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Abstract 

G protein-coupled receptors (GPCRs) regulate cellular signalling through heterotrimeric G proteins and 

arrestins in response to an array of extracellular stimuli. Structure determination of GPCRs in an active 

conformation bound to intracellular signalling proteins has proved to be highly challenging. Nonetheless, 

three new structures of GPCRs in an active state have been published during the last year, namely the 

adenosine A2A receptor (A2AR) bound to an engineered G protein, opsin bound to visual arrestin and the µ 

opioid receptor (µOR) bound to a G protein-mimicking nanobody. These structures have provided novel 

insight into the sequence of events leading to GPCR activation, and have highlighted both similarities and 

differences in the structure of the interface between GPCRs and different signalling proteins. 
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Highlights 

• Active state structures of a µOR–nanobody complex determined to 2.3 Å resolution. 

• The first GPCR–arrestin structure defines the arrestin–opsin interface. 

• Structure determined of A2AR coupled to an engineered G protein. 

• Inactive, intermediate-active and active structures have now been solved for A2AR. 

• G protein and arrestin complexes provide insight into GPCR coupling specificity. 
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Introduction 

The most significant development in G protein-coupled receptor (GPCR) structural biology in recent 

years has been the crystallisation of receptors in an active state, i.e. the conformation of the receptor when 

it is coupled to a cytoplasmic signalling partner such as a G protein or arrestin (Figure 1). This has been 

possible only by co-crystallisation of the receptor with a binding partner that stabilises the active 

conformation (Figure 1). However, due to the technical challenges of working with native signalling 

complexes, a number of novel G protein-mimicking surrogates have been developed to simplify 

crystallisation of GPCRs in their active state. At present, six different binding partners have been used 

(Table 1): (1) the C-terminal peptide (GaCT) from the G protein transducin a-subunit [1-7]; (2) single 

chain camelid antibodies (nanobodies; Nb) raised against specific GPCRs [8-12]; (3) the heterotrimeric G 

protein Gs, composed of Gas, b1 and g2 subunits, and stabilised by a nanobody (Nb35) [13]; (4) the finger 

loop peptide from visual arrestin [14]; (5) visual arrestin [15]; (6) an engineered minimal G protein, mini-

Gs, composed of a single domain from the Gas subunit [16]. The first active state structure of a GPCR 

solved was that of opsin complexed with GaCT, published in 2008 [5]. In 2011 the structure of the b2 

adrenergic receptor (b2AR) was determined in complex with either a nanobody [10] or heterotrimeric Gs 

[13]. Since then three additional GPCRs have been determined in their active state, namely the muscarinic 

acetylcholine receptor M2 [9], µ opioid receptor (µOR) [8], and most recently, the adenosine A2A receptor 

(A2AR) [16]. 

This review will focus on structures of GPCRs in their active conformation, therefore, we must start 

by defining what constitutes the active state. From a structural perspective, the conformational changes that 

occur within the core of the receptor upon coupling to a cytoplasmic binding partner appear to be the best 

marker of activation. In particular, there is a characteristic rearrangement of three highly conserved 

residues, Tyr5.58, Tyr7.53 from the NPxxY motif and Arg3.50 from the DRY motif (superscripts indicate 

Ballesteros-Weinstein numbering [17]). These residues adopt almost identical positions in all active state 

structures determined to date, irrespective of the binding partner involved (Figure 1; see References [8] and 

[18] for detailed comparisons of active state structures). Importantly, the conformational changes of these 

three residues can be used to differentiate the active G protein-coupled conformation of A2AR [16] from the 

agonist-bound intermediate-active state [19-21], i.e. the conformation of A2AR when it is bound to an 

agonist, but not coupled to a cytoplasmic signalling partner (Figure 2; discussed below). Pharmacological 

analyses have confirmed that all the different binding partners reproduce the increase in agonist-binding 

affinity induced by coupling to native signalling proteins [8-11,13,16]. The most notable difference between 

GPCR complexes involving a G protein or arrestin compared to a peptide or nanobody is the extent to 

which the intracellular end of helix six (H6) moves away from the transmembrane helical bundle. The 

magnitude of this movement, which is typically between 8 Å [5] and 17 Å [16], is highly dependent on the 
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binding partner involved, with the largest displacements observed for G protein complexes, but this does 

not influence the conformational changes that occur in the core of the receptor. Therefore, the structures 

solved to date (Table 1) likely represent a range of closely related active conformations, but, critically, the 

receptors have all undergone the core conformational changes that appear to represent transition into the 

active state. 

Owing to the technical challenges of crystallising active state GPCRs, the frequency of publication 

of these structures has been relatively low, nonetheless, during the past year three new structures have been 

reported that have significantly enhanced our knowledge of GPCR activation. First, the high resolution 

structure of the µOR–Nb39 complex provided insight into activation of µOR and revealed a conserved 

polar network in the active state [8]. Second, the opsin–arrestin complex structure provided insight into 

how non-G protein signalling partners interact with GPCRs [15]. Third, publication of an A2AR–mini-Gs 

complex made A2AR the first hormone receptor for which structures have been solved in the active [16] and 

intermediate-active [19-21] conformations in addition to the inactive state [22-25], i.e. the conformation of 

the receptor when it is bound to an antagonist or inverse agonist. In light of these recent developments, this 

review will focus on two main topics: (1) The conformational changes associated with activation of A2AR; 

(2) Comparison of the interface between GPCRs and binding partners derived from native signalling 

proteins. 

  

Conformational changes involved in A2AR activation 

In 2011 two structures of agonist-bound A2AR were solved [19,21], which showed significant 

conformational differences compared to either the antagonist or inverse agonist-bound inactive states [23-

25] (Figure 2). However, the agonist-bound conformation did not fully resemble the active state of b2AR 

[10,13], particularly in regard to the positioning of residues Tyr1975.58, Tyr2887.53 and Arg1023.50, and it 

was concluded that it most likely represented an intermediate conformation [19]. A similar intermediate-

active state has subsequently been observed in structures of the neurotensin receptor (NTSR1) [26,27], but 

this conformation is not observed in agonist-bound structures of b1AR [28] or b2AR [29]. The propensity 

of receptors to occupy the intermediate-active state is probably dependant on the energy landscape of 

receptor activation, which has been shown by 19F-NMR and DEER spectroscopy to differ significantly 

between A2AR [30] and b2AR [29,31]. Two distinct active states of A2AR have indeed been identified in 
19F-NMR spectra [30], however, it is not yet clear if the intermediate-active state of A2AR trapped in the 

crystal structures [19-21] directly correlates to one of these species. 

The structure of A2AR bound to mini-Gs completes a series of structures (Figure 2) from the inactive 

state [22-25], through an intermediate-active conformation [19-21] to the fully active state [16]. The 

conformational changes associated with the transition from the inactive to intermediate-active state are 
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distributed throughout the receptor and include a 0.8 Å contraction of the ligand-binding pocket (measured 

between H5 and H7), bulging of H5 around the NPxxY motif and a combined rotation and outward 

movement of H6 by 40° and 5 Å, respectively [19,32]. In contrast, the conformational changes associated 

with the transition from the intermediate-active to active state are confined to the intracellular half of A2AR 

(Figure 2). The most striking rearrangement is a 14 Å outward movement of the cytoplasmic end of H6 

[16], which generates a cavity on the cytoplasmic surface of the receptor that engages the a5 helix of Gas. 

Rotamer changes in Tyr1975.58, Tyr2887.53 and Arg1023.50 position these side chains to occupy the space 

generated by the outward movement of H6 (Figure 2). Thus, rearrangement of these residues appears to 

stabilise the receptor in its active conformation by improving packing in the core of the transmembrane 

bundle, furthermore, the extended conformation of Arg1023.50 forms the upper surface of the cytoplasmic 

cavity and directly interacts with the G protein. No significant changes were observed in the ligand-binding 

pocket of A2AR upon G protein coupling, suggesting that the intermediate-active structure may already 

represent the high affinity agonist-bound state. Thus the modest 10-40 fold increase in agonist-binding 

affinity observed for either the A2AR–Gs [33,34] or A2AR–mini-Gs [34] ternary complex could arise by a 

different mechanism, for example a reduction in conformational dynamics associated with G protein 

binding. 

One of many outstanding questions about the mechanism of GPCR activation is which conformation 

of the receptor is responsible for G protein recognition? Spectroscopic studies have demonstrated that some 

receptors partially occupy the active state in the absence of G protein [30,31,35], but it is unclear if the 

active conformation is actually responsible for recognition of the G protein. Significant conformational 

changes are observed in the G protein upon receptor binding, which are thought to be coupled to GDP 

release [13], and it is likely that these rearrangements are driven by simultaneous conformational changes 

in the receptor. Therefore, it is tempting to speculate that the intermediate-active state crystallised for A2AR 

[19-21] and NTSR1 [26,27] represents a conformation that is responsible for initial recognition of the G 

protein, before cooperative conformational changes drive GDP release from Ga and result in formation of 

the nucleotide-free ternary complex. Intriguingly, recent NMR data on µOR [36] suggest that agonists 

induce a distinct change in environment of residues at the H1/H8 interface in the absence of a G protein 

mimetic, but upon binding of the G protein mimetic the largest changes are observed around H6. Although 

the NMR data cannot define what the change in environment at these positions entails (e.g. a rotamer 

change, helix movement etc), it is noticeable in the A2AR structures that there is a distinct conformation 

change at the H1/H8 interface upon agonist binding, but not upon G protein coupling (Figure 2). 

 

Comparison of the interfaces between GPCRs and binding partners derived from native signalling 

proteins 
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Crystal structures have now been published for receptors in complex with five binding partners that 

are derived from native signalling proteins, namely Gs [13], GaCT [1-7], mini-Gs [16], visual arrestin finger 

loop peptide [14] and visual arrestin [15]. As expected from extensive mutagenesis work on a number of 

different receptors [37], the major areas of the receptor that interact with the G protein are at the cytoplasmic 

ends of H3, H5 and H6 and also in cytoplasmic loop 2 (Figure 3). The structural information has now 

allowed a more detailed analysis of the similarities and differences between the interfaces of different 

complexes. The A2AR–mini-Gs complex [16] aligned well with the b2AR–Gs structure [13], with only a 

slight variation in the orientation of G protein binding. b2AR and A2AR share only ~30% sequence identity, 

but the majority of residues that form direct interactions are conserved (Figure 3). The positions of 14 

interacting residues within the two interfaces are conserved, with 8 of these amino acid residues being 

identical between A2AR and b2AR. In contrast, the positions of 6 contacting residues are unique to A2AR, 

with 10 positions that are exclusive to b2AR. The most significant difference between the complexes is the 

additional contacts involving the H7-H8 boundary of A2AR (discussed below). The buried surface area of 

the interface is similar in both complexes, involving approximately 1050 Å2 of A2AR and 1280 Å2 b2AR, 

and the number of direct contacts across the two interfaces varies by less than 10%. In most cases, when a 

contact is lost, due to the divergent amino acid sequence of the receptors, it is compensated for by the 

formation of an additional contact elsewhere in the interface. The overall density of interactions in the 

interface is relatively low, which may allow the reorganisation of contacts in response to the divergent 

amino acid sequence of different receptors (Figure 3). This may explain how a large number of different 

receptors with low sequence homology are able to couple a common G protein.  

The only structural information available for binding of non-Gs-coupled receptors to a G protein-

derived partner comes from the opsin–GaCT structures (Table 1) [1-7]. GaCT binds opsin in a significantly 

different orientation compared to Gs binding to either b2AR or A2AR (GaCT is rotated by ~30° compared 

to Gs), however the conformational changes in the core of opsin are similar to other active state GPCRs. It 

is plausible that transducin does indeed bind opsin in a different conformation to that observed for the Gs-

coupled receptors. However, it is also possible that the isolated GaCT peptide is incapable of stabilising 

H6 of the receptor in its fully extended conformation, which could potentially explain the different binding 

orientation observed in the crystal structures. A similar situation is observed for the opsin–arrestin complex, 

where the binding orientation of an arrestin-derived peptide [14] differs significantly from the whole 

arrestin molecule [15]. Thus, at present, the molecular determinants of specificity between different classes 

of GPCRs and G proteins remain unclear. 

The overall architecture of the opsin–arrestin structure [15] is similar to that of the b2AR–Gs [13] and 

A2AR–mini-Gs [16] complexes. Arrestin forms a larger interface with the receptor than a G protein, which 
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involves contacts with intracellular loop 1 (ICL1) that are not observed in the G protein complexes (Figure 

3). Both arrestin and Gs bind with a high degree of shape complementarity to a cavity in the cytoplasmic 

surface of the receptor created by the outward movement of H6. Recent negative stain electron microscopy 

data demonstrate that receptor–arrestin complexes in which arrestin is bound only to the phosphorylated C-

terminus of the receptor are still capable of binding and activating G proteins [38]. Therefore, competitive 

binding between the arrestin and G protein to a common cytoplasmic binding pocket on the receptor appears 

to be critical for terminating G protein signalling. Despite the fact that arrestin and Gs interact with common 

regions of the receptors, namely the intracellular ends of H3, H5 and H6, and ICL2, the organisation of the 

interfaces differs significantly. For example, the finger loop of arrestin, forms a helical segment analogous 

to the a5 helix of Gas, which fits into the cytoplasmic cavity of the receptor [14], however, the finger loop 

helix is rotated by ~45° compared to the a5 helix of Gas [15] (Figure 3). One of the most interesting regions 

of the interface is the H7-H8 boundary, which forms direct contacts with the finger loop of arrestin (Figure 

3), and has been implicated in potentiating signalling by arrestin-biased ligands [39,40]. No contacts 

involving this region are observed in the b2AR–Gs complex [13], but, in contrast, four residues from the 

H7-H8 boundary of A2AR form direct contacts with mini-Gs [16] (Figure 3). Therefore, it now appears that 

this region could play a wider role in the coupling specificity of both arrestins and G proteins. A unique 

feature of the opsin–arrestin complex is the central role played by electrostatic interactions [15,41,42]. Two 

b-arrestins are potentially responsible for the desensitisation of ~800 human GPCRs, so they need to be far 

more promiscuous than G proteins. Complementation between negatively charged finger loop residues and 

positively charged regions on the cytoplasmic surface of the receptor may represent a simple mechanism 

that has evolved to facilitate arrestin binding to a large number of GPCRs with low sequence homology 

[15,43]. 

 

Future perspectives 

GPCR activation [44] and the subsequent activation of heterotrimeric G proteins [45] are both highly 

conserved mechanisms. However, despite the similarities between the active-state structures of opsin, 

b2AR, M2, µOR and A2AR [8-10,13,16], there are also differences, which are probably a reflection of their 

different amino acid sequences, the different kinetics of activation, their coupling to different binding 

partners and, ultimately, their different roles in human physiology. Atomic resolution structures are a 

necessary prerequisite to understand the molecular mechanism of receptor function and, more specifically, 

structures are required of a given receptor in a minimum of four different states, the inactive state bound to 

an inverse agonist, the receptor bound to an agonist, the agonist–receptor–G protein complex and the 

agonist–receptor–arrestin complex. Using the same agonist for each of the activated states will avoid 

confounding ligand-specific changes with receptor conformational changes. GPCR complexes remain 
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difficult targets for structural studies, and the development of new technologies, such as nanobodies [46-

48] and mini G proteins [34], is key to ensuring the continued elucidation of new structures. 

More structures of receptor–G protein and receptor–arrestin complexes will allow us to address key 

questions with respect to the specificity of coupling. What determines whether a receptor couples to either 

Gs, Gi or Gq, or perhaps to more than one different G protein? How can only 2 arrestins couple to hundreds 

of different GPCRs? How do the affinities of G protein/arrestin coupling vary between different GPCRs 

and how does this impact what happens in a cell? A recent study that tested the ability of specific GPCRs 

to couple to 14 different Ga subunits found widely different patterns of coupling in 4 different GPCRs, 

both in terms of specificity, kinetics and maximal responses [49]. It remains to be seen whether the pattern 

of activation differs when there is competition between different G proteins coupling to the same receptor, 

something that may be expected in cells that typically express multiple different G proteins. How the 

conformational dynamics of the GPCRs impacts upon the coupling processes within the cell are also only 

understood poorly. Spectroscopic studies [30,31,35] are providing evidence of multiple conformational 

states in the absence of ligands, with specific states becoming more populated in the presence of inverse 

agonists, agonists and agonists plus a G protein mimetic. A key objective will be to correlate these 

spectroscopic data with crystallographic structures of different conformational states to produce a concerted 

model of activation for individual receptors. In this regard, differences in the agonist bound structures of 

b1AR [28] and b2AR [29] compared to A2AR [19-21] indicate a very different energy landscape of activation 

between receptors. New structures of other agonist-bound receptors will no doubt expand the repertoire of 

energy landscapes further, whilst maintaining the evolutionary conserved mechanism of receptor–G protein 

coupling.  
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Table 1 
Active state structures of GPCRs 
GPCR Binding partner Agonist Resolution (Å) PDB code Reference 
A2AR Mini-Gs NECA 3.4 5G53 [16] 
b2AR Nb80 BI-167107 3.5 3P0G [10] 
 Gs–Nb35 BI-167107 3.2 3SN6 [13] 
 Nb6B9 BI-167107 2.8 4LDE [11] 
 Nb6B9 HBI 3.1 4LDL [11] 
 Nb6B9 Adrenaline 3.2 4LDO [11] 
 Nb6B9 FAUC37 3.3 4QKX [12] 
M2 Nb9-8 Iperoxo 3.5 4MQS [9] 
 Nb9-8 Iperoxo, LY2119620a 3.7 4MQT [9] 
µOR Nb39 BU72 2.1 5C1M [8] 
Opsin GaCT peptide All-trans-retinal 3.2 3DQB [5] 
 GaCT peptide All-trans-retinal 3.0 2X72 [7] 
 GaCT peptide All-trans-retinal 2.9 3PQR [2] 
 GaCT peptide All-trans-retinal 3.3 4A4M [3] 
 GaCT peptide No ligandb 2.7 4J4Q [4] 
 GaCT peptide Mixed cis-retinals 2.9 4BEY [6] 
 GaCT peptide No ligandb 2.3 4X1H [1] 
 Arrestin peptide No ligandb 2.8 4PXF [14] 
 Arrestin No ligand 3.3 4ZWJ [15] 
a Positive allosteric modulator. 
b The receptor contains a detergent molecule in its orthosteric ligand binding pocket. 
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Figure 1. Structural features of active-state GPCRs. (a) Comparison of the structures of µOR (orange) in 

complex with nanobody Nb39 (PDB ID 5C1M [9]), opsin (pink) coupled to arrestin (PDB ID 4ZWJ [15]) 

and A2AR (green) coupled to mini-Gs (PDB ID 5G53 [16]), which were all determined during the past year, 

with the archetypal active-state structure of b2AR (cyan) coupled to heterotrimeric Gs  (PDB ID 3SN6 [13]). 

(b) Cytoplasmic view of an alignment between b2AR in its inactive antagonist-bound state (brown; PDB 

ID 2RH1 [50]) and the active Gs bound conformation (cyan; PDB ID 3SN6 [13]). The 14 Å outward 

movement of H6 that is induced by G protein binding is indicated by a purple arrow. Rearrangements of 

three highly conserved residues (Y5.58, Y7.53 and R3.50; shown as sticks) within the core of the receptor are 

indicated by red arrows. (c) Intracellular view of an alignment between the four active-state GPCRs in (a). 

Sidechains of residues Y5.58, Y7.53 and R3.50 are shown as sticks; binding partners have been omitted for 

clarity. The outward movement of H6, which varies between 10 and 17 Å in these structures, is indicated 

by a purple arrow. An expanded view of residues Y5.58, Y7.53 and R3.50 (shown as sticks), demonstrates that 

they adopt highly conserved positions in all active active-state GPCR structures.  
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Figure 2. Conformational changes involved in A2AR activation. (a) Cytoplasmic view showing the 

transition of A2AR from the inactive antagonist-bound state (yellow; PDB ID 3REY [23]) to the 

intermediate-active agonist-bound state (blue; PDB ID 2YDV [19]). The outward movements of H5 and 

H6 and the inward movement of H7 are coupled to significant helix rotations shown as curved purple 

arrows. Side chain conformation changes in residues Y5.58 and Y7.53(shown as sticks) are highlighted by red 

arrows. (b) Cytoplasmic view showing the transition of A2AR from the intermediate-active agonist-bound 

state (blue; PDB ID 2YDV [19]) to the active mini G protein-bound state (green; PDB ID 5G53 [16]). The 

linear movement of H5 and H6 is shown as straight purple arrows. The rotation within H7, which is not 

coupled to any significant lateral movement is highlighted by a dashed purple arrow. Side chain 

conformation changes in residues Y5.58, Y7.53 and R3.50 (shown as sticks) are highlighted by red arrows. (c) 

Comparison of the ligand-binding pocket of A2AR in the intermediate-active (blue; PDB ID 2YDV [19]) 

and active (green; PDB ID 5G53 [16]) state. No significant differences are observed in the orientation of 

the agonist (NECA), or the residues with which it forms direct contacts [16]. Direct polar contacts between 

A2AR and NECA are shown a dashed lines and are coloured to match the receptor. 
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Figure 3. Comparison of the interfaces between GPCRs and binding partners derived from native signalling 

proteins. (a) The intracellular halves of b2AR, A2AR and opsin are depicted as snake plots, with amino acid 

residues that are within 3.9 Å of the binding partner in either red, purple or blue, respectively. In the opsin–

arrestin crystal, there were 4 opsin–arrestin complexes in the asymmetric unit; on the snake plot, residues 

coloured blue make contact to arrestin in either 3 or 4 of the complexes, whereas those coloured in grey 

occur in only 1 or 2 of the complexes. The figures were made using www.gpcrdb.org [51]. (b) Structural 

alignment of b2AR, A2AR and opsin amino acid sequences with residues within 3.9 Å of the binding partner 

highlighted as in (a). The alignments were based on data in www.gpcrdb.org [51], but were adapted to 

remove gaps; ‘~~’ represent non-conserved amino acid residues removed from the alignment of ICL3 for 

reasons of clarity, and ‘–’ represent gaps in the alignment. (c) Divergent interactions of the H7-H8 boundary 

in coupling to cytoplasmic signalling proteins. No interactions are observed between the H7-H8 boundary 



   

 14 

of b2AR (cyan) and Gs (gold) in the b2AR–Gs complex (PDB ID 3SN6 [13]), however, interactions are 

present between this region of A2AR (green) and the a5 helix of mini-Gs (magenta) in the A2AR–mini-Gs 

complex (PDB ID 5G53 [16]). Extensive interactions are also observed between the H7-H8 boundary of 

opsin (pink) and the finger loop of arrestin (light green) in the opsin–arrestin complex (PDB ID 4ZWJ [15]). 

Residues that form direct contacts are shown as sticks, and direct interactions are shown as dashed lines 

(only the closest contact to each residue is shown and all are less than 3.9 Å). 
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