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Abstract 

Molecular communications (MC) is a bio-inspired paradigm that aims to utilise 

molecules to exchange information among nano-machines. Given the tiny devices 

used in a MC system and the feasibility of MC in biological environments, MC can 

be applied to many applications ranging from the healthcare to manufacturing fields. 

In order to better realize these applications in the future, this Ph.D. research is 

dedicated to the investigation of a more functional, precise and reliable Diffusion-

based Molecular Communications (DBMC) system. To achieve this goal, the 

contributions of this thesis are as follows. Firstly, the point-to-point (PTP) DBMC 

system with the absorbing receiver model is established and investigated. A study of 

the accuracy of the analytical channel model is also introduced. Secondly, dependent 

on different types of the transmitter (TX) and receiver (RX), three different 

communication scenarios are proposed. Thirdly, to enhance the reliability of the 

information at RX, the Error Correction Codes (ECCs), as the most prominent 

technique is employed within the DBMC system to control or correct any errors 

introduced during the transmission process. Fourthly, due to the limitation of the 

power budget of the nano-machines, the energy efficiency of the system is also taken 

into account.  Finally, a two-receiver broadcast DBMC system is established with an 

absorbing interfering receiver (RI) and an absorbing target receiver (RT). By 

analysing the performance of the communication link between TX and RT (target 

communication link), the impact of the positions of RI on RT is studied. 

This study indicates that the application of ECCs does enhance the 

performance of PTP DBMC systems. In addition, the encoder and decoder design, 

and the BER performance are shown to be the two primary factors for selecting the 

most suitable ECC for the application. Finally, considering a two-receiver broadcast 

DBMC system with absorbing receivers, the existence of RI does affect the 

performance of the target communication link which is crucial result for the field 

moving forward. 
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TrP,c  The condition metrics of the decoding scheme for the 

R-Model with Poisson distribution 

X  Binary input vector 

X  Binary inputs 

Y  Binary output vector 

Y  Binary outputs 

z   Order of C-RM codes 

τ  Pre-designed threshold 

υ  Viscosity of the fluid 

μ, η, ϖ  Means of the Normal distribution 

σ, ς, γ  Variances of the Normal distribution 

B  The Binomial distribution 

I    Mutual information 

N  The Normal distribution 

P  The Poisson distribution 

Φ(·)  Cumulative distribution function 

ΔE  Energy saving for a coded system 

Δt  Time step in simulation 

(x0, y0, z0)  Coordinate of TX 

(0, 0, zI)  Coordinate of RI 

(0, 0, zT)  Coordinate of RT 

∇2   Laplace operator 

‘-’  Represent the positions when RI is located to the left of 

both TX and RT 

‘+’  Represent the positions when RI is between TX and RT 

‘++’  Represent the positions when RI is located to the right 

of both TX and RT 
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Chapter  1  

Introduction 

1.1 Background 

Nanotechnology is an emerging area that gives new solutions for many applications 

in the biomedical, environmental, industrial, military and communication 

engineering fields [1]. It can be viewed as the science, engineering and technology 

that deals with anything ranging from one to one hundred nanometers. The concept 

of nanotechnology was first described by the scientist Richard P. Feynman in his talk 

entitled “There’s Plenty of Room at the Bottom” in 1959 [2], where Feynman 

expresses a conjecture about how the nanotechnology will benefit people’s live. He 

also believed that atoms and molecules should able be controlled and manipulated by 

scientists, and that tiny and powerful miniaturization machines at nano-scale could 

be manufactured in the near future. Over a decade afterwards, the term 

‘Nanotechnology’ was coined by Taniguchi, where he thinks the separation, 

consolidation and deformation of materials by one atom or one molecule are the 

main processes of the nanotechnology [3]. Then, in the 1980s, this idea was once 

again put forth by Drexler [4] with an in-depth explanation. In his opinion, these 

nano-scale machines could replicate themselves via computer control rather than 

human operation. Since then, the research in modern nanotechnology began to 

increase. 

1.1.1 Nano-machines 

The fabrication of machines in nano-scale is the main technique that can benefit 

from Nanotechnology. In general, a device that consists of nano-scale components 
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and able to perform a specific task, like communication, computing, sensing and data 

storing can be taken as a nano-machine [1]. It is also the basic functional unit for 

building a nanonetwork to perform more complex tasks [5].  

 The nano-machine can be developed by three approaches, the top-down 

approach, the bottom-up approach and the bio-hybrid approach [1]. For the top-down 

approach, the nano-machine can be built by downscaling the microelectronics 

without atomic level control. To achieve this, the techniques such as electron beam 

lithography [6] and micro-contact printing [7] are used in the manufacturing process. 

The components of nano-electromechanical systems (NEMS) [8] are developed by 

using this approach. The bottom-up approach, otherwise known as molecular 

manufacturing, aims to use individual molecules to build the nano-machines. 

Nowadays, the nano-machines, such as molecular switches and molecular shuttles 

are developed using this approach by the self-assembly of molecules [9]. Recently, a 

new manufacturing technique called the bio-hybrid approach was proposed in [10], 

where the existing biological nano-machines, such as nano-biosensors, nano-

actuators and nano-motors are used as the basic element to develop new nano-

machines. The engineered biological cell is an example that was prepared by using 

this approach [1]. 

 A nano-machine can consist of one or more components dependent on its 

complexity level. For a functional nano-machine, the control unit, the 

communication unit,  the reproduction unit,  the power unit and the sensor and 

actuator unit are the five essential units [1]. The control unit can control any other 

components in nano-machine and gives instructions to execute the intended task [11]. 

The communication unit consists of a transceiver which can transmit and receive the 

information at the nano-level, e.g. molecules. The function of the reproduction unit is 

to fabricate the components using external elements and assemble these components 

to replicate a nano-machine. The power unit can collect energy from external sources, 

such as light and temperature and store it for powering all elements of the nano-

machine. As the interface between the environment and the nano-machine, the 

sensor and actuator unit (e.g. receptors and flagellum) are used to sense the particular 

substance in the propagation medium and react accordingly. Several sensors and/or 

actuators can be included in a nano-machine.  
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Currently, how to handle and assemble molecular structures in a precise way 

is the biggest problem for developing a functional nano-machine. However, given 

the rapid development of manufacturing technology, the fabrication of complex 

nano-machines will be possible shortly.  

1.1.2 Nanoscale communication 

Due to the size and the simple structure of a single nano-machine, it can only execute 

simple tasks [1]. However, more complex tasks can be realized by the 

interconnection among nano-machines and allow them to cooperate and exchange 

information with each other, which is known as the nanonetworks [12]. The 

nanonetworks can enhance the functionality of the single nano-machine in several 

ways, such as complete more complex tasks, enhance the workspace and control the 

behavior of each nano-machine. 

To build a nanonetwork, the communication among nano-machines must be 

developed. Therefore, the research regarding the communication between nano-

machines has been established. 

 The communication between nano-machines can be realized by nano-

mechanical communications [13], acoustic communications, electromagnetic 

communications, and molecular communications (MC) [14]. For nano-mechanical 

communications, the transmission of information between nano-machines is 

completed by mechanical contact. In this approach, a direct contact between the 

transmitter (TX) and the receiver (RX) is needed to realize the communication 

process. In acoustic communications, acoustic energy, such as pressure variations is 

used as the carrier to transmit the information from TX to RX. In electromagnetic 

communications, the information is modulated using electromagnetic waves. Finally, 

in MC, the molecules are used as the information carrier to be transmitted between 

TXs and RXs.  

Of these communication schemes, MC is the most popular approach with the 

following advantages: firstly, the fact that the molecules have a size of the same 

order of magnitude as the nano-machines, thus, the emitting and collecting of 

molecules by nano-machines becomes feasible. Secondly, in MC, TX and RX do not 

need to be in contact like in the nano-mechanical communications. Therefore, the 
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transmission distance is unconstrained. Thirdly, MC, as one of the key technologies 

has been used in synthetic biology and bio-NEMS fields recently [15]. Finally, MC 

has lower heat dispersion [16], and it is more energy efficient compared with 

electromagnetic communications. With above reasons, the MC is becoming the most 

biologically suitable communication scheme and could be easily used in medical and 

quality control applications. Thus, the focus of this thesis is MC. More information 

on MC including the types of MC, related applications and current research based on 

MC are introduced in Chapter 2. 

1.2 Open issues and challenges in MC 

MC is an emerging discipline, and research in this area, both theoretical and practical, 

is therefore limited. In this section, the open issues and future challenges in this area 

are discussed in both the theoretical analysis of the MC system and the practical 

implementation aspects.  

1.2.1 Challenges toward MC analysis 

Nowadays, the mathematical modelling and theoretical analysis of the MC system 

have gathered lots of interest. However, the use of unrealistic assumptions and 

parameter settings are the main limitations of the current literature. One of the 

assumptions is neglecting the effects of interaction between propagation molecules 

on MC system performance, where the collision among propagation molecules is 

negligible. In that case, the factors that can affect the system performance are 

expected to cause an inaccurate estimation by the analytical model. Other common 

assumptions in this area are the precise detection and decoding mechanism at RX and 

a complete synchronization mechanism between TX and RX [15]. Using assumptions 

simplifies the analysis process, but it also limits the applicability of the MC system 

model. 

 In MC system, the attenuation and distortion of the signal are the main 

reasons which restrict the transmission distance of MC [17]. There are several noise 

sources internal and external to the system because of the use of molecules as the 

information carrier. The internal noise sources include the interaction between the 

molecules, the characteristics of the molecule and extreme randomness of the 
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propagation route (especially for Diffusion-based MC (DBMC)). Interfering TXs, 

RXs and molecules are the main external noise sources. Thus, how to control or 

reduce the effects of the noise or how to amplify the information signal still need 

further investigation.  

Although many mathematical MC models have been developed in recent 

years, the accuracy of these existing models is still unclear. What is more, the 

limitation of the channel capacity for MC is also unknown. 

1.2.2 Challenges toward practical implementation 

The implementation of MC and its application in different fields are other challenges 

in this field. The major concerns of this challenge are the implementation of the 

functional nano-machine and the implementation of the interface between different 

communication networks.  

As a communication system, encoding, decoding, modulation, demodulation, 

detection and synchronization are the required functional blocks for the nano-

machine to guarantee the reliability of the transmission. Furthermore, in order to 

maximize the utilization of the nano-machine, the techniques that can modify the 

functionality of the nano-machine are also required. However, due to the size of the 

nano-machine, the manufacturing techniques for such functional nano-machine is 

still in its infancy and currently does not exist.  

Considering the communications between two different kinds of machines, 

such as the communications between nano-machine and macro/micro-machine, the 

hardware designs of the nano-to-macro/micro and macro/micro-to-nano interface 

devices are also required. These devices aim to aggregate the information that comes 

from nano- or macro/micro-machines, and then transmit to the macro/micro- or 

nano-machines, respectively. This nano-micro interfaces are considered as a hybrid 

devices which can enable the transmissions in both nanonetworks and  conventional 

networks by using nano-communication techniques (e.g. molecular communication 

or nano-electromagnetic communication) and classical communication paradigms, 

respectively [18]. A potential application is a healthcare monitoring system where 

the nano-to-macro/micro interface device may need to transmit information from 
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nano-machines located in the body to an external data collection macro/micro-

machine.  

1.3 Motivations 

As a new communication paradigm, the research in MC system has been rapidly 

expanding in recent years. Along with the rapid development, a series of issues, such 

as the accuracy of the proposed analytical model, the complexity of the system 

design, the lack of sufficient knowledge on MC channel, the reliability of the MC 

system, and in energy consumption are also exposed gradually. These problems are 

the main motivations of this research. On the other hand, MC may advance the 

existing methods in healthcare, communication technology, biological engineering, 

industry and environmental areas [1], [19]. Considering above reasons, MC is a 

convenient and beneficial research area. For now, the manufacture techniques of 

functional nano-machine, the design of biological circuits and the control of noise 

are still open problems that need time to be solved. However, it is believed that the 

analytical research in this area needs to be investigated early or in parallel with the 

practical research to get an accurate initial estimation that can benefit for future 

investigation.  

 Existing literature mostly focus on the communications between nano- 

machines e.g. [17, 20-25]. However, there exist the scenarios like communications 

between nano-machine and macro/micro-machine that can be used in the healthcare 

communication system. For example, the drug delivery system is such a system that 

a set of nano-robots guide the macro-scale drug delivery robots through emitting the 

specific molecules. Moreover, another example is a cardiac pacemaker as a macro-

machine which communicates with nano-robots to help cardiac pacing if necessary 

(details are presented in Section 3.2.2).  

 The reliability of the transmission information at RX is always an important 

concern for a communication system designer and employing Error Correction 

Codes (ECCs) into the communication system is an efficient way to deal with this 

problem. This kind of codes is widely used for improving the Bit Error Rate (BER) 

performance of the conventional communication system. Although the ECCs seem 

to be too complex to implement in a nano-machine, a substantial amount of research 
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is also being conducted on developing logic gates at the molecular scale or in the 

biological field [26], [27], [28]. Thus, the use of ECCs in the MC system is worthy 

of investigation, and the mathematical basis of ECCs will soon have a feasible route 

for implementation. 

 The communication model plays an important role in the theoretical analysis 

of the communication system. An imprecise model will cause an imprecise 

estimation of the system performance. Although, many communication models for 

the MC system have been proposed in the last few years, the investigation of the 

accuracy of these models is still incomplete. Thus, the accuracy of the 

communication model requires further study. 

 Given the scale of work regarding the broadcast channel in the conventional 

communication system, the attention to the broadcast channel in MC system is not 

sufficient. Recently, a lot of research focuses on the analysis of the point to point 

(PTP) MC system. Among current literature of broadcast MC system with absorbing 

receivers (description of types of receivers in MC system is given in Section 2.4), the 

interaction effects among receivers were not taken into account. Thus, proposing a 

broadcast MC system and investigating the interference among those receivers is 

another motivation of this research. 

1.4 Objectives 

This thesis aims to focus on the description of DBMC channels and evaluation of the 

system performance. Future studies such as improving the channel model of the MC 

system, enhancing the reliability of the MC system and investigating the influence 

between two receivers in a broadcast MC system are also the main objectives of this 

thesis. 

 The detailed description of objectives of this thesis are shown as follows: 

 Performance evaluation. A PTP DBMC system is designed where the 

molecules are used as the information carrier to transmit information between 

TX and an absorbing RX. By investigating characteristics of the propagation 

and communication channels, the system performance with regards to both 

BER and channel capacity are evaluated. 
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 Intersymbol Interference (ISI) analysis. ISI as the main noise is taken into 

account during the theoretical analysis of the MC system. By considering an 

arbitrary length ISI, its effects on BER of the communication channel is 

investigated. 

 Channel model investigation. Modeling the communication channel is one of 

the important parts for system performance analysis. Thus, the investigation 

of the MC model to provide an accurate estimation to the practical scenario is 

also an objective of this work. 

 Reliability enhancement. In order to enhance the reliability of the MC system, 

ECC as a common and efficient technique is employed into the MC system. 

More importantly, considering the limitation in complexity and energy 

budget of the nano-machine, energy consumption due to the introduction of 

the ECCs is also need to be investigated. Through the evaluation of the BER 

and energy efficiency of the coded system, the designer can select the 

suitable codes based on their system design. 

 Broadcast MC channel investigation. Another objective of this research is to 

provide a design of a two-receiver MC system based on a broadcast channel. 

The focus will be on the effect of two-receiver on broadcast MC channel and 

performance investigation. 

1.5 Thesis outline and contributions 

The structure of this thesis with a list of contributions is given as follows: 

Chapter 2:  State of the Art. In this chapter, a review of the existing literature of 

the DBMC system is provided with an overview of the topics of recent research. 

Chapter 3: Point to Point Model of the Diffusion-based Molecular 

Communications System. In this chapter, the PTP DBMC model is provided with a 

description of the characteristics of the propagation and communication channel 

models. The contributions of this chapter are given as follows: 

 The PTP DBMC system is presented with a detailed investigation of the 

propagation and communication channels. In addition, the discussion of the 

influence of parameters on the system performance is also provided in this 

chapter.  
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 Based on different types of TXs and RXs, three communication scenarios with 

the corresponding applications are described. This concept is applied to the 

analysis of the energy consumption that introduced in Chapter 4 and Chapter 

6. 

 An arbitrary length of ISI is introduced when analysing the channel model. 

The closed-form expressions of BER and channel capacity are derived, and 

the effect of the ISI length on the BER is also analysed. 

Chapter 4: Error Correction Codes in PTP DBMC System. The use of ECCs in 

the PTP DBMC system is introduced in this chapter. The system performance is also 

investigated with regards to the BER and energy efficiency. The contributions of this 

chapter are given as follows: 

 For the first time, the implementations of Cyclic-Reed Muller (C-RM) codes, 

Euclidean Geometry Low-density Parity-check (EG-LDPC) codes and Self-

orthogonal Convolutional Codes (SOCCs) are introduced into MC systems. 

 The Adenosine triphosphate (ATP) is used for calculating the energy 

consumption due to the introduction of ECCs. The expressions of energy 

consumption of the encoder and decoder for different ECCs are also 

presented. 

 The performance of the coded system is also investigated with regards to the 

BER and energy efficiency. Moreover, the performance is compared with the 

uncoded system and the system that employs Hamming codes. 

 Considering the system with different communication scenarios, such as the 

communication between nano-machine and macro/micro-machine, the 

energy consumption for the nano-part is also investigated. 

 Finally, the critical distance, a measure of the transmission distance, at which 

the use of ECCs becomes beneficial is analysed under different 

communication scenarios.  

Chapter 5: A Refined PTP DBMC Model. In this chapter, a theoretical analysis of 

the refined model (R-Model) for PTP DBMC is presented. In addition, the 

simulation process of random walk of information molecules for the three-

dimensional (3D) PTP DBMC system is also described in this chapter. The 

contributions of this chapter are given as follows: 
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 A comprehensive analysis of the uncoded system performance in terms of 

BER is presented by introducing the refined model into the system analysis. 

This analysis includes an explanation, as to the issue of dependence along 

with a full proof from first principles of 3D diffusion.  

 An arbitrary ISI length is introduced during the theoretical derivation to 

maximize the generality of the analysis. 

 Two popular approximations of Binomial distribution – the Poisson 

distribution and the Normal distribution are considered in this chapter, such 

that the BER expressions for both approximations are provided. The Root 

Mean Squared Error (RMSE) is also used as a condition to determine which 

approximation is more suitable for a proposed PTP DBMC system. 

 Finally, using those BER results obtained from theoretical analysis, the 

comparisons between approximations and also between the previous model 

(P-Model) and the R-Model are shown. The simulation results are also 

produced for verifying the accuracy of these channel models. 

Chapter 6: A Revised Look at ECCs in PTP DBMC Systems. In this chapter, the 

use of ECCs in the PTP DBMC system is re-investigated by introducing the R-

Model into the system analysis. The contributions of this chapter are given as 

follows: 

 The R-Model that introduced in Chapter 5 is used for analysing the coded 

system to provide an accurate performance estimation. 

 The system performance with respect to both BER and energy efficiency is 

analysed and compared with the system performance obtained in Chapter 4. 

The use of the R-Model is fully analysed in both uncoded system and coded 

system. 

Chapter 7: The Effect of Two-receiver on Broadcast DBMC Systems. In order to 

study the effects of absorbing receivers on system performance, the broadcast MC 

channel is simulated and investigated in this chapter. There, the system with two 

absorbing receivers is introduced, one of the receivers is considered as a target 

receiver (RT), and another receiver is considered as an interfering receiver (RI). The 

effects of RI on RT can be clearly shown through the analysis of the performance of 
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the target link (the communication link between TX and RT). The contributions of 

this chapter are given as follows: 

 A two-receiver broadcast communication channel with a 3D diffusion-based 

propagation model is simulated for the MC system with absorbing receivers. 

One of the main parameters in the performance analysis, capture probability, 

can be obtained via simulation. 

 For the first time, the impact of the introduction of the RI with respect to its 

relative location is considered by analysing the BER and channel capacity of 

the target communication link.  

Chapter 8: Conclusions and Future Research. In Chapter 8, a summary of this 

thesis with an overview of the future research topics in this area is provided. 

 Overall, Chapter 3 focuses on the study of the performace of an un-coded 

PTP DBMC system and three communication scenairos and related application are 

introduced. Chapter 4 focuses on the study of reliablility enhancement, where the 

reliability of the PTP DBMC system is improved by introducing the ECCs. In order 

to provide an accurate estimation of system performance, in Chapter 5, an accurate 

communication channel model by avoding the unrealistic assumption is presented. 

There, an accurate channel model, R-Model, is provided by considering the 

dependence between the received molecules due to one transmission. In addition, the 

performance of an un-coded PTP DBMC system is re-analysied by considering the 

R-Model. Chapter 6 gives a revised look of the ECCs in PTP DBMC system by 

introducing the R-Model into system analysis. Considering the limited studied on 

broadcast model in DBMC system, in Chapter 7, a two-receiver broadcast system 

model is established and the analysis of the interference between receivers is also 

investigated. 

All the programming work related to this thesis are completed by using the 

MATLAB simulation platform. 
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Chapter  2  

State of the Art 

2.1 Introduction 

MC, as a promising area has received more and more attention in recent years, and 

as such the research into MC, from both theoretical and practical aspects rapidly 

increases. In this chapter, an overview of MC and the related literature is presented. 

The review focuses on four main areas that are organised as follows. In Section 2.2, 

the architecture of the MC system is presented. The description of selected MC 

mechanisms is detailed in Section 2.3. In Section 2.4, a survey of previous related 

work is shown. Finally, the potential application areas of MC are provided in Section 

2.5. 

2.2 Architecture of the MC system 

A communication system aims to transmit information across space and time [16]. 

To achieve the communication process, a carrier signal needs to be generated and 

released from TX. Then, this signal propagates through the channel to RX where the 

original information can be decoded. Thus, for any communication system, it should 

include three main components: TX, the communication channel, and RX. A basic 

block diagram of this conventional communication system is shown in Figure 2.1. 
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Figure 2.1: Block diagram of a basic conventional communication system. 

2.2.1 Components in the MC system 

In the architecture of the MC system, the three main elements can also be identified 

as: TX, communication channel, and RX. In this sense, there is no difference to a 

conventional system, but: 

TX: is a bio-nanomachine such as a modified living cell, a biomedical 

implant or a biological nano-robot, that is able to synthesise, store, and release the 

information molecules. The information molecules are the molecules that carry 

information and propagate from TX to RX. As an information molecule, it should 

have three characteristics: firstly, it will have a predefined external structure which 

will be easily recognised at RX. Secondly, it should be chemically stable and be able 

to distinguish between the environment noise and interference molecules. Thirdly, 

the kind of molecules if needed should move independently in the medium. Finally, 

they should be easily eliminated to avoid any side-effects for the decoding process in 

RX. In nature, endocrine hormones and DNA molecules [29] are the candidates of 

the information molecule. Another purpose of TX is modulating the information 

using molecules. Many modulation techniques for the MC system have been 

proposed and they will be discussed in Section 2.4. At the final stage, the 

information molecules will be released from TX. The releasing process is similar to 

the exocytosis process that is shown in Figure 2.2(a). There, the information 

molecules are carried by the vesicles that are located in TX. These vesicles fuse with 

the surface of TX, and then the information molecules are released into the medium.  
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Plasma membrane

Transport vesicle carrying 
information molecules

Plasma membrane

The vesicle fuses with the plasma 
membrane, and the information 

molecules are released

The information molecules are captured by the surface 
receptor and the plasma membrane forms a transport 
vesicle to take the information molecules into the cell

Transport vesicle carrying 
captured information molecules

(a) (b)  
Figure 2.2: (a) Exocytosis process and (b) endocytosis process. Adapted from [30]. 

In addition, for a complex TX, it may contain encoding techniques to enhance the 

reliability and security of the transmission information.  

Communication channel: In MC, the transmission process can be realized 

by using different propagation mechanisms. The propagation mechanism provides a 

path for transmitting information molecules from TX to RX. Different propagation 

mechanisms may be used for different applications. A detailed description of three 

main mechanisms is discussed in Section 2.3. 

RX: is another bio-nanomachine. It aims to capture the information molecules 

from the surrounding area and then recover the original information. Corresponding 

decoding techniques to the ones used in TX may be included. The capturing process 

of RX is similar to the endocytosis process shown in Figure 2.2(b). On the surface of 

RX, there are receptors to recognise a specific type of molecule, and this kind of 

receptors is common in most of the biological cells. When the information molecules 

are captured by RX, they need to be demodulated and decoded if needed. The 

demodulation process can be achieved by measuring the concentration or number of 

captured information molecules and after these processes, the original information 

should be recovered. 
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2.2.2 Comparison between the MC system and the conventional 

communication system 

The MC system shows different characteristics compared with conventional 

communication systems. A summary of main differences between the MC system 

and the conventional communication system is given in Table 2.1.  

Table 2.1: The differences between the MC system and the conventional 
communication system. 

              Communication           
system 

Features 

Conventional 
Communication 

MC 

Information type [31] Electronic and optical Chemical  

Information carrier [1] 
Electromagnetic, 

acoustic or optical waves 
Molecules 

Devices [31] Electronic device Bio-nanomachine 

Propagation speed [31] Light (3×108 m/s) 
Extremely low for 

DBMC (a few μm/s) 
Propagation range [32] Long (m ~ km) Short (nm ~ m) 

Propagation environment [31] Airborne and cable  Aqueous 

Noise source [1] 
Electromagnetic fields 

and signals 
Molecules in 

medium, diffusive 

Behaviour of receivers [32] 
Decoding digital 

information 
Biochemical reaction 

Energy consumption [31] High Extremely Low 

The detailed comparisons are as follows [1], [33], [19]: 

 Unlike conventional communications that utilise electromagnetic, acoustic or 

optical waves as the information carrier, in the MC, the information is 

encoded using molecules. Thus a chemical signal is carried by molecules to 

transmit from TX to RX. 

 In the MC system, TX and RX are biological nano-machines. In contrast, the 

artificial devices, such as electronic circuits are used in the conventional 

communication system. 

 The propagation speed of electromagnetic waves is much faster than the 

speed of propagation in pure diffusion of molecules. However, it is possible 

to increase the propagation speed by introducing flow into the environment 
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[16]. The transmission of molecules is a physical process. Thus, they are 

easier to be limited by the environmental conditions (e.g. temperature). The 

propagation speed of the MC is also dependent on the different propagation 

mechanisms used. In addition, due to the unpredictable movement of 

information molecules, the time of the molecules reach the receiver is 

different, and information molecules may degrade in the environment, thus 

they may not be received [19].  

 Noise in conventional communications can be defined as an undesired signal 

overlapping with the information signal. In MC, the undesired signal (like 

molecules in the environment or released by other TXs) is also one of the 

reasons leads to an incorrect detection at RX. Another type of noise is the 

interaction between the information molecules and the molecules existing in 

the environment. This undesired reaction may modify the structure of the 

information molecule. Thus, they can not be recognized by RX. In addition, 

different temperatures of the environment will introduce different levels of 

stochastic thermal motion of bio-nanomachines and information molecules 

[34]. This thermal noise can affect the accuracy of the detection. 

 Electrical power such as batteries, electromagnetic induction are used to 

drive conventional communication processes. However, in the MC, most of 

the communication processes are chemical processes which lead a lower 

energy consumption compare with the conventional communication. 

Furthermore, the materials and processes from the biological system can be 

reused to increase the energy efficiency of the MC [31]. 

2.3 MC types 

Based on different propagation schemes, the MC types can be divided into three 

categories [1], which are the walkway-based MC [35], [36], [37], the advection-

based MC [21] and the diffusion-based MC [23], [38], [39]. Among these schemes, 

the walkway-based and the diffusion-based propagations are the least and the most 

spontaneous process, respectively.  

 In walkway-based MC, the information molecules propagate through active 

transports. For this type of MC, the pathway between TX and RX is pre-designed. An  
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Figure 2.3: Walkway-based MC using molecular motors transport mechanism. 

Adapted from [30]. 

example is using molecular motors as the guide and transport mechanism for 

transmitting information molecules [36], [40], [41]. As shown in Figure 2.3, the 

information molecules are carried by molecular motors moving along a single 

protein filament chain which is made up of microtubules. There is another approach 

for this type of MC, where the information molecules are carried by microtubules 

and propelled by molecular motors and will be absorbed on a flat surface between TX 

and RX. This type of MC is normally used for intra- or inter-cell communications.  

For advection-based MC, the molecules propagate through diffusion in a 

fluidic medium. It can be realized by using carrier entities whose motion is 

constrained by specific paths. The use of gap junction [42], [43], [44] (see Figure 

2.4(a)) and self-propelled microorganism [45], [46], [47] (e.g. bacteria, see Figure 

2.4(b)) as the transport mechanisms are two examples of the advection-based MC. 

The gap junction channel can transmit the diffused information molecules from TX to 

RX through contacted cells. In addition, selectivity and permeability are two 

properties of the gap junction channel, which can be used for realizing future 

functionalities, like filtering and switching. For a bacteria channel, the information is 

inserted into bacteria in TX. The bacteria is guided towards to its location by 

attractant molecules that are released from RX. This channel is designed based on 

chemotaxis phenomenon where the bacteria follow the gradient of attractant 

molecules, and once the bacteria reach the capturing area of RX, the bacteria with 

information can be detected and the original information can be obtained. 
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TX RX

TX RX

(a)

(b)  
Figure 2.4: Advection-based MC (a) gap junction channel transport mechanism (b) 

bacteria transport mechanism. Adapted from [30]. 

 
Figure 2.5: MC by the free diffusion of molecules, DBMC. 

In DBMC, the information molecules propagate through their spontaneous 

diffusion in the medium [1], [48], [19]. This approach is illustrated in Figure 2.5, 

where the information molecules are emitted by TX and then freely diffuse in the 

medium. The arriving information molecules will be detected and decoded at RX, 

after that, the original information can be recovered. 

The focus of this thesis is on DBMC, the reasons for this choice are detailed 

below. Amongst the above MC types, the diffusion of molecules is considered as the 

most basic method to describe the molecular propagation process. In the molecular 

motor transport mechanisms, the diffusion is considered as an unavoidable 
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propagation effect [41]. The bacteria in the bacteria transport mechanism are also 

subject to a random walk with the same rules of a biased molecular diffusion [47]. 

Furthermore, the DBMC exist widely in nature. For example, calcium signalling 

among cells [21], the synaptic transmission between neurons [49] and the pheromone 

communication between mammals [50]. Furthermore, unlike the molecular motor 

and bacteria transport mechanism, the free diffusion of molecules is not restricted to 

the types of the carrier.  

2.4 Previous work on DBMC 

A basic structure of the DBMC system is illustrated in Figure 2.5. It can be seen that 

the transmission process can be divided into three phases: the first phase is the 

emission of the information molecules. In this phase, the information molecules are 

released into the propagation medium. The second phase is the diffusion of the 

information molecules, where the information molecules spontaneously diffuse in 

the medium without using chemical energy. The last phase is the reception of 

information molecules at the receiver. The receiver used here is assumed as a perfect 

absorbing receiver.  

In this section, a review of the existing literature and achievements of DBMC 

are presented. These achievements are separated into two aspects: firstly, the 

theoretical research on DBMC. Secondly, the implementation research on DBMC. 

2.4.1  Theoretical research on DBMC 

Although MC has existed in nature for billions of years, the study of MC in the 

communication engineering context began in 2006 [51]. Since then, the research into 

engineering MC systems has a rapid increase. The MC literature in theoretic analysis 

can be categorized into four parts: modulation techniques, channel models, types of 

receiver, simulation tools of MC and other related work. Each one will be presented 

in turn. 

A. Modulation techniques 

Modulation is the process that inserts the information signal into a carrier 

signal which can be physically transmitted in the channel. Different modulation 

techniques can be achieved by modifying one or more properties of the carrier signal.  
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Figure 2.6: Modulation techniques for (a) conventional communications and (b) MC. 

Adapted from [16]. 

The common digital modulation schemes used in the conventional communication 

system are Phase Shift Keying (PSK), Frequency Shift Keying (FSK), Amplitude 

Shift Keying (ASK), and Quadrature Amplitude Modulation (QAM).  

In MC, molecules are used as the carrier signal. Thus, the information can be 

modulated based on different numbers of molecules (or the concentration of 

molecules if the number of released information molecules is very large), different 

types of molecules and different release times.  

Figure 2.6(a) and (b) show the modulation of binary data (0 and 1) for the 

conventional communication system and the MC system, respectively. 

One of the first modulation schemes for MC was shown in [52]. In this work, 

the author presented two concentration-based modulation techniques for DBMC. In 

the first technique, ‘1’ and ‘0’ are presented as the ‘presence’ and ‘absence’ of a 

particular kind of molecules. In this case, the information is demodulated by 

comparing the concentration of the received signal with a pre-designed threshold 

level. If the concentration of the received signal is equal or larger than the pre-

designed threshold, the intended symbol is demodulated as ‘1’, otherwise 

demodulated as ‘0’. This modulation technique is similar to the On-off Keying 

(OOK) that is used in a conventional communication system. In the second 
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modulation technique, the concentration of the information molecules is modulated 

based on the varying amplitude and/or frequency of a sinusoidal signal.  

Two other modulation techniques called Concentration Shift Keying (CSK) 

and Molecule Shift Keying (MoSK) for DBMC were proposed in [25]. In CSK, the 

information is modulated by different numbers of the information molecules. For 

example, for bit ‘0’, n0 information molecules are released from TX, and for bit ‘1’, 

n1 molecules are released. At RX, the intended symbol is demodulated as ‘1’ if the 

number of received information molecules during a time slot exceeds a threshold, 

otherwise, demodulated as ‘0’. This modulation technique can be extended and used 

to represent x bits per symbol by using 2x different values for the number of 

information molecules that are released at TX with 2x – 1 threshold levels. The OOK 

is the simplest case of CSK. For the MoSK modulation scheme, the information is 

represented by using different types of molecules, for x bits information per symbol, 

2x types of molecules are needed. TX releases one type of information molecules at 

the start of the time slot, and at RX, the information bit is demodulated based on the 

type and also the concentration of the received information molecules during a time 

slot. If the concentration of this type molecules exceeds the threshold, the 

information bit is demodulated based on the mapping table of the bit sequence and 

the type of information molecules. Otherwise, an error occurs if the concentration of 

this type of information molecules did not exceed the threshold or other types of 

information molecules exceed the threshold. 

Pulse Position Modulation (PPM) [53] is another modulation technique based 

on the emission time. In PPM, the time slot is divided into two equal slots, and 

transmission of bit ‘1’ and ‘0’ are represented by a pulse released in the first or 

second half, respectively.  

In [54] and [55], two special modulation techniques were proposed for the 

use of the intra-body MC system and the on-chip bacterial communication system. 

Aldohexose isomers, as effective information molecules are considered for the use in 

the intra-body MC system. Based on this idea, the authors in [54] proposed Isomer-

based CSK and Isomer-based MoSK. Furthermore, a new modulation technique 

called Isomer-based Ratio Shift Keying was introduced, where the information bits 

are modulated based on the ratio of two types of isomers. The authors in [55] 
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presented another release timing based modulation technique called Time-elapse 

Communication (TEC), where the information is represented as time units to 

transmit in the time interval between two consecutive transmission pulses. TEC is 

normally used in the on-chip bacterial communication system. 

Two ISI-mitigating modulation techniques were presented in [56] and [57]. 

In [56], the authors proposed Molecular Transition Shift Keying (MTSK) 

modulation technique, where the ISI can be mitigated by combining the CSK and 

MoSK modulation techniques. In this scheme, two types of information molecules 

are used for binary transmission, the choice of which type should be used is based on 

the current and previously transmission bits. In [57], another ISI-mitigating 

modulation technique called Molecular Array-based Communication (MARCO) was 

presented. The design of this scheme is based on the transmission order of the 

information molecules from TX. For a binary version, two types of molecules ‘A’ 

and ‘B’ are used, to transmit ‘0’, TX releases the information molecule, ‘A’, followed 

by information molecule, ‘B’. Conversely, to transmit ‘1’, the TX releases the 

information molecule, ‘B’, followed by information molecule, ‘A’. 

B. Channel models 

Channel modelling is one of the most basic elements when analysing the 

communication system. The first and also the most popular channel model of DBMC 

was introduced in [58], where a time slotted CSK channel was represented as a 

binary symmetric channel. In this work, a closed-form expression for channel 

capacity has also been derived. However, this research did not consider the influence 

of ISI. The work in [59] shown the model that the current transmitted symbol can be 

affected by the previous symbols. In their work, the channel was modelled as a 

Markov chain. Other works that considered the effect of ISI on the system 

performance were also shown in [60] and [61]. In [60], a Z-channel was used into 

the DBMC system. Moreover, in this work, the author considered a simple ISI model, 

where the current symbol can only be effected by the first of the previous symbols. 

However, in [61], a more general ISI model was applied to an additive noise channel, 

where the noise satisfies a Poisson-Binomial probability mass function. In [62], the 

degradation of molecules during the propagation process was considered in the CSK-

based MC channel, and the channel capacity with the different degradation rates was 
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also derived. Considering the limitation of the power supply of the DBMC system, 

an energy model for CSK-based channel system was proposed in [23]. Based on this 

model, an optimal communication strategy which can maximize the channel capacity 

has been presented. 

Another kind of channel model for DBMC was built based on the continuous 

solution of the partial diffusion equation [63]. One of the research considering this 

model was presented in [17], where the attenuation and delay function of the 

transmission signal were also derived by employing the circuit theory for the 

analysis of the transmission, diffusion, and reception processes. Furthermore, an 

expanded work of [17] was given in [39], where a more realistic model was 

proposed with a detailed mathematical analysis of the noise model. 

As shown in Table 2.1, the propagation speed of MC is extremely slow, and 

applying flow into the transmission is an efficient way to increase the speed of 

propagation, related research was shown in [64], [65], [66]. A release time 

modulation based model was presented in [64]. In that work, an additive inverse 

Gaussian noise was considered during the channel analysis, and the lower and upper 

band of the channel capacity was derived based on this noise model. 

C. Types of receiver 

The receiver used in a DBMC system can be classified into two broad 

categories: the absorbing receiver and the non-absorbing receiver. For an absorbing 

receiver, there are several receptors on its surface, the information molecules can be 

captured by these receptors and then form chemical bonds. Thus, the detection 

process inside the receiver can be triggered. These information molecules are 

absorbed and destroyed after dissociation [67]. The literature [23], [25], [68], [69] 

investigated the DBMC system with this kind of receiver. For a non-absorbing 

receiver, the receptors on the receivers’ surface are used for sensing the concertation 

of the arrived information molecules at a specific time, and these arrived information 

molecules can not be absorbed by this kind of receiver. The research in [70], [71] 

used this type of receiver. 

D. Simulation tools development 

The development of simulation platforms is such an important aspect for 

investigating the MC system. In DBMC, there have been many works focus on this 
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area. Until now, the Nanoscale Network Simulator (NanoNS) developed in C++ [72], 

N3Sim developed in Java [73], the BINS/BINS2 developed in Java [74], [75], [76], 

the Molecular Communication Simulator (MUCIN) developed in Matlab [77], have 

been proposed for analysis the DBMC system. Among these, the NanoNS, the 

BINS/BINS2 and the MUCIN support 3D diffusion. 3D simulation for the N3Sim is 

only available under specific conditions. 

E. Other research 

Coding techniques are used for the conventional communication system to 

control and correct errors that were introduced during the transmission process. Thus, 

this technique is also considered as an efficient way to enhance the performance of 

DBMC systems. Investigating the coding techniques in DBMC is one of the main 

objectives of this thesis. In Chapter 4 and Chapter 6, the use of ECCs in a DBMC 

system is introduced with the consideration of system performance and energy 

consumption. The results are shown in Chapter 4 and Chapter 6. The previous works 

in this area are also presented and discussed in Chapter 4. 

A broadcast channel is commonly used in the conventional communication 

system. Due to the particular characteristics of the absorbing receivers used in the 

DBMC system, in this thesis, the influence of these receivers in the broadcast 

DBMC system is also investigated. The related literature is covered in Chapter 7. 

2.4.2 Practical research on DBMC 

Compared to the studies of theoretical analysis of DBMC, research on the 

implementation of DBMC or MC is rare. One of the research on practical 

implementation of the MC system was shown in [78], where, the author developed a 

natural system to model the intercellular communication mechanisms. More research 

considered cell-to-cell communication was also presented in [79] and [80]. However, 

these systems were designed for one information transmission. In [81], the authors 

presented a system which can transmit an information sequence. In their work, DNA 

was considered as an information carrier, and by packaging the DNA message inside 

a bacteriophage, the information sequence can be transmitted from TX to RX. 

The authors in [82] developed the first tabletop MC system where short text 

messages can be transmitted over the free air. In this system, a spray mechanism 
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controlled by electronic circuits was used as TX. At RX, the message signal can be 

detected by an alcohol metal-oxide sensor. This work then was further developed 

and can be applied in infrastructure monitoring system [83]. Furthermore, in [84], a 

Multiple-Input Multiple-Output (MIMO) MC system was also developed based on 

[82]. 

2.5 Application areas of MC and nanonetworks 

MC has several potential applications in the medical, healthcare, the industrial, the 

environmental, the military and the communication engineering fields. A general 

overview of these applications is given in this section. 

Applications in the medical and healthcare fields are the most important 

aspects that can be improved by MC [85], [86], [87]. Such MC system can be 

constructed using a group of nano-machines which can monitor the health conditions 

and perform a specific therapy by communicating with each other. The envisaged 

applications can be shown in the targeted drug delivery system [88], the healthcare 

monitoring system and the immune support system. In targeted drug delivery system, 

the drug molecules are encapsulated in a nano-capsule and propagated in the medium. 

This nano-capsule can be delivered to the target location under the guiding of the 

nano-machine located at the target side, and then the drug molecules are released. 

The targeted drug delivery system can reduce the influence of drugs on non-target 

areas. In healthcare monitoring system, a set of nano-sensors are placed at the target 

area in the body, and the information of target area can be delivered into another 

nano-robot to give a timely treatment, i.e. releasing drug molecules. On the other 

hand, these nano-robots can also communicate with macro/micro-machines which 

located outside of the body. Thus the information can be received by the observer. 

The immune system can be composed by several nano-machines, these nano-

machines are injected into the body to protect the organism and destroy pathogens. 

Each nano-machine in the immune system has a specific task, for example, some of 

them can be used for finding pathogens, and some of them can destroy the pathogens. 

MC networks may also be used in industries to develop new materials, 

improve the manufacturing processes and control the quality of food. MC networks 

in advanced fabrics and materials could provide improved functionality, for example, 
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antimicrobial and stain-repeller textiles [89]. In addition, the nano-actuators have 

been used to improve the airflow in smart fabrics by the communication between 

nano-actuators and nano-sensors.  Food and water quality control techniques can also 

take advantages of nanonetworks. The little bacteria and toxic substances in food and 

water cannot be detected using traditional sensors. However, they can be detected by 

using optical nanosensors [90]. Thus the quality of food and water can be protected. 

Since nanonetworks are bio-inspired, they also can be applied to 

environmental fields. One of the applications is using nanonetworks into the OOK 

biodegradation process, where the nano-actuators can be used to detect and mark 

different materials. The MC can also be used for monitoring environments 

contaminated by toxic substances [31]. To achieve this goal, the bio-nanomachines 

need to be integrated into macro- or micro-scale devices to form a large-scale 

biosensor network [91]. Like the food and water quality control system, air pollution 

can also be monitored and improved by connecting nano-filters to remove harmful 

materials from the air [92]. 

Another remarkable application of nanonetworks can be found in the military 

field. It shows that the nanonetworks can be used on the battlefield in order to detect 

aggressive chemical and biological agents or monitor the performance of the soldier 

[93]. 
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Chapter  3  

Point to Point Model of the Diffusion-

based Molecular Communications 

System 

3.1 Introduction and related work 

The main focus of this chapter is to analyse the point to point (PTP) model of the 

diffusion-based molecular communications (DBMC) system by theoretical analysis 

of the propagation and communication channel models. This model contains only 

one transmitter and one receiver. It is also the model used for the future analysis in 

Chapter 4. 

In the last few years, several studies of channel models and the MC system 

have been presented. The PTP DBMC model has been introduced first by Atakan 

and Akan [58], where the system performance with regards to Bit Error Rate (BER) 

and channel capacity had been analysed. After that, the authors in [17] illustrated a 

basic design of the physical end-to-end DBMC system where the emission process, 

the propagation process and the reception process of the information molecules have 

been detailed. Then, this work had been extended in [94] with the consideration of 

channel memory and noise. In [25] and [54], the authors focused on the modulation 

techniques in MC systems and provided a theoretical analysis of the system 

performance. Furthermore, some simulation platforms of MC systems had also been 

presented. In [72], a simulation platform, Nanoscale Network Simulator (NanoNS), 

that focuses on the physical properties of the channel and the number of received 
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molecules with respect to time was proposed. In [73], the N3Sim simulation 

framework had been proposed, where the molecular diffusion process is simulated 

by employing the Brownian dynamics of molecules in a fluid medium. The 

propagating molecules can go in and go out of RX without any resistance. The 

authors in [77] further expanded the functionality, presenting an end-to-end 

molecular communication simulator. This simulator can analyse the MC system 

under different environments and modulation schemes. 

In this work, the information molecules are used as the information carrier to 

exchange information between the transmitter (TX) and the receiver (RX). These 

information molecules move independently and do not interact with each other. The 

modulation technique used here is the On-off Key (OOK) modulation scheme. It 

represents the information data as the presence or absence of a molecule signal that 

can be generated by using a specific number of information molecules within TX. 

The communication channel considered here is a memory limited channel, so the 

current symbol can only be affected by a limited number of previous symbols. 

Considering an absorbing RX, the information molecules will be absorbed and 

removed from the environment once they reach the capturing area of RX. Then, the 

information can be demodulated by counting the number of received information 

molecules and comparing to a pre-designed optimal threshold.  

In this chapter, a basic design of the PTP DBMC system is provided with a 

detailed investigation of the propagation and communication models. The closed-

form expressions of the BER and channel capacity is derived as a measure of the 

system performance. Considering an arbitrary length Intersymbol Interference (ISI) 

memory channel, the effect on the BER is also investigated. Furthermore, according 

to different kinds of TX and RX, three communication scenarios are proposed with a 

description of the related applications. 

The rest of this chapter is organised as follows. The design of the PTP 

DBMC system is given in Section 3.2. In Section 3.3, the system performance with 

regards to BER and channel capacity is analysed. The theoretical results and 

conclusions of this chapter are given in Section 3.4 and 3.5, respectively. 
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Figure 3.1: The 3D PTP DBMC system model. 

3.2 The design of the PTP DBMC system 

A basic design of the three-dimensional (3D) PTP DBMC system is illustrated in 

Figure 3.1 where only one TX and one RX are contained in this system. The 

transmitter can be considered as a functional nano-machine, where the information 

molecules can be modulated, encoded and released. The receiver used here is an 

absorbing receiver that was introduced in Section 2.4.1, when the information 

molecules arrive at the capturing area, they will be removed from the environment. 

The transmission between TX and RX can be divided into three processes: the 

emission process, the diffusion process and the reception process, each one will be 

discussed in the next section. 

3.2.1 Communication processes 

The emission process contains two phases which are all completed in TX. In the 

modulation phase, the information is translated into information molecules which 

can be detected by RX. In the second phase, which is called the releasing phase, these 

information molecules are released from TX into a 3D environment. 

After emission from TX, the information molecules propagate in the 

environment via diffusion. The diffusion of information molecules is governed by 
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Brownian motion. During the diffusion process, these molecules move randomly, 

independently and do not interact with each other.  

When the information molecules arrive at the capturing area, they will be 

detected and absorbed by the receptor. Here, the capturing surface is considered as a 

sphere which has a radius the same as RX. Within RX, the received information 

molecules will be decoded and the information sent at the start of TX can be 

recovered. This is known as the reception process. 

3.2.2 Communication scenarios 

Dependent on different types of TX and RX, three different communication scenarios 

are proposed: Scenario 1, a nano-machine communicates with a nano-machine, 

denoted as nano-to-nano machine (N2N) communication; Scenario 2, a nano-

machine communicates with a macro/micro-machine, denoted as nano-to-

macro/micro machine (N2M) communication and Scenario 3, a macro/micro-

machine communicates with a nano-machine, denoted as macro/micro-to-nano 

machine (M2N) communication. 

One of the applications that involves all three communication scenarios is the 

intra-body health monitoring system where the communication links are based upon  

the molecular diffusion process. An example is shown in Figure 3.2 which illustrates 

the simplified structure of an intra-body nano-network that may comprise two sizes 

of machines. A nano-sensor or nano-robot may be present, which is essentially a 

device whose components are all at the scale of a nanometre, for example targeted 

surgery sensors [95]. Also present may be a macro-machine which is manufactured 

using traditional micro-scale components, such as those found in micro-electro-

mechanical systems (MEMS) [1]. For example, the macro-robot used in drug 

delivery mechanisms [96]. 

In drug delivery systems, a set of nano-robots acting as beacons located 

around the body, can transmit information to guide macro-scale drug delivery robots 

working around human blood vessels [97], [98]. Conversely, there might be 

applications like a macro-machine which acts as the cardiac pacemaker and needs to 

communicate with nano-robots. This kind of macro-machine is not designed to be  
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Figure 3.2: The communication scenarios of the intra-body nano-network. 

mobile and most likely found on (or just under) the skin. Through emitting the 

information, the nano-robots can be awakened and get ready for operation.  

It has been claimed that the nano-machine will most likely have to work in 

the nW range [99], whilst the macro-machine are effectively unconstrained in 

comparison.  

In this thesis, three communication scenarios are considered using the same 

propagation and communication channel models which are introduced in the 

following sections. 

3.2.3 Propagation model 

In Section 2.3, three different MC types were described based on different 

propagation mechanisms. They are the walkway-based MC, the advection-based MC 

and the diffusion-based MC. For the first type, the information molecules propagate 

through a pre-designed pathway between TX and RX, and this pathway can be 

designed by using carrier substances, like molecular motors. In the advection-based 

MC, a fluidic medium has been used, and its flow can guide the information 

molecules propagation. Finally, for the diffusion-based MC, the information 

molecules propagate through the medium spontaneously. The focus of this thesis is 

towards the diffusion-based propagation model. 
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Considering a 3D PTP DBMC system, which is shown in Figure 3.1, the 

information molecules move independently, and the propagation of information 

molecules from TX to RX is governed by Brownian motion. There is the possibility 

that the information molecule escapes absorption by RX, this is called the survival 

probability Psu(d, t). This probability with time t satisfied the backward diffusion 

equation: 

 su
su

2( ) ( ),P d,t D P d,t
t

  


 (3.1) 

where ∇2 is the Laplace operator, d is the transmission distance between the centers 

of the TX and the RX, in μm, t is the transmission time, in s, and D is the diffusion 

coefficient, in μm2s-1. The value of D depends on the Boltzmann constant, the 

absolute temperature, the viscosity of the solution and the hydrodynamic radius of 

the information molecule. The initial condition and the boundary conditions of the 

above equation are: 

  su 0 1,  > ,P d, d R   (3.2) 

    su su, 0 and , 1 ,P d R t P d t t      (3.3) 

where, R is the radius of RX.  

Exploiting radial symmetry, the solution to (3.1) can be found at all times t: 
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su , 1 erfc ,    >

2
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d Dt
 
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 (3.4) 

where erfc is the complementary error function. 

Here, the capture ability of RX is much more important than the survival 

ability of the information molecule. So the capture probability, Pca(d, t), can be 

obtained by: 

      
ca su, 1 , erfc ,   >  

2
d RRP d t P d t d R,  t > 0

d Dt
 

    
 

 (3.5) 

Figure 3.3 shows the capture probabilities for different transmission distances. 

The results indicate that the capture probability increases rapidly during a short time 

duration, and the values become stable after long time duration. Furthermore, the 

shorter the distance, the higher the capture probability is for a given time. 
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Figure 3.3: Capture probabilities with time for different transmission distance d = {6, 

10, 15, 20}μm, R = 5μm and D = 79.4μm2s-1. 

3.2.4 Communication channel model and arriving model 

In agreement with the work in [23], the communication channel considered here is 

assumed to be a binary channel. The transmitted information is represented by a 

sequence of binary symbols and one symbol in each time slot, and the duration of 

each time slot is denoted as ts. The modulation techniques used here is the OOK 

modulation scheme, for example, ‘1’ represents a specific number of molecules 

released from TX, and ‘0’ represents no molecules released. At RX, if the number of 

received molecules in an intended time slot exceeds a pre-designed threshold, τ, the 

symbol is denoted as ‘1’, otherwise, it is denoted as ‘0’ [25]. During the transmission 

process, errors may be introduced due to the effects of ISI which are caused by the 

remaining molecules from the previously transmitted symbols. Considering a 

memory limited channel with ISI length I, thus the current transmitted symbol can be 

affected by the previous I symbols. 
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Figure 3.4: The transmission and the corresponding reception molecule signals 

within different time slots. 

 The transmission and reception molecule signals in consecutive time slots are 

represented in Figure 3.4. Considering that Ntx information molecules are released as 

an impulse at the start of the current time slot, and the number of molecules received 

among these Ntx molecules during the current time slot, N0, follows a Binomial 

distribution given as [23]: 

  0 tx ca,0~ , ,N N PB  (3.6) 

where Pca,0 = Pca(d, ts). 

If Ntx is large enough, a Binomial distribution can be approximated by a 

Normal distribution, thus: 

   tx ca,0 tx ca,00 ca,0, 1~ .NN P N P PN  (3.7) 

The values of ts for different distance, d, can be selected by the time at which 

60% of the information molecules arrive at RX [23].  

Considering the capture probability shown in (3.5), if t goes to infinity t → ∞, 

the capture probability gives an analytical result that an information molecule can be 

received by RX: 
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According to (3.5) and (3.8), ts can be derived as: 
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where erfc-1 is the inverse complementary error function. 

As shown in Figure 3.4, the transmitted information molecules can not be 

guaranteed to reach RX within one time slot, so the information molecules that do not 

reach RX within one time slot will still exist in the environment and may arrive in 

future time slots.  

By assuming the independence of the number of molecules received in 

different time slots from the same transmission. The number of information 

molecules that were released at the start of the ith time slot before the current one and 

arrive in the current time slot can be denoted as Ni [23]: 
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 (3.10) 

where ηi = Ntx(Pca,i – Pca,i-1), ςi = Ntx(Pca,i(1 – Pca,i) + Pca,i-1(1 – Pca,i-1)). N0,i is the 

number of information molecules absorbed during (0, (i+1)·ts) and N0,i ~ N(NtxPca,i, 

NtxPca,i (1 – Pca,i)), Pca,i = Pca (d, (i+1)·ts) for i = {1, 2, …, I}. 

 Overall, the total number of information molecules received in the current 

time slot, NT, composes the number of received molecules sent at the start of the 

current time slot, and the number of received molecules sent from the start of all I 

previous time slots [100]: 
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where {ac-i, i = 0, 1, 2, ..., I} represents the binary transmitted information sequence 

which includes the current and all previous I symbols. 

 The information is demodulated based on the number of received information 

molecules and the threshold, τ. For a different number of information molecules per 

bit, τ is different and can be selected by searching the minimum BER for τ ∈ [1, Ntx]. 

The condition metric of the demodulation scheme, Tc, can be derived as: 
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3.3 Analysis of the system performance 

In this section, the BER and channel capacity are analysed based on theoretical 

derivation. The closed-form analytical expressions of BER and channel capacity are 

also presented. 

3.3.1 BER analysis 

The description in Section 3.2.4 shows that the ISI can introduce the errors during 

the transmission process. The error occurs when there is a difference between the 

symbol that was sent and received in the current time slot. The error can be 

represented in two cases: firstly, when a ‘0’ is transmitted, but a ‘1’ is received; and 

secondly, when a ‘1’ is transmitted, but a ‘0’ is received.  

Considering the channel with an ISI length equal to I, the error patterns can 

be obtained by the different permutations of the previous I symbols, so the number 

of error patterns is 2I. For each error pattern j, j = {1, 2, …, 2I} is the error pattern 

index. The condition metric, Tc in (3.12) can be rewritten as: 
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where {ac-i,j, i = 1, 2, ..., I} is the binary information sequence of the error pattern j, 

for previous I symbols.  

A. When a ‘0’ transmitted, but a ‘1’ received 

In this case, the error probability for error pattern j, Pe01,j, shows that the 

number of received information molecules exceeds τ, which means Tc,j > 0, so Pe01,j 

can be derived as: 
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where: 
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ptx is the transmission probability of ‘1’ and then the transmission probability of ‘0’ 

is (1 – ptx). αj is the number of ‘1’s in the error pattern j. P(Tc,j > 0) is the probability 

of Tc,j > 0 and Φ(x) is the cumulative distribution function defined as: 

   1 1+erf ,
2 2

xx       
  

 (3.16) 

where erf is the error function and equals to 1-erfc(x). 

B. When a ‘1’ transmitted, but a ‘0’ received 

In this case, the error probability, Pe10,j can be derived as:  
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where: 
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 Thus, the average BER, Pe can be obtained by: 
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where Pe01 and Pe10 represented as: 
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Table 3.1: Error probabilities for different error patterns for I = 2. 

Table 3.1 gives an example of different error patterns and error probabilities 

when I = 2. 

3.3.2 Channel capacity 

 The channel capacity represents the maximum information transmission rate 

of a given channel. For a discrete channel, it can be computed by maximizing the 

Mutual Information (MI) with respect to the transmission probability of the 

molecular signal. Considering that the binary input and the output of the channel can 

be represented as X = {X1, X2, …, Xk} and Y = { Y1, Y2, …, Yk}. The channel capacity 

of a memory channel, C, can be obtained by finding the maximum value of the MI of 

the channel [101], [102]: 
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where I  is the MI defined as [102]: 
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where H(δ) = – δlog2δ – (1 – δ)log2(1 – δ).  

For a memory channel with an ISI length I, after the Ith symbol, the detection 

of emitted molecular signal will be affected by the I most recent previous signals. 

According to (3.14), (3.17) and (3.19), it can be deduced that the average error 

probability stays constant after the Ith symbol, thus: 

    1 1; ; ,  .i i I IX Y X Y I i k   I I  (3.23) 

Therefore, for a memory limited channel, the channel capacity can be 

simplified as:  
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Thus, by substituting (3.22) and (3.23) into (3.24), the capacity can be 

derived as: 
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3.4 Numerical results 

The numerical results in terms of BER and channel capacity are presented in this 

section. The parameters used in the analysis are also described and analysed. 

3.4.1 Parameters setup 

The theoretical analysis in Section 3.3 shows that BER and channel capacity are 

dependent on the transmission distance, d, the radius of RX, R, the diffusion 

coefficient, D, the number of released molecules per bit, Ntx, and the ISI length I. In 

this section, each parameter will be discussed in turn. 

 Diffusion coefficient, D 

The diffusion coefficient used during the diffusion process is considered 

based on insulin in water at the human body temperature [103]. Based on Stokes-

Einstein equation [104], the diffusion coefficient D can be calculated as: 

 c as6 ,D B T R  (3.26) 

where the Stokes’ radius of insulin Ras = 2.86nm, the viscosity of the fluid υ = 0.001 

kgs-1m-1 and the absolute temperature T = 310K, the Boltzmann constant Bc = 

1.38×10-23 m2kgs-2K-1. Thus, through the calculation, D equals to 79.4μm2s-1.  

 ISI length, I 

As mentioned in Section 3.2.4, the previously transmitted information 

molecules may arrive during the current time slot which causes the ISI. Notice the 

complexity to compute or analyse the system performance when ISI is at infinity. 

Thus, a limited memory channel is considered here with an ISI length I. In order to 

obtain accurate results, the value of I should be taken into account.  

Figure 3.5 shows the BER with number of information molecules per bit for 

different ISI length from 1 to 10 at a given distance and radius of RX, where, d = 

6μm and R = 5μm. As can be seen in Figure 3.5, the longer the ISI length I, the 

higher the BER. It can also be noted that as the ISI length increases considerably, the 

effect it has upon the BER becomes less prominent, i.e. the BER value begins to 

converge. Therefore, choosing I = 10 for analysis the channel is enough to produce 

an accurate result. Therefore, the following results are computed based on a limited 

memory channel with I = 10. 
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Figure 3.5: BER for different ISI length I = {1, 2, …, 10} at d = 6μm, ptx = 0.5. 

 Time slot duration, ts 

ts is another important parameter which can affect the performance of the 

system. The expression of ts is given in (3.9), where the time in which 60% of 

molecules arrive at RX has been used as ts. The advantage of this decision method is 

the value of ts should be different for different transmission distances, d. Thus, it can 

provide an accurate result compare with the method that using a flat ts for all 

transmission distances.  

 Pre-designed threshold, τ 

The value of the threshold used at RX is a pre-designed threshold. It can be 

obtained by searching the minimum BER for a specific Ntx in a range τ ∈	 [1, Ntx]. 

Figure 3.6 show the values of threshold versus number of information molecules for 

d = {6, 8, 10, 12}μm with R = 5μm, I = 10. It indicates that for a fixed value of Ntx, 

the value of threshold decreases as the distance increases.  

Above all, the system performance presented in the following section is 

based on a set of parameters which are shown in Table 3.2. 



 
 

42 
 

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of  molecules per bit ( Ntx )

Th
re

sh
ol

d 
( 

 )

 

 

d = 6m
d = 8m
d = 10m
d = 12m

 
Figure 3.6: The values of threshold with number of information molecules per bit for 

different d. 

Table 3.2: Parameter Setting. 

Parameter Definition Value 
R Radius of the RX 5μm 
d Transmission distance {6, 8, 10, 12}μm 
D Diffusion coefficient 79.4μm2s-1 

Ntx Number of molecules per bit 100~104 
I ISI length 10 

3.4.2 BER and channel capacity 

In this section, the BER and channel capacity of the PTP DBMC system are studied 

in two aspects: firstly, when 0 < ptx < 1 (the BERs when ptx = 1 and 0 are extremely 

low, thus here these two cases have been ignored); secondly, when ptx = 0.5 which is 

also the value that gives the channel capacity (This is proven by the first study). 
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A. 0 < ptx < 1 

The BER and MI for different d and Ntx show in Figure 3.7. The results 

clearly show that increasing the transmission distance leads to a lower MI and higher 

BER. Conversely, the increasing in number of information molecules per bit causes 

an increasing in MI and decreasing in BER. The increase of d causes a decreasing of 

the capture probability at RX, which is known from (3.5). Thus, the number of 

received information molecules and the corresponding threshold also be reduced. 

The reduction of the threshold leads to a more sensitive decoding scheme, which 

means a slightly changes in the number of received information molecules will raise 

the error probability during the decoding process. 

Channel capacity represents the maximum transmission rate that can be 

achieved over the communication channel. Referring to (3.25), the channel capacity 

is selected as the maximum value of MI in a range of ptx, where 0 < ptx < 1.  The MI 

results in Figure 3.7 indicate that with the increasing of ptx, the MI increases first, 

and when it reaches the maximum value, it starts decreases. The maximum MI, 

which is the channel capacity, is obtained when ptx is equal to 0.5.  

The results also indicate that the transmission probability that gives the 

maximum mutual information can not derive the lowest BER. This is because the 

PTP DBMC channel considered here is a non-symmetric memory channel, thus the 

value of ptx that gives the miminum BER and also the maximum channel capacity 

does not exist. This indicates that there is the relationship of restriction between the 

the maximum reliable tranmsission rate and the relability of a given PTP DBMC. 

In order to balance the MI and BER performance, a optimal, ptx can be 

obtained by finding the maximum reliable transmission rate in a range 0 < ptx < 1: 
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Figure 3.7: BER and MI versus ptx for different d and Ntx. 

The maximum value can be obtained by using MATLAB programming. The 

optimal ptx for the system with d = 6μm, Ntx = {500, 2000} and a system with d = 

10μm, Ntx = 2000 are all equal to 0.5. 

B. ptx  = 0.5 

Considering the transmission probability of ‘1’ equals to 0.5. The BER and 

channel capacity with number of molecules per bit for different transmission 

distance d are given in Figure 3.8 and Figure 3.9, respectively. The results indicate 

that as the number of molecules increases, the system performance is getting better 

and it can be reflected in both BER and capacity. On the other hand, for a specific 

number of molecules per bit, the increase in d leads to the increase in BER and 

decrease in capacity, respectively.  
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Figure 3.8: BER with number of information molecules per bit for different d. 
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Figure 3.9: Channel capacity for the DBMC with different d. 
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3.5 Conclusions 

In this section, a basic design of the PTP DBMC system model is introduced with a 

detailed analysis of the propagation and communication models. The concept of 

three different communication scenarios is also proposed in this chapter. 

In this system, the information molecules are released as a pulse at TX, and 

the propagation of information molecules from TX to RX is modeled by Brownian 

motion. When these molecules reach the capturing area of RX, they will be absorbed 

and removed from the environment. At RX, the information is demodulated by 

counting the number of arrived information molecules. This value is compared with 

the pre-designed threshold to determine whether ‘1’ or ‘0’ is sent by TX. Through the 

investigation, the ISI length, number of molecules per bit, and transmission distance 

have a significant influence on a communication system with a fixed diffusion 

coefficient and RX’s radius. The system performance is analysed under the 

consideration of a memory limited channel with an ISI length 10. The theoretical 

results are obtained for both BER and channel capacity which show that the number 

of molecules per bit and the transmission distance has significant effects on the 

system performance. The improvement of the system performance can be achieved 

by increasing the number of molecules per bit or decreasing the transmission 

distance.  
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Chapter  4  

Error Correction Codes in PTP DBMC 

System 

4.1 Introduction and related work 

The reliability of the transmission data is always the major concern for the 

communication system designer. In the conventional communication system, 

employing Error Correction Codes (ECCs) is a fast and efficient way to deal with 

this issue. In this chapter, this idea is taken forward into the MC system, and due to 

the energy limitation of the nano-machine, the energy consumption caused by the 

introduction of the ECCs will also be considered. 

Only a small amount of literature in the area of ECCs applied to MC systems. 

One of the early works that considered ECCs for MC system was presented in [68], 

where the Hamming code as a simple block code was proposed for MC systems. The 

key results in that paper show that the use of Hamming codes can improve the 

system performance. Further work followed in [105], where the author proposed a 

molecular coding distance function that considers the transition probability between 

codewords. The suitable code for MC system can be constructed by using this 

distance function. The authors in [106] focused on the need to introduce simple 

codes due to the issue of energy use. The use of minimum energy codes in the MC 

systems was presented in [107], where the energy consumption can be reduced by 

minimizing the average code weights. These works all present that the employment 

of coding techniques into the MC system can improve the BER performance 

compared to the uncoded system. 
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Here, four ECCs are introduced. Three of them are from block code family, 

they are Hamming codes, Cyclic Reed-Muller (C-RM) codes and Low-density 

Parity-check (LDPC) codes. One of them is from the convolutional codes family 

which is Self-orthogonal Convolutional Codes (SOCCs). A brief review of each 

code is given in the following paragraphs. 

Hamming codes, as the first optimum class of linear codes devised for error 

correction, have been widely used in the conventional communication systems [108]. 

Although these simple block codes can only correct a single error and not powerful 

codes for the conventional communication system, they are easy to encode and 

decode and very efficient in terms of the energy budget for the MC system. Here, the 

Hamming codes, as the most basic coding techniques are employed into the MC 

system and also provided as a comparison. 

RM codes [109], [110] are a class of linear codes over a Galois Field of two 

(GF(2)). In this work, the RM codes are constructed as cyclic codes to show it is also 

a subset of Bose, Chaudhuri and Hocquenghem (BCH) codes. This kind of RM 

codes is denoted as C-RM codes which can be easily encoded and decoded using the 

shift-register encoder and majority logic decoder, respectively. From the perspective 

of energy, the main advantage of C-RM codes is that the encoder is simpler than the 

original RM codes, thus may hold benefits for the applications above [111], [112] 

[113].  

LDPC codes have an extensive taxonomy [114-117], to be in a large scale it 

can be branched into either Random or Structured LDPC codes. The former are 

sometimes known as Gallager or Makay Random codes [114], [116]. Based on 

different structures of LDPC codes, the latter type can be divided into Euclidean 

Geometry LDPC (EG-LDPC) codes and Projective Geometry LDPC (PG-LDPC) 

codes. Several advantages over Random LDPC codes are shown in EG-LDPC and 

PG-LDPC codes, such as the existence of several decoding algorithms (cyclic or 

quasi-cyclic), a simpler decoding scheme and the ability to extend (or shorten) the 

code in order to adapt to an application [118], [119], [120]. It has been shown in 

[117] that both EG-LPDC codes and PG-LDPC codes have almost identical error 

performance. Furthermore, a comprehensive account of the implementation of a 
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cyclic EG-LDPC code has been shown in [121] such that in this work, the focus will 

be placed on one specific construction, namely the cyclic EG-LDPC code.   

SOCCs is a kind of convolutional code which has the property of being easy 

to implement, thus satisfying one of the key design requirements, simplicity [122], 

[123]. The further motivation of this study is that this kind of convolutional code has 

been shown to have an equal, or superior, performance to block codes in low cost 

and low complexity applications. Examples can be found detailing their 

competitiveness in practical applications [124-127]. 

The contributions of this work are that for the first time, the implementations 

of a C-RM code, an SOCC and an EG-LDPC code are shown for use in the MC 

system. In addition, the overall complexity of the encoder and decoder circuits such 

that the amount of energy required is taken into account. The critical distance [128], 

a measure of the transmission distance at which the use of ECCs become beneficial 

is also introduced as a metric of the energy consumption. The performance of the 

coded system is evaluated with regards to both BER and critical distance. This 

presents a system designer with two metrics to evaluate the effectiveness of applying 

the code if, the transmission distances of the target application are known. In 

situations where raw energy consumption is required, the third metric of absolute 

energy requirements for the codes is shown with associated target BERs. The 

performance of the coded system is compared to an uncoded system and a system 

that employs Hamming codes. Furthermore, considering the system that includes the 

interaction between nano-machine and macro-machine, the energy consumption for 

the nano-part is also investigated. 

The remainder of this chapter is organised as follows. Section 4.2 gives an 

introduction of logic circuits in the biological field. In Section 4.3, the energy model 

used within the MC is discussed. The introduction and construction of different 

coding schemes are given in Section 4.4 and Section 4.5, respectively. Section 4.6 

shows the BER analysis for coded PTP DBMC systems. The energy consumption for 

different coding schemes is presented in Section 4.7. Section 4.8 then provides the 

numerical results, followed by the conclusions in Section 4.9. 
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4.2 Logic circuits in biological field 

In the conventional communication system, the coding and decoding techniques can 

be implemented using digital electronic circuits which are composed of large  

numbers of transistors. By interconnecting these transistors, the function of Boolean 

logic like AND, NAND, OR, XOR and NOR can be realized. However, in MC 

systems, due to the size of TX and RX, the complexity of the electronic circuits is too 

overwhelming to employ. Thus, the realization of logic gates needs to be 

investigated from the biological field. 

The authors in [28] considered the protein-based signaling networks within 

biological cells. It is shown that the fundamental motif in all signaling networks is 

based on the protein phosphorylation and dephosphorylation cycle which is also 

called a cascade cycle via kinases and phosphatases respectively. In addition, for 

logic gates, a fasting changing concentration needs to exist in one of two states, and 

the cascade cycle can complete this process when operating in ultrasensitive mode. 

Thus it is possible to construct various control and computational analogue and 

digital circuits by combining these cascade cycles. Coupled with the notion that 

these kinds of networks are of a similar scale to those needed for any future artificial 

nano-networks, they can also be used to estimate the energy requirements of the 

encoding and decoding circuits used here. 

Figure 4.1 shows how a NAND gate could be formed from a cascade cycle. 

‘A’ and ‘B’ are the inputs to the kinase step that can cause the cascade cycle to 

switch. NAND gate is a universal gate, so it is clearly possible to build all future 

logical circuits. In [28], the authors also presented a basic memory unit, the binary 

counter and NOT gate by combining cascade cycles. 

In the traditional electronic circuit design, a clear low or high voltage level at 

the output stage is needed for ensuring the reliability of the transmission data. 

However, the thermal noise and intrinsic distortion of the transistors exist in the 

circuits which cause an unstable level of the output signal. 
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Figure 4.1: NAND gate formed from a cascade cycle [28]. 

Similar to electronic circuits, the circuits that are formed of cascade cycles 

are also suffered from the cascade cycle’s intrinsic fluctuations distortion [129]. The 

way to reduce this kind of noise is to increase the signal intensity by increasing the 

number of substrate molecules, Nsm. These substrate molecules are the input signal of 

the cascade cycle. Here, these substrate molecules can be looked as the code 

generation molecules required to encode and decode the data. They are considered 

different to the information molecules that were introduced in Chapter 3, as they are 

internal molecules and only used for the encoding and decoding process within TX 

and RX and do not suffer from any effects caused by diffusion.  

An investigation of the impact of the number of substrate molecules on the 

performance of the cascade cycle has been given in [129]. Each substrate molecule is 

either unmodified or modified at the output of cascade cycle. The cascade cycle 

system is given in Figure 4.2 for different Nsm. Figure 4.2 (A) indicate that when the 

Nsm is small (Nsm = 30), the high and low outputs overlap and blur due to the cascade 

cycle’s intrinsic fluctuation distortion, when Nsm increases to 300 (Figure 4.2 (B)), a 

clear transmission output pulse is given. A further increase of Nsm will cause a slow 

output response and information loss (Figure 4.2 (C), (D)). Overall, the selected 

value of Nsm = 300 is sufficient to reduce the effects that come from the biochemical 

intrinsic distortion. 
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Figure 4.2: Cascade cycle system and the output signal when (A) Nsm = 30, (B) Nsm = 

300, (C) Nsm = 3000, (D) Nsm = 10000 [129]. 

4.3 Energy model 

In Section 3.2.2, it was mentioned that the most pertinent application that contains 

the three communication scenarios is an intra-body network that collects and 

monitors vital biological activity [130]. In the healthcare domain, the quality of the 

data and the energy efficiency are two key metrics for the analysis process. 

Introducing coding techniques can improve the performance of the 

communication system, but there will be an extra cost in energy due to the encoding 

and decoding process at TX and RX. This extra energy is proportional to the 

complexity of the encoder and decoder circuits.  

Adenosine triphosphate (ATP) [49] is used to measure the energy transfer 

between cells in living organisms, and here, it is used to calculate the energy 

requirements of the proposed coding systems. The energy consumption during the 

encoding and decoding processes can be composed of two parts: energy cost to drive 
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the operation of biological circuits, and the energy cost for generating the substrate 

molecules. 

For a NAND gate, the suitable measure of the energy required for the cascade 

cycle to complete was equal to a single ATP reaction[49], [131]. The energy cost 

from one ATP reaction, in Joules, is approximately equal to 8.3×10-20 J. Considering 

such small quantities, here, the energy is worked in BcT. Thus the energy cost for one 

ATP reaction is 20 BcT, where Bc is the Boltzmann constant and it is assumed here 

that the system is operating at an absolute temperature, T = 300K. As mentioned in 

Section 4.2, all further logic circuits can be devised from combinations of NAND 

gates based on the principles of Boolean algebra [23]. So the total energy cost for the 

logic circuits can be computed.  

Synthesizing the substrate molecules also results in energy consumption. The 

energy cost of synthesizing a molecule is approximately 2450 BcT [23]. In this case, 

the total energy cost of synthesizing the substrate molecules is 2450Nsm BcT. 

4.4 Block codes in MC system 

Block codes are an important family of ECCs. In block coding, the transmission 

binary information sequence is segmented into information block with a fixed length, 

k. The encoder aims to transforms each information block into an n bits codeword 

[125] by inserting (n – k) parity check bits to improve the reliability of the 

information, these bits can be used to recover the original information during the 

decoding process. Most known block codes belong to the class of linear codes. This 

class of codes has a strong structural property and usually used in practice. In 

addition, the famous cyclic codes are also a subclass of the linear codes. Compare 

with the normal linear block codes, the cyclic codes can be obtained by imposing an 

additional strong structural on the codes [132]. 

In this section, the Hamming codes, C-RM codes and EG-LDPC codes as the 

cyclic codes are considered to be used for the MC system. The communication 

channel model used here is the model that was introduced in Chapter 3. Each code 

will be described in turn. 
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4.4.1 Hamming codes 

A Hamming code is one of the simple linear block codes used in many applications. 

For any integer m ≥ 2, the Hamming codes has the following parameters: 

Block length:  H 2 1,mn     (4.1) 

Information length: H H ,k n m   (4.2)  

Number of parity check bits: H H ,m n k   (4.3)  

Data rate: H H H ,r k n  (4.4)  

Error correction capability: cH minH 1 / 2,E d     (4.5) 

where [x] returns to the largest integer not greater than x. dminH is the minimum 

distance between any two codewords of the code. For Hamming codes, dminH = 3, 

therefore, it can correct one error in each block. Hamming codes can be represented 

as (nH, kH). 

As one of the cyclic codes [119], Hamming code can be encoded by 

multiplying the information polynomial with the generator polynomial. In this work, 

(7,4), (15,11) and (31,26) Hamming codes are introduced in the DBMC system. 

For (7,4), (15,11) and (31,26)Hamming codes, the generator polynomial are 

given by: 

 3
3( ) 1,mg x x x     (4.6)  

 4
4( ) 1,mg x x x     (4.7)  

 5 2
5( ) 1.mg x x x     (4.8)  

The simplest decoder for this kind of code is the Meggitt decoder. Using the 

Maggitt Theorem, the syndrome polynomial for testing the error patterns for above 

Hamming codes are configured as: 

 2
3( ) 1,ms x x    (4.9)  

 3
4( ) 1,ms x x    (4.10)  

 4
5( ) .ms x x x    (4.11)  

Figure 4.3 shows an example of encoder and decoder for (15,11)Hamming 

code. 
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Figure 4.3: Nonsystematic encoder [132] (a) and Meggitt decoder (b) [132] for 

(15,11)Hamming code. 

4.4.2 C-RM codes 

RM codes are a class of binary codes with multiple error correction capabilities. 

Here the way in which they are constructed as cyclic codes is introduced which are 

termed C-RM codes.  

For any integer, l ≥ 2 and 0 ≤ z < l – 1, the zth order C-RM codes can be 

represented as (z, l)C-RM with the following parameters [132]: 

Block length: R 2 1,ln    (4.12)  

Information length: 
1

R R
1

1 ,
1 2

l z

i

l
k n

l l
r
l

i

 



       
             

       
  (4.13)  

Data rate: R R R ,r k n  (4.14)  

Error correction capability: cR minR 1 / 2,E d     (4.15) 

where the minimum distance minR 2 1l zd   . 
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Given a nonnegative integer q, where 1 ≤ q ≤ 2l – 2, the number of 1’s in the 

binary expansion of q can be denoted as w2(q), and αq are the roots of the generator 

polynomial gC-RM(x) if and only if [133]: 

 21 ( ) 1.w q l z      (4.16) 

αq are the roots of the check polynomial h(x) if and only if: 

 2( ) 1.l z w q l     (4.17)  

The generator and check polynomials for the C-RM codes are: 

 
2

( )
C-RM

1 ( ) 1
     1 2 2

( ),
l

q

w q l z
q

g M x
   

  

   (4.18) 

 
2

( )
C-RM

( ) 1
     1 2 2

( ) (x 1) ( ),
l

q

l z w q l
q

h x M x
   

  

    (4.19)  

where M(q)(x) is the minimal polynomial of αq.   

Considering the (1,4)C-RM code, all integers q satisfying (4.16) and (4.17) 

are {1, 2, 3, 4, 5, 6, 8, 9, 10, 12} and {7, 11, 13, 14}, respectively. Thus, the roots of 

the generator polynomial can be represented as:{α1, α2, α3, α4, α5, α6, α8, α9, α10, α12}, 

where α1, α2, α4, α8 have the same minimal polynomial: M1 (x) = x4 + x + 1, and α3, 

α6, α9, α12 have the same minimal polynomial: M2 (x) = x4 + x3 + x2 + x + 1, and the 

minimal polynomial of α5 and α10 is M3 (x) = x2 + x + 1. According to (4.18), the 

generator polynomial can be computed as: 

     10 8 5 4 2
1 2 31,4 C-RM  · ·   1.g x M M M x x x x x x         (4.20)  

Similarly, the roots of the check polynomial are: {α7, α11, α13, α14}, where α7, 

α11, α13, α14 have the same minimal polynomial: M1 (x) = x4 + x3 + 1. According to 

(4.19), the check polynomial is given as:  

        C-RM
4 3 5 3

1,4   1 ·  1   1.h x x x x x x x         (4.21)  

By using the same method, the generator and check polynomials for the (1,3), 

(2,4), (2,5), and (3,5)C-RM codes are given by:  

     3
1,3 C-RM  1.g x x x    (4.22) 

    C-
4

1,3 RM
2  1.h x x x x    (4.23)  

     4
2,4 C-RM  1.g x x x    (4.24)  

     11 8 7 5 3 2
2,4 C-RM   1.h x x x x x x x x         (4.25)  
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Figure 4.4: (a) Non-systematic feedback encoding circuit and (b) a two-step majority 

logic decoder for the (1,3)C-RM codes [133]. 

     15 11 10 9 8 7 5 3 2
2 M, C-R5   1.g x x x x x x x x x x x            (4.26)  

     16 12 11 10 9 4
2,5 C-RM   1.h x x x x x x x x         (4.27)  

    C
5

3,5 -RM
2 1.g x x x    (4.28)  

     26 25 24 23 22 21 18 14
3,5

13 12

C-

7 6

R

8 5 2

M   

                    1.

h x x x x x x x x x

x x x x x x x

       

       
 (4.29)  

Considering the C-RM hardware requirements, as shown in Figure 4.4, the 

encoding process can be achieved using simple feedback shift registers and 

subsequently decoded using a multiple-step majority logic method. 

4.4.3 EG-LDPC codes 

An EG-LDPC code can be constructed based on the lines and points of the Euclidean 

geometry. In this chapter, a special case: cyclic two-dimensional EG-LDPC codes 

are considered [118], [134]. To simplify the nomenclature, the LDPC codes 

mentioned below are all assumed to be cyclic and two-dimensional [118], [135].  
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In general terms, LDPC codes can be represented as (nL, kL), and for any 

integer, s, s ≥ 2, the LDPC codes can be generated using following parameters [118]: 

Block length: 2
L 2 1,sn    (4.30)  

Information length: 2
L  2 3 ,s sk    (4.31)  

Data rate: L L L ,r k n  (4.32)  

Error correction capability: cL minL 1 / 2,E d     (4.33) 

where the minimum distance dminL = 2s+1. The number of 1’s for row and column 

also as the weights of the parity-check matrix which are given as ρ = 2s and θ = 2s 

respectively [118]. 

Before describing EG-LDPC codes, the finite field is introduced. Finite field, 

also called Galois Field (GF) is a finite set of elements which can be added, 

multiplied and divided with the results being an element of the set. The ECCs that 

could be constructed based upon these fields can be efficiently encoded and decoded 

[134], which for molecular communications, is a major concern. 

EG(o,q) is an o - dimensional Euclidean geometry over GF(q), where o is a 

positive integer greater than one, q = pκ, κ ≥ 1and p is a prime number [133]. An EG-

LDPC code can be constructed based on the lines and points of Euclidean geometry.  

Considering that EG(2,2s) is a Euclidean geometry on GF(2s), where each 

point is a 2-tuple over GF(2s) and where an all zero 2-tuples can be called the origin. 

Thus, this geometry contains 22s points and  2s(22s – 1)/(2s – 1) lines. GF(22s) is an 

extended field GF(2s), so each element in GF(22s) can be referred as a 2-tuple over 

GF(2s), which means that 22s elements in GF(22s) can be regarded as 22s points in 

EG(2, 2s) [118], [136], [137]. Assuming α is a primitive element of GF(22s) means 

all the non-zero elements in GF(22s)  can be represented as αi, where i is a positive 

integer. Let αj be a non-origin point, so a line in EG(2, 2s) can be formed from the 2s 

points in EG(2, 2s), shown as: 

     : 2 .j j sGF    (4.34) 

Then let αi and αj be two independent points, so a line passing through αj can 

be formed as: 

     : 2 .i j i j sGF        (4.35) 
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Each line in EG(2, 2s) can be represented as a vector of length 22s. For this 

LDPC code, the rows of the parity check matrix HEG(2, s) correspond with the 22s – 1 

lines that do not pass through the origin in EG(2, 2s), and the columns correspond 

with the 22s – 1 non-origin points in EG(2, 2s). 

Therefore the parity check matrix, HLDPC(2, s) is a (22s – 1) × (22s – 1) square 

matrix, and it can be constructed by taking the incidence vector of a line in EG(2, 2s) 

that does not pass through the origin and then cyclically shifting this vector 22s – 2 

times. This LDPC code is a kind of cyclic code [118], so the generator polynomial 

gLDPC(x) can be obtained from the roots in GF(22s). u, a non-negative integer, can be 

expressed in radix – 2s form as: 

 0 12 ,su     (4.36) 

where u < 22s and 0 ≤ δi < 2s, 0 ≤ i < 2. W2
s(u) denotes the 2s weight of u, shown as: 

   0 12
.sW u     (4.37) 

For a non-negtive integer l, let u(l) be the remainder of 2lu/(22s – 1), where 0 ≤ 

u(l) < 22s – 1 then αu is a root of gLDPC(x) if and only if: 

   20
0 max 2 1.s

l s

l s
W u

 
    (4.38) 

Three LDPC codes are shown in this chapter, which are (15,7), (63,37) and 

(255,175)LDPC codes. For the (15,7)LDPC code, consider EG(2,2s) and let α and β 

be the primitive elements of GF(22×2)  and GF(22) respectively. Given p(x) = x4 + x + 

1 is the primitive polynomial of GF(22×2), it is easy to prove that β = α5 because of β3 

= α15 = 1. Therefore λ ϵ {0, 1, β, β2} or {0, 1, α5, α10} constitute GF(22). Let αi = α14 

and αj = α, so one of the lines of EG(2, 22) can be obtained from (4.35) as: 

     7 8 10 14 14 5 10, , , : 0,1, , .            (4.39)  

These four points in a line do not pass through the origin, so the parity check 

matrix HLDPC can be formed using the corresponding binary incidence vector (0 0 0 0 

0 0 0 1 1 0 1 0 0 0 1) and its 22s – 2 = 14 circulations. 

From (4.36), (4.37) and (4.38), the roots of the generator polynomial can be 

obtained as:{α1, α2, α3, α4, α6, α8, α9, α12}. α1, α2, α4, α8 all have the same minimal 

polynomial: M1(x) = x4+ x+1, whilst α3, α6, α9, α12 all have the same minimal 

polynomial: M2(x) = x4 + x3 + x2 + x + 1, then the lowest common multiple (LCM) 

can be obtained as the generator polynomial:  
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Figure 4.5: Nonsystematic encoding circuit (a) and one-step majority logic decoder 

(b) [121] for the (15,7)LDPC codes. 

      (15,7)LD 2PC
8 7 6 4

1  ,  1.g x LCM M x M x x x x x       (4.40)  

In the same way, the generator polynomials for the (63,37) and 

(255,175)LDPC codes are given by:  

   26 24 16 15 14 13 12 10
(63,37)LDPC  1.g x x x x x x x x x x           (4.41) 

 

  80 78 76 74 71 69 68 67
(255,175)LDPC

66 64 63 61 59 58 55 54 51

49 47 45 42 40 39 38 37

                           
                           
                 

 

   
      

    

g x x x x x x x x x

x x x x x x x x x
x x x x x x x x

       

        

       
36 27 26 25 23 22 21 19

18 17 16 15 14 13 11 10

9 7 6 3

    
                   

        
            

                      
   

    1.     

x x x x x x x x
x x x x x x x x
x x x x

       

       

    

 (4.42) 

Considering the LDPC hardware requirements, as shown in Figure 4.5, the 

encoding process can be achieved using simple feedback shift registers and 

subsequently decoded using a one-step majority logic decoding method. 
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4.5 Convolutional codes 

The convolutional code, a kind of linear codes that was first proposed by Elias [138] 

as an alternative to block codes. The main difference between the block codes and 

the convolutional codes is the encoder design. In convolutional codes, the encoder 

contains b memory blocks and at any given time, the nS bits codeword is produced 

not only dependent on the kS message bits but also dependent on the b previous input 

blocks. Therefore, the convolutional codes are looked as the stream code, and the 

corresponding encoder operates on continuous streams of the information not the 

information blocks [119]. The (nS, kS, b) convolutional codes can be implemented 

using a kS-input nS-output linear sequential circuit with a b-bits memory block. 

Comparing with block codes, the convolutional codes are preferred to be used in the 

practice, this is because with same complexity of the encoder and decoder design, 

the convolutional codes provide better performance. 

One of the convolutional codes considered here is the self-orthogonal 

convolutional code (SOCC). An SOCC is a kind of convolutional code which has the 

property of being easy to implement thus satisfying one of the key design 

requirements of code simplicity [122], [123]. 

For an (nS, kS, b) SOCC, nS is the code length, kS is the information length and 

b is the number of input memory blocks. rS = kS/nS is the code rate [125]. The error 

correction capacity, EcS: 

 cS 2 ,E J     (4.43)  

where J is the number of check sums that orthogonal on one error. 

The effective constraint length, nE, represents the total number of channel 

error bits checked by the orthogonal check sum equations, where: 

  2
E S

1 1.
2

n J J k    (4.44) 

In this work, only SOCCs with an information length kS = nS – 1 are 

considered. This chapter represents four SOCCs: they are (2,1,6) and (2,1,17)SOCCs, 

both with rS = 1/2, and (3,2,2) and (3,2,13)SOCCs, both with rS = 2/3.  

The generator polynomials of (2,1,6) and (2,1,17)SOCCs are: 

    (2,1,6)SOCC
6

,1
2 5 2  1,g x x x x   (4.45)  



 
 

62 
 

 
Figure 4.6: The (a) encoder and (b) decoder for a (3,2,2)SOCC [125]. 

    (2,1,17)SOCC,1
2 17 16 13 7 2  1,g x x x x x x     (4.46) 

where gSOCC,i
(ns) is the generator polynomials with  i = 1, 2, …, kS. 

For (3,2,2) and (3,2,13)SOCCs, the generator polynomials pairs are: 

    3
(3,2,2)SOCC,1   +1,g x x  (4.47) 

    3 2
(3,2,2)SOCC,2 1 , g x x   (4.48) 

    3 12 9 8
(3,2,13)SOCC,1   1,g x x x x   (4.49)  

    3 13 11 6
(3,2,13)SOCC,2   1.g x x x x   (4.50) 

The encoder and feedback majority-logic decoder for (3,2,2)SOCC is shown 

in Figure 4.6. 

4.6 BER analysis for coded PTP DBMC systems 

The BER for the uncoded PTP DBMC system has been analysed in Chapter 3. In 

order to compare the coded and the uncoded system performance, in this chapter, the 

BER for the coded system is investigated. 
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4.6.1 BER for system with linear block codes 

Considering that the decoder can correct all errors less or equal to the error 

correction capacity, the decoded BER for the system with linear block codes can be 

expressed by the following approximation: 

    
c

e-coded e e
1

1 1 ,
n j n j* *

j E

n
P j P P

jn


 

 
  

 
  (4.51) 

where n is the block length, Ec is the error correction capacity. Pe
* is the one bit error 

probability in the uncoded case. Aiming to use the same number of molecules as an 

uncoded system, the number of molecules used for the calculation of Pe
* for the 

coded system should be evaluated with a reduction of the number of molecules used 

for an uncoded system, (3.19), by multiplying with the code rate. 

4.6.2 BER for system with convolutional codes 

For the convolutional code with a feedback majority-logic decoder, the BER can be 

upper bounded by [125]: 

    
E

E

c

E
e-coded e e

1

1 1 ,
n j n j* *

j E

n
P j P P

jk


 

 
  

 
  (4.52) 

where k is the information length of the code. Pe-coded can be approximated as [125]: 

   c 1E *
e-coded e

c

   1 .
1

En
P P

Ek
 

   
 (4.53) 

4.6.3 Coding gain 

The coding gain is also introduced as a way to measure the BER performance. For 

MC systems, the coding gain aims to measure the difference between number of 

molecules for the uncoded and coded system required to reach the same BER level. 

It can be directly obtained as: 

 uncoded
coding

coded

10 log .NG
N

 
   

 
 (4.54)  

where Nuncoded and Ncoded are the number of information molecules for the uncoded 

and the coded system at a chosen BER level. 
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4.7 Energy consumption analysis  

Combining the energy model introduced in Section 4.3, the mathematical derivation 

of energy consumption for different coding techniques is investigated in this section. 

The total energy consumption for the encoder or decoder circuits can be composed 

of two parts: the first part is the energy cost to drive logic gates operation and the 

second part is the energy cost of synthesizing the substrate molecules.  

Table 4.1: Logic gates and corresponding ATPs’ consumptions. 

Logic gate Number of cost ATPs 
NAND 1 
NOT 1 
XOR 4 

Shift-register unit 4 

Table 4.1 shows four basic logic gates and the corresponding ATPs’ 

consumptions. 

4.7.1 Energy consumption of encoding and decoding process 

A. Energy consumption for Hamming codes 

With reference to Figure 4.3, for m = {3, 4, 5} Hamming codes, two XOR 

gates and m shift-register units are needed for each encoder circuit, which implies the 

energy consumption of the encoder circuits is: 

 en-H sm-en sm-en20 (4 8) 2450 .E N m N    (4.55) 

Three XOR gates, (m + nH) shift-register units, (m – 1) NOT gates and one 

multi-input NAND gate are needed for each decoder circuits which implies the 

energy cost of the decoder is: 

 
   de-H sm-de H sm-de

sm-de H sm-de

20 (4 1 1 12) 2450
        = 20 (5 4 12) 2450 .
E N m n m N

N m n N
      

  
 (4.56) 

where Nsm-en and Nsm-de are the numbers of substrate molecules used for encoder and 

decoder respectively. As refers in Section 4.2, Nsm-en = Nsm-de = 300. 

 



 
 

65 
 

 
Figure 4.7: Four-input MLG implementation circuit. 

B. Energy consumption for C-RM codes 

Considering the C-RM hardware requirements, as shown in Figure 4.4, the 

encoding process can be achieved using simple feedback shift registers and 

subsequently decoded using a multiple-step majority logic method. An output one is 

produced when more than half of its inputs are equal to one, otherwise, the output is 

zero. An example of four-input Majority Logic Gate (MLG) is shown in Figure 4.7.  

For any J-input MLG, the number of NAND gates can be calculated as:  

 

1

2 1NAND-MLGs

1, 2

2,                   2

J

i J

J
J

N i
J



 

  
      

 

  (4.57)  

For C-RM codes, (nR – kR) shift registers are used, and the number and the 

location of the two-input XOR gates in the circuits are dependent upon the generator 

polynomial of each code. The energy cost of encoding is therefore: 

   en-(1,3)RM sm-en R R sm-en20 4 8 2450 ,E N n k N     (4.58) 

   en-(1,4)RM sm-en R R sm-en20 4 24 2450 ,E N n k N     (4.59) 

   en-(2,4)RM sm-en R R sm-en20 4 8 2450 ,E N n k N     (4.60) 

   en-(2,5)RM sm-en R R sm-en20 4 40 2450 ,E N n k N     (4.61) 

   en-(3,5)RM sm-en R R sm-en20 4 8 2450 .E N n k N     (4.62) 
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In general, the zth order C-RM code can be decoded with a (z + 1)-step 

majority logic decoder. For these decoding circuits, the total number, NML, of the J-

input MLGs used in the circuit can be analysed as [125]: 

 
1

ML
1

1 ,
L

i

i
N J





   (4.63)  

where J = dminR – 1, and L = z + 1  is the number of steps used in the majority logic 

decoder. 

The multi-input XOR gates used in majority vote process can be obtained by 

using the combination of multiple two-input XOR gates, and the number of inputs of 

the XOR gate is dependent on the check polynomial. In this work, the two-input 

MLGs are used in (1,3)C-RM, (2,4)C-RM and (3,5)C-RM decoders’ design, six-

input MLGs are used in the (1,4)C-RM and (2,5)C-RM decoders’ design. According 

to (4.57), the two-input MLG and the six-input MLG can be formed by 2 and 22 

NAND gates. 

In addition, nR-stage buffer registers and an extra two-input XOR gate are 

also needed. Here for C-RM codes, the energy cost of decoding is therefore:  

  de-(1,3)RM sm-de R sm-de20 4 58 2450 ,E N n N    (4.64) 

  de-(1,4)RM sm-de R sm-de20 4 590 2450 ,E N n N    (4.65) 

  de-(2,4)RM sm-de R sm-de20 4 242 2450 ,E N n N    (4.66) 

  de-(2,5)RM sm-de R sm-de20 4 6998 2450 ,E N n N    (4.67) 

  de-(3,5)RM sm-de R sm-de20 4 994 2450 .E N n N    (4.68) 

C. Energy consumption for LDPC codes 

For (15,7), (63,37) and (255,175)LDPC codes, (nL – kL) shift registers are 

used, and the number of two-input XOR gates in the circuits is dependent upon the 

generator polynomial of each code. The energy cost of encoding is therefore: 

   en-(15,7)LDPC sm-en L L sm-en20 4 16 2450 ,E N n k N     (4.69) 

   en-(63,37)LDPC sm-en L L sm-en20 4 40 2450 ,E N n k N     (4.70) 

   en-(255,175)LDPC sm-en L L sm-en20 4 180 2450 .E N n k N     (4.71) 
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In addition, for different LDPC codes, the decoding circuits can be modified 

with ρ-input XOR gates, θ-input MLGs, and nL buffer registers. The multi-input 

XOR gate can be obtained by using the combination of multiple two-input XOR 

gates. Here for (15,7), (63,37) and (255,175)LDPC codes, the energy cost of 

decoding is therefore:  

  de-(15,7)LDPC sm-de L sm-de20 4 57 2450 ,E N n N    (4.72) 

  de-(63,37)LDPC sm-de L sm-de20 4 321 2450 ,E N n N    (4.73) 

  de-(255,175)LDPC sm-de L sm-de20 4 27297 2450 .E N n N    (4.74) 

D. Energy consumption for SOCCs 

Referring the description of SOCCs in Section 4.5. For each encoder, the 

number of shift register units for the encoder is b, and number of the XOR gates is 

dependent upon on the generator polynomials. The energy cost of the encoding is 

thus:  

  en-(2,1,6)SOCC sm-en sm-en20 4 12 2450 ,E N b N    (4.75) 

  en-(2,1,17)SOCC sm-en sm-en20 4 20 2450 ,E N b N    (4.76) 

  en-(3,2,2)SOCC sm-en sm-en20 4 12 2450 ,E N b N    (4.77) 

  en-(3,2,13)SOCC sm-en sm-en20 4 28 2450 .E N b N    (4.78) 

The decoder can be separated into two parts, one is the same as the encoder, 

and then another part contains b register units, kS MLGs, the MLGs used here are 

two-input MLGs, where each one can be looked as an AND gate. The number of 

XOR gates is dependent on the polynomial generator and the information length. So 

the energy cost of the decoding is: 

  de-(2,1,6)SOCC sm-de sm-de20 8 37 2450 ,E N b N    (4.79) 

  de-(2,1,17)SOCC sm-de sm-de20 8 70 2450 ,E N b N    (4.80) 

  de-(3,2,2)SOCC sm-de sm-de20 8 36 2450 ,E N b N    (4.81) 

  de-(3,2,13)SOCC sm-de sm-de20 8 74 2450 .E N b N    (4.82) 
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4.7.2 Critical distance 

In order to analyse when the coding becomes beneficial, the critical distance [128] as 

a measure of the actual transmission distance at which the coding gain matches the 

extra energy requirements introduced by the ECCs.  

The total energy cost for an uncoded system, Euncoded and coded system, Ecoded 

can be calculated as: 

 uncoded uncoded2450 .E N  (4.83)  

 coded coded en de2450 .E N E E    (4.84) 

where Nuncoded and Ncoded are the numbers of molecules used for the uncoded and 

coded system at a chosen BER level. Een and Ede are the energy consumption for the 

encoding and decoding process. 

For reaching the same BER level, the energy saving (or loss) for a coded 

system compare with uncoded system can be defined as: 

 
 

uncoded coded

uncoded coded en de     2450 .
E E E

N N E E
  

   
 (4.85) 

It is clear to see that when ΔE ≥ 0, the use of ECC is beneficial to the MC 

system. When ΔE = 0, (4.85) reduces to: 

  uncoded coded en de= 2450.N N E E   (4.86)  

Thus, the critical distance can be found by searching the transmission 

distance, d, that satifies the equation (4.86), this process can be completed by using 

MATLAB programming. The relationship between Nuncoded and Ncoded can be 

obtained by substituting the energy consumption values for different coding schemes 

that introduced in Section 4.7.1.  

4.8 Numerical results 

The performance of MC system is evaluated via two aspects: one is the BER, and the 

other is the energy efficiency i.e. critical distance and total energy consumption 

under three different communication scenarios. 

The coded schemes are applied based on the uncoded system that introduced 

in Chapter 3. The BER and energy efficiency results are presented based on a set of 

parameters in Table 4.2 and Table 4.3, respectively. 
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Table 4.2: Simulation parameters for BER. 

Parameter Definition Value 
R Radius of the RX 5μm 
d Transmission distance {6 ~ 15}μm 
D Diffusion coefficient 79.4μm2s-1 

I ISI length 10 
Ntx Number of molecules per bit 100 ~ 4000 
Q Number of transmitted bits 1015 

Table 4.3: Simulation parameters for energy efficiency. 

Parameter Definition Value 
R Radius of the RX 5μm 
dc critical distance Variance 
D Diffusion coefficient 79.4μm2s-1 

I ISI length 10 

4.8.1 BER performance of coded DBMC system 

The BER results for both uncoded and coded systems are given in this section. The 

results are presented in two methods. Firstly, the values of BER for the coded system 

are given based on the theoretical analyses introduced in Section 4.6. Secondly, the 

values of BER are obtained based on the simulation of encoding and decoding 

processes. 

A. Theoretical results 

The BER performance results are shown in Figure 4.8(a) and (b). It indicates 

that increasing the number of molecules per bit leads to a smaller BER for uncoded 

and coded systems. For the system with block codes and SOCCs, when the number 

of molecules per bit greater than 250 and 300 respectively, the performance of the 

coded system is better than the uncoded system.  

Using the equation (4.54), the coding gain for (7,4), (15,11), (31,26) 

Hamming code, (1,3), (1,4), (2,4), (2,5), (3,5) C-RM codes, (15,7), (63,37) (255,175) 

LDPC codes and (2,1,6), (2,1,17), (3,2,2), (3,2,13) SOCCs are shown to be 1.33dB, 

1.68dB, 1.66dB, 1.33dB, 1.89dB, 1.68dB, 2.30dB, 1.66dB, 1.73dB, 2.50dB, 2.59dB, 

1.51dB, 1.73dB, 1.49dB, 1.88dB respectively at the BER level of 10-3. At a BER 

level of 10-9, the coding gain for above codes are shown to be 1.70dB, 2.52dB,  
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Figure 4.8: (a) BER comparison for a coded system with block codes and uncoded 

system. (b) BER comparison for a coded system with SOCCs, Hamming codes and 

uncoded system. 
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Figure 4.9: BER vs transmission distance for coded and uncoded system, Ntx = 2000. 

2.88dB, 1.70dB, 3.31dB 2.52dB, 4.54dB, 2.88dB, 2.96dB, 5.62dB, 7.30dB, 3.09dB, 

4.24dB, 2.20dB, and 3.95dB. The results indicate that of all these error correction 

schemes considered, the (255,175) LDPC code will provide the highest system 

performance. In addition, it also shows that three pairs of coding schemes have the 

same BER curves. These are (1,3) C-RM code with (7,4) Hamming code, (2,4) C-

RM code with (15,11) Hamming code and (3,5) C-RM code with (31,26) Hamming 

code. This is because C-RM codes with EcR = 1 are equivalent to Hamming codes, 

such that the Hamming code is also the simplest example of a C-RM code [132]. 

Figure 4.9 shows the BER with different transmission distance for coded and 

uncoded system when Ntx = 2000. It can be seen that the increases of transmission 

distance lead to a higher BER for both coded and uncoded system. The BER 

performance can be improved by introducing coding techniques in the MC system. It 

also noticed that the lowest and highest BERs are given by (255,175)LDPC code and  

(7,4)Hamming code respectively. 
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Figure 4.10: Theoretical BER and Simulation BER for different coding schemes, d = 

6μm. 

B. Simulation results 

In the simulation process, in order to achieve a 10-9 BER level, 1015 

consecutive information bits are encoded at TX based on different encoding schemes, 

and then 1015/(Information length) blocks are transmitted through the MC channel. 

At RX, the information is decoded, and the BER for the coded system can be 

obtained. 

Here, the comparison between the theoretical and simulation results for 

(31,26)Hamming code, (2,5)C-RM code, (255,175)LDPC code and (2,1,17)SOCC 

are given in Figure 4.10. It can be noticed that the BER results from theoretical 

analysis and simulation are very similar and differ only slightly from each other.  

4.8.2 Energy efficiency 

Two ranking systems are shown in analysing the energy efficiency of the ECCs. The 

main ranking system is the critical distance which introduced in Section 4.7.2. 
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However, there are cases where is no critical distance as in fact, in those cases, the 

use of ECC is always beneficial. In these cases, the ECC is ranked purely depended 

on the total energy consumption, (4.84) for the coded system. 

Here, the two ranking system are considered under three communication 

scenarios, which are N2N, N2M, and M2N communications. For N2N 

communication, the extra energy requirements introduced by the encoder and 

decoder need to be taken into account. For N2M communication, the TXs are 

considered much simpler than the RXs, so when calculating the energy, only the 

encoder consumption needs to be taken into account by setting Ede = 0 in (4.86). 

Moreover, for M2N communication, the RX needs to be much simpler than the TX, 

so only the decoder consumption need to be included, so Een set to zero in (4.86). 

As the (4.86) shows, the critical distance is affected by two factors. Firstly, 

an obvious relationship in the system performance exists for the different coding 

schemes at different distances, as shown in Figure 4.8. Secondly, the encoder and 

decoder circuitry for each of the codes is different, with varying levels of complexity 

such as those in Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6. 

Figure 4.11 to Figure 4.16 provide the main critical distance and energy 

consumption results for different communication scenarios and different coding 

techniques. The critical distance for each code can be treated as a ground level. 

When the designed parameters fall in the left side of the ground level, this code is 

worth to apply into the designed system, otherwise not. This means the code is worth 

applied into the system only when the application with a transmission distance equal 

or larger than the critical distance. On the other hand, for each communication 

scenario, there exist a lowest critical distance level for BERs from 10-9 to 10-3, and 

the corresponding code is considered as a best-fit ECC. The best-fit ECC is the code 

that has a wider application range. For another metric, energy consumption, the 

lower the better. 

Figure 4.11 provides the critical distance and energy consumption results for 

N2N communication scenario with different Hamming, C-RM and LDPC codes over 

a BER range of 10-9 to 10-3. Clearly from the results shown in Figure 4.11(a), the 

critical distance of (15,11)Hamming and (15,7)LDPC codes exist in a small BER  
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Figure 4.11: (a) critical distance and (b) energy consumption with BER for (7,4), 

(15,11),(31,26)Hamming codes, (1,3), (1,4), (2,4), (2,5), (3,5)C-RM codes and (15,7), 

(63,37), (255,175)LDPC codes when considering N2N communication. 
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range from 10-6 to 10-3, and the lowest critical distance belongs to (15,11)Hamming 

code. Under the same communication architecture, Figure 4.11(b) shows the energy 

cost for the coded system at those BER levels where the critical distance does not 

exist. It is clearly shown that (15,7)LDPC code gives the lowest energy cost of the 

coded system. So under this communication scenario, when the system operates at 

10-6 to 10-3 BER levels, (15,11)Hamming code is the first choice, otherwise, 

(15,7)LDPC code with the lowest energy cost should be selected. 

There also exists another nano-communications architecture that a nano-

machine transmits information to macro-machine which is not constrained by the 

same power budget. Therefore, if one considers such a system, and assumes the extra 

energy comes from the encoder only, then the critical distance and energy 

consumption results can be seen in Figure 4.12(a) and (b). Here, the interesting 

observation is most codes are beneficial for N2M communication system. In this 

case, the analysis should focus on the energy cost shown in Figure 4.12(b), when 

considering the system operating at 10-9 to 10-6 BERs, the (63,37)LDPC should be 

considered as the designer’s first choice with the lowest energy cost. For BER levels 

from 10-4 to 10-3, the (15,11)Hamming has the lowest critical distance. 

Similarly, there may be system designs whereby a macro/micro-machine is 

communicating with a nano-machine, M2N communication, such that, it is critical to 

minimize the decoding energy costs with an assumption for now that the encoding 

costs can be contained within a larger energy budget. Under this scenario, only the 

energy cost of the decoder is considered as an extra energy, the results are shown in 

Figure 4.13(a) and (b). Here, if the system is operating at 10-5 to 10-3 BERs, then the 

(15,7)LDPC provides the shortest critical distance for which coding becomes 

beneficial. For operating BERs lower than 10-5, Figure 4.13(b) shows that the lowest 

energy cost for the coded system which also belongs to (15,7)LDPC code. In this 

case, the (15,7)LDPC code becomes the best choice for a molecular communication 

system that is operating between 10-9 and 10-3 BER levels. 
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Figure 4.12: (a) critical distance and (b) energy consumption with BER for (7,4), 

(15,11),(31,26)Hamming codes, (1,3), (1,4), (2,4), (2,5), (3,5)C-RM codes and (15,7), 

(63,37), (255,175)LDPC codes when considering N2M communication. 
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Figure 4.13: (a) critical distance and (b) energy consumption with BER for (7,4), 

(15,11),(31,26)Hamming codes, (1,3), (1,4), (2,4), (2,5), (3,5)C-RM codes and (15,7), 

(63,37), (255,175)LDPC codes when considering M2N communication. 
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From the above analysis, the best-fit ECCs from the select block codes are 

(15,11)Hamming and (15,7)LDPC codes for N2N communication scenario, 

(15,11)Hamming and (63,37)LDPC codes for N2M communication scenario, and 

(15,7)LDPC code for M2N communication scenario. Thus, these block codes are 

considered to be compared with the critical distance and energy consumption for 

SOCCs. 

Figure 4.14 shows the comparisons between the best fitting block codes and 

the SOCCs for N2N communication system. It indicates that the SOCC codes show 

the better results in both critical distance and energy consumption compare with the 

best fitting block codes. The critical distance results are given in Figure 4.14(a), 

where (2,1,6) and (3,2,2) SOCCs are all better than (15,11)Hamming code and the 

(2,1,6)SOCC gives the lowest energy cost which shows in Figure 4.14(b). Thus, for 

the system operating between 10-9 to 5×10-5 and 5×10-5 to 10-3 BERs, the (2,1,6) and 

(3,2,2)SOCC apply a wider transmission range respectively. 

Figure 4.15 shows another scenario which is N2M communication. When 

considering the system operating at 10-9 to 5×10-6, the (63,37)LDPC code is still the 

best choice with the lowest energy cost. For a system operating at 10-4 to 10-3, the 

critical distance of (15,11)Hamming is the same as (2,1,6)SOCC, the designer can 

have either. The results for M2N communication scenario is shown in Figure 4.16. 

Here, the (3,2,2) SOCC get the lowest critical distance between a BER level of 

5×104 to 10-3. Considering the energy cost from 10-9 to 10-5, the (2,1,17)SOCC own 

the lowest energy cost when the system operating at 10-9 to 10-8 BERs, and for those 

systems working at 5×10-7 to 10-5, the (15,7)LDPC is the best choice with the lowest 

energy cost. 

All the results present from Figure 4.11 to Figure 4.16 indicate that the 

increasing in operating BER leads to a longer critical distance and lower energy 

consumption. With the increasing of the level of operating BER, the coding gain is 

reduced. Thus, a longer critical distance is needed to guarantee the extra energy is 

equals to the coding gain. However, the increasing in BER level will cause a 

reducing of number of molecules that needed for the coded system. Thus, with a 

fixed coding technique, the equation, (4.84) indicates that the total energy 

consumption decreases. 
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Figure 4.14: (a) critical distance and (b) energy consumption comparisons between 

the best-fit block codes and (2,1,6), (2,1,17), (3,2,2), (3,2,13)SOCC codes when 

considering N2N communication. 
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Figure 4.15: (a) critical distance and (b) energy consumption comparisons between 

the best-fit block code and (2,1,6), (2,1,17), (3,2,2), (3,2,13)SOCC codes when 

considering N2M communication. 
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Figure 4.16: (a) critical distance and (b) energy consumption comparisons between 

the best-fit block codes and (2,1,6), (2,1,17), (3,2,2), (3,2,13)SOCC codes when 

considering M2N communication. 
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4.8.3 Results discussion 

Given the above analyzation and comparison. A summary of the best-fit ECCs for 

different communication scenarios is given in Table 4.4 and Table 4.5. Here, the 

operating BER (from 10-9 to 10-3) of the system is separated into two parts. One is 

the region that the best-fit ECCs can be determined by measuring critical distance, 

which is the higher operating BER region, and another region is the best-fit ECCs 

can be determined by measuring total energy cost, which is called the lower 

operating BER region.  

Table 4.4: Defined operating BERs for different communication scenarios. 

Communication scenario 
Lower operating BER 

region 
Higher operating BER 

region 
N2N 10-9 ~ 5×10-7 10-6 ~ 10-3 

N2M 10-9 ~ 5×10-5 10-4 ~ 10-3 
M2N 10-9 ~ 5×10-6 10-5 ~ 10-3 

Table 4.5: Best-fit codes for different MC scenarios. 

Communication 
scenario 

Lower BER operating region Higher BER operating region 

N2N (2,1,6)SOCC (3,2,2)SOCC 
N2M (63,37)LDPC (15,11)Hamming/(2,1,6)SOCC 
M2N (15,7)LDPC (3,2,2)SOCC 

Based on Table 4.4, the fitting ECCs for different MC scenarios are shown in 

Table 4.5. The table indicates that the (255,175)LDPC which has the best BER 

performance is not the best-fit codes for any of the MC system due to the highly 

complexity of the encoder and decoder design. On the contrary, the codes which did 

not have the best BER performance but have a simpler encoder or decoder circuits 

are super. Thus, a simpler circuits design for coding techniques in MC systems is 

very important. 

4.9 Conclusions 

In this chapter, the selected block codes which are Hamming, C-RM and LDPC 

codes and the selected convolutional code which is SOCC have been introduced into 
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the MC system, and the performance has been compared among them with regards to 

both coding gain and energy requirements. Both theoretical and simulation results of 

BER for the coded system are analysed and compared. The results show that the 

coding techniques do enhance the performance of the molecular communication 

system.  

With a strong emphasis on not hiding the cost of this gain, this work has 

further analysed, under three different scenarios, how much energy these gains cost, 

by defining the distances at which the use of coding becomes beneficial. 

Furthermore, the energy costs for the coded systems under these scenarios are also 

taken into account when the critical distance does not exist. It has been indicated that 

an increase of the operating BER results in a longer critical distance and lower 

energy cost. For N2M and M2N communication scenarios, the critical distance 

decreases in comparison with the N2N communication scenario. Moreover, for a 

system with a specific operating BER and transmission distance, the most suitable 

code can be selected by analysing these performance metrics. 
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Chapter  5  

A Refined PTP DBMC Model 

5.1 Introduction and related work 

As mentioned in Section 2.4, an accurate and efficient channel model is paramount 

for analysing the performance of communication systems. In the MC system, the 

most popular way is to approximate the number of received molecules as a Binomial 

distribution and consider the capture probability of those molecules as the success 

probability for information transmission. The key work can be found in [23], where 

the model was present under the assumption that the number of molecules 

transmitted in one time slot, but received in different successive time slots was 

independent. This prevailing assumption was carried forward and considered in 

numerous key papers such as [54, 100, 139-144]. The channel model introduced in 

Chapter 3 is also investigated under this assumption. 

However, through careful consideration of the actions of an absorbing 

receiver, the assumption of independence between the numbers of molecules arriving 

in different time slots cannot accurate estimate the channel performance, as the 

removal of the molecule means they cannot be present later. That is, the number of 

molecules arriving in the previous time slots will reduce the possible number of 

molecules in the next and thus the number of molecules received in one time slot 

does affect that in the following time slots and they are dependent events. 

The authors of [145], [146] have already presented a model which does 

consider the number of molecules received in the current time slot, taking into 

account those absorbed in the previous slots. However, they only presented the 

observation and subsequent model without much theoretical derivation. Furthermore, 
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no direct comparisons were presented to previously work. Thus no bounds exist on 

how ‘correct’ or ‘accurate’ their newer dependent model is. The work in this chapter 

aims to fulfil this insufficient investigation of the refined channel model. 

In order to simplify the description and give a clear distinction between the 

refined model and the model introduced in Chapter 3. Here, the refined model is 

denoted as the R-Model and the previous model is denoted as the P-Model. 

In this chapter, a more realistic performance of a molecular communication 

assuming correlated events is analysed and following achievements are made. Firstly, 

a comprehensive analysis of the system performance in terms of BER under the 

consideration of correlation between numbers of molecules in different time slots is 

presented. This analysis includes an explanation of dependence along with a full 

proof from the first principles of 3D diffusion propagation. Secondly, an arbitrary ISI 

length is introduced during the theoretical derivation to maximize the generality of 

the analysis. Thirdly, under the consideration of the R-Model, the Binomial 

distribution is then approximated by both the Poisson and Normal distributions such 

that the BER expressions for both approximations can be provided. The suitable 

approximation for a proposed system can be determined by measuring the Root 

Mean Squared Error (RMSE) [145]. In addition, the comparisons between 

approximations, and between the P-Model and the R-Model are also presented. The 

simulation results are also produced for verifying the accuracy of these channel 

models. These contributions allow the reader to clarify the theory behind the 

correlation between events as well as being able to quantify the accuracy of work 

using any of the approximations. 

 The remainder of this chapter is organised as follows. The R-Model is 

presented in Section 5.2. In Section 5.3, the system performance with regards to 

BER and channel capacity is analysed for both approximations. The simulation 

process is given in Section 5.4. Section 5.5 gives the key results for this chapter, and 

finally, Section 5.6 concludes the chapter. 

5.2 R-Model 

As in Chapter 3, the propagation model used for the R-Model is also the 3D 

diffusion based model with a molecule capture probability that is shown in (3.5). The 
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difference between the P-Model and the R-Model is the mathematic analysis of the 

arriving model.  

5.2.1 Comparisons between P-Model and R-Model with the use of 

Normal approximation 

Consider that Ntx molecules are released at the start of the current time slot, and that 

the numbers of molecules received in the current time slot for the P-Model and the 

R-Model are represented as Np,0 and Nr,0. Similarly, the numbers of molecules 

received from the previous ith symbol in the current time slot are represented as Np,i 

and Nr,i respectively, and where i = 1, 2, …, I.  

The analysis of  Np,0 and Nr,0 is the same, where they all follow a Binomial 

distribution [23]: 

  p,0 r,0 tx ca,0, ,N N ~ N P B  (5.1) 

if Ntx is large enough, the Binomial distributions Np,0 and Nr,0 can be approximated 

by a Normal distribution NpN,0 and NrN,0 thus: 

   pN,0 rN,0 tx ca,0 tx ca,0 ca,0= ~ 1N N N P ,N P P .N  (5.2) 

For the P-Model, the number of molecules received in different time slots 

from the same transmission was considered as independent. Under this assumption, 

the Normal approximation for Np,i can be derived as (3.10): 

        
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  
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


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 (5.3) 

where N0,i  is the number of molecules absorbed by the RX during (0, (i+1)·ts). 

As mentioned in Section 5.1, the number of molecules received in different 

time slots from the same transmission cannot be independent due to absorption. Thus, 

for the R-Model, the probability density function of Nr,i = y is given by: 
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and then by applying Binomial theorem [147], the above equation can be replaced by: 
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where Nr0,i-1 is the number of molecules received by RX during (0, i·ts) for the R-

Model, p = Pca,i -1 = Pca(d, i·ts), and q = (Pca,i – Pca,i -1)/(1 – Pca,i -1). 

It obviously shows that Nr,i follows a Binomial distribution: 
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The corresponding Normal approximation NrN,i can be computed as: 
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where ϖi = Ntx(Pca,i – Pca,i-1) and γi = Ntx(Pca,i – Pca,i-1)(1 – Pca,i + Pca,i-1). 

It can clearly be seen that there is a difference between (5.3) and (5.7). Thus, 

in this chapter, (5.6) gives the refined expression which will be used in the analysis 

of the rest of this chapter. 

The total number of information molecules received in one time slot for the 

P-Model is given in equation (3.11). For the R-Model, the expression of total 

number of molecules received in one time slot, NrN,T is given as: 
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5.2.2 R-Model with Poisson approximation 

There is another commonly used approximation of the Binomial distribution which 

is called the Poisson distribution. The use of Poisson distribution to approximate the 

R-Model is detailed in this section.  

Nr,0 and Nr,i can be approximated using the Poisson approximation NrP,0, NrP,i, 

respectively: 

  rP,0 tx ca,0~N N P .P  (5.9) 

   rP, tx ca, ca, 1~i i iN N P P .P  (5.10) 

As the transmission symbols are in binary form, the value of ac-i can only be 

0 or 1, thus total number of molecules received in one time slot for the Poisson 

approximation, NrP,T can be obtained as: 
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5.3 BER and capacity analysis for the system with R-

Model 

The modulation technique used here is also the OOK. Thus, at RX, a pre-design 

threshold, τ, exists to decided which ‘1’ or ‘0’ is obtained. If the total number of 

received information molecules exceed τ, then the information is demodulated as ‘1’, 

otherwise demodulated as ‘0’. 

A. BER analysis 

The condition metrics for the R-Model with the Normal and Poisson 

approximations can be rewritten as TrN,c and TrP,c, respectively: 
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The corresponding metrics for each error pattern j can be obtained as TrN,cj 

and TrP,cj: 
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The errors occur when there is a discrepancy between the transmitter and 

receiver signals. For a binary transmission, there are two cases, firstly, when a ‘0’ is 

transmitted, but a ‘1’ is received. Secondly, when a ‘1’ is transmitted, but a ‘0’ is 

received. 

For this first case, the error probability of the Normal and Poisson 

approximations for the error pattern j, PrN_e01,j, PrP_e01,j can be obtained as: 
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where: 
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where ptx is the transmission probability of ‘1’. αj is the number of ‘1’s in the error 

pattern j. P(TrP,cj > 0) is the probability of TrP,cj > 0. Φ(·) is the cumulative 

distribution function of a standard Gaussian distribution, and Q(x, y) is the 

regularized gamma function which is defined as: 
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For the second case, the error probability of the Normal and Poisson 

approximations for the error pattern j, PrN_e10,j, PrP_e10,j can be obtained as: 
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where: 
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Thus, the average BER of the system with R-Model, Pre, can be derived as: 
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where PrN/P_e10,j = PrN_e10,j or PrP_e10,j and PrN/P_e01,j = PrN_e01,j or PrP_e01,j. The selection 

is based on the approximation model that will be used for the analysis in the 

designed system. 

Table 5.1 and Table 5.2 give the error patterns and the corresponding error 

probabilities for the Normal approximation and the Poisson approximation, 

respectively. 
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Table 5.1: Error patterns and the corresponding error probabilities for I = 2 for 
Normal approximation. 

Table 5.2: Error patterns and the corresponding error probabilities for I = 2 for the 
Poisson approximation. 
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B. Capacity analysis 

The theoretical analysis of the capacity for the R-Model is the same as the 

analysis shown in Chapter 3. Thus, the capacity for thsystem with the R-Model can 

be obtained as: 
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2 2

re01 rN/P_ e01, re10 rN/P_ e10,
1 1

,  = .
I I

j j
j j

P P P P
 

    (5.25) 

5.4 Simulation process 

In this section, the simulation process for verifying the results obtained through 

theoretical analysis is described. 

In the simulation, the random walk is used to describe the molecular 

diffusion process. If the Cartesian coordinates of the kth molecule at time t are (xk(t), 

yk(t), zk(t)), then the coordinates of this molecule at time t+Δt are given by [148]: 

 1( ) ( ) 2 ,k kx t t x t D t      (5.26) 

 2( ) ( ) 2 ,k ky t t y t D t     (5.27) 

 3( ) ( ) 2 ,k kz t t z t D t     (5.28) 

where ζ1, ζ2 and ζ3 are independent random numbers sampled from a Normal 

distribution with mean 0 and variance 1. D is the diffusion coefficient and Δt is the 

time step. 

Consider a specific number of information molecules that are released as an 

impulse at the beginning of each time slot from coordinates (0, 0, 0). For the 

diffusion process, each molecule executes a random walk in three-dimensional space 

that following (5.26)-(5.28), where for each dimension, the molecule moving to the 
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right or left once every Δt s. The probabilities of the molecule going right or left are 

0.5 and 0.5 respectively, and each one moves independently and does not interact 

with other molecules [148]. For the reception process, a molecule is absorbed if it is 

within RX at the end of a time step. Once it has been absorbed, it is eliminated. RX 

can demodulate the information by counting the number of received molecules at the 

end of the time slot. In this work, it is assumed that the receiver can count the 

number of received molecules during a time slot [149]. 

Figure 5.1 shows the number of information molecules received at RX over 

the simulation time for different distances and Figure 5.2 presented the number of  

molecules received in the ith time slot due to one transmission. These figures 

illustrate both simulation and theoretical analysis for an initial transmission with Ntx 

= 1000.  During the simulation process, 1000 molecules were simulated for 10000 

trials, and the number of average information molecules received at the receiver is 

measured. In order to get an accurate result, information molecules are tracked every 

Δt = 10-6s.  

Figure 5.1 indicates that the increase in the transmission distance leads to 

decreasing of the number of received information molecules at RX. This is because 

the increase in transmission distance cause decrease of the capture probability of the 

receiver (see Figure 3.3). The results in Figure 5.2 show that the number of received 

information molecules is gradually decreasing with the increase of the time slot 

index. In addition, both figures show that the simulation results are consistent with 

the analytical results with tiny deviation. 
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Figure 5.1: Number of received molecules at RX over simulation time for different 

distance, and Ntx = 1000, D = 79.4μm2s-1. ‘Theo.’ represents theoretical results, 

‘Simu.’ represents simulation results. 
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Figure 5.2: Number of received molecules in the ith time slot for different distances, 

and Ntx = 1000, D = 79.4μm2s-1. 
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Figure 5.3: BER vs number of molecules per bit for I from 1 to 10. d = 15μm, D = 

79.4μm2/s and R = 5μm. 

5.5 Numerical results 

In this section, both analytical and simulation results for the PTP DBMC system 

with the R-Model are given. The results are presented in three parts: first, the BER 

and channel capacity are given Section 5.5.1. Then, in Section 5.5.2, the RMSE is 

introduced to determine the suitable approximation for a proposed system. Finally, a 

performance comparison between the P-Model and the R-Model is given in Section 

5.5.3, where the simulation analysis is also presented to verify the theoretical results. 

In order to make sure I = 10 is still an accurate choice for analysing the 

system performance, the BER for different I is also investigated for the system with 

the R-Model.  

Figure 5.3 gives the BER performance for different values of I. The results 

show that the longer the ISI length, the higher the BER. As the conclusion given in 

Figure 3.5, the BER value begins to converge with increasing I. Thus, for analysing 

the performance of the system with the R-Model, the value of I is also selected as 10. 
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Figure 5.4: The comparison of thresholds between different models with different d. 

Nor. and Poi. denote as the Normal approximation and the Poisson approximation, 

respectively. 

The method used to get the suitable values of τ is the same as the method 

described in Chapter 3. The comparison of thresholds for different models is given in 

Figure 5.4. The results indicate that the threshold decreases with the increasing of d 

for all models. For a fixed distance, the threshold of the system with the R-Model is 

lower than the threshold of the system with the P-Model. In addition, considering the 

system with the R-Model, the threshold of the system with the Normal 

approximation is slightly lower than the threshold of the system with the Poisson 

approximation. 

The parameters setting for analytical and simulation results are given in 

Table 5.3 and Table 5.4, respectively. 
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Table 5.3: Parameter setting for analytical results. 

Parameter Definition Value 
R Radius of the RX 5μm 
d Transmission distance {6, 8, 10, 12}μm 
D Diffusion coefficient 79.4μm2s-1 

Ntx Number of molecules per bit 50~103 
I ISI length 10 

Table 5.4: Parameter setting for simulation results. 

Parameter Definition Value 
R Radius of the RX 5μm 
d Transmission distance {6 ~ 20}μm 
D Diffusion coefficient 79.4μm2s-1 

Ntx 
Number of molecules per 

bit 
50 ~ 2000 

I ISI length 10 
Δt Time step 10-6s 
Q Number of transmitted bits  1015 

5.5.1 Analytical results of BER and capacity performance 

Figure 5.5 shows the BER with the number of information molecules per bit for the 

R-Model that used different approximations. As shown in Figure 5.5, with the 

increasing of the number of information molecules and transmission distance, the 

BER decreases for the system with both approximations. For each distance, the BER 

for the system with the Normal approximation is lower than the BER for the system 

with the Poisson approximation. 

Figure 5.6 shows the mutual information of the R-Model with the Normal 

and Poisson approximations. With the transmission probability increases, the MI 

increase at first and when it reaches the maximum value at ptx = 0.5, it starts to  

decrease. Thus, the maximum MI occurs when ptx = 0.5, which is also the channel 

capacity. The increase in d and Ntx will cause a decrease in capacity for all 

approximations. 
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Figure 5.5: BER vs number of molecules per bit for R-Model with different 

approximations. Nor. and Poi. denote as the Normal approximation and the Poisson 

approximation, respectively, and ptx = 0.5. 
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Figure 5.6: BER and MI of the system with R-Model versus ptx for different d and 

Ntx. 
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As same as the analysis in Chapter 3, Figure 5.6 also shows that the the 

maximum MI does not signify the minimum BER. Thus, a optimal, ptx can be 

obtained by: 

  

    

        
         
  

tx

tx re01 tx re10

tx

tx re01 tx re10

re10 r

rMR 1 1 re

1 1
tx re01 tx re10

1 1
tx re01 tx

2

re10

1
tx re10 re10

1 – 

2

C max ; 1

   = max 1 1 P

                 1 1

                1

log

1 –  

log

I Ip

p P p P

p

p P p P

P P

X Y P

p P p

p P p P

p P P

 

  

  



 

   

   







I

       
  

re01e10 re01
1

tx re01 re01

tx re10 tx re

2

01

1 1

                1 1 .

log P Pp P P

p P p P

  

    

 (5.29) 

Using MATLAB programming, when ptx = 0.5, the maximum reliable 

transmission rate can be achieved for the system with d = 6μm, Ntx = {50, 100} and a 

system with d = 10μm, Ntx = 100 for both Poisson and Normal apporximation. Thus, 

0.5 is the optimal value of ptx for the systems with above settings. 

5.5.2 The suitable approximation for a proposed PTP MC system  

In Section 5.2, the R-Model with the Normal and Poisson approximations is 

analysed. In this section, the RMSE is introduced as a metric to determine the 

suitable approximation that could be employed for analysing a given MC system. 

The method used here is to calculate the cumulative density functions (CDFs) of the 

number of received molecules for the Normal and Poisson models and compared 

with the CDF of the simulation results. 

Using the simulation process introduced in Section 5.4, the number of 

received molecules during (t, t + Δt) can be obtained. After 10000 trails, the CDF of 

the simulation results can be evaluated. The RMSE is introduced as follows: 

     
tx 2

sim N/P
0tx

1RMSE CDF CDF ,
1

i

N

i i
x

x x
N 

 
    (5.30) 

where CDFsim and CDFN/P are CDFs of the simulation results and the Normal or 

Poisson model results, respectively. 

Figure 5.7 shows the RMSE of CDFs for PTP MC system with different 

transmission distances and number of released molecules per bit. The results indicate  
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Figure 5.7: RMSE of CDFs for PTP MC systems with d = {6, 8, 10, 15, 20}μm and 

Ntx = {50 ~ 2000}. 

that the RMSE of the Poisson model is more stable as Ntx varies. However, the 

Normal model obviously improves with the increasing Ntx. For the system with the  d 

= {6, 8, 10, 15, 20}μm and Ntx = {50 ~ 2000}, the results show that when d = {6, 

8}μm, the system with Normal approximation is more accurate than the system with 

Poisson approximation. The enlarges figure shows in Figure 5.7 also indicates that 

considering the transmission distances d = {10, 15, 20}μm, the Normal curves cross 

with Poisson curves at Ntx = {82, 292, 729} respectively. When Ntx is smaller than 

these points, the Poisson is better than the Normal, otherwise the system with the 

Normal approximation wins. 

Above results illustrate the increase in Ntx leads to a right shift of the Normal 

distribution curve which can reduce the effects of the negative part of the distribution. 

Thus the Normal approximation is more accurate for a system with larger Ntx. On  

another hand, with the increasing of d, the capture probability at RX decreases, the 

Poisson model becomes better since that the Poisson approximation is normally used 

for modelling the rare events. 
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Figure 5.8: BER vs the number of molecules per bit for different channel models and 

simulation with d = {8, 15}μm.  

5.5.3 BER comparisons between P-Model and R-Model 

In this section, the BER comparisons between the P-Model and the R-Model with 

different approximations are given.  

The simulation results are obtained based on the simulation process 

introduced in Section 5.4. During the simulation process, the number of times of 

simulation trials or the number of transmitted bits, Q, is 1015. 

Figure 5.8 shows the BER with the number of molecules per bit for the 

system that uses different models. As with previous analysis, BER decreases with 

the increasing for Ntx and decreasing of d for all models introduced. It clearly shows  

that the P-Model overestimates the error rate. For example, for the system with 

transmission distance d = 15μm and Ntx = 500, the P-Model predicts an error rate of 
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10-1, almost 1000 times larger than the error rate predicted by more accurate R-

Model and verified by simulation. 

In addition, considering the BER comparison between the R-Model with 

different approximations and the simulation, it is consistent with the result given in 

Section 5.5.2, where the Normal approximation is more accurate for a larger Ntx, and 

the Poisson approximation is more accurate for rare events. 

5.6 Conclusions 

In this chapter, an R-Model which includes the dependence of the numbers of 

received molecules between slots has been investigated and then compared with the 

incumbent model which assumes the independent events. This model is further 

evaluated at arbitrary ISI length and with both the Normal and Poisson 

approximations. A decision metrics called RMSE is also applied to determine which 

approximation is better for a system. The results indicate that the system with the R-

Model gives a more accurate estimation than the P-Model which was introduced in 

Chapter 3. Based on the calculation of the RMSE, the designer can decide which 

model approximations should be used based on their system design. 

The update to the model shows that the P-Model overestimates the number of 

errors that can occur in the channel, and this is verified by the simulation results. It 

indicates that the system with P-Model will most likely deliver a higher performance 

in practice. This observation is thus critical to those works which deal with energy 

use at this nano-scale as with this assumption of dependence, less energy will be 

needed to attain the desired BER. In the following chapters, the theoretical results 

are obtained based on the system with the R-Model. 
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Chapter  6  

A Revised look at ECCs in PTP DBMC 

Systems 

6.1 Introduction  

In Chapter 4, a full analysis of ECCs in PTP MC systems was presented based on the 

analysis of the P-Model. However, due to the imprecise assumption that was used in 

the P-Model, the error rate of the system is overestimated. Thus, a refined model, R-

Model, was presented in Chapter 5. By comparing the performance of the uncoded 

system with different models, the R-Model does provide a more realistic prediction 

of the system performance. Therefore, using the P-Model to analysing the coded 

system (i.e. the analysis in Chapter 4) should not be accurate. Therefore, the use of 

ECCs in PTP MC systems should be re-investigated by applying the R-Model into 

the system analysis. 

In this chapter, a revised look at the performance of the coded system 

performance is presented by applying the ECCs into the refined communication 

model. The system performance respects to BER and critical distance is given and 

compared with the results obtained in Chapter 4. This chapter aims to illustrate a 

more accurate estimation of the performance of the coded system. The difference in 

performance should be clearly seen by comparing the performance between the P-

Model and the R-Model. Furthermore, in this chapter, all the results are generated by 

theoretical analysis. 

Given the high similarity of the analysis process in Chapter 4 and this chapter, 

the description of coding techniques and the study of BER, energy consumption of 
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the coded system are not repeated here. The only difference is the communication 

model that be used during the analysis process, and this can be done by replacing the 

value of Pe
* used in (4.51) and in (4.53) with Pre

*. The Pre
* used in this chapter is the 

one bit error probability of an uncoded system that applied the R-Model. Aiming to 

use the same number of molecules as an uncoded system, the number of molecules 

used for the calculation of Pre
* for the coded system should be evaluated with a 

reduction of the number of information molecules used for an uncoded system, 

(5.23), by multiplying with the code rate. Beyond that, all the expressions are same 

as Chapter 4. 

The remainder of this chapter is organised as follows. The BER and critical 

distance are presented in Section 6.2 and Section 6.3, respectively. Section 6.4 gives 

the comparison between results that obtained in Chapter 4 and in this chapter. Finally, 

this chapter is concluded in Section 6.5. 

6.2 BER performance for the coded system with R-Model 

In this section, the BER performance of the coded system with the R-Model is 

presented. As it mentioned in Section 4.8.1, the (1,3)C-RM, (2,4)C-RM and (3,5)C-

RM are exactly same as (7,4)Hamming code, (15,11)Hamming code and 

(31,26)Hamming code respectively. Thus, for C-RM code family, only (1,4)C-RM 

and (2,5)C-RM are considered in this section. The BER results are obtained based on 

a set of parameters in Table 6.1. 

Table 6.1: Parameter Setting for BER. 

Parameter Definition Value 
R Radius of RX 5μm 
d Transmission distance 6μm 
D Diffusion coefficient 79.4μm2s-1 

I ISI length 10 
Ntx Number of molecules per bit 10 ~ 400 

Figure 6.1 shows the BER results for the coded system with the R-Model. 

Figure 6.1(a) gives the BER comparison between the system with block codes and 

the uncoded system, and Figure 6.1(b) shows the BER comparison between the 

system with SOCCs and the uncoded system. The values of coding gain are shown  
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Figure 6.1: (a) BER comparison for a coded system with block codes and uncoded 

system. (b) BER comparison for a coded system with SOCCs, and uncoded system. 



 
 

106 
 

to be 1.35dB, 1.68dB, 1.68dB, 1.68dB, 2.30dB, 1.68dB, 2.43dB, 2.57dB, 1.46dB, 

1.68dB, 1.47dB, 1.90dB for (7,4)Hamming, (15,11)Hamming, (31,26)Hamming, 

(1,4)C-RM, (2,5)C-RM, (15,7)LDPC, (63,37)LDPC, (255,175)LDPC, (2,1,6)SOCC, 

(2,1,17)SOCC, (3,2,2)SOCC and (3,2,13)SOCC respectively at the BER level of 10-3. 

And for a BER level of 10-9, the coding gain for above codes are 1.59dB, 2.43dB, 

2.78dB, 2.30dB, 4.29dB, 2.76dB, 5.33dB, 6.95dB, 2.89dB, 4.04dB, 2.09dB and 

3.80dB, respectively. It can be seen that (15,11), (31,26)Hamming codes, (1,4)C-RM 

code, (15,7)LDPC code and (2,1,17)SOCC have the same coding gain at 10-3, this is 

because the number of molecules used for achieving that BER level is the same. The 

results also clearly show that the (255,175)LDPC code gives the largest coding gain 

compared to other codes. 

6.3 Critical distance for the coded system with the R-

Model 

In this section, the critical distance is recomputed based on the BER performance 

shown in Section 6.2. The three communication scenarios, N2N communication, 

N2M communication and M2N communication which were introduced in Section 

3.2.2 are also considered here. Figure 6.2 to Figure 6.7 show the analytical results of 

critical distance for different ECCs and communication scenarios. When applying 

the R-Model into system analysis, the critical distance exists for all of the considered 

codes and it is reflected in Figure 6.2 to Figure 6.7. Thus, the metric called total 

energy consumption for the coded system is no more needed here. All the results 

indicate that with the increasing of operating BERs, the critical distance also 

increases.  

Figure 6.2 to Figure 6.4 show the critical distance of the system with block 

codes. The results that presented in Figure 6.2 are considered the N2N 

communication scenario. Under this scenario, the (15,7)LDPC gives the lowest 

critical distance, and the code from the same code family called (255,175)LDPC 

presents the longest critical distance based on the high complexity of the circuit 

design. Figure 6.3 and Figure 6.4 illustrate the critical distance for the system when 

considering N2M and M2N communication scenarios respectively. In these cases, 

the (31,25)Hamming and (15,7)LDPC codes win with the lowest critical distance. 
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Figure 6.2: Critical distance with BER for block codes when considering N2N 

communication. 
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Figure 6.3: Critical distance with BER for block codes when considering N2M 

communication. 
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Figure 6.4: Critical distance with BER for block codes when considering M2N 

communication. 

Using the concept of ‘best-fit ECC’ introduced in Chapter 4. For the results 

obtained based on the application of the R-Model, the best-fit block codes for N2N, 

N2M and M2N communication scenarios are (15,7)LDPC, (31,26)Hamming code 

and (15,7)LDPC, respectively. These codes are compared with SOCCs and the 

results are illustrated in Figure 6.5, Figure 6.6 and Figure 6.7. 

Figure 6.5 considers the critical distance comparison for N2N communication 

scenario. In this case, the energy consumption for both encoder and decoder circuits 

need to be considered. The lowest critical distance is given by the use of the 

(3,2,2)SOCC, which means under this communication scenario, the (3,2,2)SOCC has 

a wider application range.  
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Figure 6.5: Critical distance comparisons between (15,7)LDPC and selected SOCCs 

when considering N2N communication. 

Figure 6.6 and Figure 6.7 show other scenarios which are N2M and M2N 

communications. When considering N2M communication, the energy cost only 

includes the consumption caused by the operating of the encoder circuit. On the 

contrary, for M2N communication, the energy cost only include the consumption 

caused by the operating of the decoder circuit. The lowest critical distance belongs to 

(31,26)Hamming code and (3,2,2)SOCC for N2M communication scenario, and 

(3,2,2)SOCC for M2N communication scenario. 

In addition, all the results indicate that the level of critical distance for N2M 

communication scenario lower than the levels of critical distance for N2N and M2N 

communication scenarios. This means the encoder design for all selected ECCs is 

simpler than the decoder design. Through the comparison, the (3,2,2)SOCC is 

selected as the best-fit ECCs for all three communication scenarios except N2M 

communication system with an operating BER level from 10-9 to 10-6.  
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Figure 6.6: Critical distance comparisons between (31,26)Hamming code and 

selected SOCCs when considering N2M communication. 
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Figure 6.7: Critical distance comparisons between (15,7)LDPC and selected SOCCs 

when considering M2N communication.  



 
 

111 
 

10 20 50 100 200 500 1000 2000 4000
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Number of molecules per bit ( Ntx )

B
ER

 

 
un-coded, P-Model
(31,26)Hamming code, P-Model
(2,5)C-RM code, P-Model
(255,175)LDPC code, P-Model
(2,1,17)SOCC, P-Model
un-coded, R-Model
(31,26)Hamming code, R-Model
(2,5)C-RM code, R-Model
(255,175)LDPC code, R-Model
(2,1,17)SOCC, R-Model

 
Figure 6.8: BER comparison between the systems that analysis with the P-Model and 

the R-Model.  

6.4 Results comparison and discussion 

In this section, the system performance that obtained by considering the P-Model 

compares the performance that obtained by considering the R-Model. The 

comparison and discussion are given from the following two aspects: BER and 

critical distance. Each one will be given in turn. 

A. BER comparison 

Figure 6.8 shows the analytical BER results for the system with the P-Model 

and the R-Model. In this comparison, only the code with the highest BER 

performance among their family are selected. The results present that the 

(255,175)LDPC still gives the best BER performance when applying the refined 

model into the system analysis. However, the coding gains at d = 6μm for the coded 

system with the R-Model is lower than the coding gains obtained for the system with 

the P-Model. 
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The results have once again proven the analysis: the use of the P-Model in 

the PTP MC system overestimated the BER of the system. For example, considering 

(255,175)LDPC code, about 60 molecules per bit can reach a 10-8 BER level when 

using the R-Model into the analysis. However, about 600 molecules need to be used 

per bit to achieve the same BER level when applying the P-Model. 

B. Energy efficiency –  critical distance 

The results shown in Chapter 4 indicated that there are some cases where the 

use of ECCs is always beneficial for applications with transmission distance equal to 

or longer than 6μm (here, the minimum transmission distance is considered as 6μm), 

and this means no critical distance exist in those cases. However, the results 

presented in this chapter show that the critical distance exists in all cases. In each 

communication scenario, the critical distances are higher than those distances shown 

in Chapter 4. The reason of this is considering the same communication scenario 

under the same coding techniques, the system that applied the P-Model gives a larger 

coding gain compared to the system that applied the R-Model which is verified by 

Figure 6.8. Thus, for the system with the P-Model, a shorter distance can generate 

enough coding gain to match the extra energy required by the operating of the 

encoding and decoding process. 

Table 6.2: Best-fit ECC for different MC scenarios with the R-Model. 

Communication 
scenario 

Lower BER operating region Higher BER operating region 

N2N  (3,2,2)SOCC 
N2M (31,26)Hamming code (3,2,2)SOCC 
M2N  (3,2,2)SOCC 

Table 6.2 gives the best-fit ECCs for different communication scenarios with 

the R-Model. The lower BER operating region for N2M communication scenario is 

from 10-9 to 10-6, and the higher BER operating region is from 10-6 to 10-3. As shown 

in this table, the (3,2,2)SOCC is the superior code as it is the best-fit ECC for N2N, 

M2N communications and also N2M communication system with a higher operating 

BER level. 
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6.5 Conclusions 

In order to get a more accurate estimation of the performance of the coded system, in 

this chapter, the use of ECCs in PTP MC system is reconsidered by applying the 

ECCs into a system with the R-Model. The new performance of the coded PTP MC 

system is presented regards to the BER and critical distance. In addition, the 

performance comparison between the system with the P-Model and the system with 

the R-Model is also presented. Through the comparison, the difference between the 

performance of a system that applies the P-Model and the R-Model can be clearly 

seen. Similar to the uncoded system, the BER of the coded system also be 

overestimated when applying the P-Model into the system analysis. 

Although, there exists the best-fit ECC which has a wider application range, 

this is not the only choice for the designer. For example, when several codes are 

worthwhile to be applied to a proposed system. In this case, the designer can balance 

the energy consumption and also the BER performance based on the application of 

the system, i.e. a system need a low-level energy consumption, or a low-level BER.  
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Chapter  7  

The Effect of Two-receiver on 

Broadcast DBMC Systems 

7.1 Introduction and related work 

To date, there have been several studies that address the characteristics of the 

channel for PTP DBMC systems, for example [17, 23, 25, 94, 141, 150, 151]. The 

study of the PTP DBMC system is also presented in this thesis with Chapter 3 

through Chapter 6. However, scenarios where multiple transmitters communicate 

with multiple receivers, such as the multi-access channel or the broadcast channel in 

MC, have not yet received as much attention as the topic deserves. Existing papers 

on this subject include [84, 149, 152-154]. Given the scale of work regarding the 

broadcast channel in conventional communication systems, and the prevalence of 

multiple-input-multiple-output in natural molecular communication system [153], 

[149], this knowledge gap within molecular communication systems is thus 

important to redress. 

The research in [152] and [154] aims to analyse the broadcast channel where 

a single transmitter communicates with multiple receivers and the system 

performance such as channel capacity has been studied. However, the current 

literature assumes that the signal at each receiver is independent, receiving molecules 

as if other receivers were not present, i.e. effectively treating the system as multiple 

PTP communication channels. For a MC system with multiple absorbing receivers, 

the receivers do interfere with each other as the absorbed molecule cannot be 

captured by any other receivers. 
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Figure 7.1: MC system with two absorbing receivers. 

In this chapter, in order to investigate how the receivers influence each other, 

a DBMC system with one transmitter and two receivers is considered. As shown in 

Figure 7.1, one transmitter, TX emits molecules into a channel with two identical 

receivers that can absorb the same type of molecule. One receiver is defined as the 

target receiver, RT, whilst the other is defined as the interfering receiver, RI. The dI 

and dT are the transmission distances between TX and RI and between TX and RT, 

respectively. The TX, RI and RT are centered on the same line, i.e. fixed x and y 

coordinates. If the independence assumptions of [152] and [154] are considered, then 

there would be no molecule ‘sink’ or ‘absorption’ component caused by the presence 

of the interferer. This further implies the performance of the system with respect to 

the target receiver is likely overestimated. 

This work aims to investigate the influence of RI on RT as a function of their 

relative positions. Each receiver’s location is defined by the z-coordinate of its center. 

Considering a fixed position of TX and RT (locates to the right of TX), three positions 

of RI will be studied. Scenario 1 considers that RI is located to the left of both TX and 

RT. Scenario 2 considers that RI is between TX and RT. Finally, Scenario 3 considers 

that RI is located to the right of both TX and RT. In each of these positions the impact 

on the BER and channel capacity of the communication link between TX and RT 

which can be represented as the target link will be shown.  

In this chapter, a two-receiver broadcast communication channel with a 3D 

diffusion-based propagation model is simulated. One of the fundamental parameters 

of performance analysis, capture probability, can be obtained via this simulation. The 
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scenario that RI, RT and TX are aligned on the same line is studied. The impact of the 

introduction of the interfering receiver with respect to its relative location is 

investigated by analysing the BER and channel capacity of the target communication 

link. Furthermore, by employing the RMSE introduced in Chapter 5, the suitable 

channel model of the proposed system can be determined. 

 The remainder of this chapter is organised as follows. The propagation 

construction is given in Section 7.2. The analysis of the MC broadcast channel with 

regards to both BER and capacity is investigated in Section 7.3. In Section 7.4, the 

numerical results are presented. The chapter is then concluded in Section 7.5. 

7.2 Propagation construction 

In Chapter 5, a simulation process is introduced for PTP DBMC systems. In this 

work, 3D random walk is also used to describe the molecular diffusion process for 

the two-receiver broadcast channel.  

Considering that a number of molecules are released as an impulse at the 

beginning of each time slot from coordinates (0, 0, 0). For the diffusion process, each 

molecule executes a random walk in 3D space that follows (5.26) - (5.28) in each 

dimension. For the reception process, a molecule is absorbed if it is within one of the 

receivers at the end of a time step. Once it has been absorbed, it is eliminated. The 

receiver can decode the information by counting the number of received molecules at 

the end of the time slot.  

7.2.1 Capture probability 

The ability for a molecule to be captured by the receiver is denoted as the capture 

probability. The expression of the capture probability for a PTP DBMC system is 

given in (3.5). However, the expressions of the capture probability with respect to 

time for the multi-receiver system is still a problem. Therefore, here, the capture 

probability for each receiver is obtained via simulation process.  

In the simulation, the number of received molecules at each receiver in 105 

trials can be obtained by taking a large time slot duration, ts, (5000s).  

An example is given by considering the location of RI based on Scenario 1, 

where RI is located to the left of both TX and RT with transmission distance dI = 2μm  
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Figure 7.2: Number of received molecules of RI and RT for Ntx = 100000. Simulation 

with D = 79.4μm2/s, R = 1μm. 

and dT = 3μm. Under this condition, Figure 7.2 gives the number of received 

molecules for the two-receiver MC system with dI = 2μm and dT = 3μm. The results 

indicate that with the increase of the propagation time, the number of received 

molecules increases first, and reaches the maximum value, and then it begins to 

decrease. It can also be seen that, for the two-receiver system, most of information 

molecules will be absorbed by the receiver that closer to TX. Figure 7.3 shows the 

comparison of capture probability between the PTP DBMC system with 

transmission distance, dS = {2, 3}μm and the two-receiver DBMC system with dI = 

2μm and dT = 3μm. The results indicate that the capture probability increases when 

the receiver is closer to the transmitter for both systems. In addition, it clearly shows 

that with the same transmission distance, the capture probabilities of the two-receiver 

system are smaller than the capture probabilities of the PTP system. Thus, treating 

the broadcast channel as multiple PTP communication channels is not accurate and 

will overestimate the BER performance of the two-receiver DBMC system. 
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Figure 7.3: Capture probability for the PTP and two-receiver systems. 

7.2.2 Comparisons between simulation and analytical results  

The simulation process has been compared with the model for two absorbing spheres 

in [155] to validate the correct behavior of the simulation process. There, the author 

introduced a scenario where molecules located at coordinates (0, 0, z) diffuse to a 

pair of receivers S1 and S2 located at (0, 0, l/2) and (0, 0, -l/2) respectively, where l is 

an arbitrary distance. For this scenario, the analytical and approximated capture 

probabilities for S1 and S2 are given when the diffusion time is large enough (i.e., as t 

→∞). Comparisons in [155] show a strong agreement between the analytical and the 

approximated results. Thus, only the capture probabilities found using the 

approximate expressions are compared with the simulation in this work.  

The approximations for capture probability Pca1,ap with S1 and Pca2,ap with S2 

are introduced as [155]:  

        2 22
ca1,ap 1 21 1 ,p R d R l R d l R l        (7.1) 

        2 22
ca2,ap 2 11 1 .p R d R l R d l R l        (7.2) 
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Figure 7.4: Comparisons of capture probabilities between approximation and 

simulation results with a large simulation time. 

where R is the radius of the receivers, d1 and d2 are the distances between the 

releasing point (TX) and the centers of the S1 and S2. 

As shown in Figure 7.4, the capture probabilities found using the 

approximate expressions (7.1) and (7.2) are compared with the simulation results. 

The parameters used in this comparison agree with [3] and [155], where l = 4μm, R 

= 0.31487μm, and D = 79.4μm2s-1.  

The R-square coefficient [156] of determination is introduced to measure the 

quality of fit between results from simulation and results from approximations. The 

closer that this value is to 1, the better the fit of the simulation is, and is given by:  

 2
sR 1 SSE SST,   (7.3) 

where SSE is the sum of squared errors of prediction and SST is the sum of squares 

of the difference of the dependent variable and its mean. The R-square for S1 and S2 

are 0.9935 and 0.9910 respectively. This comparison confirms that the results from 

this simulation process are accurate.    
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7.3 Channel analysis 

The influence of RI on RT can be reflected in the performance of the target 

communication link. Thus, the focus here is the analysis of the target link. 

The value of ts used in Section 7.2.1 is too large to use in a communication 

system. Thus, this value can be determined by finding the time at which 60% of the 

information molecules arrives at the RT [3]. Figure 7.2 illustrates the 60% cut-off 

time for the RI and RT. It indicates that the 60% cut-off time increases with 

increasing distance between TX and RX. Thus, the capture probability of RT within 

one time slot, Pca,T(dT, ts), can be recomputed via the same simulation process 

introduced in Section 7.2.1. 

Following the theoretical analysis introduced in Chapter 5 and applying 

Pca,T(dT, ts) into the refined communication model, the BER and channel capacity of 

the target link, PTe can be obtained.  

7.4 Numerical results 

In this section, the capture probability of RT, and the BER and capacity of the target 

link are given based on the simulation and theoretical analysis, and the results also  

compared to the performance of a PTP communication system with a single receiver 

RS and dS = 7μm. A set of simulation parameters is shown in Table 7.1.  

Table 7.1: Parameter setting. 

Parameter Definition Value 
R Radius of receivers 1μm 
dT Distance between TX and RT 7μm 
dI Distance between TX and RI {2, 4, 7, 10, 12, 14}μm 
dS Distance between TX and RS 7μm 
D Diffusion coefficient 79.4μm2s-1 

Ntx Number of molecules per bit 100~10000 
I ISI length 10 

(x0, y0, z0) Coordinate of TX (0, 0, 0) 

(0, 0, zI) Coordinate of RI zI = {-7, -4, -2, 2, 4, 10, 12, 14}μm 

(0, 0, zT) Coordinate of RT (0, 0, 7μm) 
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The TX and RT are placed in fixed positions (0, 0, 0) and (0, 0, 7μm), and the 

coordinates of RI (0, 0, zI,) are variable with the changing of zI, where zI ∈ {-7, -4, -2, 

2, 4, 10, 12, 14}μm. dI-, dI+ and dI++ are denoted as the distance between the TX and 

RI in Scenarios 1, 2, and 3, respectively.  

7.4.1 The suitable approximation for analysing the proposed two-

receiver MC system 

In Section 5.5.2, the RMSE is introduced as a metric to determine the suitable 

approximation used for analysing a proposed system. Here, this metric is also 

applied to the two-receiver DBMC system with a set of parameters shown in Table 

7.1. 

Figure 7.5 (a) and (b) show the RMSE of CDFs for PTP system with dS = 

7μm and the two-receiver system with dT = 7μm, respectively. The results indicate 

that the RMSE of the Poisson approximation is more stable as Ntx varies. However, 

the Normal approximation obviously improves with increasing Ntx. As shown in 

Figure 7.5(a), the Poisson approximation is more accurate for Ntx < 4000, above 

which the Normal approximation is better. The BER against the number of 

molecules per bit is also presented in this figure. When Ntx < 4000, a BER level as 

low as 10-9 can be measured for both the Normal and Poisson approximations. In this 

case, the Poisson approximation is preferred for a PTP communication system based 

on the lower RMSE values. For the target link of the two-receiver system in Figure 

7.5(b), the RMSEs are measured for different distances of RI. The results show that 

the values of RMSE of the Poisson approximation are always lower than the values 

obtained from the Normal approximation for Ntx = 0 ~ 10000. In the remainder of 

this chapter, only the Poisson approximation is considered. 
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Figure 7.5: RMSE of CDFs for (a) PTP system with dS = 7μm (b) Two-receiver 

system with dT = 7μm. 
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Figure 7.6: The comparisons of capture probabilities between RT and RS. 

7.4.2 BER and channel capacity 

Before presenting the system performance with BER and capacity, the comparisons 

of the capture probabilities between RT with different positions of RI and RS is 

illustrated in Figure 7.6.  

The results show that all capture probabilities increase with increasing 

simulation time. When the simulation time is long enough, the capture probability 

appears to converge.  It can also be seen that for different positions of RI, the capture 

probabilities of RT are different, and all smaller than the capture probability of the RS. 

For the two-receiver system, the maximum and minimum values of capture 

probabilities of RT occur in Scenario 3 with rI++ = 14μm, and Scenario 2 with rI+ = 

2μm respectively. These results illustrate that the capture ability of RT is weakened 

and have thus shown the different levels of impact due to the existence of RI. This is 

because RI may have absorbed the information molecules that could have arrived at 
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RT. Furthermore, for different positions of RI, the ability to absorb the information 

molecules is different which is also reflected in the values of capture probabilities of 

RT. Finally, the RI will have the greatest impact when it is literally blocking the RT. 

In this case, the capture ability of RI and RT reach their highest level and lowest level, 

respectively.  

The BERs and capacities of the target link of the two-receiver system with dT 

= 7μm and the PTP system with dS = 7μm are presented in Figure 7.7(a) and Figure 

7.8. The numerical results clearly show that increasing the number of molecules 

leads to a lower BER and higher capacity. The performance ranking is consistent 

with the capture probabilities show in Figure 7.6. Thus, the lowest BER and also the 

highest capacity is provided by the PTP system, and the lowest and highest BERs of 

the target link occur in Scenario 3 with dI++ = 14μm and Scenario 2 with dI+ = 2μm, 

respectively. The BERs at Ntx = 5000 for different values of zI are shown in Figure 

7.7(b). O1 and O2 are the regions that RI overlaps with the TX and RT respectively. 

The overlap between RI and TX or RI and RT is physically unrealizable. Thus, the 

positions of RI in these two regions are not taken into account. This figure directly 

shows the BER trend of the target link with varying positions of RI. As RI changes 

position from Scenario 1 to Scenario 2 to Scenario 3, the BER increases at first, and 

when it arrives at the closest position to TX in Scenario 2, the BER reaches a 

maximum, and then the BER decreases. Both BER and capacity imply that the RI’s 

existence does reduce the reliability of the target link, and due to the significant 

impact, the positions of the RI in Scenario 2 are especially undesirable for RT, where 

the reliability of the target link is the worst of the three Scenarios. The impact of RI 

in Scenario 1 and Scenario 3 are very similar, except when dI- = 2μm, i.e., when the 

RI is very close to the TX. The distance variations of RI in Scenario 3 and Scenario 2 

cause the smallest and the biggest change in both BER and capacity respectively. 

The increase of the distance between RI and TX leads to decreasing and 

increasing of the capture probability of RI and RT respectively. Thus, in each 

Scenario, the further the distance between the RI and TX, the less the impact on RT.  
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Figure 7.7: (a) BER comparisons between the target link with different positions of 

RI and the PTP system, ptx = 0.5 (b) BER with different values of zI at N = 5000. 
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Figure 7.8: Channel capacity comparisons between the target link with different 

positions of RI and the PTP system. 

7.5 Conclusions 

In this chapter, the two-receiver broadcast channel for MC systems has been 

simulated and the concept of an interferer node RI and the effect of its location on RT 

are introduced. Through the simulation and previous derived results, the impact of 

the position of RI on RT is shown via the BER and channel capacity of the target link. 

The results indicate that different positions of RI relative to TX and RT have varying 

effects on RT, especially when the RT is completely blocked by RI, i.e. Scenario 2. 

Thus, for a system with a given number of molecules released per bit, the positions 

of RI in Scenario 2 cause a higher BER to the target link than those positions in the 

other Scenarios. In addition, for all scenarios, the further the RI is away from TX, the 

better performance of the target link can be achieved. Furthermore, the performance 
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of the target link of the two-receiver system is always worse than the performance of 

the PTP system when considering same parameters. Therefore, the use of the PTP 

approximation should not be used for a broadcast system with absorbing receivers as 

it can not guarantee, or predict, the reliability of the signal at a given receiver. 
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Chapter  8  

Conclusions and Future Research 

Molecular communications (MC) is one of the most modern communication 

paradigms that uses molecules as the information carrier to transmit message 

between nano-machines. 

 This thesis focused on the study of diffusion-based molecular communication 

(DBMC), where, the information molecules transmitted from the transmitter (TX) to 

the receiver (RX) can be realized by Brownian diffusion. The information is 

modulated by the presence or absence of a single type of information molecules at 

TX, which is known as the On-off keying (OOK) modulation scheme. As one of the 

main objectives of this thesis, the performance of DBMC system was investigated 

for the uncoded point to point (PTP) DBMC system, the coded PTP DBMC system 

that employed Error Correction Codes (ECCs), i.e. Hamming codes, Cyclic-Reed 

Muller (C-RM) codes, Euclidean Geometry Low-density Parity-check (EG-LDPC) 

codes and Self-orthogonal Convolutional Codes (SOCCs) and the two-receiver 

DBMC system. Furthermore, in-depth investigations for characteristics of the 

DBMC system, the communication and propagation models, the suitable ECCs for a 

proposed PTP DBMC system and energy efficiency of the coded system were also 

presented in this thesis.  

This research aimed to provide a fundamental investigation of DBMC 

systems and presented related theoretical and simulation results that may be 

beneficial for the future practical implementation.  

In Section 8.1, the achievements for main chapters and the conclusions of the 

thesis are summarized. Future research topics are discussed in Section 8.2. 

 



 
 

129 
 

8.1 Conclusions 

A. Summary of the results in main chapters 

 Chapter 3: Point to Point Model of the Diffusion-based Molecular 

Communications System. In this chapter, a PTP model of a 3D DBMC 

system (also can be treated as a nano-to-nano machine (N2N) communication 

system) has been established. Additionally, two other communication 

scenarios called nano-to-macro/micro machine (N2M) communication and 

macro/micro-to-nano machine (M2N) communication were also proposed 

where the propagation and communication channel models were considered 

as same as N2N communication. The closed-form expressions of BER and 

channel capacity were derived for the proposed system with a consideration 

of Intersymbol Interference (ISI). The influence of parameters such as the 

number of information molecules Ntx, diffusion coefficient, D, transmission 

distance, d, time slot duration, ts, ISI length, I, and pre-designed threshold, τ, 

on the system performance were also discussed. During the performance 

analysis, the ISI was considered as the main noise source. The results of Bit 

Error Rate (BER) versus ISI length indicated that the first previous symbol 

has the significant effect on the current symbol, and with the increases in ISI 

length, the influence begins to converge. For simulation, the ISI length was 

set to be a length of 10 to produce high precision results. The system 

performance showed that with a fixed diffusion medium, TX and RX, the 

increases in transmission distance causes an increasing of BER and 

decreasing of Mutual Information (MI) and channel capacity. The 

relationship between the transmission probability (the probability of 

transmitting ‘1’) and the MI was also investigated in this chapter. The results 

illustrated that with the increasing of the transmission probability, the MI 

increases first, and then reaches the maximum value after that it starts 

decreasing. The maximum value as known as the channel capacity. The 

research described in Chapter 4 is based on this PTP uncoded DBMC system 

model.  
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 Chapter 4: Error Correction Codes in PTP DBMC System. The study in 

Chapter 4 focused on enhancing the reliability of the MC system by 

employing ECCs. Two families of ECCs called block codes and 

convolutional codes were considered to be used in the MC system. For block 

codes, the Hamming, C-RM and EG-LDPC codes were selected for the use 

of the system analysis. For convolutional codes, the SOCCs were selected. 

The propagation and communication channel used for analysing the coded 

MC system was based on the uncoded channel model introduced in Chapter 3. 

The BER performance indicated that the introduction of ECCs into MC 

system does improve the reliability of the MC system. For the proposed 

system, the (255,175)LDPC code provided the largest coding gain compared 

to other ECCs. Besides the analysis of BER, the energy consumptions during 

the encoding and decoding processes were also taken into account under the 

consideration of three different communication scenarios. The cascade cycle 

was considered as a basic element to build the logic circuits and the 

Adenosine triphosphate (ATP) was considered as the basic energy unit to be 

used to calculate the energy requirements for a proposed system. The energy 

consumption of the encoder or decoder was supported came from two parts: 

the energy consumption for operating of logic gates and the energy 

consumption for synthesizing substrate molecules. The energy efficiency of 

the MC system was illustrated in two ways, the critical distance and the total 

energy consumption for a proposed coded system. The critical distance is 

defined as the real transmission distance when the energy consumption for 

the uncoded system equals to the energy consumption for the coded system. 

Thus, when the transmission distance is longer than the critical distance, the 

ECC is worth appling to the MC system. The energy performance of different 

coding techniques under different communication scenarios indicated that the 

critical distance increases and the energy consumption for coded system 

decreased with increasing operating BER. The most suitable ECC can be 

selected by analysing the BER and energy efficiency, for a system with a 

specific operating BER and transmission distance. 
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 Chapter 5: A Refined PTP DBMC Model. In this chapter, a refined PTP 

DBMC model (R-Model) was presented, where the dependence of number of 

molecules in different time slots was taken into account. The Binomial 

distribution of the R-Model was approximated by both the Normal and the 

Poisson distribution, and the corresponding expressions of BERs were 

derived. The suitable approximation for a proposed MC system can be 

determined by measuring the Root Mean Squared Error (RMSE). 

Furthermore, in this chapter, a comparison between the previous model (P-

Model) introduced in Chapter 3 and the R-Model has been illustrated. A 

simulation process by considering the molecules random walk was also 

provided to verify the accuracy of these models. The BER performance 

clearly showed that employing the P-Model into the analysis process can not 

obtain an accurate estimation of the system performance. Actually, the use of 

the P-Model overestimates the BER. This has been verified by simulation 

results. In addition, for the MC system with the specific TX and RX, and 

propagation environment, the suitable approximation that used in 

performance analysis is dependent on the transmission distance and the 

number of information molecules that are released from TX. Generally, for a 

system that uses a large number of molecules per transmission (Ntx), the 

Normal distribution is more suitable to be used for the analysis. For those 

systems with a longer transmission distance, the Poisson distribution is more 

suitable.  

 Chapter 6: A Revised Look at ECCs in PTP DBMC Systems. In this 

chapter, the performance of the coded system has been re-investigated by 

employing the R-Model into the theoretical analysis process. The aim of this 

chapter was to give a revised look at the use of ECCs in PTP DBMC systems. 

The BER results indicated that employing the P-Model into the analysis also 

overestimated the BER of the coded system. Moreover, for a specific 

transmission distance, the coding gains obtained from the system with the R-

Model is smaller than the coding gains from the system with the P-Model. 

This occurs for all ECCs. Under this case, the energy performance has also 

been modified. The new results indicated the values of critical distances exist 
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for all of operating BER levels, and they are higher than the previous results 

for all communication scenarios. 

 Chapter 7: The Effect of Two-receiver on Broadcast DBMC Systems. 

Chapter 7 aimed to investigate the broadcast channel in two-receiver MC 

systems in two aspects. The first aspect was the investigation of capture 

probability for each receiver. As was shown in previous chapters (i.e. Chapter 

3 and Chapter 5), the capture probability is an important parameter for 

analysing the system performance, and the expression of the capture 

probability for the PTP DBMC system exists. However, for a two-receiver 

system with absorbing receivers, this expression is not valid anymore. In this 

chapter, a detailed simulation process for capture probabilities of two-

receiver broadcast MC has been illustrated and the approximate simulated 

capture probability (the value when the simulation time is large enough) for 

each receiver was also compared with the theoretical results. Thus, the 

behaviour of the simulation was validated. The second aspect was the 

investigation of the interference between receivers on a broadcast MC system. 

Here, a system with one TX and two identical RXs that can absorb the same 

type of information molecules was proposed. One of the RXs was considered 

as an interfering receiver (RI) and another one was considered as a target 

receiver (RT). Considering a system with a fixed position of TX and RT, three 

different positions of RI were studied. Scenario 1 considered that RI was 

located to the left of both TX and RT. Scenario 2 considered that RI was 

between TX and RT. Scenario 3 considered that RI was located to the right of 

both TX and RT. The effect of the position of RI on RT can be reflected in the 

BER and channel capacity of the target link (communication between TX and 

RT). The results indicated that the positions of RI in Scenario 2 give the 

highest impact on the target link than those positions in the other scenarios. 

In addition, for any scenario, the closer RI to TX, the higher impact on RT. 

B. Summary of the conclusions  

The main contributions of the thesis come from two aspects: Establishing 

and analysing the performance of the PTP and the two-receiver DBMC systems 
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and employing ECCs into the PTP DBMC system to enhance the reliability of 

transmission.  

For the first aspect, the diffusive PTP and two-receiver broadcast MC 

systems were designed and studied. In this thesis, two channel models were studied 

for PTP DBMC system, which can be denoted as the P-Model and the R-Model. The 

Binomial distribution used to model the number of arriving molecules was 

approximated as the Normal and the Poisson distribution to simplify the calculation 

process. The RMSE as a decision metric was also introduced to determine which 

approximation is more suitable for a proposed system. Considering a memory 

limited channel with an arbitrary ISI length, the closed-form expressions for BER 

and channel capacity based on both P-Model and R-Model have been derived. The 

simulation of the random walk of the molecule in a 3D environment was also 

presented in this thesis to verify the behaviour of the propagation model. The study 

of the two-receiver DBMC system was focused on the interference between RI and 

RT. By analysing different positions of the RI, the effects of RI on RT in terms of the 

BER and channel capacity of the target link were shown. Above studies presented a 

way to analysing the PTP DBMC system, and how to determine the related 

parameters and the suitable analytic channel model. The related results provided an 

overview of the performance of the PTP DBMC system based on different parameter 

settings.  

The second aspect, the ECC, as an efficient way to enhance the system 

performance has been employed into the MC system. There, three of block codes, 

i.e., Hamming codes, LDPC codes and C-RM codes, and one of the convolutional 

codes, i.e., SOCC were selected for the use in the PTP DBMC system. Considering 

different communication scenarios, the performance of the coded DBMC system 

with regards to BER and energy efficiency were also investigated. The BERs of the 

coded systems were generated and compared with the uncoded system to show that 

employing ECCs can enhance the reliability of the MC system. During the 

investigation of the energy efficiency process, the critical distance was introduced as 

a metric to determine at which transmission distance, the employment of ECCs into 

the MC system become beneficial. Through the analysis of BER and critical distance 
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of the coded system, the system designer can determine if or which ECC should be 

employed into the proposed MC system. 

8.2 Future research 

The description of the MC system and the presentation of the related results in this 

thesis show that the MC has vast potential applications and will benefit lots of 

manufacturing processes. However, this area is very new, and still has lots of open 

problems, and new topics which can be investigated in the future. In this section, the 

future research in this area is presented. 

 The first direction of the future research is the extension of the current work 

from the following area: 

 Communication model analysis:  

In this thesis, the primary noise was from the ISI. Thus, all the 

communication processes introduced in this work only suffer from previous 

transmission symbols. However, considering MC, many internal and external noises 

exist, e.g. temperature, environment flow, or other unwanted molecules. These 

should be considered in the analysis of the channel to avoid an imprecise estimation 

of the system performance. For this, a noise model which can select different noise 

sources should be considered in the future. For a specific application environment, a 

specific noise model can be generated by selecting the corresponding noise sources.  

As shown in Chapter 3 and Chapter 5, many channel models had been 

proposed, and the accuracy of these channel models is an important issue for future 

development. During the analysis, the consideration of assumptions is a way to 

simplify the complexity of the analysis process, but it may cause an accuracy 

reduction of channel estimation. Thus, avoiding the unreliable assumptions is the 

next step of this work.  

Simulating the behaviour of the environment and the random walk of 

molecules is an efficient way to verify the theoretical analysis. However, the 

simulation method used in this thesis lacks efficiency. The computation becomes 

very slow when processing high resolution. Thus, future work may focus on the 

development of a new method to make the simulation process more efficient.  
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Furthermore, the detection technique is another key point for the reliability of 

the transmission process. The OOK as a basis modulation technique that was used 

for all of the works presented this thesis, and the detection scheme used in here is 

counting the number of received molecules at the end of each time slot and 

comparing with the pre-designed threshold to determine the information that was 

sent at the TX. Due to the simplicity of this scheme, it can not enhance the accuracy 

of the detection process. Therefore, more functional detection schemes i.e. ones that 

contain ISI elimination can be considered as a future research direction. 

 Broadcast channel analysis: 

In this research, a simulation process of the capture probabilities for the two-

receiver system has been proposed. There exist opportunities in the research of 

investigating the closed-form expressions of capture probability for each receiver in 

a multiple-receiver system. An idea to deal with this problem is modelling the 

simulation results using a specific general function with several undetermined 

coefficients of the channel parameters. These coefficients can be estimated by using 

different approaches methods, i.e. Bayesian approaches. 

In this thesis, RI, RT and TX are considered to be centred on the same line, 

and by changing the positions of RI along this line, the effect of the RI on RT is 

investigated. This work can be extended by considering more scenarios, for example, 

when RI, RI and TX are not located on the same line. Furthermore, the investigation 

of the system with more than one RI should be considered in the future. 

 Coding techniques: 

As mentioned in Chapter 4, the control and correction of errors that 

introduced in transmission process are the key points for any communication 

systems. Here, ECCs have been introduced into the MC system, and the results 

indicate that the introduction of ECCs does improve the performance of the MC 

system. Although the technique for building biological circuits is in the process of 

being developed, there are many issues that may take more time to resolve. Thus, 

new codes for MC should be investigated. The design of this kind of codes should 

focus on the simplicity of the construction and ability to correct error. On the other 

hand, the network coding that normally is used in wireless communication systems 
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may also be considered as a next work step for enhancing the MC system 

performance. 

 The second direction of the future research is experimental research. The 

experimental research in MC is another important direction for the future work. The 

experimental work should focus on the construction of the biological environment by 

using biological cells e.g. bacteria, and through the control of this environment, the 

DBMC should be studied. Experimental research is the most direct way to verify the 

theoretical analysis, and can ensure a high level of accuracy of the theoretical results 

for modelling the future application. However, the experimental research is still in 

the early stage, so the interdisciplinary collaborations are required for the next step 

investigation. 

 Finally, with the rise of the nanotechnology, the DBMC will become a 

feasible and efficient communication scheme that can benefit lots of applications in 

the future. Therefore, it is strongly believed that the research presented in this thesis 

will help system designers to understand the DBMC system and evaluate a more 

functional MC system. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

137 
 

Bibliography 

[1] I. F. Akyildiz, F. Brunetti, and C. Blázquez, "Nanonetworks: A new 

communication paradigm," Computer Networks, vol. 52, pp. 2260-2279, 

2008. 

[2] R. P. Feynman, "There's plenty of room at the bottom," in Feynman and 

computation, J. G. H. Anthony, Ed., Perseus Books, 1999, pp. 63-76. 

[3] N. Taniguchi, "On the basic concept of nanotechnology," in Proceedings of 

the International Conference on Production Engineering, Tokyo, Part II, 

Japan Society of Precision Engineering, 1974, pp. 18-23. 

[4] K. E. Drexler, "Molecular engineering: An approach to the development of 

general capabilities for molecular manipulation," in Proceedings of the 

National Academy of Sciences, vol. 78, pp. 5275-5278, 1981. 

[5] T. Suda, M. Moore, T. Nakano, R. Egashira, A. Enomoto, S. Hiyama, et al., 

"Exploratory research on molecular communication between nanomachines," 

in Genetic and Evolutionary Computation Conference (GECCO), Late 

Breaking Papers, 2005, pp.1-5. 

[6] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, "Electron beam lithography 

in nanoscale fabrication: recent development," IEEE Transactions on 

Electronics Packaging Manufacturing, vol. 26, pp. 141-149, 2003. 

[7] J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides, 

"Microcontact printing of self-assembled monolayers: applications in 

microfabrication," Nanotechnology, vol. 7, pp. 452 - 457, 1996. 



 
 

138 
 

[8] M. Meyyappan, J. Li, J. Li, and A. Cassell, "Nanotechnology: An overview 

and integration with MEMS," in Proceedings of the 19th IEEE International 

Conference on Micro Electro Mechanical Systems (MEMS’06), 2006, pp. 1-3. 

[9] V. Balzani, A. Credi, S. Silvi, and M. Venturi, "Artificial nanomachines 

based on interlocked molecular species: recent advances," Chemical Society 

Reviews, vol. 35, pp. 1135-1149, 2006. 

[10] G. M. Whitesides, "The once and future nanomachine," Scientific American, 

vol. 285, pp. 78 -83, 2001. 

[11] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, et al., 

"Molecular Biology of the Cell (3rd edn)," Trends in Biochemical Sciences, 

vol. 20, pp. 210-210, 1995. 

[12] G. Alfano and D. Miorandi, "On information transmission among 

nanomachines," 1st International Conference on Nano-Networks and 

Workshops, 2006, pp. 1-5. 

[13] S. F. Bush, "Wireless ad hoc nanoscale networking," IEEE Wireless 

Communications, vol. 16, pp. 6-7, 2009. 

[14] R. A. Freitas, Nanomedicine: Landes Bioscience, 1999. 

[15] T. Nakano, M. J. Moore, F. Wei, A. V. Vasilakos, and J. Shuai, "Molecular 

communication and networking: Opportunities and challenges," IEEE 

Transactions on NanoBioscience, vol. 11, pp. 135-148, 2012. 

[16] N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, "A 

comprehensive survey of recent advancements in molecular communication," 

arXiv preprint arXiv:1410.4258, 2014. 

[17] M. Pierobon and I. F. Akyildiz, "A physical end-to-end model for molecular 

communication in nanonetworks," IEEE Journal on Selected Areas in 

Communications, vol. 28, pp. 602-611, 2010. 

[18] I. F. Akyildiz and J. M. Jornet, "The internet of nano-things," IEEE Wireless 

Communications, vol. 17, pp. 58-63, 2010. 



 
 

139 
 

[19] T. Nakano, M. J. Moore, F. Wei, A. V. Vasilakos, and J. Shuai, "Molecular 

Communication and Networking: Opportunities and Challenges," IEEE 

Transactions on NanoBioscience, vol. 11, pp. 135-148, 2012. 

[20] M. J. Moore and T. Nakano, "Comparing transmission, propagation, and 

receiving options for nanomachines to measure distance by molecular 

communication," in IEEE International Conference on Communications 

(ICC), 2012, pp. 6132-6136. 

[21] T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, and K. Arima, 

"Molecular communication for nanomachines using intercellular calcium 

signaling," in 5th IEEE Conference on Nanotechnology, 2005, pp. 478-481. 

[22] T. Nakano, Y. Okaie, and A. V. Vasilakos, "Throughput and efficiency of 

molecular communication between nanomachines," in IEEE Wireless 

Communications and Networking Conference (WCNC), 2012, pp. 704-708. 

[23] M. Ş. Kuran, H. B. Yilmaz, T. Tugcu, and B. Özerman, "Energy model for 

communication via diffusion in nanonetworks," Nano Communication 

Networks, vol. 1, pp. 86-95, 2010. 

[24] D. Kilinc and O. B. Akan, "Receiver Design for Molecular Communication," 

IEEE Journal on Selected Areas in Communications, vol. 31, pp. 705-714, 

2013. 

[25] M. Ş. Kuran, H. B. Yilmaz, T. Tugcu, and I. F. Akyildiz, "Modulation 

Techniques for Communication via Diffusion in Nanonetworks," in IEEE 

International Conference on Communications (ICC), 2011, pp. 1-5. 

[26] F. M. Raymo, "Digital Processing and Communication with Molecular 

Switches," Advanced Materials, vol. 14, pp. 401-414, 2002. 

[27] A. P. de Silva and N. D. McClenaghan, "Molecular-Scale Logic Gates," 

Chemistry – A European Journal, vol. 10, pp. 574-586, 2004. 

[28] H. M. Sauro and B. N. Kholodenko, "Quantitative analysis of signaling 

networks," Progress in biophysics and molecular biology, vol. 86, pp. 5-43, 

2004. 



 
 

140 
 

[29] K. E. Drexler, Nanosystems: molecular machinery, manufacturing, and 

computation: John Wiley & Sons, Inc., 1992. 

[30] B. Atakan, Molecular Communications and Nanonetworks: Springer, 2014. 

[31] T. Nakano, A. W. Eckford, and T. Haraguchi, Molecular communication: 

Cambridge University Press, 2013. 

[32] Y. Moritani, S. Hiyama, and T. Suda, "A Molecular Communication 

System," in Natural Computing: 4th International Workshop on Natural 

Computing, Springer Japan, 2010, pp. 82-89. 

[33] N. Rikhtegar and M. Keshtgary, "A brief survey on molecular and 

electromagnetic communications in nano-networks," International Journal of 

Computer Applications, vol. 79, 2013. 

[34] T. Nakano, T. Suda, Y. Okaie, M. J. Moore, and A. V. Vasilakos, "Molecular 

communication among biological nanomachines: A layered architecture and 

research issues," IEEE Transactions on NanoBioscience, vol. 13, pp. 169-197, 

2014. 

[35] C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, "Mechanical 

Processes in Biochemistry," Annual Review of Biochemistry, vol. 73, pp. 705-

748, 2004. 

[36] M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, et al., 

"A design of a molecular communication system for nanomachines using 

molecular motors," in Pervasive Computing and Communications Workshops, 

2006, pp. 554 - 559. 

[37] V. Serreli, C.-F. Lee, E. R. Kay, and D. A. Leigh, "A molecular information 

ratchet," Nature, vol. 445, pp. 523-527, 2007. 

[38] B. Atakan and O. B. Akan, "Deterministic capacity of information flow in 

molecular nanonetworks," Nano Communication Networks, vol. 1, pp. 31-42, 

2010. 



 
 

141 
 

[39] M. Pierobon and I. F. Akyildiz, "Diffusion-Based Noise Analysis for 

Molecular Communication in Nanonetworks," IEEE Transactions on Signal 

Processing, vol. 59, pp. 2532-2547, 2011. 

[40] S. Hiyama, T. Inoue, T. Shima, Y. Moritani, T. Suda, and K. Sutoh, 

"Autonomous Loading, Transport, and Unloading of Specified Cargoes by 

Using DNA Hybridization and Biological Motor‐Based Motility," Small, 

vol. 4, pp. 410-415, 2008. 

[41] M. J. Moore, T. Suda, and K. Oiwa, "Molecular communication: modeling 

noise effects on information rate," IEEE Transactions on NanoBioscience, 

vol. 8, pp. 169-180, 2009. 

[42] T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, and K. Arima, 

"Molecular communication for nanomachines using intercellular calcium 

signaling," in 5th IEEE Conference on Nanotechnology, 2005, pp. 478-481. 

[43] T. Nakano, T. Suda, T. Koujin, T. Haraguchi, and Y. Hiraoka, "Molecular 

communication through gap junction channels," Transactions on 

Computational Systems Biology X, Springer, 2008, pp. 81-99. 

[44] T. Nakano, Y.-H. Hsu, W. C. Tang, T. Suda, D. Lin, T. Koujin, et al., 

"Microplatform for intercellular communication," in 3rd IEEE International 

Conference on Nano/Micro Engineered and Molecular Systems, 2008, pp. 

476-479. 

[45] L. C. Cobo and I. F. Akyildiz, "Bacteria-based communication in 

nanonetworks," Nano Communication Networks, vol. 1, pp. 244-256, 2010. 

[46] M. Gregori and I. F. Akyildiz, "A new nanonetwork architecture using 

flagellated bacteria and catalytic nanomotors," IEEE Journal on Selected 

Areas in Communications, vol. 28, pp. 612-619, 2010. 

[47] M. Gregori, I. Llatser, A. Cabellos-Aparicio, and E. Alarcón, "Physical 

channel characterization for medium-range nanonetworks using flagellated 

bacteria," Computer Networks, vol. 55, pp. 779-791, 2011. 

[48] M. J. Berridge, "The AM and FM of calcium signalling," Nature, vol. 386, pp. 

759-760, 1997. 



 
 

142 
 

[49] D. L. Nelson, A. Lehninger, M. M. Cox, M. Osgood, and K. Ocorr, 

Lehninger Principles of Biochemistry / The Absolute, Ultimate Guide to 

Lehninger Principles of Biochemistry: Macmillan Higher Education, 2008. 

[50] L. Parcerisa Giné and I. F. Akyildiz, "Molecular communication options for 

long range nanonetworks," Computer Networks, vol. 53, pp. 2753-2766, 2009. 

[51] S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, et al., 

"Molecular communication," Journal-Institute of Electronics Information 

and Communication Engineers, vol. 89, 2006. 

[52] M. U. Mahfuz, D. Makrakis, and H. T. Mouftah, "On the characterization of 

binary concentration-encoded molecular communication in nanonetworks," 

Nano Communication Networks, vol. 1, pp. 289-300, 2010. 

[53] N. Garralda, I. Llatser, A. Cabellos-Aparicio, E. Alarcón, and M. Pierobon, 

"Diffusion-based physical channel identification in molecular 

nanonetworks," Nano Communication Networks, vol. 2, pp. 196-204, 2011. 

[54] K. Na-Rae and C. Chan-Byoung, "Novel modulation techniques using 

isomers as messenger molecules for molecular communication via diffusion," 

in IEEE International Conference on Communications (ICC), 2012, pp. 

6146-6150. 

[55] B. Krishnaswamy, C. M. Austin, J. P. Bardill, D. Russakow, G. L. Holst, B. 

K. Hammer, et al., "Time-elapse communication: Bacterial communication 

on a microfluidic chip," IEEE Transactions on Communications, vol. 61, pp. 

5139-5151, 2013. 

[56] B. Tepekule, A. E. Pusane, H. B. Yilmaz, and T. Tugcu, "Energy efficient ISI 

mitigation for communication via diffusion," in IEEE International Black 

Sea Conference on Communications and Networking (BlackSeaCom), 2014, 

pp. 33-37. 

[57] B. Atakan, S. Galmés, and O. B. Akan, "Nanoscale communication with 

molecular arrays in nanonetworks," IEEE Transactions on NanoBioscience, 

vol. 11, pp. 149-160, 2012. 



 
 

143 
 

[58] B. Atakan and O. B. Akan, "An information theoretical approach for 

molecular communication," in Bio-Inspired Models of Network, Information 

and Computing Systems, 2007, pp. 33-40. 

[59] A. Einolghozati, M. Sardari, and F. Fekri, "Capacity of diffusion-based 

molecular communication with ligand receptors," in IEEE Information 

Theory Workshop (ITW), 2011, pp. 85-89. 

[60] D. Arifler, "Capacity analysis of a diffusion-based short-range molecular 

nano-communication channel," Computer Networks, vol. 55, pp. 1426-1434, 

2011. 

[61] B. Atakan, "Optimal transmission probability in binary molecular 

communication," IEEE Communications Letters, vol. 17, pp. 1152-1155, 

2013. 

[62] T. Nakano, Y. Okaie, and J.-Q. Liu, "Channel model and capacity analysis of 

molecular communication with Brownian motion," IEEE Communications 

Letters, vol. 16, pp. 797-800, 2012. 

[63] J. Crank, The mathematics of diffusion: Oxford university press, 1979. 

[64] K. Srinivas, A. W. Eckford, and R. S. Adve, "Molecular communication in 

fluid media: The additive inverse gaussian noise channel," IEEE 

Transactions on Information Theory, vol. 58, pp. 4678-4692, 2012. 

[65] H. Li, S. M. Moser, and D. Guo, "Capacity of the memoryless additive 

inverse gaussian noise channel," IEEE Journal on Selected Areas in 

Communications, vol. 32, pp. 2315-2329, 2014. 

[66] H. ShahMohammadian, G. G. Messier, and S. Magierowski, "Nano-machine 

molecular communication over a moving propagation medium," Nano 

Communication Networks, vol. 4, pp. 142-153, 2013. 

[67] P. Cuatrecasas, "Membrane Receptors," Annual Review of Biochemistry, vol. 

43, pp. 169-214, 1974. 

[68] M. S. Leeson and M. D. Higgins, "Forward error correction for molecular 

communications," Nano Communication Networks, vol. 3, pp. 161-167, 2012. 



 
 

144 
 

[69] H. Arjmandi, A. Gohari, M. N. Kenari, and F. Bateni, "Diffusion-based 

nanonetworking: A new modulation technique and performance analysis," 

IEEE Communications Letters, vol. 17, pp. 645-648, 2013. 

[70] M. U. Mahfuz, D. Makrakis, and H. T. Mouftah, "Strength-based optimum 

signal detection in concentration-encoded pulse-transmitted OOK molecular 

communication with stochastic ligand-receptor binding," Simulation 

Modelling Practice and Theory, vol. 42, pp. 189-209, 2014. 

[71] M. Pierobon and I. F. Akyildiz, "Noise analysis in ligand-binding reception 

for molecular communication in nanonetworks," IEEE Transactions on 

Signal Processing, vol. 59, pp. 4168-4182, 2011. 

[72] E. Gul, B. Atakan, and O. B. Akan, "NanoNS: A nanoscale network 

simulator framework for molecular communications," Nano Communication 

Networks, vol. 1, pp. 138-156, 2010. 

[73] I. Llatser, D. Demiray, A. Cabellos-Aparicio, D. T. Altilar, and E. Alarcón, 

"N3Sim: Simulation framework for diffusion-based molecular 

communication nanonetworks," Simulation Modelling Practice and Theory, 

vol. 42, pp. 210-222, 2014. 

[74] L. Felicetti, M. Femminella, and G. Reali, "A simulation tool for nanoscale 

biological networks," Nano Communication Networks, vol. 3, pp. 2-18, 2012. 

[75] L. Felicetti, M. Femminella, and G. Reali, "Simulation of molecular signaling 

in blood vessels: Software design and application to atherogenesis," Nano 

Communication Networks, vol. 4, pp. 98-119, 2013. 

[76] L. Felicetti, M. Femminella, G. Reali, P. Gresele, and M. Malvestiti, 

"Simulating an in vitro experiment on nanoscale communications by using 

BiNS2," Nano Communication Networks, vol. 4, pp. 172-180, 2013. 

[77] H. B. Yilmaz and C.-B. Chae, "Simulation study of molecular 

communication systems with an absorbing receiver: Modulation and ISI 

mitigation techniques," Simulation Modelling Practice and Theory, vol. 49, 

pp. 136-150, 2014. 



 
 

145 
 

[78] R. Weiss and T. F. Knight Jr, "Engineered communications for microbial 

robotics," DNA Computing, Springer, 2000, pp. 1-16. 

[79] A. Tamsir, J. J. Tabor, and C. A. Voigt, "Robust multicellular computing 

using genetically encoded NOR gates and chemical 'wires'," Nature, vol. 469, 

pp. 212-215, 2011. 

[80] W. Bacchus and M. Fussenegger, "Engineering of synthetic intercellular 

communication systems," Metabolic engineering, vol. 16, pp. 33-41, 2013. 

[81] M. E. Ortiz and D. Endy, "Engineered cell-cell communication via DNA 

messaging," Journal of biological engineering, vol. 6, 2012. 

[82] N. Farsad, W. Guo, and A. W. Eckford, "Tabletop molecular communication: 

Text messages through chemical signals," PloS one, vol. 8, p. e82935, 2013. 

[83] S. Qiu, W. Guo, S. Wang, N. Farsad, and A. Eckford, "A molecular 

communication link for monitoring in confined environments," IEEE 

International Conference on Communications Workshops (ICC), 2014, pp. 

718-723. 

[84] C. Lee, B. Koo, N. R. Kim, B. Yilmaz, N. Farsad, A. Eckford, et al., 

"Molecular MIMO communication link," in IEEE Conference on Computer 

Communications Workshops (INFOCOM WKSHPS), 2015, pp. 13-14. 

[85] R. Freitasjr, "What is nanomedicine? Nanomedicine: nanotechnology," 

Nanomedicine: Nanotechnology, Biology and Medicine, vol. 1, pp. 2-9, 2005. 

[86] Y. Moritani, S. Hiyama, and T. Suda, "Molecular communication for health 

care applications," in 4th Annual IEEE International Conference on 

Pervasive computing and communications workshops, 2006, pp. 549-553. 

[87] B. Atakan, O. B. Akan, and S. Balasubramaniam, "Body area nanonetworks 

with molecular communications in nanomedicine," IEEE Communications 

Magazine, vol. 50, pp. 28-34, 2012. 

[88] T. M. Allen and P. R. Cullis, "Drug delivery systems: entering the 

mainstream," Science, vol. 303, pp. 1818-1822, 2004. 



 
 

146 
 

[89] D. Tessier, I. Radu, and M. Filteau, "Antimicrobial fabrics coated with nano-

sized silver salt crystals," in NSTI Nanotechnology, 2005, pp. 762-764. 

[90] J. W. Aylott, "Optical nanosensors—an enabling technology for intracellular 

measurements," Analyst, vol. 128, pp. 309-312, 2003. 

[91] R. Byrne and D. Diamond, "Chemo/bio-sensor networks," Nature Materials, 

vol. 5, pp. 421-424, 2006. 

[92] J. Han, J. Fu, and R. B. Schoch, "Molecular sieving using nanofilters: past, 

present and future," Lab on a Chip, vol. 8, pp. 23-33, 2008. 

[93] M. S. Dresselhaus, R. E. Smalley, G. Dresselhaus, and P. Avouris, Carbon 

Nanotubes: Synthesis, Structure, Properties, and Applications: Springer 

Berlin Heidelberg, 2001. 

[94] M. Pierobon and I. F. Akyildiz, "Capacity of a Diffusion-Based Molecular 

Communication System With Channel Memory and Molecular Noise," IEEE 

Transactions on Information Theory, vol. 59, pp. 942-954, 2013. 

[95] S. P. Leary, C. Y. Liu, and M. L. Apuzzo, "Toward the emergence of 

nanoneurosurgery: part III--nanomedicine: targeted nanotherapy, 

nanosurgery, and progress toward the realization of nanoneurosurgery," 

Neurosurgery, vol. 62, p. E1384, 2008. 

[96] D. A. LaVan, T. McGuire, and R. Langer, "Small-scale systems for in vivo 

drug delivery," Nature  Biotechnology, vol. 21, pp. 1184-1191, 2003. 

[97] A. G. Thombre, J. R. Cardinal, A. R. DeNoto, S. M. Herbig, and K. L. Smith, 

"Asymmetric membrane capsules for osmotic drug delivery: I. Development 

of a manufacturing process," Journal of Controlled Release, vol. 57, pp. 55-

64, 1999. 

[98] S. Nain and N. N. Sharma, "Propulsion of an artificial nanoswimmer: a 

comprehensive review," Frontiers in Life Science, pp. 1-16, 2014. 

[99] J. M. Jornet and I. F. Akyildiz, "Joint energy harvesting and communication 

analysis for perpetual wireless nanosensor networks in the terahertz band," 

IEEE Transactions on Nanotechnology, vol. 11, pp. 570-580, 2012. 



 
 

147 
 

[100] Y. Lu, M. D. Higgins, and M. S. Leeson, "Comparison of Channel Coding 

Schemes for Molecular Communications Systems," IEEE Transactions on 

Communications, vol. 63, pp. 3991-4001, 2015. 

[101] Verdu, x, S., and H. Te, "A general formula for channel capacity," IEEE 

Transactions on Information Theory, vol. 40, pp. 1147-1157, 1994. 

[102] T. Nakano, Y. Okaie, and L. Jian-Qin, "Channel Model and Capacity 

Analysis of Molecular Communication with Brownian Motion," IEEE 

Communications Letters, vol. 16, pp. 797-800, 2012. 

[103] J. J. Kim and K. Park, "Modulated insulin delivery from glucose-sensitive 

hydrogel dosage forms," Journal of Controlled Release, vol. 77, pp. 39-47, 

2001. 

[104] C. C. Miller, "The Stokes-Einstein Law for Diffusion in Solution," 

Proceedings of the Royal Society of London. Series A, Containing Papers of 

a Mathematical and Physical Character, vol. 106, pp. 724-749, 1924. 

[105] K. Pin-Yu, L. Yen-Chi, P. C. Yeh, L. Chia-han, and K. C. Chen, "A new 

paradigm for channel coding in diffusion-based molecular communications: 

Molecular coding distance function," in IEEE Global Communications 

Conference (GLOBECOM), 2012, pp. 3748-3753. 

[106] S. Po-Jen, L. Chia-Han, Y. Ping-Cheng, and C. Kwang-Cheng, "Channel 

Codes for Reliability Enhancement in Molecular Communication," IEEE 

Journal on Selected Areas in Communications, vol. 31, pp. 857-867, 2013. 

[107] B. Chenyao, M. S. Leeson, and M. D. Higgins, "Minimum energy channel 

codes for molecular communications," Electronics Letters, vol. 50, pp. 1669-

1671, 2014. 

[108] R. W. Hamming, "Error detecting and error correcting codes," Bell System 

technical journal, vol. 29, pp. 147-160, 1950. 

[109] D. E. Muller, "Application of Boolean algebra to switching circuit design and 

to error detection," Transactions of the I.R.E. Professional Group on 

Electronic Computers, vol. EC-3, pp. 6-12, 1954. 



 
 

148 
 

[110] I. Reed, "A class of multiple-error-correcting codes and the decoding 

scheme," Transactions of the IRE Professional Group on Information Theory, 

vol. 4, pp. 38-49, 1954. 

[111] S. Boztas and I. E. Shparlinski, Applied Algebra, Algebraic Algorithms and 

Error-Correcting Codes: 14th International Symposium, AAECC-14, 

Melbourne, Australia, Proceedings: Springer, 2001. 

[112] W. W. Peterson and E. J. Weldon, Error-correcting Codes: MIT Press, 1972. 

[113] T. Kasami, L. Shu, and W. Peterson, "New generalizations of the Reed-

Muller codes--I: Primitive codes," IEEE Transactions on Information Theory, 

vol. 14, pp. 189-199, 1968. 

[114] R. G. Gallager, "Low-density parity-check codes," IRE Transactions on 

Information Theory, vol. 8, pp. 21-28, 1962. 

[115] R. M. Tanner, "A recursive approach to low complexity codes," IEEE 

Transactions on Information Theory, vol. 27, pp. 533-547, 1981. 

[116] D. J. MacKay and R. M. Neal, "Near Shannon limit performance of low 

density parity check codes," Electronics letters, vol. 33, pp. 457-458, 1997. 

[117] G. D. Forney, R. E. Blahut, and R. Koetter, Codes, Graphs, and Systems: A 

Celebration of the Life and Career of G. David Forney, Jr. on the Occasion 

of His Sixtieth Birthday: Springer US, 2002. 

[118] K. Yu, L. Shu, and M. P. C. Fossorier, "Low-density parity-check codes 

based on finite geometries: a rediscovery and new results," IEEE 

Transactions on Information Theory, vol. 47, pp. 2711-2736, 2001. 

[119] T. K. Moon, Error Correction Coding: Mathematical Methods and 

Algorithms: Wiley, 2005. 

[120] J. C. Moreira and P. G. Farrell, Essentials of Error-Control Coding: Wiley, 

2006. 

[121] P. Reviriego, J. A. Maestro, and M. F. Flanagan, "Error Detection in Majority 

Logic Decoding of Euclidean Geometry Low Density Parity Check (EG-



 
 

149 
 

LDPC) Codes," IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, vol. 21, pp. 156-159, 2013. 

[122] K. Ganesan, P. Grover, and J. Rabaey, "The power cost of over-designing 

codes," in IEEE Workshop on Signal Processing Systems (SiPS), 2011, pp. 

128-133. 

[123] P. Grover and A. Sahai, "Green codes: Energy-efficient short-range 

communication," in IEEE International Symposium on Information Theory 

(ISIT), 2008, pp. 1178-1182. 

[124] S. Bougeard, J. F. Helard, and J. Citerne, "A new algorithm for decoding 

concatenated CSOCs: application to very high bit rate transmissions," in 

IEEE International Conference on Personal Wireless Communication, 1999, 

pp. 399-403. 

[125] S. Lin and D. J. Costello, Error control coding: fundamentals and 

applications: Prentice-Hall, 1983. 

[126] M. Kavehrad, "Implementation of a self-orthogonal convolutional code used 

in satellite communications," IEE Journal on Electronic Circuits and Systems, 

vol. 3, pp. 134-138, 1979. 

[127] R. Townsend and E. Weldon, "Self-orthogonal quasi-cyclic codes," IEEE 

Transactions on Information Theory, vol. 13, pp. 183-195, 1967. 

[128] S. L. Howard, C. Schlegel, and K. Iniewski, "Error control coding in low-

power wireless sensor networks: When is ECC energy-efficient?," EURASIP 

Journal on Wireless Communications and Networking, vol. 2006, pp. 1-14, 

2006. 

[129] J. Levine, H. Y. Kueh, and L. Mirny, "Intrinsic fluctuations, robustness, and 

tunability in signaling cycles," Biophysical Journal, vol. 92, pp. 4473-4481, 

2007. 

[130] S. Balasubramaniam and J. Kangasharju, "Realizing the Internet of Nano 

Things: Challenges, Solutions, and Applications," Computer, vol. 46, pp. 62-

68, 2013. 



 
 

150 
 

[131] E. Shacter, P. B. Chock, and E. R. Stadtman, "Energy consumption in a 

cyclic phosphorylation/dephosphorylation cascade," Journal of Biological 

Chemistry, vol. 259, pp. 12260-12264, 1984. 

[132] R. E. Blahut, Algebraic Codes for Data Transmission: Cambridge University 

Press, 2003. 

[133] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting 

Codes: North-Holland Publishing Company, 1977. 

[134] W. Ryan and S. Lin, Channel Codes: Classical and Modern: Cambridge 

University Press, 2009. 

[135] H. Min-Hsiu, Y. Wen-Tai, and H. Li-Yi, "High Performance Entanglement-

Assisted Quantum LDPC Codes Need Little Entanglement," IEEE 

Transactions on Information Theory, vol. 57, pp. 1761-1769, 2011. 

[136] K. Yu, L. Shu, and M. P. C. Fossorier, "Low density parity check codes: 

construction based on finite geometries," in IEEE Global 

Telecommunications Conference (GLOBECOM '00), 2000, pp. 825-829. 

[137] E. J. Weldon and Jr., "Euclidean geometry cyclic codes," in Proceedings of 

the Symposium on Combinatorial Mathematics, University of North Carolina, 

Chapel Hill, NC, 1967. 

[138] P. Elias, "Coding for noisy channels," in Proceedings of the Institute of Radio 

Engineers, 1955, pp. 356-356. 

[139] M. Ş. Kuran, H. B. Yilmaz, T. Tugcu, and I. F. Akyildiz, "Interference 

effects on modulation techniques in diffusion based nanonetworks," Nano 

Communication Networks, vol. 3, pp. 65-73, 2012. 

[140] K. Na-Rae, A. W. Eckford, and C. Chan-byoung, "Symbol Interval 

Optimization for Molecular Communication With Drift," IEEE Transactions 

on NanoBioscience, vol. 13, pp. 223-229, 2014. 

[141] A. Aijaz and A. H. Aghvami, "Error Performance of Diffusion-Based 

Molecular Communication Using Pulse-Based Modulation," IEEE 

Transactions on NanoBioscience, vol. 14, pp. 146-151, 2015. 



 
 

151 
 

[142] M. S. Leeson and M. D. Higgins, "Error correction coding for molecular 

communications," in IEEE International Conference on Communications 

(ICC), 2012, pp. 6172-6176. 

[143] M. S. Kuran, H. B. Yilmaz, and T. Tugcu, "A tunnel-based approach for 

signal shaping in molecular communication," in IEEE International 

Conference on Communications Workshops (ICC), 2013, pp. 776-781. 

[144] G. Genc, H. B. Yilmaz, and T. Tugcu, "Reception enhancement with 

protrusions in communication via diffusion," in First International Black Sea 

Conference on Communications and Networking (BlackSeaCom), 2013, pp. 

89-93. 

[145] H. B. Yilmaz and C. Chan-byoung, "Arrival modelling for molecular 

communication via diffusion," Electronics Letters, vol. 50, pp. 1667-1669, 

2014. 

[146] A. Heren, H. Yilmaz, C. Chae, and T. Tugcu, "Effect of Degradation in 

Molecular Communication: Impairment or Enhancement?," IEEE 

Transactions on Molecular, Biological and Multi-Scale Communications, vol. 

1, pp. 217-229, 2015. 

[147] O. Ibe, Fundamentals of Applied Probability and Random Processes: 

Elsevier Science, 2014. 

[148] H. C. Berg, Random Walks in Biology: Princeton University Press, 1993. 

[149] B. H. Koo, C. Lee, H. B. Yilmaz, N. Farsad, A. Eckford, and C. B. Chae, 

"Molecular MIMO: From Theory to Prototype," IEEE Journal on Selected 

Areas in Communications, vol. 34, pp. 600-614, 2016. 

[150] H. ShahMohammadian, G. G. Messier, and S. Magierowski, "Optimum 

receiver for molecule shift keying modulation in diffusion-based molecular 

communication channels," Nano Communication Networks, vol. 3, pp. 183-

195, 2012. 

[151] H. B. Yilmaz, A. C. Heren, T. Tugcu, and C. B. Chae, "Three-Dimensional 

Channel Characteristics for Molecular Communications With an Absorbing 

Receiver," IEEE Communications Letters, vol. 18, pp. 929-932, 2014. 



 
 

152 
 

[152] B. Atakan and O. B. Akan, "On molecular multiple-access, broadcast, and 

relay channels in nanonetworks," presented at the Proceedings of the 3rd 

International Conference on Bio-Inspired Models of Network, Information 

and Computing Sytems, Hyogo, Japan, 2008. 

[153] L. S. Meng, P. C. Yeh, K. C. Chen, and I. F. Akyildiz, "MIMO 

communications based on molecular diffusion," in IEEE Global 

Communications Conference (GLOBECOM), 2012, pp. 5380-5385. 

[154] S. F. Bush, Nanoscale Communication Networks: Artech House, 2010. 

[155] H. Sano, "Solutions to the Smoluchowski equation for problems involving 

the anisotropic diffusion or absorption of a particle," The Journal of 

Chemical Physics, vol. 74, pp. 1394-1400, 1981. 

[156] W. Mendenhall, R. Beaver, and B. Beaver, Introduction to Probability and 

Statistics: Cengage Learning, 2012. 

 


