Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

Original citation:

Shestov, S. V., Nakariakov, V. M. (Valery M.), Ulyanov, A. S., Reva, A. A. and Kuzin, S. V..
(2017) Nonlinear evolution of short-wavelength torsional Alfvén waves. The Astrophysical
Journal, 840 (2). 64.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/88284

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Reproduced by permission of the AAS.

Published version: http://dx.doi.org/10.3847/1538-4357/aa6c65

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications


https://core.ac.uk/display/82896931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/88284
http://dx.doi.org/10.3847/1538-4357/aa6c65
mailto:wrap@warwick.ac.uk

DRAFT VERSION APRIL 5, 2017
Preprint typeset using IXTgX style AASTeX6 v. 1.0

NONLINEAR EVOLUTION OF SHORT-WAVELENGTH TORSIONAL ALFVEN WAVES

S. V. Suestov'?

Solar-Terrestrial Centre of Excellence — SIDC, Royal Observatory of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium

V. M. NAKARIAKOV
Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK,
St. Petersburg Branch, Special Astrophysical Observatory, Russian Academy of Sciences, 196140, St Petersburg, Russia

A. S. Urvanov anND A. A. Reva anp S. V. Kuzin
Lebedev Physical Institute, Leninskii prospekt, 53, 119991, Moscow, Russia

(Dated: Received ..; accepted ...)

I ebedev Physical Institute, Leninskii prospekt, 53, 119991, Moscow, Russia

25 shestov@oma.be

ABSTRACT

We analyse nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a
low-B plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a
segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We
perform numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a
torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, that
constitutes a bulk plasma motion along the magnetic field, the tube wave, and also transverse flows in the radial
direction, associated with sausage fast magnetoacoustic modes. In addition, nonlinear torsional wave steepens
and its propagation speed increases. The latter effect leads to the progressive distortion of torsional wave front,
i.e. nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the
tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitude. They are always
absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear
effects are localised in an annulus region near the tube boundary. Thus, the parallel compressive flows driven
by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular
direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel

cascade in torsional Alfvén waves.
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1. INTRODUCTION

The existence of plane Alfvén waves was theoretically pre-
dicted by Alfvén (1942), and since then the ubiquitous pres-
ence of Alfvén waves was found in magnetospheric, space,
cosmic and laboratory plasmas (e.g. Uberoi 1995; Cheng
et al. 1985; Chaston et al. 2000). In solar physics Alfvén
waves are mainly considered as a candidate for coronal heat-
ing due to their ability to freely propagate from lower layers
of the solar atmosphere to the corona (e.g. Ruderman 1999;
Srivastava et al. 2017). For example, Copil et al. (2008)
suggested that propagating Alfvén waves could locally heat
coronal plasma threads. In addition, Fletcher & Hudson
(2008) proposed that a flare-generated large-scale torsional
wave could accelerate electrons to high energies. Alfvén

waves may also contribute to the acceleration of the solar and
stellar winds (e.g. Charbonneau & MacGregor 1995; Cran-
mer 2009; Matsumoto & Suzuki 2012), and collimate astro-
physical jets (Bisnovatyi-Kogan 2007).

In the presence of field-aligned plasma non-uniformities,
typical for the corona, Alfvén waves appear in a form of tor-
sional waves (e.g. Van Doorsselaere et al. 2008). Torsional
Alfvén waves are azimuthal (rotational) perturbations of the
plasma velocity accompanied by azimuthal components of
the magnetic field. Linear torsional waves propagate along
the magnetic field at the local Alfvén speed.

The key element of the nonlinear evolution of linearly
and elliptically polarised Alfvén waves is the ponderomo-
tive force that is associated with the variation of the abso-
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lute value of the magnetic field in the wave (e.g. Hollweg
1971; Tikhonchuk et al. 1995). This variation results in the
gradient of the magnetic pressure that induces plasma flows
and hence changes the density of the plasma. The induced
compressive perturbations have double the frequency of the
mother Alfvén wave. The induced variations of the absolute
value of the magnetic field and plasma density change the lo-
cal values of the Alfvén speed, and cause the Alfvén wave
self-interaction resulting in steepening of the wave front (e.g.
Ofman & Davila 1995; Zheng et al. 2016).

Nonlinear dynamics of Alfvén waves is actively studied
analytically and numerically, with the main emphasis put on
the study of plane waves. It has been shown that weakly-
nonlinear plane Alfvén waves are governed by the Cohen—
Kulsrud evolutionary equation that is a modification of the
well-known Burgers equation on accounting for the cubic
nonlinearity intrinsic to Alfvén waves (e.g. Cohen & Kul-
srud 1974). In addition, when the wave front is non-plane
or oblique, Alfvén waves induce oblique compressive per-
turbations (e.g. Malara et al. 1996; Nakariakov et al. 1997).
The ponderomotive acceleration effects have been inten-
sively studied in the context of acceleration of the solar and
stellar winds (e.g. Ofman & Davila 1998; Nakariakov et al.
2000; Suzuki 2011), and also of the first ionisation potential
effect (e.g. Laming 2015).

Nonlinear evolution of plane Alfvén waves is strongly af-
fected by transverse structuring of the plasma in the Alfvén
speed and/or field-aligned plasma flows. The transverse
structuring of the medium leads to the wavefront distortion,
the wave becomes progressively non-planar, and the effect of
phase mixing comes into play. It causes enhanced dissipation
of Alfvén waves (e.g. Heyvaerts & Priest 1983; Hood et al.
2002), and induces compressive perturbations that produce
fast and slow magnetoacoustic waves (e.g. Nakariakov et al.
1997; Nakariakov et al. 1998; Botha et al. 2000; Tsiklauri &
Nakariakov 2002; Tsiklauri et al. 2003).

However, in a plane wave the perpendicular scale, i.e. the
length of the wave front, should be much larger than the par-
allel wavelength, which is rarely fulfilled. For example, in
the solar corona the generation of a plane Alfvén wave with
a 10-min period and the Alfvén speed of 1 Mms~! the wave
driver at the base of the corona should be much larger than
600 Mm (i.e. much larger than the radius of the Sun). As
the solar corona is structured into magnetic flux tubes, rep-
resented, for example, by coronal loops, plumes and various
filaments, coronal Alfvén waves are likely to appear in the
form of torsional, rather than plane perturbations. Torsional
waves have received attention in the context of heating of the
plasma in coronal loops. In particular, Poedts & Boynton
(1996); Ruderman et al. (1997) considered dissipation of fi-
nite amplitude waves driven periodically at one footpoint of a
closed magnetic structure. On the other hand, Antolin & Shi-
bata (2010) established several constraints on the parametric
range of Alfvén waves as a coronal heating mechanism.

The understanding of the appearance of coronal Alfvén
waves in the torsional form stimulated intensive studies of
nonlinear evolution of torsional waves. Kudoh & Shibata
(1999) and Vasheghani Farahani et al. (2011) numerically
and analytically, respectively, demonstrated that propagat-
ing torsional Alfvén waves, similarly to plane waves, in-
duce compressive perturbations due to the ponderomotive
force associated with nonlinear effects. Vasheghani Farahani
et al. (2012) found that weakly-nonlinear self-interaction of
torsional Alfvén waves results in the Cohen—Kulsrud steep-
ing of the wave profile, while the coefficients are different
from the case of a plane wave. The self-interaction occurs
due to the nonlinear excitation of compressive waves and
their back-reaction on the mother torsional waves. Fedun
et al. (2011) showed by means of numerical simulations that
chromospheric magnetic flux tubes can act as a frequency
filter for torsional waves. Mikhalyaev & Bembitov (2014)
studied analytically the resonant generation of compres-
sive waves by nonlinear coupling of two torsional waves
propagating in the opposite directions. Murawski et al.
(2015); Wojcik et al. (2017) highlighted the effect of the ex-
panding magnetic tube on the evolution of torsional Alfvén
waves, and emphasised the importance of the stratification.
Williams et al. (2016) modelled the propagation of tor-
sional waves in the presence of slow compressive shocks.

However, the efficiency of nonlinear interaction of tor-
sional and compressive waves is not understood in detail so
far. In particular, the role of the transverse profile of the tor-
sional wave needs to be revealed. The main motivation for
this study is the intrinsic non-uniformity of the wavefronts
of torsional waves. Indeed, as the finite amplitude effects in-
crease the wave propagation speed (e.g. Cohen & Kulsrud
1974), and as the torsional wave has a zero amplitude at the
axis of the guiding magnetic flux tube and increases to the
tube boundary, the propagation speed is always non-uniform
across the field. It creates the conditions for phase mixing
even if the Alfvén speed inside the flux tube is uniform, as
the torsional waves have different nonlinear increase in the
propagation speed at different distance from the tube axis.
This nonlinear phase mixing leads to the generation of com-
pressive perturbations. The induced compressive perturba-
tions may lead to the torsional wave self-interaction. Also, in
contrast with the incompressive Alfvén waves, the induced
compressive perturbations can be detected with imaging tele-
scopes, and are subject to enhanced damping by various dis-
sipative mechanisms.

The aim of this paper is to study by means of 3D magne-
tohydrodynamic (MHD) modelling the effects of nonlinear
excitation of compressive perturbations by a torsional wave
of finite amplitude. We consider the parallel wavelength to
be not much larger than the radius of the magnetic flux tube,
and thus account for the nonlinear phase mixing. This ap-
proach is a finite-wavelength generalisation of the analyti-
cal theory developed by Vasheghani Farahani et al. (2011)



in the thin flux tube approximation that corresponds to the
long wavelength limit. We neglect the effect of the strati-
fication of the atmosphere, as the typical radii of coronal
field-aligned plasma non-uniformities and hence the con-
sidered wavelengths are about 1-10 Mm, while the typical
scale heights of the stratification exceed 50 Mm. Thus, we
consider evolution of torsional waves in a flux tube that is
uniform along its axis. The paper is organised as follows:
in Section 2 we describe our numerical setup, in Section 3
we discuss the results obtained, and finally give conclusions
in Section 4. Appendix A illustrates the nonlinear excitation
of compressive perturbations by a long-wavelength torsional
waves in the thin flux tube approximation, and Appendix B
illustrates the generation of compressive waves due to the
phase-mixing effect.

2. NUMERICAL SETUP & INITTIAL CONDITIONS
2.1. MHD equations and normalisation

The simulations were performed using the numerical code
MPI-AMRVAC (Porth et al. 2014). The code applies the Eu-
lerian approach to the solution of the resistive MHD equa-
tions,

dp
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where e, p, v, B are the total energy density, mass density,
velocity, and magnetic field, p = (y — 1)(e — pv?/2 — B%/2)
is the thermal pressure, p = p + B?/2 is the total pressure,
J = V x B is the electric current density; 7 is the electrical
resistivity, and vy is the ratio of specific heats. As in this study
we are not interested in dissipative processes, we take y =
5/3,and n = 0.

The physical quantities were normalised with the use of
the following constants: the lengths are normalised to Ly =
1 Mm, magnetic fields to By = 20 G and densities to
on = 1.67 x 10715 g cm™3. The mass density normalisation
corresponds to the electron concentration ny = 10° cm™.
The normalising speed was calculated in the units of vy =
Bn/ [4mpy = 1,380 km s7! that is the Alfvén speed corre-
sponding to the values of By and py, the normalising time
was set to fy = Ly/vn = 0.7246 s, the normalisation of
the radial derivative of the azimuthal velocity was set to
QOn = vn/Ly = 1.38 s7!. The values used for the normal-
isation are typical for the solar corona; their use justifies
our intention to analyse nonlinear effects in the coronal
plasma. Further in the text we imply normalised units if it is
not stated otherwise.

2.2. Numerical setup

We used a cylindrical frame of reference, and considered a
straight magnetic tube directed along the z-axis of the com-
putational box. The equilibrium magnetic field is parallel to
the tube axis. The equilibrium concentration of electrons,
n.(r) was set using the generalised symmetric Epstein func-
tion (Cooper et al. 2003), and the equilibrium parallel mag-
netic field B,(r) was set to equalise the equilibrium total pres-
sure everywhere in the computational box,

= o 4 0 )
ne(r) = oo + cosh? [(r/Ro)"]
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AT (ng — neo) 1
B = B 1 1 -
(1) 0{ + B ( cosh? [(r/R)“] )} ’
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where Ry = 1 is the tube radius, n, = 0.2, n9p = 1, By =
1, and the temperature 7" is constant throughout the whole
volume. In physical units these values correspond to R, =
1 Mm, 1., = 2x10% em™3, 1y = 10° em™ and By = 20 G, i.e.
typical for the corona. The parameter a controls the tube
boundary steepness. We used @ = 36 that results in a rather
sharp boundary. The radial profiles of the electron density
n.(r) and magnetic field B,(r) are depicted in Figure 1.
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Figure 1. Top: Radial profiles of the normalised initial azimuthal
velocity v,(r) and equilibrium Alfvén speed Ca(r) in the simulated
magnetic flux tube. Bottom: Radial profiles of the normalised equi-
librium electron density 7,.(r) and equilibrium magnetic field B,(r).
The line segment at the point (1.0, 10) in the bottom panel indicates
the scale of a single pixel used during the simulation.

All the equilibrium values are constant along the z-axis,



4

Table 1. Parameters of the simulations: the plasma temperature 7,
wavelength A, the initial amplitude of the radial derivative of the
azimuthal velocity perturbation Qy (normalised), and the plasma
parameter 3.

Title T,MK A1, Mm Qy

setupl 0.2 5.0 0.05 0.0035
setup2 0.2 10.0 0.05 0.0035
setup3 1.0 2.0 0.05 0.0173
setup4 1.0 5.0 0.05 0.0173
setup5 1.0 10.0 0.05 0.0173
setup6 1.0 10.0  0.075 0.0173
setup7 1.0 10.0 0.10 0.0173
setup8 1.0 10.0 0.15 0.0173
setup9 1.0 10.0 0.20 0.0173
setup10 5.0 10.0 0.05 0.087

Plasma g8

since in this study we consider neither gravity nor transi-
tion region.

The torsional Alfvén wave is driven at the bottom wall
Z = Zmin = 0 of the equilibrium magnetic flux tube by the
following perturbations,

sin(wr)
B =JInr————-,
‘F(r) MrCOSh2 [(r/RO)a/] (6)
bo(r) = Qur sin(wt)

" cosh? [(r/Ro)*]’

where Jy is the amplitude of the radial derivative of
the azimuthal component of the magnetic field, Qy =
—Jm/ \4mp(r) is the amplitude of the radial derivative of
the azimuthal component of the velocity, and the factor
cosh™ [(r/R)?] is introduced to avoid the excitation of the
torsional wave outside the tube. The frequency w is set to
w = wa = 21/ACx, where A is a wavelength. The top
boundary is set to keeps zero gradients of the variables (the
cont flag in MPI-AMRVAC). In this study we consider
the waves before they reach the top boundary, and hence
the specific choice of the top boundary condition is not
important.

2.3. Parameters of numerical experiments

We analysed dynamics of the torsional Alfvén wave, con-
trolling the following parameters: the plasma temperature 7
(and hence, for the fixed value of By, on the plasma param-
eter S that is the ratio of the gas and magnetic pressures),
amplitude of the derivative of the azimuthal velocity pertur-
bation, Qy;, and wavelength A. The specific values of these
parameters in various numerical runs are shown in Table 1.

In all these setups the relative variation of the magnetic
field is small, and the plasma-f is less than unity everywhere.

The simulations were performed in a cylindrical frame of
reference, in either a 3D (r, ¢, z) or 2D (r,z) computational
boxes. We used a 3D computational box for the investiga-
tion of the general picture of the wave propagation, and high-

resolution 2D computational boxes were used for the analysis
of wave-steepening, radial profiles and generation of sausage
waves.

In the 3D case the box size was 128 x 64 x 256 grid
points, which corresponds to the physical volume [0,2] Mm
in r, [0,27] in ¢, and [0,40] Mm in z. The numerical grid
(pixel) size corresponds to 0.0156 Mm in r (see Figure 1)
and 0.156 Mm in z, i.e. much less than the characteristic
scales of the non-uniformity and wavelength. In order to test
the undesirable effect of the grid resolution we carried out a
test run with double the spatial resolution. We found that in
both the cases the evolution of the torsional wave shows sim-
ilar behaviour, in general, but the setup with the lower spatial
resolution demonstrated faster decay and a smoother wave
profile at the tube boundary.

In 2D simulations we used different grids. For the in-
vestigation of wave steepening we used the numerical grid
384 x 2048, with r € [0,3] Mm and z € [0,80] Mm, re-
spectively. For the investigation of the radial profiles of the
perturbations we used the numerical grid 1024 x 256, with
r € [0,2] Mm and z € [0,20] Mm, respectively, and for
the investigation of sausage magnetoacoustic wave genera-
tion we used the grid 384 x 8192, with » € [0,3] Mm and
z € [0,320] Mm. In all the cases the spatial resolution in
the “important” dimension was much higher than in the 3D
setup.

In MPI-AMRVAC we choose either HLLC (for 3D sim-
ulations), or ssprk54 (for 2D simulations) discretisation
method, with the vanleer slope limiter. The constraint
VB = 0 is controlled by the powel approach. Since we
already analysed the effect of numerical resolution on the
results, we use no mesh refinement and set the parameter
mxnest to 1.

3. RESULTS AND DISCUSSION
3.1. General picture of torsional wave propagation

In general, results of the simulation agree with the theory
highlighted in Appendix A. A torsional wave appears as an
alternate perturbation of the azimuthal plasma velocity ac-
companied by a perturbation of azimuthal component of the
magnetic field, B,. The wave dynamics preserves the axial
symmetry. Snapshots demonstrating perturbations of vari-
ous physical quantities in the wave are shown in Figure 2.
The wave is seen to propagate along the flux tube, in the
positive z-direction, at the speed about the Alfvén speed Cap
in the body of the flux tube. At the time of the snapshots
t1 = 15ty = 109 s, the wave has propagated the distance
I} = Cat; = 15 Mm = 1.52 from the point of the excitation,
z=0.

The local Alfvén speed (see Figure 1) increases near the
tube boundary, in a thin layer where the equilibrium plasma
density decreases. This leads to the outrunning of the tor-
sional wave near the tube boundaries, producing a distortion



of the wave fronts. It is a clear signature of phase mixing
caused by the transverse non-uniformity of the Alfvén speed.
We refer to the effect as linear phase mixing and will fur-
ther consider it in Section 3.7.

The detected torsional wave induces flows with two other
velocity components, the radial velocity v, and parallel ve-
locity v,, and also the density perturbations that propagate
at the Alfvén speed and have double the frequency of the
driver and the perturbations of the azimuthal velocity v, and
magnetic field B,. The amplitudes of induced v, and v,
amounts to square of the amplitude v, of the initial wave.

In addition, in the bottom part of the computational do-
main (Figure 2) one can see the development of the tube
wave propagating at the tube speed Ct =~ 0.15 Mm/s. At the
time of the snapshot, the wave has propagated the distance
I, = Ctt; = 1.6 Mm from the excitation point, which is con-
sistent with Eq. (A19). The tube wave is excited when the
plasma temperature is finite, and hence the tube speed Ct
is greater than zero.

The appearance of the parallel compressive perturbations
characterised by p and v, may be attributed to the effect of the
nonlinear ponderomotive force associated with the gradients
of the perturbed Alfvén speed in the parallel direction, and
that is in agreement with the theory developed in Vasheghani
Farahani et al. (2011), see also Eq. (A18). The excitation of
the radial flows that are compressive too, may be attributed to
the nonlinear ponderomotive force associated with the gradi-
ents of the perturbed Alfvén speed in the perpendicular di-
rection (Nakariakov et al. 1997), see also Appendix B, and
to the effect of nonlinear phase mixing, connected with the
radial non-uniformity of the torsional wave amplitude.

3.2. Radial profiles of induced compressive perturbations

The radial structure of the induced parallel flows at the
speed v, obtained in the simulation (see Figure 3) is seen
to be different from that described by expressions (A1) and
(A20) obtained in the thin flux tube approximation. It clearly
shows a parabolic shape, o« 2. This difference could be
attributed to the finite wavelength effects. A similar radial
dependence is seen in the radial structure of the perturbed
parallel magnetic field B, (not shown here).

The simulated radial profile of v, was found to be well fit-

ted with an almost parabolic dependency,

Q2 2 (1 = cos [2w(t — z/Cx)])
4C, cosh* [(r/R)3®]

determined empirically, by a guess. The radial dependence
in the denominator is artificially used to reproduce the disap-
pearance of the perturbation at the flux tube boundary. This
parabolic dependence is different from the solution for up,
given by Eq. (A20) that is independent of the radial coordi-
nate 7. We need to emphasise that the dependence given
by Eq. (7) is fully empirical, and is not based on any the-
oretical result. It is shown here for its possible usefulness

)

vZ(ra Z’ t) =
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for forward modelling of the observational manifestation
of this effect, when it would be convenient to have a single
functional expression for the radial structure of the in-
duced parallel flows. The perturbations of the density p and
pressure p do not show dependence on the radial coordinate,
and have a constant amplitude across the flux tube.

The radial profiles of v, and B, are different from the other
variables. They have half the wavelength of the mother tor-
sional wave (given by the perturbations of v, and B,), and are
shifted by +7/4 relative to the mother torsional wave. The ra-
dial structure of v, can be expressed using the odd terms of
the Taylor expansion (see Figure 3), beginning with the linear
one that is prescribed by the boundary condition at the loop
axis (see also the discussion in Zhugzhda 1996). In the per-
formed numerical run, we found that the radial dependence
of the radial velocity inside the flux tube could be best-fitted
by the expression v,(r) = 0.33r7(r> — 0.28). We note that the
radial velocity has relatively large values outside the tube’s
boundary, whereas the azimuthal and parallel velocities do
not penetrate into the external medium.

3.3. Parallel spatial structure of induced compressive
perturbations

Parallel spatial profiles of the velocities v,, v, v, measured
along the z-axis at r; = 0.75 Mm are shown in Figure 4.
The profiles are rescaled for the purpose of visualization:
v, is divided by Qyr; = 3.75 x 1072, and v, and v, are
divided by Q3,2/4C4 = 3.527%. This rescaling corre-
sponds to omitting of amplitudes and radial dependencies
of the variables in Eqgs. (6) and (7) (and with the caveat in
Eqgs. (A19) and (A20)). These profiles are consistent with
the theory described in Appendix A: the wavelength of the
induced parallel flows is a half of the wavelength of the tor-
sional wave, the induced parallel flows have a positive av-
erage value, and the amplitude corresponds to one given by
Eq. (A18), i.e. the amplitude of induced parallel veloci-
ties is proportional to squared amplitude of the azimuthal
perturbation.

The positive average value of the parallel velocity means
a field-aligned bulk plasma flow (e.g., see Ofman & Davila
1998), which can be referred to as the “Alfvénic wind”. The
wind is produced by the ponderomotive force. However, the
wind is canceled on the arrival of the slow, tube wave ur. A
similar effect has been studied in detail in the case of plane
Alfvén waves by McLaughlin et al. (2011).

In addition, we see small amplitude perturbations of v,.
The amplitude of this perturbation is approximately 5
times smaller than the amplitude of parallel motions, and
the speed of propagation in the 7 direction is higher than
the speed of the torsional wave. These perturbations cor-
respond to the third kind of the induced compressive pertur-
bations, the fast magnetoacoustic sausage wave (e.g. Edwin
& Roberts 1983; Nakariakov et al. 2012; Yu et al. 2016). In
the low- plasma considered here, this mode is characterised
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by compressive, mainly radial flows, and propagates at the
speed that lies between the Alfvén speed inside and outside
the tube. Positive and negative half-periods of these pertur-
bations are symmetric. Hence, in contrast with the induced
parallel flows, they do not constitute any bulk flow of the

plasma.
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Figure 4. Spatial profiles of v,, v,, v, velocities measured along the
z-axis at r; = 0.75 Mm at the time instant t = 30 ty. The black
curve shows the azimuthal velocity v,, the magenta curve the par-
allel velocity v,, and the green curve the radial velocity v,. The
profiles are rescaled for the purpose of visualisation: v, is divided

by Quri = 3.75 x 1072, and v, and v, are divided by 3.52 x 107*.

3.4. Efficiency of the generation of compressive
perturbations



To study whether the efficiency of the nonlinear generation
of compressive perturbations depends on various parameters
of the plasma, such as the temperature 7', wavelength A and
the tube’s radius, i.e. to check the validity of the approxi-
mation given by Eq. (A20), we perform a parametric study
summarised in Table 1.

We analysed amplitudes of the parallel velocity perturba-
tions, v,, in the leading cycle of the induced wave, at the dis-
tance of 10-15 Mm from the origin in Figure 2. According to
Eq. (A20), the behaviour of the induced ponderomotive wave
depends neither on the temperature 7', nor on the wavelength
A. For the amplitude of the ponderomotive wave, numerical
setups with different plasma temperatures 7 and wavelength
A were found to show good agreement with Eq. (A20) near
the boundary of the flux tube. In addition, we saw the tube
wave propagating at the tube speed, which is consistent with
Eq. (A19), again, near the boundary.

3.5. Nonlinear wave steepening

The ponderomotive excitation of compressive flows by an
Alfvén wave, leads to the modification of the local Alfvén
speed, which, in turn, affects the Alfvén wave itself. This
chain of events is considered as nonlinear self-interaction of
the Alfvén wave, which leads to the wave steepening (e.g.
Cohen & Kulsrud 1974). In the long wavelength limit, steep-
ening of a torsional wave due to nonlinear self-interaction
has been considered by Vasheghani Farahani et al. (2012). In
that study it was found that the torsional wave steeping oc-
curs at the rate that is lower than in the case of plane Alfvén
waves. The difference between the evolution of the torsional
and plane waves disappears in the case of the cold (8 = 0)
plasma. In our work we consider this effect on torsional
waves of finite wavelength. For comparison, we modelled
nonlinear evolution of a plane Alfvén wave numerically in a
2D Cartesian geometry, and compared it with the results ob-
tained for a torsional wave in the cylindrical geometry. Snap-
shots of the parallel, along the equilibrium field, structure of
the steepened torsional and plane waves of the same ampli-
tudes and wavelengths are shown in Figure 5.

The spatial profiles of both torsional and plane Alfvén
waves clearly show the steepening: in the extremes, the per-
turbations in both the waves overtake the harmonic depen-
dence. It occurs in both positive and negative extremes,
which is a typical signature of the nonlinear evolution of
linearly or elliptically polarised Alfvén waves (e.g. Cohen
& Kulsrud 1974; Vasheghani Farahani et al. 2012). In the
case of plane Alfvén waves this effect is seen to be more
pronounced, which is consistent with the results obtained by
Vasheghani Farahani et al. (2012). But, in contrast to the
long-wavelength limit, the decrease in the nonlinear steepen-
ing of the finite-wavelength torsional waves occurs even in
the case of low-g. It can be attributed to the presence of other
sinks of energy, such as the excitation of the sausage mode.

0.20+
torsional, r=0.75
plane wave
sin(kz)
0.10+
g
o
s
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=
n‘l
>
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-0.20 T T

65 70 75
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Figure 5. Comparison of snapshots of the azimuthal velocity v,, in
a torsional wave (red) and perpendicular velocity in a plane Alfvén
wave ( ) of the same relative amplitude. The blue line shows a
harmonic function that corresponds to the linear case. Both waves
have propagated the distance of 84 = 80 Mm from the point of
the excitation. The amplitude of the torsional wave is measured at
0.75 Mm from the tube axis.

3.6. Excitation of a sausage wave

The radial velocities v,, that were nonlinearly generated by
the torsional wave, have an axisymmetric structure, i.e. are
independent of the azimuthal coordinate. In a low-8 plasma,
this spatial structure is similar to the structure of sausage
(“m = 0”) magnetoacoustic modes of the magnetic flux tube,
which is an essentially compressive perturbation of the tube.
Sausage modes are collective perturbations of the flux
tube, and fill in the whole flux tube. Their specific proper-
ties, such as the radial structure and dispersion, are pre-
scribed by the specific radial profile of the fast speed (e.g.
Nakariakov et al. 20125 Yu et al. 2016). Consideration of
this effect is out of scope of this paper.

In a low-B plasma, a fast sausage mode propagates at the
phase speed vy that is lower than Alfvén speed of exter-
nal media CZ’“ = Ca(r — o0), but higher than the Alfvén
speed of plasma near the tube’s axis, Ca (Edwin & Roberts
1983). As fast sausage modes are highly dispersive, a broad-
band pulse develops in a sausage wave train. For exam-
ple, Shestov et al. (2015) numerically studied the dispersive
evolution of fast sausage wave trains guided by a magnetic
flux tube, and confirmed the formation of wave trains with
pronounced modulation of the instant period and amplitude.
Also it was found that the propagation speed is higher than
the local Alfvén speed in the flux tube, and hence of the tor-
sional wave. Thus, the nonlinearly induced fast sausage wave
should propagate faster than the mother torsional wave.

Figure 6 shows the spatial structure of the incompressive
and compressive perturbations in the vicinity of the leading
front of the torsional wave, with the clear evidence of the
fast sausage wave characterised by the perturbations of the
density p and radial flows v, preceding the torsional wave
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demonstrated by the perturbations of v, and the pondero-
motively induced parallel flows v,. The sausage perturba-
tions are seen to propagate at the speed vgy,s = 1.3Ca,
which is consistent with the theoretical estimation of Edwin
& Roberts (1983). The amplitude modulation of the sausage
wave is also evident. Its amplitude varies in the z-direction,
and, in particular, has a maximum at z ~ 280 Mm at the in-
stant of time of the snapshot shown in Figure 6.

310

W
o
o

Distance, Mm

-5 ‘ 5 10 15 20
Radius, Mm

Figure 6. Spatial structure of perturbations in the vicinity of the lead-
ing front of the torsional wave, at the distance of 264 from the exci-
tation point, at the time instant = 260ty = 188 s.

3.7. Linear and nonlinear phase mixing

The effect of linear phase mixing occurs near the tube
boundary, where the local Alfvén speed gradually in-
creases due to the decrease in the plasma density. The
efficiency of phase mixing can be estimated using the fol-
lowing kinematic reasoning. The difference 6 between
the distance travelled by the torsional perturbation near
the boundary and in the body of the tube equals to the
product of the difference of the local Alfvén speeds at
these radial surfaces, AC, and the travel time 7. Thus
the travel time required for phase mixing of one wave-
length 6 = A is the ratio of the wavelength in the body of
the tube and the speed difference t = 1/AC,. The travel
time equals to the distance travelled by the wave from the
source, divided by the Alfvén speed in the body of the
tube t = z/Ca. Thus, the distance at which phase mix-
ing reaches one wavelength equals to z = ACA/ACa. In
particular, in the numerical setup shown in Figure 1, the
local Alfvén speed increases near the boundary by about
ACp =~ 1.2Ca, hence for the wavelength of 10 Mm the
phase mixing reaches the wavelength at the distance of
about 8.3 Mm from the wave source. This value is consis-
tent with the deformation of the torsional wave front seen
in the left panel of Figure 7.

Comparing the shapes of the torsional perturbations
taken at different distances from the source in Figure 7,
we see that at large distances from the source, the pertur-
bation shape experiences some deformation even in the

body of the flux tube. More specifically, near the source
(left panel), the wave front is clearly deformed because
of the non-uniformity of the local Alfvén speed in the re-
gion r > 0.95 Mm. At r < 0.95 Mm, near the source the
wave fronts are symmetric with respect to the parallel co-
ordinate. On the other hand, at the larger distance from
the source (right panel), the wave front becomes clearly
deformed even at the radial distances of r < 0.8 Mm.
This deformation has the typical signature of phase mix-
ing: the perturbations at larger radial distance from the
axis propagate slightly faster. However, at these radial
locations the relative change of the local Alfvén speed is
negligible. Thus, this phase mixing is not connected with
the non-uniformity of the local Alfvén speed. The wave
front deformation should be attributed to the variation of
the propagation speed of the torsional wave caused by the
variation of its amplitude with the radial coordinate. As
the torsional wave amplitude increases in the radial di-
rection, it causes additional radial non-uniformity of the
torsional wave speed because of the nonlinear accelera-
tion. It can further enhance phase mixing of torsional
waves — the effect we shall refer to as ‘nonlinear phase
mixing”. In the right panel the torsional perturbation is
absent from the region » > 0.8 Mm, because of the numer-
ical dissipation of the very strong phase mixing occurring
in this region at much shorter distances from the source.

Following the reasoning used in the case of linear phase
mixing, the distance at which nonlinear phase mixing
reaches one wavelength equals to the product of the wave-
length and the ratio of the local Alfvén speed and the
increase in the speed caused by the nonlinearity, z =
AC5/ACY, where ACY! is the difference in the local propa-
gation speeds between the nonlinear and linear torsional
waves. The increase in the local speed of the torsional
wave, ACZI, is proportional to the product of the local
Alfvén speed and the square of its relative amplitude (see
the second term in the brackets on the right hand side of
Eq. (22) of Vasheghani Farahani et al. (2012)). As in the
performed simulation the relative amplitude of the tor-
sional wave amplitude was 0.05, the effect of nonlinear
phase mixing should be rather weak. More specifically,
in this run the efficiency of nonlinear phase mixing more
than a hundred of times (0.05%) weaker than of the linear
phase mixing that operates near the boundary. Indeed,
according to Figure 7, at the distance of about 30 wave-
lengths from the source, phase mixing equals to a fraction
of the wavelength.

4. CONCLUSIONS

We performed numerical simulations of axisymmetric
finite-amplitude torsional Alfvén waves in a field-aligned
magnetic flux tube filled in with a low-$ plasma. The flux
tube is straight, untwisted and non-rotating. The flux tube
is surrounded by a plasma with the magnetic field directed
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Figure 7. Comparison of linear and nonlinear phase mixing in a
torsional Alfvén wave with the relative amplitude 0.05. Left:
snapshot of the azimuthal velocity in the torsional wave that
travelled 20 Mm from the source. Right: the same but at the
distance of 310 Mm from the source. The vertical dashed lines
highlight the radial distances discussed in the text.

in the same direction as inside the tube, in the direction of
the tube axis. The plasma density inside the flux tube is en-
hanced, which makes the tube a fast magnetoacoustic waveg-
uide. The plasma parameter S is taken to be small every-
where. The torsional perturbations are excited at one foot-
point of the tube as alternate periodic azimuthal rotations of
the tube. The wavelength of the driven torsional wave is of
the same order as the diameter of the flux tube. In the lin-
ear regime, the torsional wave is incompressive and consists
of the alternate azimuthal flows and the perturbations of the
azimuthal component of the magnetic field.

We found that nonlinear evolution of the torsional Alfvén
wave leads to the excitation of three different kinds of com-
pressive motions that propagate along the axis of the mag-
netic flux tube: the well-known parallel flow of the plasma
at the Alfvén speed; another parallel flow, at the tube speed,
that is the slow magnetoacoustic wave; and, in addition, the
mainly radial axisymmetric perturbations propagating at the
speed higher than the Alfvén speed inside the flux tube, i.e.
faster than the speed of the mother torsional waves. The lat-
ter kind of induced waves is the sausage fast magnetoacoustic
modes. The sausage mode perturbs the plasma also outside
the flux tube, which is consistent with the radial structure of
sausage modes. Nonlinearly induced flows of all three kinds
have double the frequency of the mother torsional wave.

The nonlinearly induced parallel plasma flow that propa-
gates at the Alfvén speed can be considered as the “Alfvénic
wind”, as its average over the oscillation period is not zero.
The Alfvénic wind is absent from the vicinity of the flux
tube axis, where the torsional wave amplitude is always zero.
Thus, the parallel plasma flow that is nonlinearly induced
by a torsional Alfvén wave has an annulus shape. The ef-
fect of Alfvénic wind has been concluded to be a possible
mechanism for the acceleration of solar and stellar winds
(e.g. Ofman & Davila 1998; Suzuki 2011), but those es-
timations were based on the assumption of plane Alfvén
waves. Our study demonstrates that the field-aligned com-
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pressive flows induced by Alfvén waves in the solar and
stellar coronae are essentially non-uniform in the transverse
(e.g., the horizontal direction in the case of open magnetic
configurations in coronal holes). There are always regions
that are situated near the axes of the wave-guiding magnetic
flux tubes, where the Alfvénic winds are zero. It may have
important implications for the solar and stellar wind acceler-
ation problems, which require a dedicated study.

The intrinsic radial non-uniformity of the torsional wave
amplitude, which is connected with the need to satisfy the
zero boundary condition at the axis of the flux tube, leads
to the effect of nonlinear phase mixing. This effect is con-
nected with the nonlinear increase in the wave speed at the
radial shells where the wave amplitude is higher. It leads
to the additional distortion of the torsional wave front and
hence the generation of progressively small scales in the ra-
dial direction. In particular, this effect should enhance the
nonlinear generation of the sausage modes. For example, for
a simple, linearly growing in the radial direction radial profile
of the torsional wave amplitude, the wave front propagates
faster near the flux tube boundary because of the nonlinear
effects. Thus, phase mixing occurs even if the radial profile
of the Alfvén wave is flat, when this effect is absent for linear
Alfvén waves. Further investigation of this effect would
be of interest.

The induced compressive flows modify the local Alfvén
speed, causing the self-interaction of torsional Alfvén waves.
It causes the wave profile steepening that is a signature of
the nonlinear cascade along the field. The comparison of the
nonlinear steepening of the torsional wave with this effect in
a plane Alfvén wave of the same amplitude and wavelength
showed that the efficiency of the parallel nonlinear cascade
in a torsional wave is lower than in a plane Alfvén wave.
It could be attributed to the presence of additional sinks for
the torsional wave energy, for example, the excitation of the
sausage wave. The steepening takes place at some radial
distance from the flux tube axis, and is strongest where the
torsional wave amplitude is highest, e.g. near the flux tube
boundary in the case of a linear radial profile of the torsional
wave amplitude.

For the linear profile of the torsional wave amplitude, we
found that the amplitude of the induced parallel flows has
a parabolic radial structure. It is not a surprise, as the am-
plitude of the parallel motions is proportional to the mother
torsional wave amplitude squared: the parallel flows could
not be nonlinearly induced near the flux tube axis, where the
mother wave amplitude tends to zero. This result is different
from the flat radial dependence assumed in the thin flux tube
approximation given by expressions (A1). However, it does
not show a problem with the thin flux tube approximation, as
there the physical quantities are taken either at the flux tube
axis or its boundary. The empirically determined best-fitting
dependences of the radial profiles of the velocity vector com-
ponents could be of interest for forward modelling of tor-
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sional waves, e.g. in the further development of the studies
of Van Doorsselaere et al. (2016).

Our study demonstrates the importance of the trans-
verse profile for the evolution of coronal torsional waves.
The follow-up work should account important effects of
stratification, and the variation of the flux tube area and
plasma temperature.
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APPENDIX
A. WEAKLY NONLINEAR TORSIONAL WAVES IN THIN FLUX TUBE APPROXIMATION

We illustrate the excitation of compressive perturbations by the analysis of long-wavelength weakly nonlinear torsional Alfvén
waves. Consider perturbations of a straight cylindrical magnetic flux tube, using the cylindrical coordinate axis with the axis z
coinciding with the flux tube’s axis. A torsional Alfvén wave consists of alternate twisting azimuthal motions v,, of the plasma,
accompanied by the azimuthal components of the magnetic field B,. Since both quantities should vanish on the axis of the
magnetic tube, torsional Alfvén waves could be considered in terms of the second order thin flux-tube approximation of Zhugzhda
(1996). In this approach, the parallel wavelength of the perturbations is taken to be much larger than the flux tube radius, which
allows one to consider only a few lowest order terms in the Taylor expansion with respect to the radial coordinate,

~ = 2
pPEP, PP+t v 2V v, = Qr, v, xu

— ) (A1)
B, =~ B,r, B, = Jr, B, ~ B, + B,,r”,

where B,, B,, and B, are the radial, azimuthal and longitudinal components of the magnetic field, and v,, v, and v, are the radial,
azimuthal and parallel components of the velocity, respectively; V, Q and J are the radial derivates of the radial and azimuthal
components of the velocity, and the azimuthal field, respectively; p is the mass density; and p is the gas pressure. The quantities
with the overtilde are the zeroth order terms of the expansions with respect to the radial coordinate. The overtilde will be omitted
hereafter. In the derivation of these equations it is assumed that the longitudinal wavelength of the perturbations is much larger
than the radius of the flux tube.

Applying expansion (A1) to the ideal MHD equations, and omitting terms with higher degrees of r, one obtains

p(aa—‘: + u%—‘; + V2 Q2) +2py + %T (/> + B.B,) - %Bﬁil =0, (A2)
%+u%+zvg+#aiz—%g—j=0 (A3)
p(g—b;+u2—2)+i—lz)=0, (A4)

L+ 2y =0, (AS)

agt,l . a(uairo ) a(gfo o (A6)

Z_j + ‘“{;‘Z ) _ ‘%;f +2VJ — 208, = 0, (A7)

5£z + ua;: +2B.V =0, (A8)

0 o\ p _
(E‘ + Ma—z)p—y = 0, (A9)
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0B
2B, + — =0. (A10)
0z

The effect of the gravitational force is neglected. All considered physical parameters are independent of the azimuthal coordinate,
i.e. /0¢ = 0. In other words, we restrict our attention to the consideration of the axisymmetric perturbations only.
The equations are supplemented by the magnetic flux conservation equation and total pressure balance at the tube boundary,

B.A = const, (A11)

B2 A (oV oV 1 1 (6B.\" B.&B
= ol = ru—+ V- + — |- [ =] + =22 = Al2
Prsr " 2n [p(at "oz ) 4r 4( 62) 2 07 Pr (Al12)

where A = nR? is the cross-sectional area of the tube of radius R, and p‘}’“ is the external total pressure.

The equations are linearised with respect to the equilibrium that is an untwisted and non-rotating flux tube, pg, po, B0, Ag (Or
Ry),and ug = Vo= Jy = Qo = B(r’1 = 0. All equilibrium quantities are constant.

In the linear regime, torsional motions are decoupled from compressible motions. Torsional perturbations given by Q and J
and described by Eqs. (A3) and (A7),

0Q By dJ

== -, Al3
ot 4npy 0z (Al3)
aJ 0Q

— —By— =0, Al4
ot 05z (alh

which are readily combined in the wave equation

0*J , 0?J

—— A= =0, Al5
o Ao (A15)

where w/k = Ca and Cp = Bj/ +/47mpg is the Alfvén speed. A harmonic torsional wave is J = Jy cos(wt — kz) and Q =
Qp cos(wt — kz), where the constant amplitudes Qy = —Jy/ v/4700.
Compressive perturbations given by u, V, p, p, B,, A, and linked by Egs. (A4), (A5), (A8), (A9), (A11) and (A12). Excluding
all variables but u, one can readily obtain the wave equation
*u 5 0%u _
ot o
where Ct = CACS/(Ci + Cg)l/2 is the tube speed, and Cs = +/ypo/po is the sound speed. Equation (A16) has a propagating
wave solution u = U, cos(wt — kz), where U,, is a constant amplitude, and w/k = Cr.
Consider nonlinear interaction of torsional and compressible waves of finite amplitudes. Taking into account the quadratically
nonlinear term containing the torsional variables in the derivation of Eq. (A 16), we obtain the inhomogeneous wave equation
Pu 0% R 9 (Jaj)

o2 Toz2 :_47rpoC§(9_t dz

0 (A16)

(A17)

The right hand side term of Eq. (A17) describes the ponderomotive force. The solution of the equation is a sum of solutions of
the homogeneous and inhomogeneous equations, i.e. the longitudinal, or “tube” wave propagating at the tube speed, Cr, and the
induced, “ponderomotive” wave propagating at Cx. The ponderomotive wave constitutes the Alfvénic wind.
If the torsional wave is driven by a harmonic oscillation with the frequency w at a certain location z = 0, the solution of the
equation is:
ur + Up, 0<z<Crt,

u= up, Crt <7< Cat, (A18)
0, z> CAI,
where the tube wave ut(z, 1) is
2 12 R2Q2
— 0"M _ h0t"M
ur = ————{cos [2w(r - z/Cp)] - 1} = {cos [2w(r — z/C1)] - 1}, (A19)
167TpQCA 4Cp
and the ponderomotive wave u,(z, ?) is
R RO

Uy = mﬁ {1 —cos 2w(t — z/CA)]} = :C:A {1 = cos [2w(t — z/CA)1}. (A20)
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Equation (A18) indicates that in the weakly nonlinear case, torsional Alfvén wave induces parallel flows that consist of two
motions, the tube wave ut and the ponderomotive wave up,, both of which have the amplitude R(%Qi,[ /4Cx and the frequency that
is double the driving frequency. These parallel flows are accompanied by the perturbations of the plasma density p. Hence the
nonlinearly induced perturbations are compressive.

However, this formalism does not allow one to take into account the effect of nonlinear phase mixing, connected with the
increasing non-uniformity of the torsional wave fronts across the equilibrium magnetic field.

B. WEAKLY NONLINEAR EFFECTS ASSOCIATED WITH ALFVEN WAVE PHASE MIXING

Consider a plane Alfvén wave in a plasma with a 1D non-uniformity of the Alfvén speed across the field. For simplicity
the plasma is taken to be of zero-f. In this consideration we follow the formalism developed in (Botha et al. 2000). Let the
equilibrium magnetic field of the strength By be directed along the z-axis. The equilibrium density of the plasma, py, varies in the
x-direction. A linearly polarised Alfvén wave is characterised by the perturbations of B, and V.

In the weakly nonlinear case we can restrict our attention to the quadratically nonlinear terms only. In this case, the nonlinearly
induced flows are described by the equations

*V, 1[o(, OB,
= =——|=|By,—/ B21
or £0 [c%( Y 0z )] 21
FPVy ., (V. 8V, 1[o(, 0B,
- =— =B B22
ot CA(X)( a2 " 3z ) 00 [ﬁt( Y ox )] ®22)

Both these flows are essentially compressive, as both cause the density perturbation,

0 0
p= _f[()_ (oo V) + — (,OOVz)} dr. (B23)
X 0z

Equation (B21) is similar to Equation (A17), in the zero-G limit. It describes the nonlinear excitation of the parallel plasma
flows by the Alfvén wave, the ponderomotive wave or the Alfvénic wind. It is clear that the induced parallel flows have the
highest speed at the magnetic field lines where the amplitude of the Alfvén wave is the highest.

Equation (B22) that describes the nonlinearly induced perpendicular flows is essentially different. Its left hand side describes
freely propagating fast magnetoacoustic waves that are subject to refraction connected with the non-uniformity of Ca(x). In
particular, in a magnetic flux tube with the enhanced plasma density, this effect leads to the appearance of fast magnetoacoustic
modes, for example, sausage modes (e.g. Nakariakov et al. 2012). The nonlinear excitation of the perpendicular compressive
flows occurs when the Alfvén wave is non-uniform in the perpendicular direction. Because of Alfvén wave phase mixing, the
right hand side term experiences continuous growth, magnifying the effect of the nonlinear excitation.
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