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Abstract 

 
We present examples of existing evidence that lead us to be cautious about claims 

made in the original paper that the proposed model provides a better fit to 

experimental data than do existing models. We raise concerns about the accuracy of 

this and other assertions and about the adequacy of the comparisons made with 

alternative models in the existing literature.   
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Introduction 
 

Blavatskyy (2011) “presents a new model of probabilistic binary choice under risk” 

that, according to the author, outperforms existing probabilistic models. The main 

improvement of the model, in relation to existing models, is that it satisfies both 

stochastic dominance and weak stochastic transitivity which, according to Blavatskyy 

(2011), are desirable properties of any descriptive choice model, since they are rarely 

violated in the data. Blavatskyy claims that the model can explain “behavioral 

regularities” such as the common ratio effect or preference reversal.  The purpose of 

the present paper is to examine whether this strong claim can really be justified. In 

this comment we note that by its very construction the model cannot explain the 

well-established common consequence effect. Moreover, its ability to explain the 

common ration effect is limited: cases which the model does not explain have been 

frequently observed. Finally, the Abstract claims that the model, “provides a better 

fit to experimental data than do existing models”.  However, Blavatskyy (2011) takes 

just two datasets and compares the proposed model with a small and selective 

subset of competing models. This illustrates that the model has some power, but it 

hardly amounts to robust support for the rather sweeping claim made in the 

Abstract. The purpose of the present paper is to draw attention to a body of 

evidence which predates the 2011 model and which exhibits systematic response 

patterns that the model does not accommodate. 

 

An Outline of the Model and Some Implications 

 

The model, which takes standard expected utility (EU) as its core theory, can be 

summarised as follows: 

 

(i). For any pair of lotteries X and Y it is possible to identify a Greatest Lower Bound 

(GLB) which is defined as the best lottery that is dominated by both X and Y.1   

 

                                                 
1
 It is also possible to identify a Least Upper Bound (LUB) which is the worst lottery that dominates 

both X and Y. The analysis in Blavatskyy (2011) can equally well be conducted in terms of GLB or LUB 
but we shall focus on the analysis in terms of GLB. 



(ii). For each lottery in the pair, the key measure is the difference between the EU of 

that lottery and the EU of the GLB. Denote these differences by X’ and Y’ 

respectively. 

 

(iii). The probability that X is chosen rather than Y in a binary choice between the two 

is expressed as a function of {X’, Y’}. More specifically, the probability that X is 

chosen rather than Y is given as: 

 

Prob(X  Y) = φ(X’)/[φ(X’) + φ(Y’)]     (1) 

 

(iv). It follows from (1) that when φ(X’) = φ(Y’) – that is, when EU(X) = EU(Y) – the 

probability of choosing each option is 0.5. This is quite independent of the nature of 

φ(.) and allows us to reconfigure the Marschak-Machina triangle (Machina, 1982), 

replacing the deterministic indifference curves of standard EU by ’50-50 lines’ – lines 

where the probability of choosing any one of the lotteries on the line rather than any 

other lottery on the same line is 0.5.  

 

In Figure 1 below, the probability of the highest payoff x3 is depicted on the vertical 

axis and the probability of the lowest payoff x1 is shown on the horizontal axis. 

Hence the certainty of the intermediate payoff x2 is shown by C at the lower left 

corner of the triangle. Suppose the individual’s preferences are such that his EU for 

this sure payoff is the same as his EU for a lottery offering a 0.8 chance of x3 and a 

0.2 chance of x1 – this lottery represented by C^ in Figure 1. Then the line connecting 

C to C^ represents the set of lotteries from which we can draw any pair such that the 

probability of choosing each lottery in that pair is 0.5. 

 

(v). All other solid lines parallel to the line connecting C with C^ also identify sets of 

lotteries which have a 0.5 probability of being chosen when paired with any other 

lottery on that same line: for example, any pair of lotteries on the line connecting F 

to F^ are equally likely to be chosen in a binary choice between them; so too any pair 

of lotteries on the line connecting J to J^.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 
 

(vi). For other pairs of lotteries not on the same solid line, the probabilities of being 

chosen will vary. For example, consider lotteries C and E in Figure 1. E is 

stochastically dominated by C^ so that EU(E) < EU(C^) and therefore EU(E) < EU(C), 

with the result that Prob(C  E) > 0.5. This is signified diagrammatically by the fact 

that the dashed line between C and E slopes up from left to right but has a gradient 

less than that of the solid line connecting C to C^. So in the Blavatskyy model, we 

have curves that are composed by all lotteries that have the same probability of 

being chosen over one common lottery. In Figure 1 we have a curve composed of all 

lotteries that have the same probability as E of being chosen over C, and another 
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curve composed of all lotteries than have the same probability as D of being chosen 

over C. The curvature of these curves depend on the specification of φ(.). For 

example, if φ(x) = e
x

-1, as Blavatskyy assumes for the purposes of econometric 

fitting, probability curves are concave below the 50% probability line and convex 

above this line.  

 

(vii). So the probability of one lottery on the dashed line between C and E being 

chosen over another lottery on that same dashed line is liable to vary, depending on 

the specification of φ(.). For example, a specification like φ(x) = e
x

-1 will entail that 

Prob(C  E) > Prob(C D) > 0.5 since the probability curve that joins C and E will be 

further from the 50-50 line than the probability curve that joins C and D. Thus the 

probability of a more south-westerly lottery being chosen over a more north-easterly 

lottery on a given dashed line will tend to fall as the distance between them 

becomes smaller.  

 

(viii). The model’s Axiom 4 (Common Consequence Independence) entails that for 

any given specification of φ(.), if there are two pairs of lotteries the same distance 

apart on two different dashed lines with the same gradient, the probabilities of 

choice will be the same across pairs. For example, {A, B}, {C, D}, {F, G} and {J, K} in 

Figure 1 lie on parallel dashed lines with the same distance between them, so the 

model entails Prob(A  B) = Prob(C D) = Prob(F G) = Prob(J  K) > 0.5.   

 

Implications for the Common Ratio Effect 

 

If we take a specification of φ(.) which entails Prob(C  E) > Prob(C D) as in (vii) 

above and combine it with the property that Prob(C D) = Prob(J  K) as in (viii) 

above, we get Prob(C  E) > Prob(J  K). This latter pattern has been frequently 

observed in experiments yielding what Kahneman and Tversky (1979) called the 

Common Ratio Effect (CRE).  

 



Blavatskyy claims that the ability of his model to accommodate the CRE is one of its 

strengths. However, this claim is qualified: the exact words are that the model is 

“compatible with several behavioural regularities such as certain types of the 

common ratio effect . . .” (p2, our emphasis added). In fact, the model can 

accommodate the CRE only up to a point. If Prob(C  E) > 0.5, which is the case in 

most CRE data, then the kind of φ(.) needed to produce the effect has the 

implication that Prob(C D) = Prob(J  K) > 0.5. In other words, under these 

assumptions the Blavatskyy model can explain the fact that Prob(C  E) > Prob(J  K) 

but it does not allow Prob(C  E) > 0.5 in conjunction with Prob(J  K) < 0.5. Thus a 

majority favouring the safer alternative in the {C, E} pair may only change to a 

smaller majority favouring the safer option, but the modal preference cannot 

reverse to give a majority favouring the riskier option from {J, K}.  

 

However, in a numerous such experiments, the majority preference does actually 

reverse, contrary to Blavatskyy’s model. There are many examples of this, including: 

Problems 3 & 4, 3’ & 4’, 5 & 6, 7 & 8 and 7’ & 8’ in Kahneman and Tversky (1979); the 

O vs L comparison in Chew and Waller (1986); a number of the triangles presented to 

Group 1 in Loomes and Sugden (1998); the last of the four cases2 in Table 2 in 

Bateman et al (2006) and all three cases in Table 6 and six out of twelve cases in 

Tables 10 and 11 of that paper.  

 

There is a further implication of the model in relation to CRE which has not been 

much examined experimentally but for which some evidence exists. In most 

experimental examinations of the CRE, C is chosen over E by a substantial majority of 

respondents. But suppose the parameters are set such that E is more likely to be 

chosen i.e. Prob(E  C) > 0.5. If the specification of φ(.) is such as to produce the 

‘usual’ CRE, the implication will be that Prob(E  C) > Prob(K  J) > 0.5: that is to say, 

Prob(K  J) will be closer to 0.5 than Prob(E  C). The reason is that all functions that 

produce the ‘usual’ CRE in the Blavatskyy model have the opposite curvature on the 

                                                 
2
 The other three cases also contradict the model but in a somewhat different way explained below. 



other side of the 50-50 probability line and so here too probabilities get closer to 50-

50 when the distance between the lotteries is reduced.  

 

However, in their Experiment 1, Bateman et al (2006) found three pairs where a 

clear majority favoured the counterpart of E over the counterpart of C and where 

that majority became even larger in the case of the counterpart of K compared with 

the counterpart of J – in two of these cases to a highly significant extent3. Such 

patterns are contrary to the model when φ(.) is specified in the way required to 

produce a ‘standard’ CRE pattern. 

 

Implications for the Common Consequence Effect and Corollaries 

 

Given Axiom 4, the model cannot explain the classic form of Allais paradox (which 

Kahneman and Tversky called the Common Consequence Effect (CCE)). This is noted 

by Blavatskyy (2011, p.5), who states that is directly contrary to that Axiom. In terms 

of Figure 1, the classic CCE takes the form of a comparison between {C, D} and {J, K} 

where, typically, C is chosen over D rather more often than J is chosen over K. But 

Axiom 4 requires the probabilities to be the same for both pairs.  

 

On this issue, there is some ‘special pleading’: Blavatskyy claims that although many 

studies have found evidence of the CCE, these violations are reduced or disappear 

when lotteries are located inside the probability triangle or when the choices involve 

a gradient of 1. However, there is no mention in the formulation of the model that it 

applies only to a subset of cases. On the contrary, as already seen, the Abstract 

claims that “the proposed model provides a better fit to experimental data than do 

existing models”; but since the great majority of experiments to date have tended to 

use stimuli where at least one of the lotteries lies on an edge of the triangle, it is 

strange to introduce the caveat on p5. Moreover, the great majority of CRE cases 

                                                 
3
 In the choice between the certainty of £9 and a 0.50 chance of £25, the choice split was 56:98, while 

in the choice between a 0.20 chance of £9 and a 0.10 chance of £25, the split was 26:128. In the choice 

between the certainty of £9 and a 0.75 chance of £15, the choice split was 68:85, while in the choice 

between a 0.20 chance of £9 and a 0.15 chance of £15, the split was 23:130. And in the choice between 

the certainty of £6 and a 0.60 chance of £15, the choice split was 51:102, while in the choice between a 

0.25 chance of £6 and a 0.15 chance of £15, the split was 38:115. 



involve pairs where both lotteries lie on the edge. Part of the claim made for the 

model is that it accommodates such data, so welcoming ‘edge’ data when they fit 

with the model but setting them aside when they conflict with the model seems 

somewhat anomalous. 

 

As noted in (viii) above, the model entails the same choice probabilities for other 

pairs of lotteries such as {A, B}, {F, G} and {G, H} which are on the same gradient and 

the same distance apart as {C, D} and {J, K}. Fewer studies have examined these 

other pairs, but there are data which reject this implication of the model. For 

example, there are a number of such refutations in the patterns reported by Loomes 

and Sugden (1998). And when testing a different model that shares this particular 

implication, Loomes (2010, Table 2) considered two triangles with very different 

gradients, with each triangle containing a set of three pairs that were all half of the 

{C, E} distance apart and a set of eight pairs that were all a quarter of the {C, E} 

distance apart. These data very clearly reject the implications of Axiom 4.  

 

Comparisons and Clarifications 

 

Given the body of evidence which directly challenges a basic axiom and certain 

central implications of the proposed model, how does it turn out, as stated on p5, 

that “Econometric estimation shows that the new model compares favourably with 

existing models. Its predicted choice patterns often lie significantly closer to actual 

revealed choices.”? 

 

In part, the answer may be the particularity of the two datasets to which the models 

are fitted. But perhaps a larger part of the explanation lies in the choice of 

‘opponent’ models: as any boxing manager knows, one’s own fighter can often build 

up an impressive record of wins if you match him/her only against a carefully 

selected subset of opponents. 

 

There are two ways in which other models in the literature differ from the model 

proposed by Blavatskyy (2011). Any probabilistic model might be thought of as a 



combination of a ‘core’ theory with a stochastic specification, so different models 

might vary either in terms of the particular core or in terms of the stochastic 

specification – or both. The model in Blavatskyy (2011) has an EU core, modified to 

allow the main arguments to be differences between the EUs of each lottery and the 

EU of the GLB for that pair. This is then embedded in a stochastic specification of the 

same general form as the Luce (1959) choice model. 

 

However, given the limitations of the model as far as the CRE and CCE data are 

concerned, an alternative possibility would be to use a core which is better suited to 

such data: namely, some form of rank-dependent expected utility (RDEU) model. 

Alternatives of this kind exist in the literature – see, for example, Buschena and 

Zilberman (2000), a paper which is listed in Table 1 of Blavatskyy (2011) – and it 

might have been interesting to see how the performance of this kind of model 

compares with the new model being proposed. 

 

Turning now from the issue of the choice of core model to the issue of the stochastic 

specification, there is a rather different way of proceeding – the ‘random preference’ 

(RP) approach (Becker, DeGroot and Marschak, 1963) – which is mentioned but 

dismissed without (we suggest) adequate consideration. On p1 it is stated that “The 

main drawback of the random preference model is that it leads to violations of weak 

stochastic transitivity that are rarely observed in the data . . .”; and on p5, “Unlike 

the random preference/utility model, the proposed model does not generate 

intransitive choice cycles . . .”. Both of these assertions may give false impressions. 

 

First, it is an error to say that the proposed model does not generate choice cycles. 

Any model of probabilistic choice – including this one – which allows some possibility 

of either alternative in a binary choice being chosen and which also allows these 

possibilities to be independent between different binary choices is liable to generate 

at least some – and conceivably, quite a few – choice cycles. Second, it is not true 

that an RP specification necessarily results in violations of WST: whether it may or 



may not do so depends on the specification of the core distribution of preferences 

and upon the nature of the lotteries being presented4.  

 

However, by ruling out all RP specifications, Blavatskyy (2011) eliminates a 

competing model which has had at least some success in the past. Loomes, Moffatt 

and Sugden (2002) took an EU core and an RDEU core and embedded each in a 

simple Fechner specification and also in an RP specification and applied these 

models to the dataset from Loomes and Sugden (1998). Although Loomes et al. 

(2002) were guarded about extrapolating too much from a single study, the 

indication was that, for the dataset in question, an RP formulation of a simple form 

of RDEU performed well, although there were signs that respondents’ experience 

might move their behaviour in the direction of an RP formulation with an EU core. 

They also acknowledged that the low rate of violations of dominance may have 

favoured RP over the simple Fechner specification, in which case the Blavatskyy 

(2011) model, being better suited to this low rate, should provide stiffer competition 

against both of the RP specifications in Loomes et al (2002). Unfortunately, by ruling 

RP out on a priori grounds, the original paper leaves this question unanswered. In 

the absence of any comparison with existing RP formulations with some established 

credentials, it seems premature to claim so confidently that the proposed model 

“provides a better fit to experimental data than do existing models”. 

 

Concluding Remarks 

 

We have shown that there is a considerable body of evidence that the model 

proposed in Blavatskyy (2011) cannot explain. Such direct evidence may be a more 

telling basis for evaluating the model than an econometric fitting exercise which is 

based on just two datasets and which involves comparisons with just a few 

                                                 
4
 For example, if we assume that an individual’s preferences consist of a set of von Neumann-

Morgenstern utility functions each exhibiting constant relative risk attitude with some unimodal beta 
distribution over the risk attitude coefficients, and if we consider non-degenerate lotteries with the 
same minimum payoff which are mean-preserving spreads relative to some sure amount, there will 
be no violations of WST. Actually, such lotteries are not unlike those used in many experiments; but 
the point of this example is not so much to argue for a particular specification as to demonstrate that 
RP does not always and necessarily lead to violations of WST. 



alternative models, with other potential competitors omitted from consideration. 

We share with Blavatskyy (2011) the need to develop probabilistic models that 

respect first-order stochastic dominance. However, we suggest that such models 

should aspire to account for the full range of well-attested empirical regularities. The 

success of such an enterprise requires us to be alert to the limitations as well as the 

strengths of new models and to evaluate competing models on the basis of an open 

competition with all potentially viable alternative candidates. 
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