interpretation with

the corresponding parameters of the larger model. In this manner, the acceptance

probability for the move from model M1 to model M2 is calculated according to

Equation (1.4) in Section 1.2.4.7, with the acceptance probability of the reverse

move given by the reciprocal of this value. The Jacobian term in the acceptance

probability equals one.

Finally, following Dellaportas and Forster (1999), we start by performing
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a pilot MCMC run for the Negative Binomial model in order to obtain estimates

of the marginal posterior moments of the additional parameter κ. For RJMCMC,

a Gamma proposal distribution is then employed to generate u ∼ Ga(a, b); this

distribution is considered as the third proposal. The parameters a and b can be

calculated by equating the mean and the variance of the Gamma distribution with

the estimated mean (κ̂) and variance (σ̂2κ) of κ from the output of the pilot MCMC

run. Hence:

κ̂ =
a

b
, σ̂2κ =

a

b2
,

which leads to

a =
κ̂2

σ̂2κ
, b =

κ̂

σ̂2κ
. (5.1)

For the IS technique we use Equation (4.5) and therefore need to specify the

proposal densities q and r. Let µk and Σk be the mean and the variance-covariance

matrix of the parameters (either θ1 or θ2), as estimated from the MCMC output

consisting of 20,000 draws (after 6,000 burn-in) from the posterior. Following our

findings in Chapter 4, we choose q(θk) = 0.95×N (µk,Σk) + 0.05× π(θk) for both

candidate models. For the Geometric model, the construction of the proposal den-

sity r(X1 | ·) is done according to the FFBS algorithm, as described in Section

4.3.3. For the Negative Binomial model, we cannot sample directly from the full

conditional distribution of the unobserved colonisation states as we previously ex-

plained. Instead, we use the same proposal as for the Geometric model, based on

the assumption that κ = 1, and then the importance weights correct for the fact

that this is an approximation.

For all implementations in this section, we assume mutually independent

prior distributions for the model parameters, and specifically that α, β ∼ Ga(1, 1),

m − 1 ∼ Ga(0.01, 0.01), ν, θR, θF ∼ Beta(1, 1). For the additional parameter κ in

the Negative Binomial model we do a sensitivity analysis to explore its effect on the

Bayes factor. We run RJMCMC with proposals 1-2 for 240,000 iterations with the

first 50,000 discarded as burn-in. For proposal 3 the pilot run consists of 26,000

MCMC draws and since we keep the computation budget fixed, we allow RJMCMC

to run for 190,000 iterations of which the first 50,000 are accounted as burn-in. The

pilot run is also used to construct the importance sampling density q and we then

draw 100,000 samples from the proposal densities to obtain the IS estimates.

5.2.3 Simulation studies

In this section we evaluate the ability of the proposed importance sampling and

RJMCMC methods to distinguish between the Geometric and Negative Binomial
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models with simulated data. We generate datasets under the Negative Binomial

model with true parameter values set to α = 0.009, β = 0.01, m = 9, ν = 0.1,

θR = 0.8 and θF = 0.5, whereas for the dispersion parameter we use 8 different

scenarios where κ is successively set to 0.25, 0.5, . . . , 2.0. Note that in scenario 4

where κ = 1 we essentially create data under the Geometric model. The total

number of pens, individuals per pen and samples obtained are chosen equal to the

corresponding attributes of dataset 1, for all 8 scenarios. As discussed in Section

4.4.2.3, in order to diminish Lindley’s paradox effect we use the inverse moment

(non local) prior for log κ which leads to the following prior density for κ > 0:

π(κ) =
ρτυ/2

κΓ(υ/2ρ)

(
log(κ)

)−(υ+1)
exp

[
−
{(

log(κ)
)2

τ

}−ρ]
, (5.2)

with ρ = 1, υ = 1 and τ = 0.16. Note that the non local prior has density 0 at

κ = 1.

In order to compare the results of the IS analysis with those of RJMCMC,

we present the posterior model probabilities of the Negative Binomial model in

Table 5.1. To eliminate biases due to the simulated data, we create and analyse

40 datasets for each value of κ and report the median posterior probability over

these replicates. Comparing the two methods, we see that they give nearly identical

estimates of the posterior probability of model M2 for all scenarios considered. IS

outperforms the 3 RJMCMC samplers in terms of variability of the estimates, except

from the cases where κ = 0.25 and κ = 2.00. This result could be attributed to

the proposal distribution of X being less efficient as κ moves further away from 1.

Additionally, when κ = 2, the posterior probability assigned to model M2 by IS

is slightly lower compared to RJMCMC. However, in the two extreme cases we are

uncertain whether RJMCMC exhibits good mixing or if it is stuck in one model.

In cases where the algorithm remains at a model for a long period, one might use

the corrected RJMCMC to ameliorate this problem. Of the 3 RJMCMC proposals,

we find that proposal 3 is the one that provides the less accurate estimates, due to

the fact that MCMC runs for less iterations. Further, the Normal proposal results

in the lowest variability as well as the highest probability of moving between the 2

models as can be seen in Tables 5.1 and 5.2, respectively. Nevertheless, our results

support that posterior model probabilities are robust to different choices of proposal

distributions in RJMCMC.

In scenarios 1 and 8, all algorithms yield a very high posterior probability

that the true underlying distribution is the Negative Binomial (Table 5.1). This can

directly be linked to the true value of κ (0.25 and 2.00 for these scenarios) which
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contrasts with the assumption of the Geometric model where κ = 1. In fact, in a

run of RJMCMC using the third proposal under scenario 1, it is virtually impossible

to accept the Geometric model against the Negative Binomial model. As expected,

the evidence in favour of the Negative Binomial model decreases in the remaining

scenarios and in particular for 3-6 we observe that the Negative Binomial appears

less favourable than the Geometric model. The lowest probabilities among the 8

scenarios are obtained when κ = 1, where we correctly obtain strong evidence in

favour of the simple model.

In terms of parameter estimation, all the simulation studies show that the

MCMC algorithm is able to provide estimates of good quality. In Table 5.3 we report

posterior summaries of parameters κ and m which we calculate over 40 replicates in

each one of the 8 scenarios. Overall, we conclude that it is possible to recover the

parameters since in all setups the 95% intervals contain the true values that were

used to generate the data.

Finally, we carry out a sensitivity analysis to assess the effect that the prior

of the additional parameter κ has on posterior model probabilities. Additional to

the non local prior, we also consider the Ga(1, 1) and Ga(0.1, 0.1) priors, the latter

being the least informative of the three. We use the same κ as in scenarios 1-8 and

for every value we repeat estimation 40 times with each one of the three priors. The

median (over the replicates) posterior probabilities of the Negative Binomial model

M2 are shown in Figure 5.2. As expected, the results differ depending on the prior.

The uninformative Ga(0.1, 0.1) prior tends to favour the simple Geometric model

Table 5.1: Estimated median posterior probability (standard deviation) of the Negative
Binomial model, M2, based on 40 replicates under eight different epidemic scenarios.

True κ

Method

IS
RJMCM RJMCM RJMCM

Normal Exp Gamma

0.25 0.987 (0.021) 0.997 (0.003) 0.993 (0.001) 1.000 (0.000)

0.50 0.867 (0.021) 0.869 (0.059) 0.870 (0.065) 0.871 (0.033)

0.75 0.404 (0.009) 0.417 (0.028) 0.410 (0.028) 0.395 (0.044)

1.00 0.117 (0.002) 0.101 (0.011) 0.118 (0.014) 0.116 (0.058)

1.25 0.255 (0.005) 0.253 (0.010) 0.257 (0.013) 0.215 (0.091)

1.50 0.444 (0.010) 0.443 (0.015) 0.446 (0.021) 0.458 (0.023)

1.75 0.782 (0.019) 0.778 (0.020) 0.781 (0.020) 0.783 (0.022)

2.00 0.955 (0.021) 0.975 (0.005) 0.974 (0.010) 0.983 (0.011)
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Table 5.2: Median probability of a move between the Geometric and Negative Bino-
mial models based on 40 replicates under eight different epidemic scenarios. Estimates are
multiplied by 100.

True κ

Method

RJMCM RJMCM RJMCM

Normal Exp Gamma

0.25 0.044 0.144 0.000

0.50 1.304 1.708 2.064

0.75 7.493 5.004 7.047

1.00 7.119 4.769 6.028

1.25 11.556 6.790 9.526

1.50 12.464 5.936 9.113

1.75 4.500 2.625 4.013

2.00 2.224 0.556 0.911

Table 5.3: Posterior summaries of parameters κ and m based on 40 replicates under eight
different epidemic scenarios.

Scenario
Dispersion κ Mean duration m

2.5% κ̂ 97.5% True 2.5% m̂ 97.5% True

1 0.147 0.263 0.388 0.25 8.855 9.086 9.337 9.00

2 0.377 0.507 0.647 0.50 8.584 8.845 9.127 9.00

3 0.633 0.755 0.906 0.75 8.757 9.018 9.324 9.00

4 0.929 1.046 1.165 1.00 8.888 9.124 9.357 9.00

5 1.092 1.211 1.329 1.25 8.645 8.891 9.156 9.00

6 1.340 1.490 1.612 1.50 8.840 9.142 9.386 9.00

7 1.642 1.789 1.924 1.75 8.735 9.030 9.279 9.00

8 1.937 2.112 2.229 2.00 8.464 8.815 9.048 9.00

in all scenarios except when κ = 0.25 and κ = 2.00. The other 2 priors generally

provide similar results with the exception of scenarios 3, 4 and 5 when κ is close to

1. In these cases, the non local prior gives more evidence for modelM1 as it assigns

less mass to values of κ near 1 and exactly 0 at 1.
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Figure 5.2: Sensitivity to the prior distribution on the additional parameter κ. Results
are based on 40 replicates under eight different epidemic scenarios. We use 3 different priors:
the Ga(0.01, 0.01), the Ga(1,1) and the non local prior given by Equation (5.2).
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5.2.4 Results

We first present parameter estimates for the E. coli O157:H7 dataset 1 under the

Geometric and Negative Binomial models and then we consider the problem of

determining which of the two best fits the data. When comparing the marginal

posterior densities of the common parameters obtained by the two analyses (see

Figure 5.3), we observe that these are in close agreement, with the main difference

being in the mean colonisation period. In particular, the parameter m is lower in the

Geometric model, leading to higher estimates of transmission parameters α and β.

The tail is longer on the Geometric distribution compared with Negative Binomial

(κ > 1) and this may be causing the mean colonisation period to be underestimated.

The estimated posterior median of κ under the Negative Binomial model is 1.681

and the corresponding 95% credible interval is equal to [0.975, 2.758]. This might

weakly suggest that the Geometric model is not plausible for this data.

To formally test between the two models, the IS and RJMCMC methods are
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Figure 5.3: Marginal posterior densities of the parameter when analysing E. coli O157:H7
dataset 1 under the Geometric and Negative Binomial models. The green and red densities
correspond to model M1 and M2, respectively.
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implemented. For the RJMCMC, we use the three different dimension increasing

proposal densities presented in Section 5.2.2. The parameter σ of the Normal pro-

posal (proposal 1) is set to 0.5 and the parameter λ in the matching function for an

across-model jump is set to 1.5. Furthermore, the parameter ξ of the Exponential

proposal (proposal 2) distribution is fixed to 1. Lastly, the resulting values of a and b

for the Gamma density (proposal 3) are obtained from the pilot run of the Negative

Binomial model, based on Equation (5.1). All the Markov chains are initiated with

the Geometric model.

Median posterior probabilities of the two models, along with the logarithm of

the estimated Bayes factor in favour of the Negative Binomial model are presented

in Table 5.4, using the non local prior for κ. Note that we have applied all methods

40 times to the dataset to gain an estimate of the variability of the quantities

presented. The results of IS and RJMCMC are almost identical and support the

Negative Binomial model with a median posterior probability of 0.60. However this

evidence is not overwhelming. Similar to our simulation studies, we find that IS

estimates are slightly less variable compared to those obtained by RJMCMC. We

also plot the evolution of the posterior probability of model M2 (Figure 5.4) and

see that after a reasonably long run, all methods converge towards the same value.

Table 5.4: Estimated Log Bayes factors, posterior model probabilities and the probability
of a move between the two models for the real dataset 1. M1: Geometric model, M2:
Negative Binomial model, P(M1 | y): posterior probability of model M1 and P(M2 | y):
posterior probability of modelM2, P(move): probability of a move between the two models.

Methods P(M1 | y) P(M2 | y)
Log Bayes

factor
P(move)

IS
0.394 0.606 0.429

—–
[0.378, 0.422] [0.578, 0.622] [0.345, 0.532]

RJMCMC 0.398 0.602 0.413 0.155
Normal [0.362, 0.444] [0.556, 0.638] [0.183, 0.523] [0.151, 0.158]

RJMCMC 0.394 0.606 0.433 0.105
Exp [0.360, 0.443] [0.557, 0.640] [0.229, 0.577] [0.103, 0.111]

RJMCMC 0.402 0.598 0.396 0.142
Gamma [0.347, 0.465] [0.535, 0.653] [0.274, 0.691] [0.093, 0.151]
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Figure 5.4: Evolution of the posterior probability of the Negative Binomial model using
four different methods applied on E. coli O157:H7 dataset 1.
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5.2.5 Discussion

In summary, the simulation analyses in this section illustrate that both IS and

RJMCMC methods perform very well in distinguishing between the Geometric and

Negative Binomial model for the colonisation period. Moreover, we have seen that

IS generally produces more precise estimates compared to RJMCMC, especially in

cases where the dispersion parameter κ of the Negative Binomial model is close to

1. Further, the posterior model probabilities obtained by RJMCMC were indepen-

dent of the trans-dimensional proposal that was used for the algorithm. Finally, a

sensitivity analysis has suggested that the prior on the dispersion parameter κ can

possibly affect the Bayes factor estimation.

Valuable conclusions have been drawn after comparing the Geometric and

Negative Binomial model on dataset 1. The results from the analysis show that

the non-Markovian Negative Binomial model is better supported by the data than

the simpler, Markovian Geometric model. Specifically, there is weak evidence, as

suggested by a Bayes factor of 1.54 obtained by IS. This result proves some evi-
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dence in support of the hypothesis that the probability of an individual leaving the

colonised state is not constant over time, and in particular that the probability of

recovery grows as the colonisation period increases. The biological interpretation

of the finding is that cattle may develop an immune response to rid themselves of

E. coli bacteria. Thus, in subsequent analyses of dataset 1 we assume a Negative

Binomial distributed colonisation period.

5.3 Investigating heterogeneity in colonisation rates among

pens

5.3.1 Competing models

In this section we consider the model with Negative Binomial distribution for the

colonisation periods as suggested by our analysis in Section 5.2. Further, we extend

this model to incorporate heterogeneity in the spread of the disease through the

study population. More precisely, we assume that the rates of avoiding colonisation

from within-pen and from external sources vary between pens.

Looking at the map with the locations of all the pens in the first study (Figure

2.1), we can see that the pens are divided into two sets according to their size and

their location. The North pen set consists of 12 pens with dimensions 6m×17m (area

102m2) and the South pen set includes the remaining 8 pens that have dimensions

6m × 37m (area 222m2). It is likely that pens with different area and location are

subject to different levels of risk of E. coli O157:H7 infection. Therefore, we allow

the external and within-pen transmission rates α and β, respectively, to differ for

South and North pens. The corresponding parameters are indexed by s for South

pens and n for North pens.

To investigate the difference between the two sets of pens, we define the

model with two risk levels to this data set, with parameters (αs, βs) corresponding to

individuals housed in South pens and (αn, βn) corresponding to individuals housed in

North pens. Hence, we assume that the overall avoidance probability for individual

c housed in pen p on a given day t, is given by

P
(
X

[c, p]
t = 0 | X [c, p]

t−1 = 0
)

= exp

(
− αs1{p∈S} − αn1{p∈N} − βs 1{p∈S}

npc∑

c′=1

x
[c′, p]
t−1 − βn 1{p∈N}

npc∑

c′=1

x
[c′, p]
t−1

)
,

where N , S denote the set of North and South pens, respectively, and npc is the
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total number of individuals in pen p = 1, 2, . . . , P . The function 1A is the indicator

of event A.

We call the model described above the full model, denoted by M1. It may

be of interest to treat the α values for North and South pens as common, and to test

only for a distinct β value, or vice versa. This is meaningful as the value of α may

relate to the location of the pen, whereas the value of β may be more closely linked

to the area of the pen. Therefore, we compare the full model with three alternative

models in order to establish which of the parameters αs and αn or βs and βn are

common. Given the epidemic data, we aim to choose one from the following four

candidate models:

Model M1: the full model with four parameters, αs, αn, βs, and βn.

Model M2: a special case of the full model, where the external transmission pa-

rameter is identical in the two sets of pens, i.e. αs = αn = α.

Model M3: a special case of the full model, where the within-pen transmission

parameter is identical in the two sets of pens, βs = βn = β.

Model M4: a special case of the full model with one parameter α, such that

αs = αn = α, and one parameter β, such that βs = βn = β.

5.3.2 Implementation details

In addition to the IS algorithm, we apply RJMCMC for comparison. The mechanism

with which our proposed RJMCMC algorithm moves between models is illustrated

in Figure 5.5. The prior in the model indicator k ∈ K = {1, 2, 3, 4} is the uniform

distribution over the space of competing models, resulting in π(k) = 0.25 for all

k ∈ K.

The RJMCMC algorithm proceeds as follows. For a move from model M1

to M2 we keep parameters βs, βn,m, ν, θR, θF and X fixed and propose α2 =
Ln αn1+Ls αs1

P , where Ln is the number of North pens, Ls is the number of South pens

and P is the total number of pens. The Jacobian of this transformation is Ln Ls
P .

For a reverse move, we need to increase the dimension of the parameter vector and

so introduce an auxiliary random variable u ∼ N (0, σ21) with σ21 fixed but chosen

such that the algorithm can efficiently move between M1 and M2. Then, we set

αs1 = α2 + u
Ls

and αn1 = α2 − u
Ln

, and the Jacobian is P
Ln Ls

. The acceptance
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probability of a move from model M1 to M2 is given by min(1, A12),

A12 =
π(k = 2,ψ2 | Y)

π(k = 1,ψ1 | Y)

{
1

σ1
√

2π
exp

[
− 1

2σ21

(
Ln Ls (αs1 − αn1)

P

)2]}
Ln Ls
P

,

where ψ1 = (αs1 , αn1 , βs, βn,m, ν, θR, θF ,X), ψ2 = (α2, βs, βn,m, ν, θR, θF ,X), and

π(k,ψk | Y) is the posterior probability of model Mk, k = 1, 2. For the reverse

move M2 to M1, the probability of accepting the jump is given by min(1, A21),

A21 =
π(k = 1,ψ1 | Y)

π(k = 2,ψ2 | Y)

{
1

σ1
√

2π
exp

[
− u2

2σ21

]}−1
P

Ln Ls
.

Similar proposals are used for moves between modelsM1 andM3,M2 andM4 and

finally M3 and M4. In all cases we choose the variance of the auxiliary variables

u such that the probability of accepting a trans-dimensional move is at least 10%.

In addition to the model-switching step, the within-model parameters are updated

using either Gibbs or Hamiltonian Monte Carlo updates, similar to the algorithm

used in the previous Section 5.2 for the Negative Binomial model. The algorithm

runs for 400,000 iterations and we discard 50,000 as burn-in.

For IS, the proposal density q(θk) is a mixture of the prior (5% mixing

weight) and a multivariate Normal (95% mixing weight) with mean the estimated

posterior mean vector and covariance the estimated covariance matrix from the

Figure 5.5: RJMCMC probabilities of moving from a model k to some model k′, where
k, k′ ∈ K = {1, 2, 3, 4}. The 4 competing models are used to investigate the effect of
heterogeneity in colonisation rates. The models are described in Section 5.3.1.
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MCMC output under model Mk, k = 1, 2, 3, 4. MCMC samples are obtained as

in within-model parameter updates of RJMCMC. Simulation studies regarding the

performance of this algorithm in estimating the parameters of each model can be

found in Section D.2.1 of the Appendix. For the proposal density r(Xk | ·) we use

the FFBS algorithm to sample from the approximate full conditional π(Xk | θk,Y)

(as discussed in Section 5.2.2) which can be written as:

π(Xk | θk,Y) =
P∏

p=1

π(Xp
k | θ

p
k,Y

p),

where Xp
k are the colonisation states of pen p and θpk the corresponding parameters

of pen p under model Mk. The construction of the importance sampling density

for each one of the competing models is based on 20,000 MCMC samples after a

burn-in of 5,000. For estimating the marginal likelihood we use 100,000 samples

which requires roughly the same computational effort as RJMCMC.

Since the interpretation of m,κ, ν, θR and θF is common to all models, we

use the same prior distributions for consistency with our prior beliefs; m − 1, κ ∼
Ga(0.01, 0.01) and ν, θR, θF ∼ Beta(1, 1). Also, to each parameter α, β, αs, αn, βs

and βn we assign a Ga(1, 100) prior when necessary, because our simulation studies

suggest that this prior results in accurate estimates of evidence (see Section D.2.2

of Appendix for more details). To obtain estimates of the Monte Carlo variability

of the posterior model probabilities, we apply IS and RJMCMC 40 times.

5.3.3 Results

In Figure 5.6, we present the joint and marginal posterior distribution of the coloni-

sation parameters. Generally, we observe considerable overlap in the α direction

but separation in the β direction. Moreover, if model M3 (βs = βn = β) is used

instead of model M1 (βs 6= βn), we obtain different results for parameters αs and

αn, the main difference being that the posterior median of αn is higher compared to

the posterior median of αs, as opposed toM1 where the posterior median αn < αs.

This is in line with what would be expected, since now the parameters αn and αs of

model M3 must take values that account for the number of infections occurring on

the dataset, for which the common β cannot account. Specifically, under modelM3

the parameters βs and βn are equal and therefore larger values of αn explain the

fact that there are more infections in North pens than in South pens and vice versa

lower values of αs account for the fact that there are fewer infection in the South

pens. Nevertheless, there is considerable overlap of the distribution of αn and αs in
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both M1 and M3.

In contrast, when we allow parameters βs and βn to differ (under modelsM1

and M2), the within-pen transmission posterior median is found to be 2.5 times

larger in North pens compared to South pens and there is only little overlap in

the two distributions. Thus, there is evidence of differences between the North and

South pens in terms of their within-pen transmission parameter but not in terms of

their external transmission rate. However, to test formally whether the data provide

evidence of heterogeneity in colonisation rates among South and North pens, we can

use IS and RJMCMC to compute the Bayes factors, as described in Section 5.3.2.

Figure 5.7 shows the estimated posterior model probabilities for the two

methods that we use. The RJMCMC and IS approaches give similar results and

both support model M2 that has a median (over 40 implementations) posterior

probability 0.7751 and 0.7673, respectively. ModelM4 is the second most preferable

and is assigned median posterior probabilities of roughly 0.16 by the two methods.

Note that both models M2 and M4 allow for common external transmission rates

between North and South pens. We also report the Bayes factors for the pairwise

comparisons:

B21 = 12.50, B41 = 2.61,

B23 = 69.13, B43 = 14.43,

B24 = 4.79, B13 = 5.53.

The results give positive evidence in favour of model M2 when compared with

models M1,M4, and strong evidence in favour of model M2 when compared with

model M3. Overall, our analyses suggest that the data favour the hypothesis of

equal external transmission rates between North and South pens but suggest that

the within-pen transmission rate is higher in the North pen set compared to the

South pen set.

5.3.4 Discussion

The IS and RJMCMC methods for computing Bayes factors are applied to investi-

gate the effect of heterogeneity in colonisation rates among North and South pens.

The two methods provide identical conclusions. Results favour model M2 with

different within-pen transmission rates but common external colonisation rate be-

tween North and South pens. One explanation for that could be that the area is

bigger in the South pens and so the animals make fewer contacts with each other

or fewer contacts with infectious sources (e.g. faeces from colonised individuals) on
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Figure 5.6: Joint and marginal posterior densities of the external and within-pen trans-
mission rates, for E. coli dataset 1. The top left, top right, bottom left and bottom right
panels represent models M1 −M4, respectively.

(a) Parameter summaries under model M1. (b) Parameter summaries under model M2.

(c) Parameter summaries under model M3. (d) Parameter summaries under model M4.

the ground.

The second most favourable model isM4, also allowing for common external

transmission rate but with common within-pen transmission rates. These facts

suggest that there is strong evidence for equal α values of North and South pens,

meaning that pens with different geographical location are subject to the same levels

of risk of E. coli O157:H7 infection from external sources. We can attribute this

result to the large population (over 10,000) of cattle in the area around the facility in

which our study was conducted. However, it should be emphasised that the design



Chapter 5. Evaluation Of Epidemiological Hypotheses 102

Figure 5.7: Posterior probabilities of models M1 −M4 described in Section 5.3.1 used
to analysed E. coli dataset 1, using IS and RJMCMC methods.
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of the experiment was not set up to investigate different pen areas or locations and

thus, the area in the pen is confounded with the location.

5.4 Investigating transmission between neighbouring pens

In this section, we consider a further model which allows for an extra source of

colonisation namely transmission between neighbouring pens. Thus, we assume

that the epidemic process mixes at an additional level, where each individual makes

infectious contacts not only within a pen but also in its neighbourhood (pens that

are located close by), with different colonisation rates in each setting. As before,

we assume that individuals avoid infection from the community as a whole with a

common probability.

This extension give us a new model with associated probability of a suscep-

tible individual c housed in pen p being colonised at day t given by:

P(X
[c, p]
t = 1 | X [c, p]

t−1 = 0) = 1− exp
(
− α− β

npc∑

c′=1

x
[c′, p]
t−1 − η

∑

`∈n(p)

npc∑

c′=1

x
[c′, `]
t−1

)
,

where n(p) is the set of neighbouring pens of pen p. Therefore, individuals living

in different pens are not independent under this model. Figure 5.8 is a graphical

representation of the potential transmission routes between colonised and susceptible
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individuals. We adopt this approach in light of our initial findings in Chapter

2, where for dataset 2 we observed a non-zero between-pen correlation that was

higher for pens that are closer one with another. In Sections 5.4.2.1 and 5.4.2.2, we

define the competing models considered for each dataset respectively. In the first

dataset we assume a Negative Binomial colonisation period and different within-

pen transmission rates for North and South pens, since we have found evidence in

support of these assumptions. For dataset 2, we use a Geometric distribution since

we have a sparse sampling interval.

Figure 5.8: Dynamics of infection in a population comprising of neighbouring (grey
squares) and non-neighbouring pens (white squares) of pen p (red square). The state of an
epidemic is shown for a given day, with solid circles indicating infected hosts and empty
circles indicating susceptible hosts. The arrows represent potential transmission routes
between infected and a given susceptible individual.
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5.4.1 Implementation details

Inferences for this epidemic model are not straightforward because the underling

colonisation processes are dependent across neighbouring pens. We fit the epidemic

model using MCMC and data augmentation techniques that use similar ideas as in

Section 5.2.2. Sampling directly from the full conditional distribution of the unob-

served colonisation states in this case is complicated due to both: 1) FFBS being

computationally infeasible to account for all possible interactions and 2) assuming

a Negative Binomial colonisation period (for dataset 1). Therefore, we consider an

independence sampler to simulate X with proposal given as the full conditional (πH)

under the Geometric model (κ = 1, to solve issue 2 when necessary) and with no

interaction between pens (η = 0, to solve issue 1). To correct for the fact that we are

using an approximate full conditional, we apply a Metropolis-Hastings correction.

When η is included in a model, we update it using HMC, jointly with the other

parameters for which HMC is employed.
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We use the following prior distributions. For dataset 1 we set α, βs, βn ∼
Ga(1, 1), m − 1, κ ∼ Ga(0.01, 0.01) and ν, θR, θF ∼ Beta(1, 1). For dataset 2 we

have α, β ∼ Ga(1, 1), m − 1 ∼ Ga(0.01, 0.01) and ν ∼ Beta(1, 1). We also set

η ∼ Ga(1,1000), when η is included in a model. This prior is used in light of our

simulations in Section D.3 of the Appendix where we found that this prior can

successfully recover the true model. MCMC runs for 25,000 iterations and we save

the last 20,000 based on which we construct the IS density of the model parameters

q(·). A total of 150,000 samples are taken from this density. For r(· | ·) we use

the same proposal as with MCMC that is, we take samples from the approximate

distribution πH , essentially assuming that η = 0 and κ = 1 (when necessary).

We repeat IS 40 times to assess the variability of the estimator. RJMCMC is not

applied for this comparison because it was hard to design an efficient proposal for

the method to jump between the candidate models.

5.4.2 Results

5.4.2.1 Analysis of dataset 1

For this dataset we define as neighbours two pens that are only separated by an

empty pen, as shown in Figure 5.9. Given the epidemic data, we aim to choose one

from the following two models:

Model M1: the Negative Binomial model in which we account for two putative

types of transmission, with common external colonisation rates α and within-

pen colonisation rates βn and βs for North and South pens.

Model M2: the extended Negative Binomial model in which we account for three

putative types of transmission, with external colonisation rate α, within-pen

colonisation rates βn, βs and neighbour transmission rate η.

We report posterior summaries before we move to model selection. Some of

the model parameter estimates can be found in Figure 5.10. The posterior densities

of βn, βs, κ and m are very similar in both models. When model M2 is fit to the

data, we observe a slight decrease in the value of α because η accounts for some of

the external transmissions that under modelM1 were captured by α. Nevertheless,

the posterior median of η is 4× 10−4, which implies an average time between neigh-

bouring pen infections of 2500 days. A formal model selection procedure provides

positive support in favour of model M1 which has median posterior probability

of 0.843 (the 95% CI over 40 replicates is [0.830, 0.858]), implying that there is

no significant transmission of the disease between neighbours. The plot of the log
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Figure 5.9: Grey squares denote pens that neighbour the red pen for E. coli O157:H7
dataset 1. The arrows represent potential transmission routes between infected individuals
(solid circles) and neighbouring susceptible individual (empty circle).
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marginal likelihoods of each model over iterations is given in Figure 5.11. Therefore,

we have evidence that the experimental design that aimed to allow for no interaction

between pens by separating them with an empty pen was successful.

5.4.2.2 Analysis of dataset 2

Once again the purpose of the analysis performed is to provide a model that better

describes the transmission of E. coli O157:H7 infection in cattle. For this dataset,

the layout of the pens is shown in Figure 2.2. There are several ways in which

neighbours can be defined. We consider the following 5 definitions, each representing

one model:

1. Pens that share only waterers (see Figure 5.12(a)).

2. Pens that share a boundary (waterer and/or wall) but not a feed bunk (see Figure

5.12(b)).

3. Pens that share a boundary (waterer and/or wall) and a feed bunk (see Figure

5.12(c)).

4. Pens that share only a feed bunk (see Figure 5.12(d)).

5. Pens that share a feed bunk and waterer (see Figure 5.12(e)).

In addition to the above models Mk, where k ∈ {1, 2, 3, 4, 5}, we consider

the basic model M6 which does not allow interactions between any pens (η = 0).
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Figure 5.10: Marginal posterior densities of the main characteristics of the transmission
of E. coli O157:H7 dataset 1, using model M1 and M2.

Parameter α Parameter η

0.005 0.010 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

D
en

si
ty

Model

M1

M2

Parameter βn Parameter βs

0.005 0.010 0.015 0.020 0.000 0.005 0.010 0.015

D
en

si
ty

Parameter κ Parameter m

2 4 6 8 10 12

D
en

si
ty

For allMk, k = 1, . . . , 6, we use a Geometric distribution for the colonisation period

because the sampling interval in dataset 2 is sparse (once every 2 weeks), and this

makes inferences for the dispersion parameter in the Negative Binomial distribution

challenging.

As discussed in Section 3.6.2, we fix the parameters θR and θF to 0.729 and
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Figure 5.11: Log marginal likelihoods of models M1 (left panel) and M2 (right panel)
of E. coli O157:H7 dataset 1, as obtained by the IS method. The shaded area corresponds
to the 95% credible interval calculated over 40 replicates.
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Figure 5.12: Grey squares denote pens that neighbour the red pen for E. coli O157:H7
dataset 2. The arrows represent potential transmission routes between infected individuals
(solid circles) and neighbouring susceptible individual (empty circle).

(a) Model M1: Neighbours
share only a waterer.

(b) Model M2: Neighbours
share a boundary (waterer
and/or wall) but not a feed
bunk.

(c) Model M3: Neighbours
share a boundary (waterer
and/or wall) and a feed buck.

(d) Model M4: Neighbours
share only a feed bunk.

(e) Model M5: Neighbours
share a waterer and feed buck.
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0.686, respectively. For the remaining model parameters and for each of the 6 mod-

els considered, we report posterior summaries in Table 5.5. Generally, the values

depend on the model that we choose but there is considerable overlap of the 95%

credible intervals among the 6 competing models. The most notable differences are

found for the external transmission rate α and the between neighbour transmission

rate η. Notably, the largest value of η is obtained under M1. However, no defini-

tive conclusions can be reached using these summaries and hence a formal model

comparison is required to measure the evidence in support of each model.

Table 5.5: Parameter estimation for E. coli O157:H7 dataset 2. Posterior mean, standard
deviation, median and 95% credible interval for the parameters of each model.

Model Mean s.d. 2.5% Median 97.5%

Model M1

α 0.00354 0.00105 0.00198 0.00343 0.00572

β 0.01051 0.00258 0.00688 0.01015 0.01723

δ 0.00177 0.00136 0.00022 0.00159 0.00409

m 14.0225 2.42279 6.93560 14.1664 18.2691

ν 0.05108 0.01760 0.02260 0.04901 0.09109

Model M2

α 0.00332 0.00114 0.00164 0.00321 0.00567

β 0.01058 0.00263 0.00705 0.01020 0.01736

δ 0.00097 0.00076 0.00010 0.00087 0.00217

m 14.2041 2.37620 6.98463 14.3635 18.2945

ν 0.05094 0.01745 0.02240 0.04908 0.09023

Model M3

α 0.00312 0.00117 0.00139 0.00302 0.00543

β 0.01077 0.00273 0.00721 0.01035 0.01791

δ 0.00067 0.00054 0.00007 0.00061 0.00149

m 14.1204 2.47629 6.81213 14.2840 18.3770

ν 0.05157 0.01784 0.02266 0.04945 0.09273
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Model M4

α 0.00374 0.00105 0.00221 0.00363 0.00594

β 0.01107 0.00270 0.00758 0.01062 0.01856

δ 0.00086 0.00105 0.00004 0.00069 0.00223

m 14.2945 2.46251 6.96882 14.4856 18.5131

ν 0.05123 0.01762 0.02274 0.04927 0.09155

Model M5

α 0.00338 0.00108 0.00179 0.00327 0.00563

β 0.01077 0.00265 0.00719 0.01039 0.01765

δ 0.00082 0.00071 0.00008 0.00073 0.00189

m 14.0675 2.42564 6.87511 14.2436 18.2196

ν 0.05136 0.01772 0.02248 0.04924 0.09182

Model M6

α 0.00430 0.00102 0.00279 0.00420 0.00632

β 0.01127 0.00293 0.00781 0.01081 0.02027

m 14.4317 2.36214 7.36671 14.5578 18.5148

ν 0.05081 0.01757 0.02215 0.04888 0.09042

The result of the model comparison is shown in Figure 5.13. Model M1

has the highest median (over 40 replicates) posterior probability 0.263, followed by

model M2 with 0.194, M5 with 0.170, M3 with 0.160, M6 with 0.113 and M4

with posterior probability 0.100. Thus, within this set of candidates epidemiological

models, the most suitable model to describe the data is the one where neighbours

share a waterer and no other boundary or feed bunk. Further, modelsM2,M5 and

M3 that are the second, third and fourth most favourable by the algorithm, also

assume that neighbours share their waterers. Therefore, there is evidence in favour

of the hypothesis that the transmission is enhanced when two pens share a waterer,

which confirms that contaminated waterers are a potential route of E. coli O157:H7

transmission (Faith et al., 1996; Rahn et al., 1997; Shere et al., 2002). Interestingly,

modelM4 was the least preferable model, even compared to the simple modelM6.

A possible explanation for this result is that the design of the study did not allow

for any contact between animals through the feed bunk.
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Figure 5.13: Posterior probabilities of models M1 −M6 described in Section 5.4.2.2
used to analysed E. coli dataset 2, using IS method.
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5.4.3 Discussion

The objective of this section was to identify possible routes of E. coli O157:H7

transmission that relate to the arrangement of pens near one another. For the

first dataset, this question connects to the experimental design of the study which

aimed to prevent transmission between pens. To achieve so, neighbouring pens were

separated by an empty pen ensuring that each had its own water supply and feed

bunk. We found that this design was successful since our model comparison showed

positive evidence that transmission of the disease was not possible between pens

that were nearby.

For the second dataset, by contrast, pens were located next to one another

and some of them shared waterers and feed bunks in pairs. In this case, we have

found positive evidence that E. coli O157:H7 is more likely to be transmitted be-

tween pens that share a waterer than to those that share a boundary and/or a

feed bunk. This result confirms previous findings which indicate that contaminated

drinking water may contribute to the spread of the disease (Faith et al., 1996; Rahn

et al., 1997; Shere et al., 2002).
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5.5 Discussion

Since much is unknown about the exact mechanism of E. coli O157:H7 transmission,

the first stage of our analysis is to determine an appropriate model using model

selection. Therefore, in this chapter we developed a set of stochastic epidemic models

that represent different assumptions regarding the transmission of infection among

individuals and we compared them using Bayes factors. The RJMCMC and IS

methods were implemented to estimate posterior model probabilities and marginal

likelihoods, respectively, for different sets of competing models in the light of two

observed datasets and simulated datasets (see also Appendix D).

Via simulations, we illustrated that RJMCMC and IS methods perform very

well in providing an accurate estimate of the evidence when a suitable prior is used.

However, it is challenging to design efficient jump mechanisms for RJMCMC al-

gorithms when we consider four or more competing models, and therefore IS was

found to be a useful alternative to estimate Bayes factors. Even though IS requires

only within-model MCMC, it is still sometimes challenging to determine good pro-

posal densities, especially for the unobserved data. In our examples we have shown

how to design efficient proposals for the hidden states, either directly from the full

conditional or using an approximate full conditional distribution.

We explored the use of a Negative Binomial distribution for the colonisation

period of cattle as an alternative to the traditionally employed Geometric model. A

formal statistical comparison between the two models favoured the Negative Bino-

mial with weak evidence. This implies the probability that an individual clears the

disease increases, the longer it remains colonised. The biological interpretation of

our finding might be that cattle develop an immune response to the bacteria of E.

coli O157:H7.

In the above modelling framework, we assumed that all pens have the same

risk of acquiring colonisation from outside the pen and transmitting infection within

the pen. We assessed the effect of relaxing this assumption, by allowing the rates of

external and within-pen transmission to differ between pens according to their size

and location. The analysis demonstrated that there is real evidence of differences

between pens in terms of their within-pen colonisation rates but not their risk of

acquiring the disease from external sources. In particular, we estimated that the

smaller North pens have a higher within-pen colonisation rate which might arise

due to there being more contacts between individuals compared to large pens that

have bigger area and hence less contacts. An extension of this work will consider

a hierarchical model in which each pen is allowed to have its own within-pen and
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external rates, sampled from some hyper-distribution whose parameters would then

be subject to inference.

Finally, motivated by some previous studies which hypothesise that animal

feed and waterers in particular are important sources of E. coli O157 transmission

(Faith et al., 1996; Rahn et al., 1997; Shere et al., 2002; Cobbold and Desmarchelier,

2002), we extend our models to account for such incidents. Our results confirm the

hypothesis that contaminated waterers contribute to the spread of the pathogen

since we found appreciable evidence in support of this model.

Although the models that we consider in this chapter were designed to anal-

yse the dynamics of E. coli in cattle, they can be adopted to model other kinds

of population heterogeneity or diseases in other livestock or humans. For example,

the methodology presented can be applied to investigate whether children are more

prone to influenza infections through the family, community or school. In all of

these cases, the techniques for model selection that we have presented are directly

applicable and hence can be employed to address various epidemiological questions

of interest as was illustrated in this chapter.
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Chapter 6

Scalable Inference For

Coupled Hidden Markov And

Semi-Markov Epidemic Models

6.1 Introduction

Hidden Markov models are among the most widely used approaches for modelling

time series data, when it can be assumed that the observed data are indicative of

some underlying hidden state. In the basic HMM, a single variable represents the

state of the system at any time. However, many interesting systems are composed

of multiple interacting processes, and thus this single-process model is not appropri-

ate. An example, and the main motivation for the work presented in this chapter, is

the spread of infection at an individual level; individuals in a population can jump

between several epidemic states (for instance infected or susceptible), and change

state according some probability distribution that depends on the previous hidden

state of all individuals, including themselves. Therefore, the epidemic model is com-

posed of multiple Markov chains, one per individual, which influence and interact

with each other.

Various extended HMM models have been proposed to solve coupled, mul-

tiple chain data analysis problems. These extensions basically factor the HMM

state into a collection of state variables, X
[1:C]
t =

(
X

[1]
t , X

[2]
t , . . . , X

[C]
t

)
, where

X
[c]
t ∈ Xs = {s1, s2, . . . , sN} corresponds to the hidden state of chain c at time

t. In our case, we use coupled hidden Markov models (CHMMs) to capture these

interactions (Brand, 1997), where the current state of a chain depends on the pre-

vious state of all the chains. The temporal dependence between the hidden states

is captured though matrices of conditional probabilities which couple the chains.

This structure implies that the state space grows exponentially with respect

to the number of chains and thus exact inference quickly becomes computationally

intractable. Thus, with more and more data becoming available it is extremely
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important to design CHMM algorithms that scale well for big datasets. As a conse-

quence, inference in CHMM has received much attention and a variety of techniques

are available. Existing methods for inference are either based on various likelihood

approximation schemes or achieved by MCMC sampling methods.

The inference problem for CHMMs usually includes both hidden state and

parameter estimation. Early literature on the topic was focused on maximum like-

lihood estimation, achieved using an EM algorithm. Among this class, many re-

searches proposed several variations of the standard CHMM for which inference

problems become more tractable. For instance, Brand et al. (1997) made a simpli-

fication that the transition probability for a given chain conditional on the others is

separable and therefore can be represented as the product of all marginal conditional

probabilities:

P
(
X

[c]
t | X

[1:C]
t−1

)
=

C∏

c′=1

P
(
X

[c]
t | X

[c′]
t−1
)
.

One issue with this formulation is that the right hand side does not sum up to one.

To overcome this issue, Saul and Jordan (1999) and Zhong and Ghosh (2002), made

a different simplifying assumption that the transition probability is replaced with a

weighted sum of the marginal conditional probabilities,

P

(
X

[c]
t | X

[1:C]
t−1

)
=

C∑

c′=1

φc′ c P
(
X

[c]
t | X

[c′]
t−1

)
,

where φc′ c is the coupling weight from chain c′ to chain c. Another approach includes

the work by Kwon and Murphy (2000), in which the authors used CHMMs to model

freeway traffic and considered two different approximations for the E-step, one based

on the particle filtering, and the other based on the Boyen-Koller algorithm.

All of these approaches have been developed assuming specialised CHMMs,

in order to reduce the computational complexity; however, applications in Brand

et al. (1997), Saul and Jordan (1999) and Zhong and Ghosh (2002) involved only two

chains. Choi et al. (2013) recently proposed a fast algorithm for sparsely correlated

HMMs where inference for each individual chain is performed conditioning on the

hidden state vectors in all other chains, by assuming sparsity when incorporating

correlations between the current chain and all the other chains. The approach

presented in this study is similar to Choi et al. (2013), however in their work the

authors used the standard forward backward algorithm to deterministically select

the hidden state sequence in each chain. In contrast, we are interested in performing

CHMM inference under a Bayesian paradigm.
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The second class of methods consists of MCMC approaches. One consider-

able challenge among this class concerns the computation of the posterior distribu-

tion of the hidden states conditional on the observed data and model parameters,

and many techniques have been proposed to overcome this challenge. The most

popular approach to exact Monte Carlo inference can be achieved by converting

the CHMM into an equivalent HMM with NC states (where N is the total num-

ber of possible hidden states) and applying the standard forward filtering backward

sampling algorithm (Carter and Kohn, 1994; Chib, 1996).

However, even though implementation of FFBS is quite efficient for HMMs

with a moderately large number of states N , it can be computationally prohibitive

for CHMMs with only a small number of chains C. As a result, several alternative

methods have been to solve the problem including conditional single-site (Dong

et al., 2012) or block updates (specifically for epidemics, Spencer et al. 2013). While

these methods are less computationally demanding than the FFBS, they typically

produce highly correlated samples.

Assuming a sparse transition matrix is one way to speed up FFBS algorithm,

and such a method was recently proposed by Sherlock et al. (2013). In this work,

the authors impose a structure on each chain’s transition matrix, with transition

probabilities depending on covariates through logistic regression. These covariates

include the states of the other chains and other external factors. While this approach

reduces computation time, it requires the structure of transition matrices to be

estimated or known in advance.

The computationally most demanding part of the FFBS algorithm is the

summation over all possible configurations of the hidden state variables within each

time step, which is done during the forward filtering step. The motivation behind

this work is to avoid doing this calculation by proposing a slightly modified condi-

tional forward variable which can be calculated for each chain and can reduce the

computational complexity to a practical level. In particular, we propose a Gibbs

sampling algorithm for the CHMM which is based on simulating from the posterior

conditional distribution over a single chain given the rest.

The main contribution of this study is the development of a novel extension

of the FFBS algorithm which explicitly takes into account the interaction between

chains, without imposed any structure on the transition matrix, and at the same

time achieving a balance between sampling efficiency and computational complexity.

We initially restrict our presentation to CHMMs, and we subsequently describe

how the proposed method can be extended for models with a richer structure in

their set of hidden state variables. In particular, we show how our analysis can
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be applied to coupled hidden semi-Markov models (CHSMMs), where the hidden

process persists in the same state for some non-Markov duration, and to models

consisting of interacting coupled hidden Markov processes. This creates a novel

class of algorithms that are computationally efficient and at the same time provide

reliable results.

The remainder of this chapter is organised as follows. In Section 6.2 we

describe more formally the coupling structure in our CHMM model. Sections 6.3

and 6.4 describe existing MCMC methods in the literature for estimating CHMMs,

and summarise their main advantages and limitations. In this section two new al-

gorithms for inference in CHMMs are proposed. In Section 6.5 we put CHMMs in

the context of modelling the spread of infectious diseases. Section 6.6 illustrates the

results using simulation studies with different degrees of complexity that compare

the MCMC methods with respect to the mixing, efficiency and computational re-

quirement. Results shows that our approach allows the FFBS algorithm to be used

with much large populations than has previously been possible and is linear in the

population size rather than exponential. The methodology is also used to analyse

the real E. coli O157:H7 datasets, in Section 6.7. In Section 6.8 we conclude with

some discussion and possible extensions.

6.2 Coupled hidden Markov model

A coupled hidden Markov model is a collection of many HMMs, which are coupled

with some temporal dependency structure of the hidden states. There are two

conditional independence assumptions made about the observations and states. As

in HMMs, given the value of its hidden state, one observation is independent of

all other states and observations in the CHMM. The difference with HMMs is that

one hidden state is not only dependent on the previous state in this chain, but also

on the previous state of all other chains. The latter dependence constitutes the

interaction between the multiple chains.

We choose the coupling structure shown in Figure 6.1 in our CHMM. More

formally, we use X
[c]
t to denote the hidden state variable of chain c ∈ {1, 2, . . . , C}

at time t ∈ {1, 2 . . . , T} with a finite set of possible states. For simplicity, we assume

that all chains share the same set of possible states; nevertheless, the method can

be easily extended to the more general case where chains do not share the same

state space. Therefore, we assume without loss of generality that X
[c]
t ∈ Xs =

{s1, s2, . . . , sN}, N ≥ 1. For example, the simplest model is a binary chain with

N = 2, where the two states s1 = 0 and s2 = 1 correspond to susceptible and
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Figure 6.1: A coupled hidden Markov model represented as a dynamic Bayesian network,
with three hidden chains (C = 3) and possibly several missing observations. Circle nodes
denote hidden states, square nodes denote observations, and the arrows between nodes
reflect the probabilistic dependencies between random variables.
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infected individuals. We consider non-homogeneous Markov chains in which the

transition probabilities depend on time and thus for all `, k ∈ Xs we define:

P
(
X

[c]
t = k | X [c]

t−1 = `, X
[−c]
t−1 , θ

)
= P

[c]
`, k, t (6.1)

where X
[−c]
t−1 denotes

(
X

[1]
t−1, X

[2]
t−1, . . . , X

[C]
t−1
)

with X
[c]
t−1 removed. To fully define

the distribution of the state, a marginal distribution for X
[c]
1 needs to be specified,

P
(
X

[c]
1 = k | θ

)
= ν

[c]
k , for c = 1, 2, . . . C.

The state of each chain is not directly observable. All there is, as in HMMs, is

an observation Y
[c]
t associated with the unobserved state X

[c]
t . The relation between

X
[c]
t and Y

[c]
t will differ depending on the application, but depending on the value

of the state we can write:

π
(
Y

[c]
t = y

[c]
t | X

[c]
t = k, θ

)
= fk

(
y
[c]
t | θ

)
, k ∈ Xs (6.2)

which can be discrete or continuous. If y
[c]
t is empty due to missing data, we set

fk

(
y
[c]
t | θ

)
to 1. The parameters of this model, θ, will be the parameters of the

observed and hidden processes of Equations (6.2) and (6.1), respectively.
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6.3 Bayesian analysis and MCMC methods

One considerable challenge on estimating CHMMs is that the likelihood function

of the observed data given the model parameters is computationally intractable for

even moderate numbers of states or interacting chains. One solution to this problem

is to impute the hidden states using data augmentation MCMC. This approach yields

a joint posterior density for the unobserved states and the model parameters that

is known up to proportionality,

π
(
θ,X

[1:C]
1:T | Y

[1:C]
1:T

)

∝ π(θ)P
(
X

[1:C]
1 | θ

) ( T∏

t=2

P
(
X

[1:C]
t | X[1:C]

t−1 ,θ
))( T∏

t=1

π
(
Y

[1:C]
t | X[1:C]

t ,θ
))

= π(θ)

(
C∏

c=1

P
(
X

[c]
1 | θ

))( T∏

t=2

C∏

c=1

P
(
X

[c]
t | X

[c]
t−1, X

[−c]
t−1 , θ

))

×
(

T∏

t=1

C∏

c=1

π
(
Y

[c]
t | X

[c]
t , θ

))
(6.3)

by assuming that a prior for the parameters, π(θ), has been specified. In order to

simplify the notation it is convenient to adopt the following conventions:

X
[1:C]
t =

(
X

[1]
t , X

[2]
t , . . . , X

[C]
t

)

X
[1:C]
1:t =

(
X

[1:C]
1 ,X

[1:C]
2 , . . . ,X

[1:C]
t

)

with similar conventions applying to Y
[1:C]
t and Y

[1:C]
1:t . In words, X

[1:C]
t is the set

of the hidden states of all chains within a time step t, and X
[1:C]
1:t denotes the whole

hidden state process up to time t.

As discussed in Section 1.2.2.3, samples from the joint posterior of the model

parameters and the hidden states are generated as follows: first, θ is updated con-

ditional on the current values of X
[1:C]
1:T and then, X

[1:C]
1:T is updated conditional on

θ. In this chapter, we focus on the problem of updating the hidden states, which is

the most computational demanding part.

6.4 Updating the hidden states

Before discussing the details of our new approaches in Sections 6.4.4 and 6.4.5, we

first briefly describe the standard algorithms for the CHMMs within this framework.



Chapter 6. Scalable Inference For Epidemic Models 119

For further details regarding these methods, we refer the readers to the original

publications.

6.4.1 Single-site Gibbs updates

The simplest way to update the matrix of hidden states X
[1:C]
1:T is to draw each one

of the C × T components from its full conditional distribution:

P
(
X

[c]
t = x

[c]
t | X

[−c]
−t = x

[−c]
−t ,Y

[1:C]
1:T = y

[1:C]
1:T ,θ

)

∝ P
(
X

[c]
t = x

[c]
t ,X

[−c]
−t = x

[−c]
−t ,Y

[1:C]
1:T = y

[1:C]
1:T | θ

)
, (6.4)

for x
[c]
t ∈ Xs, where the normalising constant is the sum of all the terms over X

[c]
t

from s1 to sN , and X
[−c]
−t denotes the whole hidden state process excluding X

[c]
t .

Note that these terms are calculated as in Equation (6.3) without the prior on θ.

This method is called single-site update and has been used by Dong et al. (2012) for

modelling the spread of infection within a social network (see Figure 6.3(b), page

127).

Note that Equation (6.4) can be further simplified by using the conditional

independence assumptions; however, we choose to keep the general form for use in

later sections. In our case, we only need to examine the states of a few neighbouring

node to sample from X
[c]
t , as shown in Figure 6.2; each node is conditionally inde-

pendent of all other nodes given its Markov blanket. Therefore, the full conditional

distribution for X
[c]
t , for t = 2, 3, . . . , T − 1, simplifies to:

P
(
X

[c]
t = x

[c]
t | X

[−c]
−t = x

[−c]
−t ,Y

[1:C]
1:T ,θ

)

= P
(
X

[c]
t = x

[c]
t | X

[1:c]
t−1 = x

[1:c]
t−1 , X

[−c]
t = x

[−c]
t , X

[1:c]
t+1 = x

[1:c]
t+1 , Y

[c]
t ,θ

)

∝ P
(
X

[c]
t = x

[c]
t | X

[c]
t−1 = x

[c]
t−1, X

[−c]
t−1 = x

[−c]
t−1 ,θ

)
π
(
Y

[c]
t | X

[c]
t = x

[c]
t ,θ

)

×
C∏

c′=1

P
(
X

[c′]
t+1 = x

[c′]
t+1 | X

[c′]
t = x

[c′]
t , X

[−c′]
t = x

[−c′]
t ,θ

)

= P
[c]

x
[c]
t−1, x

[c]
t , t

[
C∏

c′=1

P
[c′]

x
[c′]
t , x

[c′]
t+1, t+1

]
f
x
[c]
t

(
y
[c]
t | θ

)
,

for x
[c]
t ∈ Xs. Similarly, we obtain the full conditional distributions for X

[c]
1 and X

[c]
T .

Therefore, we have that:

P
(
X

[c]
t = x

[c]
t | X

[−c]
−t = x

[−c]
−t ,Y

[1:C]
1:T ,θ

)
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∝





ν
[c]

x
[c]
t

[
C∏

c′=1

P
[c′]

x
[c′]
t , x

[c′]
t+1, t+1

]
f
x
[c]
t

(
y
[c]
t | θ

)
t = 1,

P
[c]

x
[c]
t−1, x

[c]
t , t

[
C∏

c′=1

P
[c′]

x
[c′]
t , x

[c′]
t+1, t+1

]
f
x
[c]
t

(
y
[c]
t | θ

)
t = 2, 3, . . . , T − 1,

P
[c]

x
[c]
t−1, x

[c]
t , t

f
x
[c]
t

(
y
[c]
t | θ

)
t = T,

where the normalising constant in each case is the sum of all the terms over X
[c]
t

from s1 to sN .

Figure 6.2: The Markov blanket of a node (target) consists of all nodes that make this
node conditionally independent of all the other nodes in the model: the parents (red nodes),
the children (green nodes) and the parents of the children (blue nodes).
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Thus we need to calculate C × T variables and each one requires O(N)

time to compute giving an overall complexity of O(CNT ). Despite being easy

in implementation, it has been shown by Scott (2002) that the single-site update

algorithm leads to extremely slow mixing in the resulting MCMC chains. This fact

is due the high temporal dependence in the hidden state process.
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6.4.2 Block proposals updates

Recently, Spencer et al. (2015) developed a method for epidemic models which

proposes to change blocks of state components within a single chain, based on their

current values. This method is a modification of O’Neill and Roberts (1999), applied

to discrete time models, and builds on the fact that animals remain on the same

epidemic state for a long period. Briefly, for each chain successively one block of

states r with maximum length M is chosen, and then one of three possible changes

is proposed, as illustrated in Figure 6.3(a) on page 127. The proposed changes are:

Add, Remove and Move. More precisely, in the “Add” step, we choose a period

during which a given individual did not change their infection status and then

proposed that for a subset of this period their infection status was reversed. Likewise

in the “Remove” step we select an entire episode during which their infection status

was unchanged and reverse this whole period, therefore joining the two neighbouring

periods together. And a “Move” step move an endpoint of such a block. These

changes propose a new vector r∗, and the change is accepted with a probability that

ensures the MCMC algorithm has the correct stationary distribution.

The efficiency of the algorithm depends on the size of the blocks that are

proposed to be updated; if the blocks are too large then they no longer relate to the

data and so are almost always rejected. The main advantage of this method is that

the computational requirement is very small since the most of the hidden states are

not updated. However, this can result in very slow mixing and therefore it needs to

be run for more iterations in order to obtain independent samples.

6.4.3 Standard FFBS Gibbs update

For small number of chains, the whole hidden state process can be updated from

its full conditional, π
(
X

[1:C]
1:T | Y

[1:C]
1:T ,θ

)
, in a single block. This exact algorithm

consists of translating the CHMM into an equivalent HMM with NC states where

X
[1:C]
t =

(
X

[1]
t , X

[2]
t , . . . , X

[C]
t

)
∈ XCs = {s1, s2, . . . , sN}C denote the state of the

model at time t, as shown in Figure 6.3(c) on page 127.

Single block sampling can be achieved using the forward filtering backward

sampling algorithm. This algorithm is based upon a forward recursion which calcu-

lates the filtered probabilities P
(
X

[1:C]
t | Y[1:C]

1:t ,θ
)

. This is followed by a backward

simulation step that first generates X
[1:C]
T from P

(
X

[1:C]
T | Y[1:C]

1:T ,θ
)

and then sim-

ulates the rest X
[1:C]
t ’s by progressing backwards, simulating in turn X

[1:C]
t from

P
(
X

[1:C]
t | X[1:C]

t+1 ,Y
[1:C]
1:t ,θ

)
, for t = T − 1, T − 2, . . . , 1. Hence, the full conditional

distribution of the hidden states X
[1:C]
1:T given the observed data and the parameters
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of the Markov model is available in closed form. We denote this conditional distri-

bution by πH

(
X

[1:C]
1:T | Y

[1:C]
1:T ,θ

)
. For more details about the algorithm see Chapter

3. Later in the chapter, we refer to this method as the fullFFBS.

The computational complexity of the forward-backward algorithm isO(TN2C).

Thus, particularly for a reasonably large number of chains or possible states, this

method will be computationally inefficient. This motivated us to derive a set of re-

cursions to perform exact inference by using modified conditional forward-backward

variables that can be calculated in time O(TN2) for each chain.

6.4.4 Individual FFBS Gibbs updates

We propose a novel extension of the FFBS algorithm, where the hidden states are

sampled individually per chain conditionally on the hidden states of the remaining

chains, as opposed to the standard FFBS algorithm where sampling is done for all

chains jointly. Figure 6.3(d) (see page 127) illustrates our proposed method, termed

as iFFBS (individual FFBS) when the hidden states of the first chain are updated.

Under the conditional independence assumptions of our model, the full con-

ditional distribution of X
[c]
1:T , for each c = 1, 2, . . . , C, can be factorised as:

P
(
X

[c]
1:T | X

[−c]
1:T ,Y

[1:C]
1:T ,θ

)

= P
(
X

[c]
T | X

[−c]
1:T ,Y

[1:C]
1:T ,θ

) T−1∏

t=1

P
(
X

[c]
t | X

[c]
t+1:T ,X

[−c]
1:T ,Y

[1:C]
1:T ,θ

)

= P
(
X

[c]
T | X

[−c]
1:T ,Y

[1:C]
1:T ,θ

) T−1∏

t=1

P
(
X

[c]
t | X

[c]
t+1,X

[−c]
1:t+1,Y

[c]
1:t,θ

)

where

P
(
X

[c]
t = x

[c]
t | X

[c]
t+1 = x

[c]
t+1,X

[−c]
1:t+1,Y

[c]
1:t,θ

)

∝ P
(
X

[c]
t+1 = x

[c]
t+1 | X

[c]
t = x

[c]
t ,X

[−c]
1:t+1,θ

)
P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1,Y

[c]
1:t,θ

)

= P
(
X

[c]
t+1 = x

[c]
t+1 | X

[c]
t = x

[c]
t ,X

[−c]
t ,θ

)
P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1,Y

[c]
1:t,θ

)

= P
[c]

x
[c]
t , x

[c]
t+1, t+1

P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1,Y

[c]
1:t,θ

)
(6.5)

since the states of all chains a time t + 1, X
[1]
t+1, X

[2]
t+1, . . . , X

[C]
t+1, are independent

conditional on the states of all chains at time t.

The rest of the calculation is concerned with determining the second mass

function in Equation (6.5), which can be determined recursively for all t starting with



Chapter 6. Scalable Inference For Epidemic Models 123

t = 1. We refer to this term as the modified conditional filtered probability. Similar

to the standard forward backward procedure the forward recursion is initialised at

t = 1 with:

P
(
X

[c]
1 = x

[c]
1 | X

[−c]
1:2 ,Y

[c]
1 ,θ

)

∝ P
(
X

[c]
1 = x

[c]
1 | θ

)
f
x
[c]
1

(
y
[c]
1 | θ

)[ C∏

c′=1
c′ 6=c

P
(
X

[c′]
2 = x

[c′]
2 | X

[c′]
1 = x

[c′]
1 , X

[−c′]
1 ,θ

)]

= ν
[c]

x
[c]
1

f
x
[c]
1

(
y
[c]
1 | θ

) [
C∏

c′=1
c′ 6=c

P
[c′]

x
[c′]
1 , x

[c′]
2 , 2

]

︸ ︷︷ ︸
Transition probabilities of the
remaining chains at time t = 2

(6.6)

where the normalizing constant is the sum of the terms in Equation (6.6) as X
[c]
1

runs from s1 to sN . Then, for t = 2, 3, . . . , T − 1, we repeat the following steps:

Step 1. Compute the one-step ahead modified conditional predictive probabilities:

P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t ,Y

[c]
1:t−1,θ

)

=
∑

k∈XS
P
(
X

[c]
t = x

[c]
t | X

[c]
t−1 = k,X

[−c]
t−1 ,θ

)
P
(
X

[c]
t−1 = k | X[−c]

1:t ,Y
[c]
1:t−1,θ

)

=
∑

k∈Xs
P

[c]

k,x
[c]
t , t

P
(
X

[c]
t−1 = k | X[−c]

1:t ,Y
[c]
1:t−1,θ

)
(6.7)

Step 2. Compute the modified conditional filtered probabilities:

P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1 = x

[−c]
1:t+1,Y

[c]
1:t,θ

)

∝ P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t ,Y

[c]
1:t−1,θ

)
f
x
[c]
t

(
y
[c]
t | θ

)
×
[

C∏

c′=1
c′ 6=c

P
[c′]

x
[c′]
t , x

[c′]
t+1, t+1

]

︸ ︷︷ ︸
Transition probabilities of the
remaining chains at time t+ 1

(6.8)

where computing the normalising constant would require us to sum over the N

possible values of X
[c]
t . Note that the last term in Equation (6.8) is calculated given

X
[c]
t and occurs due to X

[c]
t connecting to X

[c′]
t+1 in the graph of Figure 6.3(d), for

c′ 6= c.
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The forward recursion is terminated at t = T with:

P
(
X

[c]
T = x

[c]
T | X

[−c]
1:T ,Y

[c]
1:T ,θ

)
=

P
(
X

[c]
T = x

[c]
T | X

[−c]
1:T ,Y

[c]
1:T−1,θ

)
f
x
[c]
T

(
y
[c]
T | θ

)

∑

k∈Xs
P
(
X

[c]
T = k | X[−c]

1:T ,Y
[c]
1:T−1,θ

)
fk

(
y
[c]
T | θ

) .

Once the filtered probabilities have been calculated and stored in a forward sweep,

the hidden states for a given chain c can be simulated in a backward sweep, starting

with the simulation of a value for X
[c]
T from the modified filtered probability at time

T , P
(
X

[c]
T = x

[c]
T | X

[−c]
1:T ,Y

[c]
1:T ,θ

)
. Then for t = T − 1, T − 2, . . . , 1 we iteratively

sample a value for X
[c]
t given our simulated value for X

[c]
t+1, from:

P
(
X

[c]
t = x

[c]
t | X

[c]
t+1 = x

[c]
t+1,X

[−c]
1:t+1,Y

[c]
1:t,θ

)

=

P
[c]

x
[c]
t , x

[c]
t+1, t+1

P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1,Y

[c]
1:t,θ

)

∑

k∈Xs
P

[c]

k, x
[c]
t+1, t+1

P
(
X

[c]
t = k | X[−c]

1:t+1,Y
[c]
1:t,θ

) .

This forward-backward procedure provides the full conditional distribution of the

hidden Markov chain c, denoted by πH[c]

(
X

[c]
1:T | Y

[c]
1:T ,X

[−c]
1:T ,θ

)
, in closed form.

Therefore we can use a Gibbs sampler where each chain is updated conditional on

the current values of the remaining chains, the model parameters and the observed

data. The algorithm is presented in Algorithm 4.

Examining the computations, we see that the proposed iFFBS method re-

quires TN2 calculations for a single chain and hence a full sweep over all C chains

requires TCN2 as opposed to the TN2C needed by fullFFBS. The key difference

between the two methods, can be seen is Equation (6.7) where the sum for iFFBS

is over N possible states whereas for fullFFBS the corresponding sum is over NC

terms. Another important difference is that evaluating the filtered probabilities of

chain c at time t < T for iFFBS involves the calculation of the transition probabil-

ities of the remaining chains calculated at the next time point. Note that if these

extra terms are omitted, then the iFFBS reduces to the standard FFBS. This lat-

ter approximation was used by Sherlock et al. (2013) for modelling interactions of

different diseases. We call their method uncorrected-iFFBS. However, such an ap-

proximation requires an extra Metropolis Hastings step within the Gibbs sampling

scheme to correct for the fact that the hidden states are not sampled from their full

conditionals, as shown in the next section. Note that, failing to include the MH step

may lead to poor behaviour of the resulting MCMC chains; an example is presented
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in Section E.1 of the Appendix.

Algorithm 4: MCMC algorithm for the Markov model with iFFBS

method

1 Initialise: Draw θ ∼ π(θ) and generate X
[1:C]
1:T ∼ π(X

[1:C]
1:T | θ);

2 for j = 1, 2, . . . , J do

3 for c = 1, 2, . . . , C do

4 Draw X
[c]
1:T ∼ πH[c]

(
X

[c]
1:T | Y

[c]
1:T ,X

[−c]
1:T ,θ

)
with iFFBS;

5 end

6 Perform suitable MCMC update to sample

θ ∼ π
(
θ | Y[1:C]

1:T ,X
[1:C]
1:T

)
;

7 end

6.4.5 Individual FFBS independence sampler

We assume that X
[−c]
t+1

(
the vector of the states of all other chains at time t +

1 excluding the state of chain c, X
[c]
t+1

)
is dependent on X

[−c]
t but only weakly

dependent on X
[c]
t . Motivated by this relation, each time we update chain c, we let

X
[−c]
t+1 to be independent of X

[c]
t , such that:

P
(
X

[c′]
t+1 | X

[1:C]
t ,θ

)
= P

(
X

[c′]
t+1 | X

[−c]
t ,θ

)
, where c′ 6= c.

This assumption implies the Bayesian network shown in Figure 6.3(e), page 127.

Given the assumption of independence, the product terms in Equations (6.6) and

(6.8) cancel out, and so the modified conditional filtered probabilities reduce to:

P
(
X

[c]
1 = x

[c]
1 | X

[−c]
1:2 ,Y

[c]
1 ,θ

)
=

ν
[c]

x
[c]
1

f
x
[c]
1

(
y
[c]
1 | θ

)

∑

k∈Xs
ν
[c]
k fk

(
y
[c]
1 | θ

)
,

and

P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1,Y

[c]
1:t,θ

)
=

P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t ,Y

[c]
1:t−1,θ

)
f
x
[c]
t

(
y
[c]
t | θ

)

∑

k∈Xs
P
(
X

[c]
t = k | X[−c]

1:t ,Y
[c]
1:t−1,θ

)
fk

(
y
[c]
t | θ

) ,

similar to the standard FFBS algorithm but with hidden state space Xs rather that

XCs . However, since we overlook some between chain dependencies our full con-
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ditionals are approximations of the true full conditionals. Therefore, we need to

replace the Gibbs step with a Metropolis Hastings step to correct for the error of

the approximation. We use an independence sampler with the approximated full

conditionals as the proposal distributions. The detailed algorithm can be found in

Algorithm 5. From here on, we refer to this proposed algorithm as MHiFFBS.

Algorithm 5: MCMC algorithm for the Markov model with MHiFFBS

method

1 Initialize: Draw θ ∼ π(θ) and generate X
[1:C]
1:T ∼ π

(
X

[1:C]
1:T | θ

)
;

2 for j = 1, 2, . . . , J do

3 for c = 1, 2, . . . , C do

4 Propose X
[c] ∗
1:T ∼ q

(
X

[c]
1:T | Y

[c]
1:T ,X

[−c]
1:T ,θ

)
;

5 Compute

a = min

(
1,

q
(
X

[c]
1:T |Y

[c]
1:T ,X

[−c]
1:T ,θ

)
q
(
X

[c] ∗
1:T |Y

[c]
1:T ,X

[−c]
1:T ,θ

) × π
(
X

[c] ∗
1:T ,X

[−c]
1:T ,θ|Y

[1:C]
1:T

)
π
(
X

[c]
1:T ,X

[−c]
1:T ,θ|Y

[1:C]
1:T

)
)

;

6 Draw u ∼ Uniform(0,1);

7 if u ≤ a then

8 Set X
[c]
1:T = X

[c] ∗
1:T ;

9 else

10 Set X
[c]
1:T = X

[c]
1:T ;

11 end

12 end

13 Perform suitable MCMC update to sample

θ ∼ π
(
θ | Y[1:C]

1:T ,X
[1:C]
1:T

)
;

14 end

6.5 CHMMs and CHSMMs for modeling infection dy-

namics

Coupled hidden Markov models provide a natural way to model the transmission

dynamics of an infectious disease where the coupling between different chains ac-

counts for the interaction between individuals. In this section, we demonstrate how

CHMMs can be embedded within an individual-based SIS epidemic model for the

spread of infection through a household. Under this framework, the unobserved

colonisation process corresponds to the hidden states of the CHMM and simulation

can be done with the algorithms already described in Section 6.4.
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Figure 6.3: Strategies to model coupled hidden Markov models.
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(e) MHiFFBS

In Section 6.5.1 we discuss the SIS model with a Geometric distribution for

the colonisation period, which yields a Markov model. In Section 6.5.2, we relax the

Markovian assumption by allowing the duration to have a Negative Binomial dis-

tribution. This leads to a semi-Markov model in which the duration of colonisation

depends on how long an individual has been infected.

6.5.1 Markov model

The SIS model with Markovian disease duration has been already described in Sec-

tion 3.2 to which we refer the reader. The parameters of the model are sampled

using either Gibbs or Hamiltonian Monte Carlo updates. The hidden infection states

can be updated with any of the algorithms described in Section 6.4. Note that all

methods are outlined for the case of a single pen. However, since we assume no

interaction between pens it is straightforward to apply these methods in a prob-

lem with several pens. This independence assumption can be relaxed as shown in

Section 6.7.2.
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6.5.2 Semi-Markov model

In a departure from the previous Markov model, we assume that the time an in-

dividual remains infected has a two-parameter Negative Binomial distribution as

described in Section 5.2.1. Bayesian inference for the semi-Markov model can pro-

ceed as follows. Regarding the update of the hidden states, the block proposals

method can be applied without any modification. The single-site method can be

done through the general Equation (6.4). For the fullFFBS and iFFBS methods the

necessary Markov property is not valid, and therefore the two algorithms can not

be applied directly. Therefore, we extend the methodology used before for updat-

ing the hidden states by considering an independence sampler within the MCMC

algorithm. Our approach takes advantage of the availability of the full conditionals

in the coupled hidden Markov model, by using them as a proposal in the update.

More specifically, the proposal assumes a special case of the Negative Binomial dis-

tribution with κ = 1, equivalent to the Geometric, and therefore the efficiency of

the algorithm depends on how close the real value of κ is to 1.

The full details of the extended algorithms for fullFFBS (called SM-fullFFBS)

and iFFBS (called SM-iFFBS) are shown in Algorithm 6 and 7, respectively. In the

same spirit, the MHiFFBS method can be also directly applied without modifi-

cations. As an alternative, one could use the method of Natarajan and Nevatia

(2007) who proposed running the forward-backward recursions conditional on the

durations vector ζ = (ζ[1], ζ[2], . . . , ζ[C]) and then marginalising over ζ. However,

the computational cost of the recursions for coupled hidden semi-Markov models

is much bigger than for CHMMs and increases as the observation period T grows.

Therefore, we choose not to examine this option.

Similarly to the Markov model, we update the model parameters using either

Gibbs or HMC steps. We now move to simulation studies.
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Algorithm 6: MCMC algorithm for the semi-Markov model with SM-

fullFFBS method

1 Initialise: Draw θ ∼ π(θ) and generate X
[1:C]
1:T ∼ π

(
X

[1:C]
1:T | θ

)
;

2 for j = 1, 2, . . . , J do

3 Propose X
[1:C] ∗
1:T ∼ πH

(
X

[1:C]
1:T | Y

[1:C]
1:T , κ = 1,θ−κ

)
with FFBS;

4 Compute a = min

(
1,

πH

(
X

[1:C]
1:T |Y

[1:C]
1:T ,κ=1,θ−κ

)
πH

(
X

[1:C] ∗
1:T |Y[1:C]

1:T ,κ=1,θ−κ
) × π

(
X

[1:C] ∗
1:T ,θ|Y[1:C]

1:T

)
π
(
X

[1:C]
1:T ,θ|Y[1:C]

1:T

)
)

;

5 Draw u ∼ Uniform(0,1);

6 if u ≤ a then

7 Set X
[1:C]
1:T = X

[1:C] ∗
1:T ;

8 else

9 Set X
[1:C]
1:T = X

[1:C]
1:T ;

10 end

11 Perform suitable MCMC update to sample

θ ∼ π
(
θ | Y[1:C]

1:T ,X
[1:C]
1:T

)
;

12 end

Algorithm 7: MCMC algorithm for the semi-Markov model with SM-

iFFBS method

1 Initialise: Draw θ ∼ π(θ) and generate X
[1:C]
1:T ∼ π

(
X

[1:C]
1:T | θ

)
;

2 for j = 1, 2, . . . , J do

3 for c = 1, 2, . . . , C do

4 Propose X
[c] ∗
1:T ∼ πH[c]

(
X

[c]
1:T | Y

[c]
1:T ,X

[−c]
1:T , κ = 1,θ−κ

)
with

iFFBS;

5 Compute a =

min

(
1,

π
H[c]

(
X

[c]
1:T |Y

[c]
1:T ,X

[−c]
1:T ,κ=1,θ−κ

)
π
H[c]

(
X

[c] ∗
1:T |Y

[c]
1:T ,X

[−c]
1:T ,κ=1,θ−κ

) × π
(
X

[c] ∗
1:T ,X

[−c]
1:T ,θ|Y

[1:C]
1:T

)
π
(
X

[c]
1:T ,X

[−c]
1:T ,θ|Y

[1:C]
1:T

)
)

;

6 Draw u ∼ Uniform(0,1);

7 if u ≤ a then

8 Set X
[c]
1:T = X

[c] ∗
1:T ;

9 else

10 Set X
[c]
1:T = X

[c]
1:T ;

11 end

12 end

13 Perform suitable MCMC update to sample

θ ∼ π
(
θ | Y[1:C]

1:T ,X
[1:C]
1:T

)
;

14 end
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6.6 Simulation studies

We perform a series of simulations to assess the efficiency of existing and proposed

methods for updating the hidden infection states. Particular focus is given on how

these methods are affected by dimensionality that is, when the total number of

animals in the population and the study period increase. In Section 6.6.1 we study

the Markov case whereas in Section 6.6.2 we apply the methods to data simulated

from the semi-Markov model. Note that both throughout this Section as well as the

real data analysis of Section 6.7 we allow for individual drop-outs during the study;

all described methods can be easily modified for this scenario.

6.6.1 Markov model

The initial simulated dataset consists of observations from P = 20 pens, each con-

taining C = 8 cattle as in the real dataset 1. Moreover, the study period is set

to T = 99 days. First, we generate the hidden colonisation states according to the

model defined in Equation (3.1) of Chapter 3, using the same parameter values as

estimated in Section 3.6.1. In particular, the simulated data are generated with an

external colonisation parameter α equal to 0.009, within-pen colonisation parameter

β equal to 0.01, mean colonisation period m equal to 9 days and initial probability

of colonisation set to ν = 0.1. We then generate RAMS and faecal samples from the

population at intervals according to the actual sampling frame employed in dataset

1. Finally, the RAMS and faecal test sensitivities are assumed to be 0.8 and 0.5,

respectively.

For the unknown parameters in the Markov model, the prior distributions

are specified as follows: α, β ∼ Ga(1,1), m − 1 ∼ Ga(0.01, 0.01) and ν, θR, θF ∼
Beta(1,1). We draw samples from the joint posterior of the hidden states and

model parameters with the MCMC scheme described earlier in the chapter, using

all possible methods for updating the hidden states. The model parameters ν, θR

and θF are updated using Gibbs steps and the remaining parameters are updated

jointly using the Hamiltonian Monte Carlo, as in Section 3.4. For each method, we

run the algorithm for 11,000 iterations, removing the first 1,000 as a burn-in. Each

procedure is repeated 20 times to provide an empirical Monte Carlo estimate of the

variation in each approach.

Figure 6.4 shows the estimated number of infected individuals over time,

along with 95% credible intervals, as obtained from one of the 20 runs. We generally

see that the 5 methods provide almost identical results and all of them contain the

true total number of infected individuals within the credible intervals. Therefore,
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a comparison of the different approaches can be based on the mixing properties

and the required computational effort of each. Mixing can measured in terms of

autocorrelation of the Markov chains whereas the computational effort is given by

the total time required for one iteration of the MCMC. In the following results

we choose our summary statistic to be the total number of infected individuals

I =
∑P

p=1

∑C
c=1

∑T
t=1 x

[c, p]
t , in order capture the information over all T periods of

the study.

In the left panel of Figure 6.5 we see the autocorrelation function (ACF)

function for I, averaged across the 20 different runs in each method. We see that

the fullFFBS, iFFBS and MHiFFBS methods have very good mixing properties since

the autocorrelation function drops rapidly as a function of time. On the contrary,

both block proposals and single-site methods produce highly correlated samples with

the ACF function being greater than zero even after 30 iterations of the MCMC.

Both findings are expected as discussed in Section 6.4. For the block proposals

method slow mixing is due to only few states being updated at each iteration of the

MCMC; for the single-site method slow mixing is caused by the strong correlation

between hidden states. As far as the running time is concerned, we find that block

proposals method is the fastest as can be seen from the right panel of Figure 6.5.

The computationally most demanding method is fullFFBS due to the summation

over all possible 28 states that needs to be calculated.

Nevertheless, direct comparison of either ACF functions or CPU time is not

indicative of computational efficiency on its own. For example, we see that block

proposals are optimal in terms of CPU time per iteration, but results in much slower

mixing as compared to the other methods. Therefore, a measure of computational

efficiency needs to account for both features discussed before. We use the relative

speed which is defined as following. First, for each method we calculate the time

normalised effective sample size (tESS), the ratio of effective sample size (ESS)

from 10,000 MCMC iterations and the CPU time required per iteration. Then, we

divide the tESS of each method with the worst observed tESS to obtain the relative

speed. Hence, the relative speed has a minimum value of 1 which corresponds to the

computationally least efficient method, and any number bigger than 1 reflects the

gains using a particular method compared to the worst. In the left panel of Figure

6.6 we show the relative speed of each method as obtained from the 20 different runs.

We observe that among competing methods, the proposed iFFBS methods is the

one that best combines the desired properties of mixing and computational speed,

followed by the fullFFBS and the proposed MHiFFBS methods. Block proposals

method is the least efficient method as it has a relative speed of 1 in all 20 replicates.
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Figure 6.4: Median posterior number of infected individuals for the Markov model. Black
solid lines represent the true values. Shaded regions represent the 95% credible intervals.
White vertical lines represent the days where samples were collected.

10

20

30

40

0 25 50 75 100

Day

N
u
m
b
er

o
f
in
fe
ct
ed

an
im

al
s

True Block

(a) Block updates method.

10

20

30

40

0 25 50 75 100

Day
N
u
m
b
er

o
f
in
fe
ct
ed

an
im

al
s

True Single-site

(b) Single-site update method.

10

20

30

40

0 25 50 75 100

Day

N
u
m
b
er

of
in
fe
ct
ed

a
n
im

al
s

True fullFFBS

(c) fullFFBS method.

10

20

30

40

0 25 50 75 100

Day

N
u
m
b
er

of
in
fe
ct
ed

a
n
im

al
s

True iFFBS

(d) iFFBS method.

10

20

30

40

0 25 50 75 100

Day

N
u
m
b
er

of
in
fe
ct
ed

an
im

al
s

True MHiFFBS

(e) MHiFFBS method.



Chapter 6. Scalable Inference For Epidemic Models 134

Figure 6.5: Autocorrelation function of I (left) and CPU time per iteration (right) for
the Markov epidemic model. ACF plots in the left panel are the average across 20 replicates.
Quantiles in the right panel are obtained from the same 20 runs.
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Figure 6.6: Relative speed (left) and ACF per second for I (right) for the Markov
epidemic model. Quantiles in the left panel are obtained from 20 runs. ACF plots in the
right panel are the average of the same 20 runs.
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This finding is confirmed in the right panel of Figure 6.6 where we show the ACF

per second.

In the next set of simulations we study how computation time is affected

as we vary the total population size. To do so we use our initial simulation set-

ting and generate one dataset for different values of C, C = 3, 4, . . . , 11. Figure

6.7 illustrates the time taken per iteration of the five different methods as it varies

with the number of animals in a pen. We see that the method that is affected

the most is the fullFFBS, for which computational time grows exponentially with

C. The other methods are only affected linearly when C increases. As before, we

assess computational efficiency with the relative speed. Results are summarised in

Table 6.1(a). Note that despite it being the computationally most efficient for small

C = 3, 4, . . . , 7, the performance of FFBS drops with C and eventually for C = 11

is found to have the lowest relative speed. For C > 7, the iFFBS method outper-

forms the remaining methods. In order to study the influence of the study length

had on the performance of each method, we repeat our study for different values

of T . Results are given in Table 6.1(b). Again, the iFFBS method is the one that

scores higher in terms of relative speed, followed in order by fullFFBS, MHiFFBS,

single-site and block proposals methods.

Figure 6.7: CPU time per iteration as a function of the total number of cattle per pen
C, for the Markov epidemic model. Inner panel is a zoom-in.
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Table 6.1: Relative speed comparison of the five methods in the Markov model (a) as a
function of the total number of cattle per pen C and (b) as a function of study period T .
Bold entries represent the most efficient method in each setup.

(a) Varying number of animals over a 14-week period study.

Number of Methods

animals Block Single-site fullFFBS iFFBS MHiFFBS

3 5.10 11.79 103.43 96.08 46.19

4 3.87 11.17 86.72 85.12 43.42

5 4.33 9.68 84.23 73.60 39.33

6 3.47 7.64 82.55 61.51 39.38

7 3.19 9.19 78.35 63.18 37.01

8 3.37 7.30 41.33 57.92 29.46

9 2.85 6.96 13.92 51.42 26.28

10 2.61 7.59 4.38 55.68 28.34

11 2.15 5.96 1.00 49.37 22.05

(b) Varying study period with 8 number of animals.

Study Methods

period Block Single-site fullFFBS iFFBS MHiFFBS

4 weeks 21.03 31.28 122.42 136.00 81.14

9 weeks 10.44 20.10 74.26 126.99 64.73

14 weeks 5.86 13.36 56.10 95.25 53.81

19 weeks 2.84 9.60 44.67 77.78 41.61

24 weeks 2.31 6.82 41.27 52.48 31.02

29 weeks 2.00 6.14 34.62 50.37 24.85

34 weeks 1.77 5.62 29.85 43.66 21.30

39 weeks 1.00 4.85 25.98 38.91 18.10

44 weeks 1.18 5.02 21.65 39.83 14.22

In our simulations so far we have evaluated the performance of the five meth-

ods for data of moderate dimensionality; however, an interesting question one could

ask is how well the algorithms scale for large datasets. We investigate this ques-

tion by analysing synthetic datasets with large C. In this setup, application of

the fullFFBS method is computationally prohibitive and hence is not included in

the simulations. We visualise the results in Figure 6.8. As before, the iFFBS out-

performs the other methods whereas the least efficient is the block updates with a
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relative speed equal to 1 in all scenarios. The gains of using the iFFBS algorithm are

higher in the first scenario with 100 animals per pen, where the method has a rela-

tive speed of 177.13. However, the differences in the computational efficiency among

methods are less profound as the total number of individuals per pen increases. For

example, in the last scenario (C = 1000) the iFFBS algorithm has relative speed

7.97.

Figure 6.8: Relative speed with large datasets for the Markov epidemic model.
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6.6.2 Semi-Markov model

In this section we repeat the analyses of Section 6.6.1, this time for the semi-Markov

model. The extra parameter κ is set to 1.6 as estimated in the analysis of dataset

1 by Spencer et al. (2015). We give an uninformative Ga(0.01,0.01) prior to κ and

estimate it with the remaining parameters in the MCMC as described in Section

5.2.2. We now summarise the findings.

We find little difference in the estimated number of infected individuals across

methods and once again these estimates are close to the real values (Figure 6.9).

Their difference is highlighted in Figure 6.10(a) which compares CPU timings and

relative speeds. In this semi-Markov model, both block updates and MHiFFBS

methods can be applied without any modification and therefore require the same

time per iteration; the remaining methods are slowed due to the modifications ex-

plained in Section 6.5.2 (also see Figure 6.10, left panel). In terms of relative speed,
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MHiFFBS has a slightly higher median compared to SM-iFFBS which is second best,

followed by SM-fullFFBS, block proposals and single-site methods (Figure 6.10, right

panel); however the best two have overlapping credible intervals. Comparing Fig-

ure 6.10(b) with Figure 6.6(a) we conclude that the gains of using the proposed

algorithms drop when we move from the Markov to the more complex semi-Markov

model. For SM-iFFBS this fact is due to the extra MH step introduced within the

sampler.

Results of relative speed for several values of C and T are shown in Table

6.2(a) and Table 6.2(b) respectively. For this model the SM-iFFBS approach has

similar performance to the MHiFFBS. MHiFFBS has the highest relative speed in

14 out of the 18 simulated datasets whereas SM-iFFBS is the most efficient in 3

out of 18 occasions; nevertheless the differences are small in most of the occasions.

Another interesting observation is that block updates method now produces better

relative speed than the single-site method in 16 out of 18 simulations. Finally, for

large datasets once again we observe superiority of the two proposed methods in

relative speed (Figure 6.11) but gains are less substantial than the Markov case

(Figure 6.8).

Table 6.2: Relative speed comparison of the five methods in the semi-Markov model (a)
as a function of the total number of cattle per pen C and (b) as a function of study period
T . Bold entries represent the most efficient method in each setup.

(a) Varying number of animals over a 14-week period study.

Number of Methods

animals Block Single-site
SM-

fullFFBS
SM-

iFFBS
MHiFFBS

3 47.75 52.19 242.10 201.93 240.22

4 47.74 39.97 197.83 199.29 237.70

5 38.88 35.96 171.65 193.20 228.36

6 33.42 29.00 94.49 191.65 221.21

7 28.96 22.91 83.05 184.85 174.82

8 27.70 21.43 43.53 141.77 144.17

9 22.61 18.12 13.61 119.34 132.85

10 21.88 13.75 4.59 102.32 113.36

11 18.82 14.04 1.00 100.94 106.28
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Figure 6.9: Median posterior number of infected individuals for the semi-Markov model.
Black solid lines represent the true values. Shaded regions represent the 95% credible inter-
vals. White vertical lines represent the days where samples were collected.
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(b) Single-site update method.
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(c) SM-fullFFBS method.
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(d) SM-iFFBS method.
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Figure 6.10: CPU time per iteration (left) and relative speed (right) for the semi-Markov
epidemic model. Quantiles in both left and right panels are obtained from 20 different
replicates.
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(b) Varying study period with 8 animals per pen.

Study Methods

period Block Single-site
SM-

fullFFBS
SM-

iFFBS
MHiFFBS

4 weeks 16.50 14.94 18.06 39.00 55.18

9 weeks 8.98 6.64 16.36 28.73 44.65

14 weeks 5.72 4.16 12.91 26.30 26.13

19 weeks 4.89 2.78 6.47 22.13 23.54

24 weeks 2.68 2.05 4.68 17.89 20.35

29 weeks 2.51 1.72 4.51 14.24 16.55

34 weeks 1.96 1.47 3.04 11.60 11.47

39 weeks 1.78 1.28 2.64 10.00 10.03

44 weeks 1.13 1.00 2.50 9.08 9.47

6.7 Applications

In this section we use the methods described throughout the chapter for the analysis

of the datasets presented in Section 2.2. The results that we present focus on

the comparison between the different algorithms rather than drawing conclusions

regarding the dynamics of E. coli O157:H7. In Section 6.7.1 we discuss the first
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Figure 6.11: Relative speed for large datasets for semi-Markov models.
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dataset and in Section 6.7.2 we analyse the second.

6.7.1 Dataset 1

We fit both the Markov and semi-Markov models. Priors specifications are identical

to the ones used for the analysis of the simulated data in Sections 6.6.1 and 6.6.2.

MCMC is run for 11,000 iterations with the first 1,000 discarded as burn-in and

the remaining 10,000 used for the calculation of the relative efficiency. To get an

estimate of the Monte Carlo variability of the efficiency measure we run 20 chains

per method, with different starting values.

Posterior summaries of the model parameters are presented in Table 6.3

where we observe that the estimates obtained from the different methods are in

close agreement. Note that we show the summaries only for the proposed iFFBS

and MHiFFBS methods since the results obtained from the remaining methods are

similar. The comparison of computational efficiency yields conclusions which are

analogous to the ones reached when comparing performance on simulated data. For

the Markov model we find a median relative speed of 1 for block proposals method,

single-site method has 3.16, MHiFFBS has 14.65, while the fullFFBS and iFFBS

are the most efficient with relative speeds of 18.96 and 24.27 respectively. For the

semi-Markov the medians are 1 for single-site method, 1.33 for block updates, 3.37

for SM-fullFFBS, 7.87 for the SM-iFFBS and finally 8.65 for MHiFFBS. Results are
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Figure 6.12: Relative speed comparison of methods when applied for the analysis of
dataset 1. (a) Results for the Markov model. (b) Results for the semi-Markov model.
Quantiles are obtained from 20 different replicates.
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shown in Figure 6.12.

Table 6.3: Posterior summaries for the parameters of both Markov and semi-Markov
epidemic models, fit to dataset 1. The two methods presented are iFFBS and MHiFFBS.
S.d. indicates standard deviation.

Symbol

Geometric Negative Binomial

iFFBS MHiFFBS SM-iFFBS MHiFFBS

Mean S.d. Mean S.d. Mean S.d. Mean S.d.

α 0.009 0.001 0.009 0.001 0.008 0.001 0.008 0.001

β 0.011 0.002 0.011 0.002 0.010 0.002 0.010 0.002

m 9.365 0.743 9.227 0.789 10.033 0.837 10.061 0.822

κ – – – – 1.680 0.485 1.659 0.456

ν 0.098 0.025 0.099 0.025 0.099 0.026 0.098 0.025

θR 0.777 0.022 0.775 0.024 0.772 0.024 0.774 0.023

θF 0.466 0.022 0.464 0.022 0.462 0.023 0.464 0.022

I 2279 50.87 2286 58.44 2296 58.27 2287 57.74
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6.7.2 Dataset 2

For this section, we relax the assumption of pen independence thus accounting for

interaction between neighbours. In particular, we consider a Markov model that

allows for E. coli O157:H7 transmission through shared waterers, since in Section

5.4.2.2 we found that this model is best supported by the data compared to other

models allowing for between neighbour transmission.

The methods that we consider are single-site updates and iFFBS; some ad-

ditional terms appear in the full conditional distributions to account for interaction

between animals in different pens. In iFFBS, updates for a hidden chain c are done

conditionally not only on the chains of the remaining subjects in the pen but also

conditionally on the chains of individuals in the neighbouring pens. As a result,

the modified filtered probabilities additionally include the transition probabilities of

subjects in neighbouring pens. Application of the fullFFBS is not possible within a

reasonable amount of time since there is a summation over 214 possible states that

needs to be evaluated. Instead, we apply the fullFFBS-MH method which has been

already used for this dataset in Section 5.4.2.2.

For the model parameters, we assign independent priors: α, β, η ∼ Gamma(
1, 1
)
, m− 1 ∼ Ga(0.01, 0.01) and ν ∼ Beta(1, 1). As before, we run the MCMC for

11,000 iterations, using the last 10,000 to do the comparisons. Estimates obtained

from the three methods are almost identical to the third decimal place (Table 6.4)

and so is the estimated number of infected animals per day (Figure 6.13). The

iFFBS method outperforms the single-site method in computational efficiency as

indicated by the median relative speed of 15.61 and fullFFBS-MH as indicated by

the median relative speed of 2.56.

Table 6.4: Posterior summaries for the parameters of the Markov epidemic model, fit
to dataset 2. The three methods considered are Dong’s, iFFBS and fullFFBS using a
Metropolis Hastings step (fullFFBS-MH) as described Section 5.4.2.2. S.d. indicates stan-
dard deviation.

Parameter

Method

Single-site iFFBS fullFFBS-MH

Mean S.d. Mean S.d. Mean S.d.

α 0.0032 0.0008 0.0034 0.0008 0.0035 0.0009

β 0.0099 0.0016 0.0097 0.0017 0.0099 0.0018

δ 0.0014 0.0009 0.0015 0.0009 0.0010 0.0007

ν 0.0495 0.0175 0.0494 0.0176 0.0493 0.0175
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Figure 6.13: Median posterior number of infected studies per day in dataset 2, obtained
fitting the Markov epidemic model. The three methods considered are iFFBS (left, red)
and Dong’s (right, blue). Shaded areas represent the 95% credible intervals. White vertical
lines represent the days for which samples were taken.
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(a) Single-site update method.
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(b) fullFFBS-MH method.

0

20

40

60

0 26 52 78 104 130 156

Day

N
u
m
b
er

of
in
fe
ct
ed

an
im

al
s

(c) iFFBS method.

6.8 Discussion

In this chapter, we have considered the problem of Bayesian estimation of the hid-

den states in coupled hidden Markov models, an extension of the classical hidden

Markov model, which allows for interactions between hidden states of each individ-

ual. In particular, we have reviewed existing methods in the field that include block

proposals method, single-site method and the FFBS algorithm, and introduced two
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new approaches, the iFFBS and MHiFFBS algorithms. We have also extended the

methods to the coupled hidden semi-Markov model in which the hidden process can

remain in a given state for a non-memoryless duration. The utility of all methods,

including existing and proposed, has been demonstrated in the context of modelling

the dynamics of an infectious disease where we have assumed both a Markov and a

semi-Markov model for the duration of the disease.

In our extended simulation studies we have demonstrated the merits of the

proposed methods compared to the existing methods that have been considered.

Our methods balance the desired properties of good mixing and low CPU time and

thus prove to be computationally more efficient than previous methods in the field,

providing at the same time estimates of the same quality. The findings are stronger

for the Markov model but also hold in the semi-Markov case. Additionally, we have

also demonstrated that the proposed methods scale well for big datasets, as opposed

to the standard FFBS algorithm which cannot be applied when the number of chains

in the CHMM is growing.

Finally, we have used the iFFBS and MHiFFBS for the analysis of two real

datasets concerning the transmission dynamics of E. coli O157:H7 in cattle and

again found that our approaches perform better in terms of computational efficiency.

Furthermore, we have demonstrated how iFFBS can be used for inference in epidemic

models allowing for interactions between neighbouring pens.

There are several ways in which the proposed methodologies can be extended.

In the current approach, we update the states of a single chain given the rest. One

idea is to apply a block update scheme, where a small subset of chains is jointly

sampled from its full conditional. This would be particularly effective when there

is some population structure such as households that could be used to define the

blocks. Another possibility would be to only update k randomly selected chains

per iteration instead of updating all chains. That may result into a substantial

computational speedup and a particularly interesting question is how an optimal k

might be chosen. Some initial results indicate that for small populations (C < 200),

this approach leads to no substantial increase in relative speed; however, we expect

the gains to be higher for larger population sizes. As an alternative, one could

determine the probability of updating an individual’s chain based on a pilot iFFBS

run.
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Chapter 7

Multi-State Markov Model

For Longitudinal Data With

Misclassification

7.1 Introduction

In our work so far, the true infection status of an individual is viewed as a binary

process; one can either carry the disease or not. This is a common assumption in

many epidemiological studies (Auranen et al., 2000; Melegaro et al., 2004; Matthews

et al., 2006b; Spencer et al., 2015, for example). However, it is often the case that

additional information exists regarding the serotype in which a disease appears. In

such cases, it is reasonable to examine whether there is appreciable heterogeneity

between the different serotypes in, for example, their transmissibility or the duration

for which each serotype remains at the host. Additionally, we would like to address

the question of between serotype competition, that is if carriage of certain type

reduces the possibility of being colonised by a different type. Such knowledge can

further our understanding of the epidemiology of an infectious disease and aid the

policy decision making during an epidemic.

Nevertheless, parameter estimation in a multi-type disease context may be

challenging due to identifiability issues, which occur due to several serotype-specific

parameters that need to be estimated. Another problem is the large amount of

missing data as a consequence of the sparse sampling intervals that are often used.

A solution to the former can be given by grouping multiple serotypes into one class

in order to simplify the model. Some examples include Cauchemez et al. (2006)

who group serotypes as vaccine and non-vaccine, Erästö et al. (2012) who classify

serotypes according to their frequency in the real data and Melegaro et al. (2007)

who used a separate model for each serotype. More recently, Worby et al. (2016)

used genome sequence information to classify the isolates into genetically similar

groups. In all of these approaches, the problem of missing data is dealt either
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by extending the Bayesian data augmentation framework proposed by O’Neill and

Roberts (1999) (Cauchemez et al., 2006; Erästö et al., 2012; Worby et al., 2016), or

by adopting a maximum profile likelihood approach (Melegaro et al., 2007).

An additional complication arises from the fact that serotype information

often relies on diagnostic tests which suffer from low sensitivity. As a result, several

carriage incidents remain undetected or might be recorded as a wrong serotype.

Most of the above methods assume that test results are observed without error

and hence do not allow the possibility of false negative outcomes. The exception is

Worby et al. (2016) who estimate a common test sensitivity for all groups. However,

their model does not allow for between-serotype competition. Therefore, separat-

ing misclassification from changing serotype is an extremely challenging statistical

problem that has not been solved successfully.

In this chapter we extend our previous modelling framework to allow for

carriage of E. coli with multiple serotypes, available for a longitudinal study of the

disease in Canada in 2003. The problem of the missing carriage states is tackled

with Bayesian data augmentation where we also allow for the possibility of type

misclassification. The chapter is structured as follows. We formulate our model in

Section 7.2 and in Section 7.3 we describe the algorithm which is used for posterior

inference. Performance of our method is assessed on simulated data under different

scenarios in Section 7.4. In Section 7.5 we apply the proposed methodology to the

dataset described in Section 2.4 and in Section 7.6 we conclude with a discussion.

7.2 Model

In our study, the diagnostic tests that where conducted to check the presence of E.

coli O157:H7 in cattle are imperfect; the sensitivities of these techniques may be as

low as 50% and thus some colonised individuals remain undetected. In addition, the

PFGE method used for identifying serotypes in samples has also less than perfect

sensitivity, meaning that the carriage states may have not been recorded with their

true serotype. Therefore the classification at an observation time can sometimes

be subject to error. Our approach to tackle the problem involves assuming that

the observed classifications are imperfect measures of an underlying hidden disease

process.

The unobserved (hidden) disease process within each pen is modelled as a

multiple-state, discrete time non homogeneous Markov model. This model is an

extension of the standard individual-based SIS model described in Section 3.2, but

also incorporates serotype-specific information. More precisely, we define a Markov
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transition model with ns+1 states, in which individuals belong to a state according

to their carriage status. Therefore, the possible states include being a non-carrier

(state 0) or being a carrier of one of the ns serotypes (states 1, 2, . . . , ns). The

model assumes that an individual can carry at most one serotype at a time: when

individuals acquire a new serotype then the type is replaced by the new type. This

is justified by the fact that there were only three occasions in the data set in which

an individual was observed to carry different serotypes on RAMS and faecal positive

samples taken on the same sampling day (see Section 2.4 for more details).

The transition rates between the any two carriage states in this Markov

model, for each individual in pen p at day t, are defined for three cases:

hpr,s(t) =





λps(t) r = 0, s 6= 0; colonisation,

δ λps(t) r, s > 0 and r 6= s; change of serotype,

µr r 6= 0, s = 0; clearance,

where the first case defines the colonisation rate at which a non-carrier acquires a

particular serotype s at day t (0 7→ s), for which the rate depends on the serotype,

the day and the individual’s pen. The second case corresponds to the rate of tran-

sition from carriage of serotype r to carriage of serotype s, where r 6= s (r 7→ s).

Between-serotype competition in colonising the host is included in the model by us-

ing an additional parameter δ > 0 to scale the rate of colonisation in an individual

already carrying another serotype. This parameter is assumed to be the same for all

serotypes. Finally, once colonised, individuals can recover from carriage of serotype

r according to serotype-dependent clearance rates µr that is constant over time and

across different pens (r 7→ 0). A simplified version of this model is presented in

Figure 7.1, with only three serotypes. To fully specify the distribution of the states,

we need to define a model for the initial time point. Since individuals were assigned

to pens at random, we assume that at the beginning of the study each individual is

colonised by serotype s independently with a serotype-dependent probability νs.

In addition, the model assumes that the rate at which a non-carrier individual

acquires a serotype is pen-, type- and time-dependent, varying as a function of the

number of other pen members carrying this particular serotype. To be more specific,

for a non-carrying individual in pen p, where p ∈ N (North group) or p ∈ S (South

group), the rate of colonisation of serotype s, at any given time t, is defined as the
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sum of two components as follows:

λps(t) =





αs + βs I
p
s (t− 1), if p ∈ S,

αs + γ βs I
p
s (t− 1), if p ∈ N ,

= αs +
(
1{p∈S} + γ 1{p∈N}

)
βs I

p
s (t− 1), (7.1)

where Ips (t− 1) denotes the number of carriers of serotype s in the individual’s pen

p at time t − 1 and 1 denotes the indicator function. The serotype-specific terms

βs and αs represent the rates of colonisation from contacts with other members of

the pen (within-pen colonisation rate) and from sources outside of the pen (external

colonisation rate), respectively. To account for differences between North (small)

and South (big) pens the within-North pen colonisation rates are multiplied with

γ, where γ is the relative acquisition rate in smaller versus bigger pens, as shown

in Equation (7.1). This can be justified by differences in pen sizes (6m × 17m

compared with 6m × 37m) and by our previous finding in Section 5.3 that animals

in smaller pens are more at risk of within-pen infection. The rates of colonisation

Figure 7.1: The model graph for an individual that belongs to pen p in which, for sim-
plicity, three serotypes are considered, denoted as 1, 2 and 3 respectively, and four carriage
states. Transitions between the states are governed by rates of acquisition and clearance, as
marked at each arrow. The acquisition rates depend on the number of individuals within the
pen carrying that particular serotype, and for individuals already carrying another serotype
the rates are adjusted by a competition parameter δ. Moreover, the rates of within-pen
acquisition for individuals that belong to a small pen are scaled by a factor γ.
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in a carrying individual are similarly defined, except that the rate is multiplied by

a competition parameter δ, as previously described.

Regardless of the large overall number of samples in the E. coli dataset 1,

the proportion of positive samples in the study population is fairly low, reported to

be less than 10%, with only a few events per serotype. More precisely, 48 different

serotypes were identified in the study population, 24 of which were found once.

From the remaining 24, 7 serotypes were isolated in at least 10 RAMS and/or faecal

samples, and 17 serotypes were detected in at most 5 isolates. Table 7.1 summarises

the frequencies of the 7 most common E. coli O157:H7 PFGE serotypes in the data

by pen groups, i.e. North and South.

Consequently, analysing these data using a multiple-state model where the

possible states include being a carrier of one of the 48 different serotypes or be-

ing a non-carrier, presents a considerable challenge; the large number of serotype-

specific parameters could lead very easily to problems in identifiability of parameters.

Like most of the previous epidemic analyses, we solve this problem by dividing the

serotypes into groups as follows. States of carriage are defined for the 7 serotypes

most commonly recovered in this study, types A, C, G, M, O, P, T. The remaining

serotypes are treated as a single group, referred as the “Unidentified” group, and

Table 7.1: Distribution of E. coli O157:H7 observed serotypes during follow-up of 160
cattle among 12 North and 8 South pens, July-October 2003, Canada.

Serotypes

Observed positive samples

South North Total

No. % No. % No. %

A 10 3.6 22 4.6 32 4.2

C 3 1.1 7 1.5 10 1.3

G 2 0.7 14 2.9 16 2.1

M 3 1.1 7 1.5 10 1.3

O 15 5.5 17 3.5 32 4.2

P 19 6.9 0 0.0 19 2.5

T 2 0.7 28 5.8 30 4.0

Other
serotypes

32 11.6 42 8.7 74 9.8

Nontyped
samples

189 68.7 344 71.5 533 70.5

Total 275 100 481 100 756 100
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assumed to be of the same type U. Thus their exact serotype identity is ignored.

Even though this a strong assumption, it only affects a small proportion (9.8%) of

the observed positive samples. For the most common serotypes we assume their

own individual rates of acquisition and clearance, and the unidentified group has its

own rate parameters. The disease process parameters are described in Table 7.2.

Table 7.2: Symbols and interpretations of the disease process parameters, for s =
1, 2, . . . , 8.

Parameter Interpretation

αs External colonisation rate for serotype s (days−1)

βs Within-pen colonisation rate for serotype s (days−1)

µs Clearance rate for serotype s (days−1)

νs Initial probability of carriage with serotype s

δ Relative colonisation rate in a carrier versus non-carrier individual

γ Relative colonisation rate in smaller versus bigger pens

Formulating the model as above substantially reduces the number of different

carriage states to 9, with ns = 8. To this end, we denote the carriage state of

individual c ∈ {1, 2, . . . , C} in pen p ∈ {1, 2, . . . , P} on day t ∈ T c,p, byX
[c, p]
t ∈ Xs =

{0, 1, . . . , ns}, where X
[c, p]
t = 0 refers to the non-carriage state, state X

[c, p]
t = ns to

carriage of the unidentified group, and state X
[c, p]
t = s, 0 < s < ns, to carriage of

one of the common serotypes. The observation (sampling) period for each individual

is defined as the period from the first sample to the last one, denoted by T c,p ⊆
{1, 2, . . . , T}, where the first sample in the overall study is taken at t = 1 and the

last at t = T .

According to the assumptions and notation above, the model is defined as

a discrete-time Markov process with time interval equal to one day, in which the

current status of each individual depends on the previous status of all the individuals

within the pen. The probabilities of transition between states, for any individual

in pen p at time t, can be arranged in a (ns + 1) × (ns + 1) matrix Qp(t) (time-

and pen-dependent) with elements qpr,s(t), for r, s = 0, 1, 2, . . . , ns and t ∈ T c,p \{1}.
For convenience we start indexing the rows and columns of Qp(t) from 0. The
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off-diagonal elements of Qp(t) are specified below,

qpr,s(t) = P
(
X

[c, p]
t = s | X [c, p]

t−1 = r,X
[−c, p]
t−1

)
=


1− e

−∑ns
j=0
j 6=r

hpr,j(t)




︸ ︷︷ ︸
Probability that an

event occurs

× hpr,s(t)
ns∑

j=0
j 6=r

hpr,j(t)

︸ ︷︷ ︸
Probability that

event r 7→ s occurs,
given an event occurs

for r 6= s, where X
[−c, p]
t−1 is the vector of the hidden states of the remaining individuals

within pen p at time t − 1. Diagonal elements in Qp(t) contain the qpr,r(t), which

are defined as qpr,r(t) = 1 −∑ns
j=0
j 6=r

qpr,j(t) so that the sum of all elements in each

row equals one. Thus, using this parametrization the transition probability in the

case where r = s is given by qpr,r(t) = exp
(
−∑ns

j=0
j 6=r

hpr,j(t)
)

, which is equal to the

probability of there being no events in a Poisson process with rate
∑ns

j=0
j 6=r

hpr,j(t).

The observed data for an individual c in pen p are collected in prescheduled

observation times, which we denote by Oc,p =
{
Oc,ps ∪ Oc,p+

}
⊆ T c,p, where Oc,ps

is defined as the set of serotyped observation times and Oc,p+ = Oc,p \ Oc,ps are the

times where no serotyping was done. Moreover, let U c,p = T c,p \ Oc,p denotes the

times that the individual was not tested. Let R
[c, p]
t and F

[c, p]
t denote the outcome

of the RAMS and faecal test, respectively, recorded at time t ∈ Oc,p. A test result

is classified as negative, denoted by 0, or positive, denoted by +, when t ∈ Oc,p+ .

When a positive test is serotyped, t ∈ Oc,ps , then we can further characterise the test

as s-serotype positive (when a type s is detected), denoted by s ∈ {1, 2, . . . , ns}.
Finally, when t ∈ U c,p the result was not reported and therefore we have a missing

value denoted by “NA”.

We assume that the RAMS and faecal tests are independent conditional on

the true colonisation status of the individual. Moreover, the observed states R
[c, p]
t

and F
[c, p]
t are generated conditional on the true disease state X

[c, p]
t according to a

misspecification matrices ER and EF with elements eRr,s = P
(
R

[c, p]
t = s | X [c, p]

t = r
)

and eFr,s = P
(
F

[c, p]
t = s | X [c, p]

t = r
)

. We distinguish two cases: tests not chosen to

be serotyped and tests that were serotyped.

For the case where a positive RAMS sample was not chosen to be serotyped



Chapter 7. Multi-State Markov Model 153

we have that:

ER+ =

0

1

...

ns




0 +

1 0

1− θR θR

...
...

1− θR θR




(7.2)

and similarly, for the faecal test:

EF+ =

0

1

...

ns




0 +

1 0

1− θF θF

...
...

1− θF θF




(7.3)

where we assume that both the RAMS and the faecal tests have 100% specificity

(it is not possible to test positive when the true carriage status is non-carrier)

but unknown sensitivities, denoted by θR = P
(
R

[c, p]
t = + | X [c, p]

t = r
)

and θF =

P
(
F

[c, p]
t = + | X [c, p]

t = r
)

, for r = 1, 2, . . . , ns.

For a positive sample that was serotyped we introduce additional parame-

ters θC , θS and θU to allow for the possibility of serotype misspecification. The

parameters have the following interpretations. Given that a test is found positive,

θC denotes the probability of correctly identifying a common serotype, θS the prob-

ability of misclassifying a common serotype with a different common serotype, and

θU the probability that a serotype of type U is classified as a common serotype. We

assume that these probabilities are the same for both the RAMS and faecal tests.

More specifically, the matrix of classification probabilities for the RAMS test is a

(ns + 1)× (ns + 1) matrix of the form:
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ERs =

0

1

...

...

...

ns − 1

ns (Type U)




0 1 · · · · · · · · · ns − 1 ns (Type U)

1 0 · · · · · · · · · · · · 0

1− θR θC θR
θS θR
ns − 2

· · · · · · θS θR
ns − 2

(1−θC−θS) θR

...
θS θR
ns − 2

θC θR
θS θR
ns − 2

· · · θS θR
ns − 2

...

...
...

. . .
. . .

. . .
...

...

...
θS θR
ns − 2

· · · θS θR
ns − 2

θC θR
θS θR
ns − 2

...

...
θS θR
ns − 2

· · · · · · θS θR
ns − 2

θC θR (1−θC−θS) θR

1− θR
θU θR
ns − 1

· · · · · · · · · θU θR
ns − 1

(1− θU ) θR




(7.4)

such that, for all r 6= 0, the probabilities eRsr,0 = P
(
R

[c, p]
t = 0 | X [c, p]

t = r
)

= 1− θR
and

∑ns
s=1 e

Rs
r,s = θR. Thus the sum of all elements in each row is equal to 1. The

misclassification matrix for the faecal test is defined similarly replacing θR with θF

in matrix (7.4).

Note that given the true carriage status, say r, the RAMS/faecal test results

at a given observation time t ∈ Oc,p+ are Bernoulli random variables with proba-

bilities given by the r-th row of ER+ and EF+ respectively and at t ∈ Oc,ps are

categorical random variables with probabilities given by the r-th row of ERs and

EFs respectively.

7.3 Posterior sampling algorithm

Estimating the model parameters presents numerous challenges. As emphasized

in the introduction, a key facet of the problem is data incompleteness; carriage

states are indirectly observed through diagnostic tests and missing values are also

very common, making the evaluation of the model likelihood difficult. One solution

would be to marginalise over these hidden states but this would be difficult and

computationally intractable because their space is high dimensional.

The approach adopted in this chapter to overcome this issue is to use Bayesian

data augmentation methods, in which the unobserved carriage states are treated as

additional parameters and are imputed from the data. This facilitates the use of

MCMC algorithms, which are currently the most prevalent techniques for analysing

data on partially observed infectious diseases and enable parameter estimation to
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be performed. Note that, the proposed methodology is taking into account miss-

ing data that may have occurred in between observation intervals and complete

drop-outs of study individuals.

Let X
[1:nc, p]
t be the vector of the hidden carriage states for individuals in

pen p at time t and X = [X
[1:nc, p]
t ]p=1,2,...,P ;t∈T c,p be the whole hidden state pro-

cess. Similarly, the observed longitudinal data comprises RAMS and faecal test

results, denoted by R = [R1:nc, p
t ]p=1,2,...,P ;t∈T c,p and F = [F1:nc, p

t ]p=1,2,...,P ;t∈T c,p re-

spectively. We use the notation ϑ = (θR, θF , θC , θS , θU ) for the observation parame-

ters, and φ = (α,β,µ,ν, γ, δ) for the transmission parameters, where α = [αs]
ns
s=1,

β = [βs]
ns
s=1, µ = [µs]

ns
s=1 and ν = [νs]

ns
s=1.

The Bayesian approach requires the specification of the prior distributions

over the model parameters θ = (φ,ϑ), π(θ). We assume that prior uncertainty

for these parameters can be represented by independent prior distributions. More

precisely, for the serotype-specific external colonisation rates, the within-pen coloni-

sation rates and the clearance rates, we assigned non-informative Exponential priors

with means 100. The priors for δ and γ are assumed to be Exponential with rate

parameter ln(2), reflecting equal prior probabilities for these parameters to be less

or more than one. We also assume Beta(1,1) prior distributions for the sensitivity

parameters θR, θF and θU . For the remaining sensitivity parameters we assume

a Dirichlet prior distribution, that is, (θC , θS) ∼ Dirichlet(1, 1, 1). Finally, for the

probabilities of carriage at the beginning of the study we use ν ∼ Dirichlet(1ns+1),

where 1ns+1 is a vector with ns + 1 ones.

Combining the complete data likelihood with the prior allows us to formulate

the joint posterior distribution of the hidden carriage states (unobserved data) and

the model parameters which can be factorised as:

π(X,φ,ϑ | R,F) ∝ π(R,F | X,ϑ)π(X | φ)π(θ)

=

P∏

p=1

C∏

c=1




ns∏

r=0

∏

s∈Xs

∏

t∈Oc,ps

[(
eRsr,s

)1{
X
c,p
t =r,R

c,p
t =s

}(
eFsr,s

)1{
X
c,p
t =r,F

c,p
t =s

}]

×
ns∏

r=0

∏

s∈{0,+}

∏

t∈Oc,p+

[(
eR+
r,s

)1{
X
c,p
t =r,R

c,p
t =s

}(
eF+
r,s

)1{
X
c,p
t =r,F

c,p
t =s

}]

×
ns∏

s=0

ν

1{
X
c,p
1 =s

}
s ×

ns∏

r=0

ns∏

s=0

∏

t∈T c,p\{1}

[(
qpr,s(t)

)1{
X
c,p
t−1=r,X

c,p
t =s

}]



× π(θ), (7.5)
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where 1{
Xc,p
t−1=r,X

c,p
t =s

} is the indicator of individual c in pen p being in state r at

time t− 1 (Xc,p
t−1 = r) and in state s at time t (Xc,p

t = s). The remaining indicator

functions are defined similarly. The factorisation in Equation (7.5) is based on

the assumption that conditionally on the model parameters, the carriage process

is assumed to be independent across pens. Moreover, each individual in each pen

makes an independent contribution ν0 if uncolonised or νs if carrying type s at the

beginning of the study (t = 1).

Sampling from the posterior distribution is done by constructing an MCMC

algorithm that employs both Gibbs and HMC techniques. The main emphasis is on

sampling the hidden carriage process X, which was done by using a Gibbs step via

the proposed iFFBS algorithm as described in Section 6.4.4. A point which is worth

emphasising is that the vanilla FFBS method in our setting, with 8 serotypes and 8

animals per pen, is computationally infeasible since the transition matrix has 82×8

elements. The initial probability parameters ν and the observation parameters ϑ

are updated using Gibbs updates. The remaining parameters are updated jointly

using an HMC algorithm. The algorithm requires the partial derivatives for these

parameters, which can be found in Equations (F.1)–(F.4) of the Appendix F.1.

7.4 Simulation studies

In this section, we evaluate the performance of our Bayesian approach via simulation

studies under different settings. In the first setting, we simulate data with the same

structure as the empirical data, and in the second setting we study the sensitivity of

the estimates to departures from study assumptions. In particular, we investigate

the effect of the total number of samples that are serotyped.

7.4.1 Validation

A simulation study is conducted to evaluate the effectiveness of the proposed ap-

proach to estimating the model parameters. We generate data that resemble the

dataset described in Section 2.4. In particular, we use the same number of North

and South pens as well as the same total number of individuals per pen. RAMS

and faecal samples for individual c of pen p, are collected according to the actual

sampling frame, c = 1, 2, . . . , 8 and p = 1, 2, . . . , 20.

Both the true disease process and the observed test outcomes are obtained

from the model described in Section 7.2; we use eight serotypes (seven common

serotypes plus the unidentified type) and realistic parameter values, some of which

are obtained from the literature. In particular, we set γ = 2.4 and ν0 = 0.9 which
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were the posterior medians in the inference framework of Spencer et al. (2015).

Also, the RAMS and faecal test sensitivities are assumed to be θR = 0.77 and

θF = 0.46, respectively. The remaining parameter values are chosen so that the

serotype distribution is similar to that typical of serotypes of E. coli, with prevalence

ranging from 2% – 4% for the unidentified group, 1% – 3% for the five most common

serotypes (types A, G, O, P, T) and 1% – 1.5% for the next two most common

serotypes (types C, M). We refer to this as the full model.

Note that we first generate a complete data set of carriage states. Conditional

on these carriage states we then generate serotyped RAMS and faecal samples at the

pre-specified observation times for each individual in the study. Once RAMS and

faecal samples have been generated, we randomly choose 12 serotyped samples to

remain serotyped and set the remaining as positive (+). When less than 12 positive

samples occur within a pen, we select 12 by sampling the available n < 12 with

replacement. The simulation of data is repeated 50 times. Table 7.3 summarises

the simulated data as frequencies of the observed RAMS and faecal samples by pen

group.

For each simulated dataset, the MCMC algorithm was run for a total of

30,000 iterations. The output was then recorded every 5th iteration, after a burn-

in period of 5,000 iterations. The convergence of each MCMC chain was visually

assessed. The results are provided in Figure 7.2 in terms of posterior medians

and 90% credible intervals. The figure illustrates that the posterior medians are

generally close to the true values used to generate the simulated data. By further

examining the posterior distribution of the model parameters, and in particular the

90% credible intervals, one can see that all of these distributions contain their true

values, indicating that the algorithm can successfully recover parameter information.
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Table 7.3: Summary of our simulated data. The numbers of observations are based on
50 simulated data sets, each having the same structure and sampling times as in the real
data. The model consists of 7 common serotypes and the unidentified group (type U), with
serotype-specific colonisation and clearance rates.

Serotypes
Number of observed samples† (min, max)‡

South North Total

Type A 9 (2, 24) 16 (6, 27) 26 (13, 41)

Type C 6 (0, 18) 7 (0, 24) 12 ( 8, 27)

Type G 8 (0, 21) 16 (5, 36) 24 (13, 45)

Type M 5 (0, 13) 7 (1, 19) 14 ( 8, 20)

Type O 10 (1, 20) 16 (3, 26) 26 (13, 37)

Type P 8 (0, 21) 15 (5, 29) 25 (11, 37)

Type T 7 (0, 23) 14 (6, 26) 21 (11, 32)

Type U 31 (18, 52) 47 (31, 72) 81 (51, 101)

Non-typable 77 (32, 143) 450 (291, 629) 524 (341, 673)

Negative swabs 3379 (3308, 3434) 4717 (4537, 4889) 8101 (7947, 8296)

Serotyped pairs§ 27 (17, 36)

Contradictory pairs¶ 6 ( 1, 12)

† The median number of samples in the 50 simulated datasets.
‡ The minimum and maximum number of samples in the 50 simulated datasets.
§ When a pair of positive RAMS and faecal samples are chosen to be serotyped. We define as
pair samples that were taken on the same sampling day, from the same individual.
¶ Number of serotyped pairs of different serotypes.
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Figure 7.2: Marginal posterior summaries over 50 simulated data. Dots denote the
posterior median and error bars indicate the 90% quantile intervals of the 50 posterior
medians. Dashed red lines indicate the true value used to generate the simulated data.
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Another important task in the estimation procedure is recovering the hidden

carriage process. Using the augmented states of carriage in each MCMC iteration,

one can estimate the probability that an individual is colonised by a specific serotype

or not colonised for every day in the study, regardless of whether RAMS and faecal

tests were taken on that day. To access the accuracy of the method we compare

the posterior probability of colonisation for each individual of a given pen over the

sampling period with the actual carriage states. Results for 3 pens are shown in

Figures 7.3(a)-(c). The plot for each individual is divided into 3 panels. In the

bottom panel we show the true disease status for each day in the study. The middle

panel contains the posterior probabilities of colonisation. Finally, in the top panel

we include the test results which are imperfect measures of the true underlying

process in the bottom panel. Note that samples are taken twice per week; line 1
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refers to the RAMS samples whereas line 2 refers to the faecal samples.

We generally see that for most of the individuals the predicted serotypes

(the ones that have the highest posterior probability) match the true carriage status

in the simulated data. This indicates that the method correctly reproduced the

unobserved disease process. As expected, in all figures the posterior probability of

colonisation by any serotype sums to 1 when the animal is tested positive by RAMS

and/or faecal tests. This is because we have assumed that the tests have 100%

specificity. On the other hand, when both test results are negative, the posterior

probability of colonisation by some serotype can be any value between and including

0 and 1. Moreover, when sequences of positive results separated by negative results

occur, it is difficult for the method to distinguish between false negative results and

re-acquisition; this can be seen from the grey spikes that appear between positive

results.

Additionally, our method can predict the serotype of a positive individual

even though their samples are not serotyped. For example, the samples of individual

7 in Figure 7.3(a) are never serotyped but the method correctly predicts the type.

This can happen even if the test indicates the wrong type; for individual 6 at day

39 the RAMS test found type U but the method correctly predicts the individual

as type M, borrowing information from the rest of the individuals within the pen.

However, it is also possible that a serotype is misclassified, see for example individual

3 at the beginning of the study. For this individual, the closest recorded serotypes

appear on day 11 and so the method assigns high probability to the same type

as in day 11. Further, when no strong information is available, we see that the

probabilities of the different serotypes are roughly equal to their average relative

prevalences. This is the case for animals 2 and 6 in Figure 7.3(b) at the end of the

study.

For individual 5 in Figure 7.3(a), we see that the method assigns a non zero

probability of the individual being colonised by serotype M during the period around

day 60 when no samples were taken. This happens because a few days earlier and

after there were individuals that had an M positive result (individuals 1, 2, 3, 6 and

8) and so the method allows for the possibility that individual 5 was also colonised.

Finally, it is worth noting that it is possible for short periods of carriage to remain

completely unobserved. As an example, see individual 2 in Figure 7.3(c) before day

15.

We further evaluate the performance of our method for imputing the hidden

carriage states by plotting the ROC curve for each serotype and calculating the area

under curve. The ROC curve is a plot of the true-positive rates (the proportion of



Figure 7.3: Posterior probability of colonisation over time with separate plots for each
individual within a pen. In each figure the top panel contains the observed test results,
where the first line represents the outcome of RAMS samples and the second line represents
the outcome of faecal samples. Samples are taken twice per week as in the real dataset. “-”
indicates negative sample, “+” indicates that the sample was positive but not chosen for
serotyping; otherwise, serotype name is given. The bottom panel shows the true carriage
status of each individual per day.
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correctly detected s-serotype carriages) against false-positive rates, calculated over

a range of possible threshold values on the posterior colonisation probabilities. We

count a s-serotype carriage as detected if the posterior probability of colonisation by

serotype s is greater than a given threshold. In Figure 7.4 we plot, for each serotype,

the ROC curves produced from 50 simulated data sets. In all serotypes, the ROC

curve is located close to the top left corner and the median AUC value is found to

be above 0.95, indicating that our method successfully reproduces the incidence of

colonisation.

Figure 7.4: Receiver Operating Characteristic (ROC) curves for each serotype. The
solid lines correspond to the median over the 50 simulated data sets and the dashed lines
indicate the 90% quantile intervals of the 50 posterior medians.
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7.4.2 Robustness to model misspecification

In this section we apply our method to data that were simulated under a different

epidemiological scenario in order to access its robustness to model misspecification.

In particular, we assume that the transitions from carriage of one serotype to another

have occurred through the non-carriage state: carriage needs to be cleared before

colonisation by another serotype. This is achieved by generating data in which the

competition parameter δ is 0 and the remaining parameters are as in Section 7.4.1.

A full model is then estimated.

The estimated posterior prevalence of colonisation for each serotype over

the sampling period are provided in Figure 7.5 and show that the model correctly

reproduces the transmission dynamics of each serotype during the study period.
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Further details on the posterior of the model parameters over 50 simulated datasets

are presented in Figure F.1 in the Appendix and reveal that the estimates are close to

the true values. We also find that the posterior median of the competition parameter

is 0.18 with 90% credible interval [0.007, 0.682]. Since δ is constrained to be positive

in our estimation algorithm, its 90% credible interval does not contain 0, however

it is close to zero.

Figure 7.5: Performance assessment of our method. The true prevalence of each serotype
(left) is compared to the predicted prevalence using the full model. Data are generated with
δ = 0.
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7.4.3 Sensitivity analysis: total number of serotyped samples

In what follows, we investigate the performance of our approach subject to the

amount of serotyped samples per pen. In particular, we first simulate a complete

data set of fully serotyped test results for 8 serotypes as in Section 7.4.1. Of these

data, we create 4 datasets by randomly selecting 5, 10, 15 and 20 of the serotyped

observations per pen to remain serotyped, setting the rest as untyped positives

and then fit our model. The 4 datasets are obtained from the same underlying

carriage states and reflect situations with sparse, moderate and dense serotyping.

To avoid sampling biases, we repeat the randomisation of the 4 datasets 50 times.

For reference, we also fit our model to the complete data where all positive tests
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have been serotyped.

The results are summarised in Figure 7.6. We report the median of the

posterior median estimates along with the median of the upper and lower limits of

the 90% credible intervals, as obtained from the 50 randomisations. As expected,

the performance of our method depends on the amount of observed serotypes. More

specifically, as the total number of serotypes increases, the accuracy of the estimate

increases for all model parameters. However, even when the serotyping is very

sparse we see that our method performs fairly well. In particular we see that the

true parameter values are included within the intervals provided across all scenarios

considered. Nevertheless, changing the number of serotyped samples from 5 to 10

leads to a large improvement in precision of the estimates.

In Figure 7.7, we additionally provide ROC curves (median over 50 random-

izations) to examine how well our method recovers the underlying carriage states

with varying levels of serotyping. Dense serotyping is associated with higher per-

formance; however the performance remains high even when we only observe 5

serotypes per pen. Finally, in Table 7.4 we report the median estimated number of

type-specific transitions in the carriage process as estimated from 50 MCMC runs.

For comparison we also report the true number of transitions in the complete data.

We see that the model adequately fits the data, except maybe for the transitions

from 0 to 0 and from r to r which are slightly underestimated and overestimated, re-

spectively. However, all of these quantities lie within the corresponding 90% credible

intervals.

As a general remark, taking more than 10 serotyped samples was sufficient

for accurate estimation of the parameters and the hidden disease process. We there-

fore conclude that the amount of serotype information available for our real data

application is satisfactory. Nevertheless, it is important to study through simulation

the appropriate number of serotypes in applications with longer sampling intervals.

Table 7.4: Medians of the number of type-specific transitions over 50 simulated data sets
with varying levels of serotyping.

Transitions
Number of serotyped samples per pen

True
5 10 15 20 All

r 7→ s (r 6= s) 22 18 21 26 26 19

0 7→ s (s 6= 0) 289 284 284 286 289 276

r 7→ 0 (r 6= 0) 279 274 274 275 279 265

r 7→ r (r 6= 0) 2002 1998 1992 1990 1966 1917

0 7→ 0 12893 12911 12914 12920 12932 13018
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Figure 7.6: Marginal posterior summaries of the model parameters over 50 simulated
data sets for different numbers of serotyped samples per pen: grey for 5, yellow for 10, blue
for 15, green for 20 and pink for the full pen. Dots denote the posterior median and error
bars indicate the 90% credible intervals. Dashed red lines indicate the true value used to
generate the simulated data.
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Figure 7.7: Receiver Operating Characteristic (ROC) curves for each serotype. The
solid lines correspond to the median over the 50 simulated data sets with varying levels of
serotyping.
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7.5 Real Data Analysis

In this section, we apply our Bayesian data augmentation approach to the observed

E. coli 0157:H7 data described in Section 2.4. Our goal is to obtain estimates for

the epidemiologically important parameters and also investigate possible differences

between serotypes in carriage colonisation and clearance. Therefore, we fit the full

model, as described in Section 7.2, to the data.

We run the MCMC for 30,000 iterations, discarding the first 5,000 as a burn-

in and save every 5 iterations to obtain 5,000 samples from the posterior. We use

the same priors as in the simulation studies of Section 7.4; nevertheless, we also

perform a sensitivity analysis in which we use alternative priors. Convergence is

accessed by visual inspection of posterior trace plots for all 39 model parameters,

shown in Figure F.3 of the Appendix. We also checked that estimates were robust

to a change in the initial values. Convergence of the hidden state process is also

visually assessed. For example, estimated posterior probabilities of colonisation are

shown for individuals in pens 3 and 7 and can be found in Figures 7.8 and 7.9

respectively. Results are summarised below.

Tables 7.5 shows the posterior median estimates of the transmission param-

eters, along with 90% credible intervals. We see that the external colonisation rate

for the unidentified group, type U, is uniformly higher than the rest of the types.

This is due to the fact that αU accounts for all acquisitions of the 41 serotypes in

the group. The lowest external colonisation rate belongs to serotype P, following by

M, C and G. However, most of the differences are not significant. This is suggested



Figure 7.8: Posterior probability of colonisation over time with separate plots for each
individual within Pen 3 in the E. coli data. In each figure the top panel contains the
observed test results, where the first line represents the outcome of RAMS samples and the
second line represents the outcome of faecal samples. Samples are taken twice per week; “-”
indicates negative sample, “+” indicates that the sample was positive but not chosen for
serotyping, otherwise, serotype name is given.
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Figure 7.9: Posterior probability of colonisation over time with separate plots for each
individual within Pen 7 in the E. coli data. In each figure the top panel contains the
observed test results, where the first line represents the outcome of RAMS samples and the
second line represents the outcome of faecal samples. Samples are taken twice per week; “-”
indicates negative sample, “+” indicates that the sample was positive but not chosen for
serotyping, otherwise, serotype name is given.
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by the overlap of the credible intervals for all parameters except αU and αP . In

the top panel of Figure 7.10 we show the mean standardised posterior differences

between all pairs of serotypes:

D̄αkr√√√√
∑J

j=1

(
α
(j)
k − α

(j)
r − D̄αkr

)

J − 1

, D̄αkr =
1

J

J∑

j=1

(
α
(j)
k − α(j)

r

)

where α
(j)
i is the j-th posterior draw for the serotype-specific parameter αi for

i = 1, 2, . . . , ns, and J is the total number of MCMC iterations. High absolute values

in the image indicate strong difference between serotypes. The figure confirms our

previous observations. Moreover, we see that the sum of the 8 serotype-specific

external colonisation rates (
∑ns

s=1 αs = 0.008) derived here is in close agreement

with the external colonisation rate estimated in our non-serotype specific analysis

in Section 3.6.1.1 (α = 0.009). In particular, due to the assumption of different rates

per serotype, the overall external force of colonisation divides between the serotypes

that are analysed.

The posterior median for the within-pen colonisation rate is almost 4 times

higher for serotype P (0.016 per day) compared to serotype M (0.004 per day) with

non-overlapping 90% credible intervals, which suggests that there are differences in

the within-pen colonisation rates between the studied serotypes. The estimates of

within-pen colonisation rate for remaining serotypes are between these two values.

Mean standardised posterior differences are shown in the middle panel of Figure

7.10.

Results suggest no significant differences between durations (1/clearance

rate) of carriage of serotypes. In particular, in Table 7.5 we see that all param-

eters have overlapping credible intervals. Also, in the bottom panel of Figure 7.10

we observe a maximum mean standardised posterior difference of 1.42, which proves

our claim.

As a general finding, we observe that serotype P appears to have the highest

within-pen but the lowest external colonisation rate suggesting that it is mainly

transmitted through contact between animals in the same pen. Similarities between

colonisation rates are found for serotypes A with T and also M with C. The latter

serotypes (M and C) are the less prevalent (Figure F.2 in Appendix, as calculated

from the latent carriage process) which explains their low within-pen and external

transmission rates.

The relative colonisation rate in smaller versus bigger pens is estimated as

1.659 with 90% credible interval being [1.142, 2.490]. The interval does not contain 1
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Figure 7.10: Mean standardised posterior differences between all pairs of serotypes in
the E. coli data.
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which demonstrates a small but significant difference between North and South pens.

Our finding is in agreement to Spencer et al. (2015) who obtain a larger estimate of

the relative colonisation rate γ. However their analysis does not account for serotype

information. The median relative colonisation rate in a carrier versus non-carrier

individual is 0.523 (90% CI [0.005, 1.201]) which indicates that individuals colonised

by a serotype are less likely to be infected by another type.

Table 7.6 show posterior summaries for the observation parameters. As in

previous analysis of this dataset in Section 3.6.1, we find that the test sensitivities

θR and θF are 0.76 and 0.46, respectively. The model estimates that 78.5% of

the observed common serotypes are correctly classified as the right type, 3.5% are

misclassified as another common type and the remaining 18% are misclassified as

type U. Finally, we estimate that 95.5% of the observed U serotypes are correctly

classified as U.

Table 7.5: Estimates of serotype-specific transmission model parameters among cattle
in the E. coli data: the posterior median of the parameter and the 90% credible interval
within parentheses. Estimates are multiplied by 100.

Serotype (s)
Transmission model parameter

νs αs βs µs

A
3.085

(0.835, 5.714)
0.119

(0.055, 0.194)
1.004

(0.444, 1.692)
15.793

(10.234, 22.019)

C
0.710

(0.003, 2.157)
0.054

(0.013, 0.102)
0.622

(0.101, 1.205)
9.102

(3.526, 15.718)

G
1.112

(0.007, 2.898)
0.074

(0.020, 0.135)
1.408

(0.529, 2.509)
17.908

(10.098, 26.893)

M
0.805

(0.003, 2.143)
0.052

(0.011, 0.099)
0.373

(0.009, 0.888)
6.703

(1.004, 17.147)

O
1.785

(0.193, 3.832)
0.149

(0.076, 0.232)
0.722

(0.334, 1.182)
10.533

(6.921, 14.428)

P
1.279

(0.107, 2.854)
0.041

(0.007, 0.081)
1.582

(0.964, 2.247)
11.629

(7.317, 16.067)

T
1.136

(0.013, 2.871)
0.121

(0.053, 0.195)
1.146

(0.554, 1.832)
13.265

(9.128, 17.870)

U
2.136

(0.022, 4.776)
0.187

(0.091, 0.296)
0.725

(0.332, 1.169)
9.452

(6.338, 12.817)
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Table 7.6: Estimates of observation model parameters among cattle in the E. coli data:
the posterior median of the parameter and the 90% credible interval. Estimates are multi-
plied by 100. See definitions in Section 7.2.

Observation model parameter

θR θF θC θS 1− θU
76.13

(72.80, 79.40)
45.60

(42.30, 48.79)
78.46

(72.44, 84.51)
3.27

(0.37, 5.96)
95.53

(88.53, 99.97)

To explore the effect of our prior specifications, we perform a sensitivity

analysis using different hyperparameter values each time. Results are shown in

Figure F.4 of the Appendix for the transmission and clearance rate parameters and

Figure 7.11 for parameters γ and δ. The posterior distributions of the within-pen

and external transmission rates, as well as the clearance rates remained unchanged.

However, the use of an uninformative prior, Exp (0.01), leads to an increase in

posterior uncertainty for the competition parameter δ. A possible explanation is

that our data are only weakly informative due to the relatively small number of

type-specific transitions r 7→ s, where r, s 6= 0 (posterior median 27, 95% CI [21,35]).

For completeness, we also fitted simpler models to the data, namely a model

where a common clearance rate is assumed for the common serotypes and a model

for which we set δ = 0. Posterior distributions for the parameters of interest are

shown in Figure 7.12. As expected, when a common clearance rate is assumed, the

new estimate is approximately equal to the average of the full model estimates for

common serotypes but less associated variability. This leads to minor changes in

external and within-pen colonisation rates. Moreover, assuming that δ = 0 has only

small effects on posterior estimates of the remaining parameters. Possibly, this is

due to the very low number of serotype-to-serotype transitions that were estimated

in the full model, or it may indicate that parameter δ does not offer substantial

improvements in model fit.

7.6 Discussion

In this chapter, we have developed a model for analysing longitudinal household

carriage studies with multiple serotypes. Our model improves on existing method-

ologies by allowing imperfect test sensitivity, that is, that the true carriage states can

be falsely recorded as non-carrier or misclassified as another serotype (Cauchemez

et al., 2006; Melegaro et al., 2007; Erästö et al., 2012; Numminen et al., 2013). Fur-

thermore, it gains flexibility by allowing non-typed samples to be classified as any
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of the studied serotypes rather than pulling them into the unidentified group, as it

is assumed by the majority of the aforementioned models. Although our method

was motivated by a study of repeated observations of E. coli colonisation, it can be

applied with minor modifications to other infectious diseases such as pneumonococ-

Figure 7.11: Results of our prior sensitivity analysis for the relative colonisation rates.
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Figure 7.12: Marginal posterior summaries of model parameters among cattle in the E.
coli data. The median value (dot) and 90% credible interval (error bars) are depicted for
each model; red for the full model, green for the model with δ = 0 and blue for the model
with a common clearance rate for the common serotypes.
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cus.

The proposed iFFBS algorithm of Section 6.4.4 has allowed us to fit the multi-

strain model. An advantage of this approach compared to previous approaches for

estimating serotype-specific parameters is that it can be efficiently applied with

several serotypes and can reduce correlation between posterior samples by updating

the entire true carriage process at each iteration. Moreover, unlike the standard

FFBS method, our method does not rely on a small population size or a small total

number of different serotypes.

Simulations demonstrate that the algorithm accurately estimates our model

parameters and successfully reproduces the incidence of colonisation. A sensitivity

analysis was conducted to explore different serotyping strategies. The results indi-

cate that the method performs reasonably well even when only a limited number

of serotyped observations are obtained suggesting that simulations can be used in

order to design an optimal serotyping scheme in a particular study.

Application of our method to a longitudinal study of E. coli in cattle divided

in pens has given us valuable insights into the data. Our analysis provides evidence

for between-serotype competition since the relative colonisation rate for carriers

versus non-carriers was estimated 0.5. Small pens were more susceptible to within-

pen colonisation compared to larger pens, as suggested by a relative transmission

rate of 1.66.

Differences between serotypes were detected with respect to the external rate
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of colonisation. In particular, we found that serotype U has the highest rate while

serotype P has the lowest. This is expected given that U represents a total of 24

serotypes in the data. For within-pen rate we had significant differences between

serotypes M and P, the latter being 4 times as big as the former. Similarities

were also observed for serotypes A and T in terms of both external and within-pen

colonisation rates. Serotypes M and C share low external rate as well as low within-

pen rate. Clearance rates were relatively homogeneous, in the sense that posterior

credible intervals for these parameters were overlapping.

A significant merit of our approach that it allows for imperfect diagnostic

tests. Using this feature we estimated that in the real data the sensitivity of the

faecal test is as low as 46% and the one of the RAMS test is close to 76%. In addi-

tion, we concluded that only 80% of the observed common serotypes were correctly

identified as the right type. These findings highlight the importance of the imperfect

test assumption which has been ignored in several epidemiological studies.

Following previous work on the field, our model treats different serotypes

that appear rarely in the observed data as a single group. Even though this is

a strong assumption, we believe that this does not impair our inferences since we

don’t provide any epidemiological interpretation for the transmission parameters of

this group. Further, we allow the unidentified group to have its own probability of

serotype misclassification.

A potential limitation of our model is that we currently do not allow for

co-colonisation, that is, an individual carrying more than one serotypes at a time.

Even though this assumption maybe appropriate for E. coli O157:H7, it may be

unrealistic in other epidemiological studies. Nevertheless, the model can be extended

to allow for colonisation by all pairwise combinations of single carriage states and

the same algorithm can be used for posterior inferences. Finally, an extension of our

model that one may consider is accounting for between pen interactions; this can

be achieved by adding an extra between-pen transmission parameter as was done

in Section 6.7.2 for a binary state process. However, on account of our findings in

Section 5.4.2.1 which suggest no interaction between pens in this particular study,

we choose not to consider this extension.
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Chapter 8

Conclusions And Extensions

8.1 Summary of the thesis

The main objective of this thesis has been to develop Bayesian techniques for pa-

rameter estimation and model comparison in the context of longitudinal household

epidemic data. Special emphasis is given to the role of missing data which arise due

to partial observation of the true epidemic process and therefore require advanced

tools to overcome analytical intractability of the model likelihood. In this section

we summarise the main contributions of our work.

In Chapter 3 we present a discrete-time hidden Markov model for infectious

disease dynamics within a community of individuals divided into groups. The model

allows for two possible routes of transmission, namely within group and transmis-

sion from the community. The main advantage of our approach is that it accounts

for imperfect tests that are used to detect the disease, by assuming that the data

are indirect measurements of a true hidden epidemic process. Parameter estimation

is achieved by using MCMC data augmentation methods, where the hidden coloni-

sation states are imputed with the forward filtering backward sampling algorithm.

The chapter introduces the modelling and inferential framework upon which the

work of subsequent chapters are built.

Despite the methodological advances in parameter estimation, model selec-

tion for stochastic epidemic models has been extremely challenging until recently,

mainly due to the computationally intensive methods needed to impute the missing

times of acquiring and clearing infection. Motivated by this fact, in Chapter 4 we

propose a three stage algorithm for efficiently estimating marginal likelihoods in

applications with a large amount of missing data. Thus, our approach is well suited

for epidemiological problems where each model represents an important hypothesis.

The method combines MCMC, importance sampling and filtering to calculate the

evidence in favour of each hypothesis considered. An extensive simulation study

suggested that the proposed algorithm performs better or equally compared to sev-

eral alternative approaches, in terms of computational efficiency and accuracy. A

significant merit of our approach, that was not exploited in this work, is that it
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can be easily applied in parallel which can be utilised to speed up implementation,

especially in applications involving big data.

The statistical tools developed in Chapter 4 have been applied in Chapter 5

to uncover new insights into the transmission dynamics of Escherichia coli O157:H7

in cattle, for which relatively little is known. Based on two longitudinal studies of E.

coli O157:H7 we were able to demonstrate that contaminated water troughs play an

important role in transmission. Furthermore, we have found evidence in favour of a

non-Markovian model for the colonisation period of E. coli O157:H7, which implies

the probability that an individual clears the disease grows as the colonisation period

increases. This result may indicate an immune response in the host. Finally, our

analyses provide support to the hypothesis that within-pen colonisation rates are

higher in pens with smaller area, possibly due to more contacts between individuals

that occur in such pens.

In Chapters 3–5 imputation of the missing data has been done with the

FFBS algorithm. Even though this method performs very effectively in small scale

epidemics, it can be computationally prohibitive as the total number of subjects

per household increases or in applications with multi-type hidden states. Chapter 6

introduces a novel extension of the FFBS algorithm, called iFFBS, that is suitable

for inference on large scale epidemic data. The iFFBS algorithm updates the hidden

infection states individually per subject conditional on the rest, as opposed to the

standard FFBS algorithm where sampling is done for all individuals jointly. The

computation time for the iFFBS is linear in the population size rather than the expo-

nential time needed for the FFBS. The approach relies on a Markovian colonisation

period, but it is shown that this assumption can be relaxed to extend the iFFBS to

non-Markovian models as well. Moreover, our method has been successfully applied

in a stochastic epidemic model with three possible routes of transmission, where

each individual belongs to a primary group (e.g. household), a secondary group

(e.g. neighbourhood) and the community. In all of these applications, we found that

iFFBS outperforms existing approaches in terms of computational efficiency and

scales well with dimensionality.

In Chapter 7 we developed an individual-based multi-state model for the

transmission dynamics of E. coli O157:H7 serotypes. To our knowledge, this is the

first study that accounts for both imperfect diagnostic tests and serotype misclassi-

fication. Bayesian inference for this model is performed using the iFFBS algorithm

presented in Chapter 6, providing accurate estimates of the model parameters and

the true carriage process in simulated data. Application on a real dataset provided

valuable insights regarding the dynamics of different strains of E. coli O157:H7. In
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particular, our findings suggest between serotype competition and various hetero-

geneities in transmission rates between different serotypes. To conclude, we high-

light that even though the work presented in this thesis has mainly considered E.

coli O157:H7, the statistical methodology is flexible and can be applied to a wide

range of other infectious diseases.

8.2 Extensions

The importance sampling method for model comparison proposed in Chapter 4 uses

the forward filtering backward sampling algorithm to construct the proposal den-

sity of the hidden colonisation process. The computational cost of this step grows

exponentially in the number of individuals per household, and therefore can only be

applied in small population problems. In our future work, we aim to improve the

computational efficiency of our approach in order to be applicable to large popula-

tions. One possible solution to this problem is using the iFFBS method developed

in Chapter 6 instead of the FFBS algorithm.

In Chapter 5 we have proposed an MCMC algorithm for inference in discrete

time Susceptible-Infected-Susceptible models with a Negative Binomially distributed

colonisation period. Our approach is based on a Metropolis Hasting update for the

hidden epidemic process, with proposal density being the full conditional under the

Geometric model. Therefore, the accuracy of the method decreases as the dispersion

parameter of the Negative Binomial distribution moves away from 1. In our future

work we will investigate alternative updates for this model. One way to address the

problem is to use ideas from Tokdar et al. (2010), who use an adapted version of the

FFBS algorithm after expanding the original state space so that the hidden semi-

Markov model takes a Markovian form; this is achieved by introducing a duration

variable. The computational complexity of this algorithm increases as the study

period grows, since at every step we need to sum over the possible duration intervals,

as well as the number of hidden states. Alternatively, we can follow Langrock et al.

(2012) who extended the hidden state space into a set of N∗ possible states, defining

suitable transition probabilities in order to construct a hidden Markov model that

approximates the hidden semi-Markov model. As before, this approach is more

computationally demanding compared to our approach.

There are several ways in which the iFFBS method can be further speeded

up. In its current form, the algorithm iteratively simulates the unobserved carriage

process of all individuals in the study. An interesting question is whether it is

necessary to update all individuals at every iteration of the algorithm or if it is more



Chapter 8. Conclusions And Extensions 186

computationally efficient to choose a subset of the individuals. One could consider

various strategies as to how these subsets are chosen. For instance, a proportion of

individuals can be selected uniformly at random. An alternative approach would

be to update the hidden states of each individual c with probability p[c], where p[c]

is the proportion of iterations of a pilot iFFBS run in which the colonisation states

changed compared to the previous iteration. Intuitively, we expect that mixing of

the Markov chains in the latter to be better compared to the former, even though

the computational cost is higher. In the future, we will investigate which one of

these approaches is optimal.

The multi-serotype model presented in Chapter 7 could be extended in many

ways. In particular, we have assumed a Geometric distribution of the colonisation

period and this assumption could be relaxed by using the methodology of Chapter 6

for hidden semi-Markov models. Furthermore, the model can be modified to account

for neighbouring pen interactions by adding an additional parameter for between-

pen transmission and inference can be carried out as shown in Section 6.7.2. Finally,

we will consider relaxing our assumption of single serotype carriage, thus allowing for

an individual to be colonised with multiple serotypes at a time termed co-infection.

The issue of co-infection has recently been understood to be of great importance

in epidemiology, due to potential for the exchange of genetic material within co-

colonised individuals leading to antigenic shifts in the pathogen. We anticipate

that statistical tools such as our proposed iFFBS algorithm will shortly be in great

demand as datasets emerge that track co-infection. This can be easily done under the

current framework by considering all pairwise serotype combinations as additional

possible states. However we note that in all of the aforementioned extensions, the

increase in parameters may lead to identifiability issues which could be tackled by

assuming some common serotype parameters.
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Appendix A

Motivating Datasets

Supplementary Material

A.1 Patterns of colonisation

Figure A.1 and Figure A.2 show the plots of observed data collected from E. coli

O157:H7 dataset 1 and E. coli O157:H7 dataset 2 respectively.

Figure A.1: RAMS and faecal samples collected in the 20 pens participating in the first
E. coli O157:H7 longitudinal study. Test results stated as positive; “+” when the RAMS
test is positive and “�” when the faecal test is positive. Grey circle (“◦”) indicates that the
sample is taken but no E. coli O157:H7 is detected by both tests. Missing data between the
samplings days is indicated by the white space between the points.
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Figure A.2: RAMS and faecal samples collected in the 24 pens participating in the

second E. coli longitudinal study. Test results stated as positive; “ + ” when the RAMS
and/or faecal test is positive and “◦” indicates that the sample is taken but no E. coli
O157:H7 is detected by both tests. Missing data between the samplings days is indicated
by the white space between the points.
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Appendix B

Hidden Markov Model For

Household Epidemic Data

Supplementary Material

B.1 MCMC details

In this section we provide the details of the MCMC Algorithm 3 presented in Section

3.4, used to generate samples from the posterior of the basic HMM of Chapter 3.

Simulation of the hidden states X has been already discussed in the main body. We

now give details for the remaining model parameters.

B.1.1 Updating the transmission parameters

The full conditional distribution of the initial colonisation parameter ν, is:

π(ν | Y,X, α̃, β̃, m̃, θR, θF ) ∝ νbν−1(1− ν)cν−1
P∏

p=1

npc∏

c=1

[
νx

[c, p]
1 (1− ν)1−x

[c, p]
1

]

= ν
∑P
p=1

∑n
p
c
c=1 x

[c, p]
1 +bν−1 (1− ν)

∑P
p=1

∑n
p
c
c=1

(
1−x[c, p]1

)
+cν−1.

Hence we draw ν | · ∼ Beta
(∑P

p=1

∑npc
c=1 x

[c, p]
1 + bν ,

∑P
p=1

∑npc
c=1

(
1− x[c, p]1

)
+ cν

)
.

For α̃, β̃ and m̃ the joint full conditional is given up to a multiplicative constant as:

π(α̃, β̃, m̃ | Y,X, ν, θR, θF )

∝
P∏

p=1

T p∏

t=2





exp

{
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x
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t−1

}
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00(t)(
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m̃+ 1

)Np
11(t)

(
1

m̃+ 1

)Np
10(t)

×


1− exp

{
− eα̃ − eβ̃

npc∑

c=1

x
[c, p]
t−1

}

Np

01(t)

× πα

(
eα̃
)
× eα̃ × πβ

(
eβ̃
)
× eβ̃ × πm̃(m̃),
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where Np
kj(t) the number of individuals in pen p who were in state k at time t − 1

and in state j at time t, for k, j ∈ {0, 1}.
This distribution cannot be solved analytically and therefore we use HMC

to update these parameters. We have that the partial derivatives are given by:

∂ log π(α̃, β̃, m̃ | ·)
∂α̃

=
P∑

p=1

T p∑

t=2


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+ 1,

∂ log π(α̃, β̃, m̃ | ·)
∂β̃

=
P∑

p=1

T p∑

t=2



Np

01(t)× eβ̃ ×
npc∑

c=1

x
[c, p]
t−1 ×

exp

{
− eα̃ − eβ̃∑npc

c=1 x
[c, p]
t−1

}

1− exp

{
− eα̃ − eβ̃∑npc

c=1 x
[c, p]
t−1

}

−Np
00(t)× eβ̃ ×

npc∑

c=1

x
[c, p]
t−1




+
∂ log πβ(eβ̃)

∂β̃
+ 1,

∂ log π(α̃, β̃, m̃ | ·)
∂m̃

=
P∑

p=1

T p∑

t=2



Np

11(t)

m̃
+
Np

11(t) +Np
10(t)

m̃+ 1


+

∂ log πm̃(m̃)

∂m̃
.

We use a fixed number of leapfrog steps L = 30 and adopt the stepsize ε during

burn-in to obtain an acceptance rate of roughly 65% as suggested by Neal (2011).

B.1.2 Updating the observation parameters

The full conditional of θR is:

π(θR | Y,X, α̃, β̃, m̃, ν, θF )

∝ θbθR−1R (1− θR)cθR−1
P∏

p=1

npc∏

c=1

∏

x
[c, p]
t =1
t∈Oc, p

[(
θR
)r[c, p]t

(
1− θR

)1−r[c, p]t

]
,
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and for θF it is:

π(θF | Y,X, α̃, β̃, m̃, ν, θR)

∝ θbθF−1F (1− θF )cθF−1
P∏

p=1
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x
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.

Hence we draw θR and θF :

θR | · ∼ Beta
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B.2 Handling individual dropouts

In both of our datasets we observe some occasions where exactly one individual cpd
leaves the study before completion of its pen observation period T p. Let T [cpd, p]

be the day of the last observation that we obtain for this individual. Note that in

this case, Xp does not include the carriage states of cpd after time T [cpd, p]. After the

dropout, the individual does not play any role in the epidemic process and hence

the probability of Xp | α̃, β̃, m̃, ν is written as:

P
(
Xp = xp | α̃, β̃, m̃, ν
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=
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,

where P̃ is defined as the transition probability excluding the contribution of individ-

ual cpd. When population sizes vary we need to specify how transmission probabilities
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change. In this cases, we assume density dependent transmission. This change is

accounted in the update of the model parameters. For the hidden carriage process,

we modify the FFBS algorithm as follows:

1. Initialise the forward recursion at t = 1:

P
(
X

[1:npc , p]
1 = k | Y[1:npc , p]

1 , θ̃
)

=
P
(
X

[1:npc , p]
1 = k | ν

)
fk

(
y
[1:npc , p]
1 | ϑ

)

∑

ω ∈Xn
p
c

s

P
(
X

[1:npc , p]
1 = ω | ν

)
fω

(
y
[1:npc , p]
1 | ϑ

) ,

for k ∈ X npcs .

2. For t = 2, 3, . . . , T [cpd, p] in a forward recursion, for k ∈ X npcs :

(a) Compute the one-step ahead predictive probabilities,

P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t−1 , θ̃
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[1:npc , p]
t = k | X[1:npc , p]

t−1 = ω, φ̃
)
P
(
X

[1:npc , p]
t−1 = ω | Y[1:npc , p]

1:t−1 , θ̃
)
.

(b) Compute the filtered probabilities,

P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t , θ̃
)

=
fk

(
y
[1:npc , p]
t | ϑ

)
P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t−1 , θ̃
)

∑

ω ∈Xn
p
c

s

fω

(
y
[1:npc , p]
t | ϑ

)
P
(
X

[1:npc , p]
t = ω | Y[1:npc , p]

1:t−1 , θ̃
) .

3. For t = T [cpd, p] + 1 and k̃ ∈ X npc−1s = {0, 1}npc−1:

(a) Compute the one-step ahead predictive probabilities,

P
(
X

[−cpd, p]
t = k̃ | Y[1:npc , p]

1:t−1 , θ̃
)

=
∑

ω ∈Xn
p
c

s

P
(
X

[−cpd, p]
t = k̃ | X[1:npc , p]

t−1 = ω, φ̃
)
P
(
X

[1:npc , p]
t−1 = ω | Y[1:npc , p]

1:t−1 , θ̃
)
,

where X
[−cpd, p]
t denotes the vector X

[1:npc , p]
t excluding X

[cpd, p]
t , and

P
(
X

[−cpd, p]
t = k̃ | X[1:npc , p]

t−1 = ω, φ̃
)

=

npc∏

c=1
c 6=cpd

P
[c, p]

ω[c], k̃[c], t
.
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(b) Compute the filtered probabilities,

P
(
X

[−cpd, p]
t = k̃ | Y[−cpd, p]

1:t , θ̃
)

=
f̃k̃

(
y
[−cpd, p]
t | ϑ

)
P
(
X

[−cpd, p]
t = k̃ | Y[−cpd, p]

1:t−1 , θ̃
)

∑

ω̃ ∈Xn
p
c−1

s

f̃ω̃

(
y
[−cpd, p]
t | ϑ

)
P
(
X

[−cpd, p]
t = ω̃ | Y[−cpd, p]

1:t−1 , θ̃
) ,

where,

f̃k̃

(
y
[−cpd, p]
t | ϑ

)
:= π

(
Y

[−cpd, p]
t | X[−cpd, p]

t = k̃,ϑ
)

=

npc∏

c=1
c 6=cpd

fk̃[c]
(
y
[c, p]
t | ϑ

)
.

4. For t = T [cpd, p] + 2, T [cpd, p] + 3, . . . , T p in a forward recursion, for k̃ ∈ X npc−1s :

(a) Compute the one-step ahead predictive probabilities,

P
(
X

[−cpd, p]
t = k̃ | Y[−cpd, p]

1:t−1 , θ̃
)

=
∑

ω̃ ∈Xn
p
c−1

s

P
(
X

[−cpd, p]
t = k̃ | X[−cpd, p]

t−1 = ω̃, φ̃
)
P
(
X

[−cpd, p]
t−1 = ω̃ | Y[−cpd, p]

1:t−1 , θ̃
)

where,

P
(
X

[−cpd, p]
t = k̃ | X[−cpd, p]

t−1 = ω̃, φ̃
)

=

npc∏

c=1
c 6=cpd

P
(
X

[c, p]
t = k̃[c] | X [c, p]

t−1 = ĩ[c],X
[−(c, cpd), p]
t−1 = ω̃[−c], φ̃

)
=

npc∏

c=1
c 6=cpd

P̃
[c, p]

ω̃[c], k̃[c], t
.

(b) Compute the filtered probabilities,

P
(
X

[−cpd, p]
t = k̃ | Y[−cpd, p]

1:t , θ̃
)

=
f̃k̃

(
y
[−cpd, p]
t | ϑ

)
P
(
X

[−cpd, p]
t = k̃ | Y[−cpd, p]

1:t−1 , θ̃
)

∑

ω̃ ∈Xn
p
c−1

s

f̃ω̃

(
y
[−cpd, p]
t | ϑ

)
P
(
X

[−cpd, p]
t = ω̃ | Y[−cpd, p]

1:t−1 , θ̃
) .

5. Simulate a value for X
[−cpd, p]
T p according to the filtered state probabilities

P
(
X

[−cpd, p]
T p = k̃ | Y[−cpd, p]

1:T p , θ̃
)

, k̃ ∈ X npc−1s .
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6. For t = T p − 1, T p − 2, T [cpd, p] + 1 compute the conditional probabilities

P
(
X

[−cpd, p]
t = k̃ | X[−cpd, p]

t+1 = x
[−cpd, p]
t+1 ,Y

[−cpd, p]
1:t , θ̃

)
, k̃ ∈ X npc−1s given by:

P
(
X

[−cpd, p]
t = k̃ | X[−cpd, p]

t+1 = x
[−cpd, p]
t+1 ,Y

[−cpd, p]
1:t , θ̃

)

=
P
(
X

[−cpd, p]
t+1 = x

[−cpd, p]
t+1 | X[−cpd, p]

t = k̃, φ̃
)
P
(
X

[−cpd, p]
t = k̃ | Y[−cpd, p]

1:t , θ̃
)

∑

ω̃ ∈Xn
p
c−1

s

P
(
X

[−cpd, p]
t+1 = x

[−cpd, p]
t+1 | X[−cpd, p]

t = ω̃, φ̃
)
P
(
X

[−cpd, p]
t = ω̃ | Y[−cpd, p]

1:t , θ̃
) ,

and simulate a value for X
[−cpd, p]
t from the distribution defined by these prob-

abilities.

7. For t = T [cpd, p] simulate a value for X
[1:npc , p]
t from:

P
(
X

[1:npc , p]
t = k | X[−cpd, p]

t+1 = x
[−cpd, p]
t+1 ,Y

[1:npc , p]
1:t , θ̃

)

=
P
(
X

[−cpd, p]
t+1 = x

[−cpd, p]
t+1 | X[1:npc , p]

t = k, φ̃
)
P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t , θ̃
)

∑

ω ∈Xn
p
c

s

P
(
X

[−cpd, p]
t+1 = x

[−cpd, p]
t+1 | X[1:npc , p]

t = ω, φ̃
)
P
(
X

[1:npc , p]
t = ω | Y[1:npc , p]

1:t , θ̃
) ,

for k ∈ X npcs .

8. Finally, for t = T [cpd, p]− 1, T [cpd, p]− 2, . . . , 1 simulate a value for X
[1:npc , p]
t from:

P
(
X

[1:npc , p]
t = k | X[1:npc , p]

t+1 = x
[1:npc , p]
t+1 ,Y

[1:npc , p]
1:t , θ̃

)

=
P
(
X

[1:npc , p]
t+1 = x

[1:npc , p]
t+1 | X[1:npc , p]

t = k, φ̃
)
P
(
X

[1:npc , p]
t = k | Y[1:npc , p]

1:t , θ̃
)

∑

ω ∈Xn
p
c

s

P
(
X

[1:npc , p]
t+1 = x

[1:npc , p]
t+1 | X[1:npc , p]

t = ω, φ̃
)
P
(
X

[1:npc , p]
t = ω | Y[1:npc , p]

1:t , θ̃
) ,

for k ∈ X npcs .

B.3 Simulation studies: additional results

To simulate data with the same structure as the observations, we proceed as follows.

We consider pen p in the field data (p = 1, 2, . . . , P ). We simulate an epidemic in a

pen of size npc from Equation 3.1 in Section 3.2 and obtain simulated hidden carriage

state X
[c, p]
t for each individual c ∈ {1, 2, . . . , npc} at its observation period t ∈ T c,p =

{1, 2, . . . , T c,p}. Conditional on these carriage states we then generate RAMS and

faecal samples from individual c at the same days as those from individual c in pen
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p of the real data, that is, at pre-specified observation times Oc,p. Eventually, the

simulated data for pen p is the collection of
[(
R

[c, p]
t , F

[c, p]
t

)]
c=1,2,...,npc ; t∈Oc,p

. The

simulation of data is repeated for each pen.

Then we fit the basic HMM model described in Section 3.2. In Figure B.1

we show the median posterior medians along with 95% credible intervals over the

40 realisations of the two sampling schemes, under the 3 different scenarios.

B.4 Real data analysis of dataset 1: additional results

In this section we provide additional results for the analysis of the first E. coli

O157:H7 data of Section 3.6.1. Trace plots of the model parameters are shown

in Figure B.2, with the summaries of the marginal posterior distributions of the

observation and transmission parameters given in Figure B.4 and B.3, respectively.

Relying on the true test results for the RAMS and faecal test, the plot of the

posterior probability of colonisation of each animal in a given pen is created. Two

of the corresponding plots are displayed in Figures B.5 and B.6.

B.5 Real data analysis of dataset 2: additional results

In this section we provide additional results for the analysis of the second E. coli

O157:H7 data of Section 3.6.2. Trace plots of the transmission parameters are given

in Figure B.7. The posterior predictive distributions of the three test quantities are

shown in Figure B.8. In Figure B.9 we plot the marginal posterior distributions of

the parameters α, β, and m using four different choice of priors.
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Figure B.1: Comparison of the distributions of the posterior median estimates of pa-
rameters based on 40 simulated data with different sampling scheme under three epidemic
scenarios. The simulated data resemble the two motivating longitudinal studies. For each
scenario the red dashed lines indicate the true values of the corresponding model parameter.
Boxplots give the quantiles 2.5%, 25%, 50%, 75%, and 97.5%, respectively.
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Figure B.2: Trace plot of each model parameter among cattle in the E. coli O157:H7
dataset 1.
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Figure B.3: Pairwise scatter-plots for each pair of observation parameters and marginal
posterior densities (diagonal) among cattle in the E. coli O157:H7 dataset 1. Three inde-
pendent Markov chains are presented.
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Figure B.4: Pairwise scatter-plots for each pair of transmission parameters and marginal
posterior densities (diagonal) among cattle in the E. coli O157:H7 dataset 1. Three inde-
pendent Markov chains are presented.
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Figure B.5: Posterior probability of colonisation (grey solid line) for individuals in pen
3 of the first E. coli O157:H7 dataset, over the entire sampling period of 99 days (1 for
colonised, 0 for non-carrier). For reference we also show test results taken twice per week; ”·”
indicates negative sample and ”+” indicates that the sample was positive. White horizontal
lines represent the days in which samples were taken.
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Figure B.6: Posterior probability of colonisation (grey solid line) for individuals in pen
19 of the first E. coli O157:H7 dataset, over the entire sampling period of 99 days (1 for
colonised, 0 for non-carrier). For reference we also show test results taken twice per week; ”·”
indicates negative sample and ”+” indicates that the sample was positive. White horizontal
lines represent the days in which samples were taken.
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Figure B.7: Trace plot of each model parameter among cattle in the E. coli O157:H7
dataset 2. Three independent Markov chains are presented.
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Figure B.8: Model assessment plots for E. coli O157:H7 dataset 2. Posterior predictive
distribution of the mean duration, number of animals that never tested as positive and
total numbers of positive test results. Black dashed line indicate the observed value of
the corresponding summary. Shaded area corresponds to the 95% credible interval. The
results are based on 5000 posterior predictive simulations having the same structure as in
the original dataset.
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Figure B.9: Sensitivity to the prior distribution on the colonisation rates and the mean
colonisation duration for E. coli O157:H7 dataset 2. We use 4 different Gamma priors, 1-4,
with constant mean equal to 1 and variance equal to 1, 10, 100 and 1000 respectively. Each
time, the prior of only one parameter is changed.
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Appendix C

Efficient Model Comparison

Techniques Supplementary

Material

C.1 Algorithm details

In this section we compare the variance of the estimators P̂rq and P̃rq. For M =

1, 2, . . ., let:

P̃Mrq =
1

NM

N∑

i=1

M∑

j=1

π
(
y | x(i,j),θ(i)

)
π
(
x(i,j) | θ(i)

)
π
(
θ(i)
)

r
(
x(i,j) | θ(i)

)
q
(
θ(i)
) , (C.1)

where θ(i) ∼ q(·) and x(i,j) ∼ r
(
· | θ(i)

)
. Thus P̂rq is the special case P̃ 1

rq.

To show that Equation (C.1) is unbiased we can consider the following:

E[P̃Mrq ] = Eθ
[
Ex|θ

[
P̃Mrq | θ

]]
, (C.2)

by the law of total expectation. Hence,

Ex|θ
[
P̃Mrq | θ

]
=

1

NM

N∑

i=1

Ex|θ



π
(
θ(i)
)

q
(
θ(i)
)

M∑

j=1

π
(
y | x(i,j),θ(i)

)
π
(
x(i,j) | θ(i)

)

r
(
x(i,j) | θ(i)

)




=
1

NM

N∑

i=1



π
(
θ(i)
)

q
(
θ(i)
)

M∑

j=1

Ex|θ



π
(
y | x(i,j),θ(i)

)
π
(
x(i,j) | θ(i)

)

r
(
x(i,j) | θ(i)

)






=
1

N

N∑

i=1

π
(
y | θ(i)

)
π
(
θ(i)
)

q
(
θ(i)
) , (C.3)
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and therefore from Equation (C.2) and Equation (C.3) we have:

E
[
P̃Mrq

]
= Eθ

[
Ex|θ

[
P̃Mrq | θ

]]

= Eθ


 1

N

N∑

i=1

π
(
y | θ(i)

)
π
(
θ(i)
)

q
(
θ(i)
)




=
1

N

N∑

i=1

Eθ



π
(
y | θ(i)

)
π
(
θ(i)
)

q
(
θ(i)
)




=
1

N

N∑

i=1

π(y)

= π(y). (C.4)

To calculate the variance of Equation (C.1), we can consider the law of total variance:

Var
(
P̃Mrq

)
= Eθ

[
Varx|θ

(
P̃Mrq | θ

)]
+ Varθ

[
Ex|θ

(
P̃Mrq | θ

)]
. (C.5)

To evaluate Equation (C.5) we need to consider:

Varx|θ
(
P̃Mrq | θ

)
=

1

N2

N∑

i=1

Varx|θ



π
(
θ(i)
)

Mq
(
θ(i)
)

M∑

j=1

π
(
y | x(i,j),θ(i)

)
π
(
x(i,j) | θ(i)

)

r
(
x(i,j) | θ(i)

)




=
1

N2

N∑

i=1




π
(
θ(i)
)

Mq
(
θ(i)
)




2
M∑

j=1

Varx|θ



π
(
y | x(i,j),θ(i)

)
π
(
x(i,j) | θ(i)

)

r
(
x(i,j) | θ(i)

)


 .

(C.6)

In order to calculate Equation (C.6) we need to consider:

Varx|θ



π
(
y | x(i,j),θ(i)

)
π
(
x(i,j) | θ(i)

)

r
(
x(i,j) | θ(i)

)




=

∫

x



π
(
y | x,θ(i)

)
π
(
x | θ(i)

)

r
(
x | θ(i)

) − π
(
x | θ(i)

)



2

× r
(
x | θ(i)

)
dx

= π
(
y | θ(i)

)2 ∫

x



π
(
x | y,θ(i)

)

r
(
x | θ(i)

) − 1




2

r
(
x | θ(i)

)
dx, (C.7)
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which is constant for a given θ(i). Hence, if we let:

v
(
θ(i)
)

=

∫

x



π
(
x | y,θ(i)

)

r
(
x | θ(i)

) − 1




2

r
(
x | θ(i)

)
dx,

derived in Equation (C.7), then from Equation (C.6) we have:

Varx|θ
(
P̃Mrq | θ

)
=

1

N2

N∑

i=1



π
(
y | θ(i)

)
π
(
θ(i)
)

Mq
(
θ(i)
)




2
M∑

j=1

v
(
θ(i)
)

=
1

MN2

N∑

i=1



π
(
y | θ(i)

)
π
(
θ(i)
)

q
(
θ(i)
)




2

v
(
θ(i)
)
, (C.8)

and from this we can calculate:

Eθ
[
Varx|θ

(
P̃Mrq | θ

)]
=

1

MN2

N∑

i=1

Eθ






π
(
y | θ(i)

)
π
(
θ(i)
)

q
(
θ(i)
)




2

v
(
θ(i)
)



=
1

MN2

N∑

i=1

∫

θ

[π (y | θ)π (θ)]2 v (θ)

q (θ)
dθ

=
π (y)2

MN2

N∑

i=1

∫

θ

π (θ | y)2 v (θ)

q (θ)
dθ

=
π (y)2

MN
v2 (y) , (C.9)

where v2 (y) =
∫
θ
π(θ|y)2v(θ)

q(θ) dθ.

The final component of Equation (C.5) we need to calculate is:

Varθ

[
Ex|θ

(
P̃Mrq | θ

)]
= Varθ


 1

N

N∑

i=1

π
(
y | θ(i)

)
π
(
θ(i)
)

q
(
θ(i)
)


 from (C.3)

=
1

N2

N∑

i=1

Varθ



π
(
y | θ(i)

)
π
(
θ(i)
)

q
(
θ(i)
)




=
1

N2

N∑

i=1

∫

θ

(
π (y | θ)π (θ)

q (θ)
− π(y)

)2

q (θ) dθ

=
π(y)2

N2

N∑

i=1

∫

θ

(
π (θ | y)

q (θ)
− 1

)2

q (θ) dθ
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=
π(y)2

N
v3(y), (C.10)

where v3(y) =
∫
θ

(
π(θ|y)
q(θ) − 1

)2
q (θ) dθ.

Finally, from Equations (C.5), (C.9) and (C.10) we have:

Var
(
P̃Mrq

)
=

π (y)2

MN
v2 (y) +

π(y)2

N
v3(y)

=
π (y)2

N

(
v2 (y)

M
+ v3(y)

)
. (C.11)

It is clear from the above that for fixed NM , choosing M = 1 minimises

Var
(
P̃Mrq

)
. Note that the computational cost of computing Var

(
P̃Mrq

)
is not the

same for all NM as N θ samples are drawn from q(·) and for each i = 1, 2, . . . , N ,

M samples x(i,·) from r
(
· | θ(i)

)
are made. However sampling θ generally takes

negligible time compared to sampling x and thus throughout the thesis we take

M = 1.

C.2 Implementation details

In this section we briefly overview alternative techniques for estimating the likeli-

hood or the posterior probabilities in the presence of missing data. In particular,

we explain the adaptations that are required in order to implement the methods

described in Section 1.2.4.

C.2.1 Marginal likelihood estimation via harmonic mean

When data augmentation is used, the parameter vector comprises latent variable x as

well as the model parameters θ. The marginal likelihood π(y) can be approximated

by the sample harmonic mean of the likelihoods,

P̂HM (y) =

[
1

N

N∑

i=1

1

π
(
y | x(i),θ(i)

)
]−1

(C.12)

based on N MCMC draws
(
x(1),θ(1)

)
,
(
x(2),θ(2)

)
, . . . ,

(
x(N),θ(N)

)
from the joint

posterior π(x,θ | y).
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C.2.2 Marginal likelihood estimation via bridge sampling

With missing data the bridge sampling estimator can be written as,

P̂
(t)
BS(y) = P̂

(t−1)
BS (y)

1

L

L∑

`=1

1

Lq
(
θ̃
(`)
)
π
(
x̃(`) | y, θ̃(`)

)
P̂

(t−1)
BS (y)

π
(
y, x̃(`) | θ̃(`)

)
π
(
θ̃
(`)
) +N

1

N

N∑

i=1

1

L+
N π

(
y, x̂(i) | θ̂(i)

)
π
(
θ̂
(i)
)

q
(
θ̂
(i)
)
π
(
x̂(i) | y, θ̂(i)

)
P̂

(t−1)
BS (y)

, (C.13)

using MCMC iid draws
(
x̂(i), θ̂

(i)
)
, i = 1, 2, . . . , N from the joint posterior π(x,θ |

y) and θ̃
(`)
, ` = 1, 2, . . . , L from the importance sampling density q(θ). For each sam-

ple θ̃
(`)

we obtain a corresponding sample for the missing data x̃(`) from π
(
x | y, θ̃(`)

)
.

The proposed importance sampling estimator, which is a special case of the general

bridge sampling estimator, is used as starting value P̂
(0)
BS (y). In practise, iterative

application of Equation (C.13) is very fast.

C.2.3 Marginal likelihood estimation via Chib’s method

Chib’s method for estimating the marginal likelihood can be calculated by:

log P̂Chib(y) = log π(y,x∗ | θ∗) + log π(θ∗)− log π̂(x∗,θ∗ | y). (C.14)

For the model described in Section 4.4.1 we decompose the parameter vector into

(x,b1,b2,b3), where b1 = (α1, α2, β11, β12, β21, β22, µ1, µ2, w), b2 = ν1 and b3 = ν2.

The posterior density is then factorised as:

π(x∗,θ∗ | y) = π(x∗ | y)π(b∗1 | y,x∗)π(b∗2 | y,x∗,b∗1)π(b∗3 | y,x∗,b∗1,b∗2).

C.2.4 Marginal likelihood estimation via power posteriors

The power posterior approach to estimating the marginal likelihood, as described

in Section 1.2.4.6, can be implement once we include the missing data in the set of

unknown parameters. Metropolis within Gibbs sampling was used to obtain samples

from the power posterior π(x,θ | y, t) at each temperature t > 0.

The variability of the power posterior estimator depends on the chosen num-

ber and spacing of the ti’s. Choosing a large number of temperatures, the estima-
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tion of the log marginal likelihood requires considerably more computational effort.

Moreover, the precision of the estimate is sensitive to the number of samples used

and the mixing of the MCMC sampler.

In Friel and Pettitt (2008) the temperatures were chosen with a geometric

spacing, tl = (l/n)c, for l = 0, 1, . . . , n, with c > 1, which places many of the

temperatures close to zero. This scheme is preferable in cases where the expected

deviance has a sharp increase near zero before leveling off. However, in our case, the

curve of the expected deviance is not convex (Figure C.1). After some pilot analysis

(not counted in the computation cost) using the setup that we described in Section

4.4.1 we chose to use 20 partitions of the unit line, placing more temperatures around

zero and the other sharp change.

Figure C.1: Expected deviance against temperature for modelM1 estimated using power
posteriors.
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C.2.5 Reversible jump MCMC

In this section, we provide details of the reversible jump algorithm adjusted to

compare model M1 (described in Section 4.3.1) with the nested model M2, in

which the community acquisition rates for adults and children are equal (Section

4.4.2.1). The main difficulty with RJMCMC lies in designing efficient proposals to

jump between models and their associated parameters.

More specifically, when the algorithm is in modelM1, we propose a move to
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M2 with probability 0.5, in which the joint community acquisition rate α is set to

α = L1 α1+L2 α2
L1+L2

, where L1 is the total number of children and L2 is the total number

of adults. The Jacobian of the transformation is L1 L2
L1+L2

. For the reverse move,

we need to increase the dimension of the parameter vector, therefore an auxiliary

random variable u is required. Let u ∼ N (0, σ2) with σ2 fixed but well chosen.

Then we set α1 = α + u
L1

and α2 = α − u
L2

. The Jacobian of the transformation is

then L1+L2
L1 L2

. The acceptance probability of jumping from M1 to M2, is given by

min(1, A12) where,

A12 =
π(k = 2,ψ2 | y)π(k = 2)

π(k = 1,ψ1 | y)π(k = 1)

(
1

σ
√

2π
e
− 1

2σ2

(
L1L2(α1−α2)

L1+L2

)2)
L1 L2

L1 + L2
,

where ψ1 = (α1, α2, β11, β12, β21, β22, w, µ1, µ2, ν1, ν2,x) and ψ2 = (α, β11, β12, β21,

β22, w, µ1, µ2, ν1, ν2,x). For the reciprocal move from modelM2 toM1, the proba-

bility of accepting the jump is given by min(1, A21) where,

A21 =
π(k = 1,ψ1 | y)π(k = 1)

π(k = 2,ψ2 | y)π(k = 2)

(
1

σ
√

2π
e−

u2

2σ2

)−1
L1 + L2

L1 L2
.

In addition to the model-switching step, the within-model parameters are updated

using a standard MCMC algorithm that employs both Gibbs sampler updates and

random walk Metropolis steps with a Gaussian proposal density centred at the

current value.

C.3 Thinning for the bridge sampling

The optimal bridge sampling estimator is constructed on the basis of having iid

samples from the posterior available. Thinning can be used to reduce the autocor-

relation in posterior samples produced using MCMC. Figure C.2 shows the effect

that the amount of thinning has on the bridge sampling estimator. Interestingly,

quite substantial thinning is needed before the Monte Carlo variance of the bridge

sampling estimator drops below that of the importance sampling estimator.
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Figure C.2: Effect of thinning of the MCMC samples on the Monte Carlo variance of
the bridge sampling estimator, over 50 replicates.
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Appendix D

Evaluation Of

Epidemiological Hypotheses

Supplementary Material

D.1 HMC details for updating the transmission param-

eters of the Negative Binomial model

In this section we provide the details of the HMC algorithm, used to generate sam-

ples from the posterior of the Negative Binomial transmission model presented in

Section 5.2. The joint posterior distribution of the hidden colonisation states and

the parameters is given by,

π(X, α̃, β̃, m̃, κ, ν, θR, θF | Y) ∝ π(Y | X, θR, θF ) π(X | α̃, β̃, m̃, κ, ν)π(θ̃), (D.1)

where π(θ̃) is the prior of the transformed model parameters θ̃ = (φ̃,ϑ) = (α̃, β̃,

m̃, κ, ν, θR, θF ), α̃ = log(α), β̃ = log(β) and m̃ = m− 1. The prior distributions are

specified exactly as in the Geometric model for the parameters α, β, m̃, ν, θR and

θF . We choose a Gamma prior for the additional parameter κ ∼ Ga(bκ, cκ).

The first term in Equation (D.1) can be written as,

π(Y | X, θR, θF ) =
P∏

p=1

npc∏

c=1

T p∏

t=1

f
x
[c, p]
t

(
y
[c, p]
t | θR, θF

)
,

where f
x
[c, p]
t

(
y
[c, p]
t | θR, θF

)
is given by Equation (3.4), and the second term is given

by,

π(X | α̃, β̃, m̃, κ, ν) =

P∏

p=1

T p∏

t=2





1− exp

{
− eα̃ − eβ̃

npc∑

c=1

x
[c, p]
t−1

}

Np

01(t)
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×


exp

{
− eα̃ − eβ̃

npc∑

c=1

x
[c, p]
t−1

}

Np

00(t)

×

P∏

p=1

npc∏

c=1

[
νx

[c, p]
1 (1− ν)1−x

[c, p]
1

]

×
P∏

p=1

npc∏

c=1







1−
ζ
∗ [c, p]
1 −1∑

ζ=1

P
(
Z = ζ

)

m̃+ 1




X
[c, p]
1 [

P
(
Z = ζ

∗ [c, p]
1

)]1−X[c, p]
1

×


1−

ζ
∗ [c, p]
τ [c, p]

−1∑

ζ=1

P
(
Z = ζ

)



X
[c, p]

T [c, p][
P
(
Z = ζ

∗ [c, p]
τ [c, p]

)]1−X[c, p]

T [c, p]
τ [c, p]−1∏

t=2

P
(
Z = ζ

∗ [c, p]
t

)



,

where Np
0j(t) denotes the number of individuals in pen p who were in state 0 at time

t− 1 and in state j at time t, for j ∈ {0, 1},
(
ζ
∗ [c, p]
1 , ζ

∗ [c, p]
2 , . . . , ζ

∗ [c, p]
τ [c, p]

)
denotes the

observed colonisation durations vector for each individual c in pen p, and

P(Z = ζ) =

(
κ

κ+ m̃

)κ Γ(κ+ ζ − 1)

(ζ − 1)! Γ(κ)

(
m̃

κ+ m̃

)ζ−1
.

The full conditional distribution of α̃, β̃, m̃ and κ cannot be solved analytically

and therefore we use HMC to update these parameters. We have that the partial

derivatives are given by:

∂ log π(α̃, β̃, m̃, κ | ·)
∂α̃

=

P∑

p=1

T p∑

t=2



Np

01(t)× eα̃ ×
exp

{
− eα̃ − eβ̃∑npc

c=1 x
[c, p]
t−1

}

1− exp

{
− eα̃ − eβ̃∑npc

c=1 x
[c, p]
t−1

}

−Np
00(t)× eα̃




+
∂ log πα(eα̃)

∂α̃
+ 1,

∂ log π(α̃, β̃, m̃, κ | ·)
∂β̃

=

P∑

p=1

T p∑

t=2



Np

01(t)× eβ̃ ×
npc∑

c=1

x
[c, p]
t−1 ×

exp

{
− eα̃ − eβ̃∑npc

c=1 x
[c, p]
t−1

}

1− exp

{
− eα̃ − eβ̃∑npc

c=1 x
[c, p]
t−1

}
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−Np
00(t)× eβ̃ ×

npc∑

c=1

x
[c, p]
t−1




+
∂ log πβ(eβ̃)

∂β̃
+ 1,

∂ log π(α̃, β̃, m̃, κ | ·)
∂m̃

=
P∑

p=1
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X
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1
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1
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1
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1
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+
∂ log πκ(κ)

∂κ
.

We use a fixed number of leapfrog steps L = 30 and adopt the stepsize ε during

burnin to obtain an acceptance rate of roughly 65% as suggested by Neal (2011).

D.2 Investigating heterogeneity in colonisation rates:

simulation studies

We conduct a simulation study using data under epidemic scenarios with various

levels of heterogeneity in between-pen colonisation rates. Our goals are to vali-

date parameter estimates obtained through our MCMC algorithm, as well as the

effectiveness of IS in detecting the true model under these different scenarios.

Each of the epidemics is simulated in a population of 20 pens with the same

structure as the original E. coli O157:H7 dataset 1, using an SIS model with pa-

rameters fixed to known values. We consider four different scenarios 1-4, and label

the corresponding simulated datasets as SD1, SD2, SD3 and SD4 respectively. In

each case the data arise using model Mk, k = 1, 2, 3, 4, as the true model, where

the models are described in Section 5.3.1. The true values of the epidemic model

parameters in each setting can be found in Table D.1. We choose these values to

reflect our expectations in real world datasets.

Table D.1: Setup of our simulation study. Four datasets are generated, SD1-SD4, with
different colonisation rates. The true model that was used to simulate each dataset is given
in parentheses.

Simulated Parameter

Dataset αs αn βs βn m ν θR θF

SD1 (M1) 0.015 0.005 0.005 0.015 9 0.1 0.8 0.5

SD2 (M2) 0.010 0.010 0.005 0.015 9 0.1 0.8 0.5

SD3 (M3) 0.005 0.015 0.010 0.010 9 0.1 0.8 0.5

SD4 (M4) 0.009 0.009 0.011 0.011 9 0.1 0.8 0.5

D.2.1 Performance in estimating model parameters

For each dataset SD1, SD2, SD3 and SD4, we fit all 4 candidate models. MCMC

is run for 15,000 iterations of which we discard the first 5,000 as a burn-in. From

the remaining 10,000 we record samples every 5 iterations and so have a total 1,000

posterior draws. We assign independent prior distributions for the model parameters
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as follows. In all models, we set m ∼ Ga(0.01, 0.01) and ν, θR, θF ∼ Beta(1, 1).

When included in the model, we assume that α, β, αs, αn, βs and βn have a Ga(1,1)

prior.

For each scenario, the MCMC output is displayed in the form of marginal

posterior distributions in Figure D.1. The figure demonstrates that the posterior

distribution of the parameters, under the correctly specified model, is located near to

its true value, indicating that the algorithm can successfully recover this parameter.

However, when we fit the wrong model to the data, there several points of note.

In scenario SD1 (data generated under the full modelM1), both modelsM2

and M4 yield broadly similar densities for the external transmission parameter α.

In particular, we see that the posterior distribution for α is located between the

true values of αs and αn. In a similar manner, models M3 and M4 give almost

identical densities for the within-pen transmission parameter β, and these estimates

are roughly the average of the true values βs and βn. Note that models M2 −M4

give misleading inferences regarding the transmission process, when the full model

M1 is the true model. Analogous arguments can be made under scenarios SD2 and

SD3. For the former, where we have distinct βn and βs values for the North and

South pens but a common α, fits under models M3 and M4 provide estimates of

β in between βn and βs leading to inaccurate results. For the latter, we observe

that under M2 and M4 the estimate of α is within the interval [αn, αs]. Finally,

under scenario SD4 (simple model is the true), all models give similar results for

the parameters which are close to the true values.

D.2.2 Performance in determining the true model

In Section D.2.1, we fit all 4 candidate models to datasets SD1-SD4 using a Ga(1, 1)

prior for the colonisation rates. In this section we consider 2 other prior distribu-

tions, namely Ga(0.1, 0.1) and Ga(1, 100) to check if model comparison produces

different results under the 3 alternatives. Hence, for each dataset we fit all distinct

combinations of model and prior which results to 12 MCMC outputs per dataset.

We then use IS to estimate the posterior probability of each model. This proce-

dure is repeated 40 times using new datasets each time, in order to prevent biases

occurring due to the simulated datasets.

Figure D.2 presents the median posterior model probabilities arranged by

the 4 different simulation scenarios. We find that posterior model probabilities are

highly sensitive to the choice of prior. More specifically, we see that the Ga(1, 1)

prior tends to favour the simple model M4 regardless to which one of the 4 models

was used to generate the data. The Ga(0.1, 0.1) show similar behaviour but assigns



Figure D.1: Marginal posterior densities of selected characteristics of simulated data
SD1-SD4. The red, green, blue and purple lines correspond to Model M1, M2, M3 and
M4, respectively. The dashed lines represent the true parameter values.
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(b) MCMC analysis of SD2.
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(c) MCMC analysis of SD3.
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(d) MCMC analysis of SD4.
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higher posterior probabilities to the correct models compared to the Ga(1, 1). The

last prior, Ga(1, 100) favours the correct true model under all 4 setups and therefore

is used for our real data analysis.

Figure D.2: Posterior probabilities of models M1-M4 fit to datasets SD1-SD4. The
priors considered for the external and within-pen colonisation rates are the Ga(0.1, 0.1)
(red), Ga(1, 1) (green) and Ga(1, 100) (blue).
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D.3 Investigating transmission between neighbouring pens:

simulation studies

D.3.1 Performance in determining the true model

In this section we perform a simulation study to assess the ability of the IS algorithm

to determine the true model under scenarios with different forms of interactions

between neighbouring pens. The six models that we consider are described in Section

5.4.2.2. The prior for the between pen transmission rate η is a Ga(1, 1000), when
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this parameter is included in the model. We generate 40 datasets under models

M1,M2,M4 and M6, and for each dataset we evaluate the posterior probabilities

of the six competing models.

Figure D.3 shows the median posterior probability of each model under the

four scenarios. Overall, we observe that our method favours the true model that

was used to generate the data. Evidence in favour of the generative model is strong

in scenarios 1 (M1), 2 (M2) and 4 (M6), but less strong in scenario 3 (M4).

Figure D.3: Median posterior probabilities of models M1 −M6 using data generated
under M1 (top left), M2 (top right), M4 (bottom left) and M6 (bottom right). In each
scenario, the median probability over 40 simulated datasets is presented.
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Appendix E

Scalable Inference For

Epidemic Models

Supplementary Material

E.1 Mixing properties of the uncorrected-iFFBS method

with no Metropolis Hastings correction

In this section we provide an example of the poor mixing properties that may occur

when we sample directly from the approximated full conditionals of the hidden

individual disease states in the CHMM, without correcting with a MH acceptance

step. We consider a dataset with a single pen and C = 3 individuals for sampling

interval of T = 11 days and obtain imperfect test results at days t = 1, 4, 8, 11. The

data are simulated from the Markov model described in Section 3.2 of Chapter 3

where we not allow for transmission of the disease from any other source apart from

within-pen transmission. This is achieved by setting the external colonisation rate

α = 0 which is also the model that we fit. The rest of the model parameters are

set according to the posterior median of the real data analysis in Section 3.6.1. We

plot the observed data along with the true colonisation states in Figure E.1.

We investigate the efficiency of the methods described in Section 6.4 as well

as the standard version of the FFBS (uncorrected-iFFBS) that does not account

for approximation of the full conditionals, in the case that update of the hidden

states is done animal-by-animal. We evaluate the mixing properties of the different

methods by looking at the estimated posterior probability of colonisation for each

individual per day over the entire sampling period. Results are also shown in Figure

E.1. We see that all methods provide identical results except from the uncorrected-

iFFBS method that converges to a different distribution. We further apply the MH

correction to the uncorrected-iFFBS method, called MHiFFBS, and see that the

method converges to the same values as the rest of the methods, with an acceptance

rate of 0.5 for individual 1, 0.75 for individual 2 and 0.95 for individual 3.
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Figure E.1: Posterior probability of colonisation for individuals in the simulated dataset
of Section E.1, over the entire sampling period of 11 days. Black dots represent the true
colonisation states (1 for colonised, 0 for non-carrier). For reference we also show test results
taken at days 1, 4, 8, 11.
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The poor observed performance can be explained by the example shown in

Figure E.2. In this figure we show the sampled hidden disease states at iterations j

and j+ 1 of the MCMC using the uncorrected-iFFBS method. In the middle panel,

we observe that even though at day 2 the disease has died out, it re-appears at day

3. However, this should be impossible based on the model assumption that does not

allow for external transmission of the disease. The reason for this phenomenon is

that the sampler ignores the carriage states of other individuals in the next day when

it calculates the filtered probabilities. As an example, in the update of animal 1 at
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day 2 the sampler gives a value of 0; nevertheless, if it accounted for the colonisation

state of animal 2 at day 3 then it should give a value of 1 to ensure that there is at

least one individual who can transmit the disease to the next day. This is corrected

at the update of individual 2 at day 2, which finds that the animal is colonised the

following day 3 and hence needs to be colonised at day 2 as well (bottom panel).

Figure E.2: Snapshots of the Gibbs hidden state updates with stand-iFFBS method.
Upper panel shows the states after iteration j of the MCMC is complete. Middle panel
shows the hidden states after individual 1 has been updated at iteration j + 1. Finally, the
bottom panel represents the same information after the update of the second individual.
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Appendix F

Multi-Type Markov Model

Supplementary Material

F.1 Gradient expressions for parameter updated with

HMC

For notational convenience, we assume that the follow-up period T is the same for

all individuals. Let δ̃ = log δ, γ̃ = log γ, µ̃s = logµs, α̃s = logαs, β̃s = log βs,

and λ̃ps(t) = eα̃s +
(
1{p∈S} + eγ̃ 1{p∈N}

)
eβ̃s Ips (t − 1) for p = 1, 2, . . . , P, s =

1, 2, . . . , ns, t = 2, . . . , T .

Denote by Np
rs(t) the number of individuals in pen p who were in state r at

time t − 1 and in state s at time t, the corresponding conditional distribution of

these parameters given all other parameters takes the form,

log π(α̃, β̃, µ̃, δ̃, γ̃ | ·) =

−
P∑

p=1

T∑

t=2

[
Np

00(t)

ns∑

s=1

λ̃ps(t)

]
+

P∑

p=1

T∑

t=2

ns∑

j=1

[
Np

0j(t) log

(
λ̃pj (t)

)]

−
P∑

p=1

T∑

t=2

ns∑

j=1

[
Np

0j(t) log

( ns∑

s=1

λ̃ps(t)

)]

+

P∑

p=1

T∑

t=2

ns∑

j=1

[
Np

0j(t) log

(
1− e−

∑ns
s=1 λ̃

p
s(t)

)]

+
P∑

p=1

T∑

t=2

ns∑

j=1

ns∑

k=1
k 6=j

[
Np
jk(t) log

(
eδ̃ λ̃pk(t)

)]

+
P∑

p=1

T∑

t=2

ns∑

j=1

ns∑

k=0
k 6=j

[
Np
jk(t) log

(
1− e

−eµ̃j−∑ns
s=1
s 6=j

eδ̃ λ̃ps(t)
)]
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−
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[
Np
jk(t) log

(
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−
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Np
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eα̃s
)

+ log πβ
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+ log πµ
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eµ̃s
)

+ α̃s + β̃s + µ̃s

]

+ log πδ
(
eδ̃
)

+ δ̃ + log πγ
(
eγ̃
)

+ γ̃.

Then, the partial derivatives are given by
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and,
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where
∂λ̃pl (t)

∂γ̃ = eγ̃ eβ̃l Ipl (t− 1). Finally, for each l = 1, 2, . . . ns, we get
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and,
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where
∂λ̃pl (t)

∂α̃l
= eα̃l . The derivatives with respect to β̃l are similar; we replace

∂λ̃pl (t)

∂α̃l

with
∂λ̃pl (t)

∂β̃l
=
(
1{p∈S} + eγ̃ 1{p∈N}

)
eβ̃l Ipl (t− 1).

F.2 Simulation studies: additional results

In this section we provide additional results for the simulation studies of Section

7.4.2. Marginal posterior summaries over 50 simulated data can be found in Figure

F.1. In this scenario we assume that the true data are generated from a model with

δ = 0 and a full model is estimated.
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Figure F.1: Marginal posterior summaries over 50 simulated datasets, each one generated
based on the model with δ = 0 and analysed using the full model. Black dots denote the
posterior median and error bars indicate the 90% quantile intervals of the 50 posterior
medians. Dashed red lines indicate the true value used to simulate the data.
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F.3 Real data analysis: additional results

In this section we provide additional results for the analysis of the E. coli O157:H7

data of Section 7.5. The estimated serotype-specific prevalence can be found in

Figure F.2. Figure F.3 shows posterior traceplots of the model parameters. Figure

F.4 presents the results of our prior sensitivity analysis for the rates of colonisation

and clearance.

Figure F.2: Posterior serotype-specific prevalence, calculated using the simulated latent
carriage process in the E. coli dataset 1. The vertical black bars indicate 90% credible
intervals.
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Figure F.3: Posterior traceplots of the multi-serotype model parameters, fit to E. coli
dataset 1. Results from three independent Markov chains are presented.
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Figure F.4: Sensitivity of serotype-specific colonisation and clearance rates to the choice
of prior. The prior distributions considered are the Exp(0.01) (red), Exp(0.1) (green) and
Exp(1) (blue).

0.000

0.001

0.002

0.003

0.004

αA αC αG αM αO αP αT αU

External colonization rates

0.000

0.020

0.040

0.060

0.080

βA βC βG βM βO βP βT βU

Within-pen colonization rates

0.000

0.200

0.400

0.600

µA µC µG µM µO µP µT µU

Clearance rates

Prior Exp(0.01) Exp(0.1) Exp(1)



Bibliography 240

Bibliography

Abbey, H. (1952). An examination of the Reed-Frost theory of epidemics. Human

Biology , 24(3), 201–233.

Altman, D. G. (1990). Practical Statistics for Medical Research. Chapman and

Hall/CRC Texts in Statistical Science.

Anderson, B. D. O. and Moore, J. B. (1979). Optimal Filtering . Englewood Cliffs,

New Jersey: Prentice-Hall.

Anderson, C. J., Wasserman, S., and Crouch, B. (1999). A p∗ primer: Logit models

for social networks. Social Networks, 21(1), 37–66.

Anderson, R. M. and May, R. M. (1991). Infectious Diseases of Humans: Dynamics

and Control . Oxford Science Publications. Oxford University Press.

Andersson, H. and Britton, T. (1998). Heterogeneity in epidemic models and its

effect on the spread of infection. Journal of Applied Probability , 35(3), 651–661.

Andersson, H. and Britton, T. (2000). Stochastic Epidemic Models and Their Sta-

tistical Analysis. Lecture Notes in Statistics. Springer New York.

Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient

Monte Carlo computations. The Annals of Statistics, 37(2), 697–725.

Auranen, K., Arjas, E., Leino, T., and Takala, A. K. (2000). Transmission of

pneumococcal carriage in families: A latent Markov process model for binary

longitudinal data. Journal of the American Statistical Association, 95(452), 1044–

1053.

Ayscue, P., Lanzas, C., Ivanek, R., and Gröhn, Y. T. (2009). Modeling on-farm Es-
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