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Abstract

This thesis has two related aims: establishing tractable conditions for poste-

rior consistency of statistical inference from non-IID data with an intractable likeli-

hood, and developing Monte Carlo methodology for conducting such inference. Two

prominent classes of models, jump diffusions and generalised coalescent processes,

are considered throughout. Both are motivated by population genetics applications.

Posterior consistency of nonparametric inference is established for joint in-

ference of drift and compound Poisson jump components of unit volatility jump dif-

fusions in arbitrary dimension under an identifiability assumption. This assumption

is straightforward to verify in the diffusion case, but difficult to check in general for

jump diffusions. A similar consistency result is established under somewhat weaker

conditions for Λ-coalescent processes whenever time series data is available. I also

show that Λ-coalescent inference cannot be consistent if observations are contempo-

raneous, in stark contrast to the more classical case of the Kingman coalescent.

I also introduce the notion of reverse time sequential Monte Carlo (SMC),

which has previously been applied to Kingman and Λ-coalescents. Here, reverse

time SMC is presented as a generic algorithm, and general conditions under which

it is effective are developed. In brief, it is well suited to integration over paths which

begin at a mode of the target distribution, and terminate in the tails. These inno-

vations are used to design new SMC algorithms for generalised coalescent processes,

as well as non-coalescent examples including evaluating a containment probability

of the hyperbolic diffusion, an overflow probability in a queueing model and finding

an initial infection in an epidemic network model.
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Chapter 1

Introduction

Analysis of the likelihood function has been central to statistics for a century [Fisher,

1912, 1922] due to the fact that it (along with the prior in the Bayesian setting) en-

codes all of the signal contained in a data set about the data-generating mechanism.

Hence analysis of the likelihood yields point estimators of parameter values, confi-

dence or credible sets as well as estimators of any other quantity of interest, along

with quantitative information about the accuracy of estimates, at least in principle.

Let {Pθ, θ ∈ Θ} be a parametric family of statistical models, and x1:n =

(x1, . . . , xn) denote an observed data set. The likelihood function is the joint prob-

ability

L(θ;x1:n) = Pθ(X1 = x1, . . . , Xn = xn),

which is not a tractable function in general. When the observations are independent,

the likelihood decomposes into the substantially more tractable product form:

L(θ;x1:n) =

n∏
i=1

Pθ(Xi = xi).

However, there are a myriad of statistical applications in which the independence

assumption is either restrictive, or outright false. Asymptotically, the assumption

of independence can be relaxed to the much more permissive regularity conditions

of local asymptotic normality [Le Cam, 1953, 1956, 1960], under which correlated

observations can be treated as arising from a joint Gaussian distribution. Thus

it is only necessary to estimate the mean vector and covariance matrix under the

Gaussian assumption.

However, local asymptotic normality still constrains the scope of possible

models, and the associated Gaussian approximation is only valid asymptotically. If

the necessary regularity conditions do not hold, or there is insufficient data to justify
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an asymptotic analysis, there is no reason to expect the likelihood function to be

tractable. Intractable likelihood functions also arise in e.g. statistical mechanics,

inference from diffusions and missing data problems, all of which have a wide range

of applications.

The tractability of the likelihood function is important for (at least) two

reasons:

1. Maximising the likelihood function is a concrete way of obtaining maximum

likelihood estimators, θ̂, for parameters, θ.

2. Analysis of the likelihood function is central to proving desirable properties of

these estimators, such as consistency, unbiasedness, efficiency etc.

In recent decades the desire to carry out these two procedures for increasingly com-

plex models and data sets have motivated the development of statistical methods

which circumvent the need for an exact likelihood function. An incomplete list of

examples addressing point 1. includes the celebrated Metropolis-Hastings algorithm

[Metropolis et al., 1953; Hastings, 1970], which only requires likelihood evaluations

up to a normalising constant; the sequential Monte Carlo [Doucet and Johansen,

2011] and sequential Monte Carlo sampler [Del Moral et al., 2006] algorithms, which

are well suited to missing data problems, rare event simulation and filtering; and

exact simulation algorithms for inference from partially observed diffusions with

intractable transition probabilities [Beskos et al., 2006, 2009].

A minimal requirement for good statistical inference is that the estimator θ̂

is consistent, i.e. that θ̂ → θ as n→∞, in some appropriate sense. Intuitively, the

notion of consistency corresponds to it being possible to learn the truth from data.

In the Bayesian setting consistency can be expressed as the posterior distribution,

P(θ|x1:n) ∝ Q(θ)Pθ(x1:n), concentrating on a neighbourhood of the parameter which

generates the data, where Q(θ) is the prior. Standard conditions to ensure posterior

consistency are formulated in terms of Kullback-Leibler divergences and exponen-

tially consistent hypothesis tests [Schwartz, 1965], which are difficult to verify when

the likelihood is intractable. Moreover, many of the natural parameter sets of pro-

cesses with intractable likelihood are infinite dimensional — consider for example

function-valued coefficients of SDEs — and in this nonparametric setting posterior

consistency is a very delicate property [Diaconis and Freedman, 1986].

The aim of this thesis is twofold:

1. to determine verifiable conditions under which posterior consistency holds for

Bayesian nonparametric inference when the likelihood is intractable, and
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2. to derive optimised, unbiased sequential Monte Carlo inference algorithms for

intractable inference problems.

Both aims are motivated by inference problems in population genetics, where non-

parametric inference arises naturally e.g. for the so-called Λ-coalescent family [Pit-

man, 1999; Sagitov, 1999] and where both Markov chain Monte Carlo [Kuhner et al.,

1995; Wilson and Balding, 1998; Felsenstein et al., 1999; Drummond et al., 2002]

and sequential Monte Carlo [Griffiths and Tavaré, 1994a,b,c; Stephens and Don-

nelly, 2000] have a well established role. Despite the motivating application, both

results will be presented in some considerable generality: nonparametric consistency

for discretely observed jump diffusions as well as Λ-coalescents, and the sequential

Monte Carlo algorithms for generic, stopped Markov chains, of which coalescent

models are an example. The derivation of the sequential Monte Carlo algorithms

will yield very efficient but biased pseudo-likelihood algorithms as a byproduct, and

these will also be investigated briefly. Sequential Monte Carlo will be the subject of

Chapter 2, while Bayesian nonparametric consistency is developed in Chapter 3.

The key to the sequential Monte Carlo algorithms developed in this thesis

will be the notion of time reversal: simulating trajectories of Markov chains in re-

verse time. This makes it easy to condition the trajectories to hit sets of small, or

even zero probability, which makes the methods well suited for rare event simula-

tion. Time reversal is at the core of sequential Monte Carlo inference in population

genetics, and the idea of viewing the optimal sequential Monte Carlo algorithm as

the time-reversal of the coalescent process has appeared before in [Birkner et al.,

2011], but the results of this thesis make the connection transparent enough to be

easily generalisable.

1.1 Coalescent processes

The evolution of biological populations is a complex process shaped by the interplay

of genetic drift through random mating, mutation, recombination, natural selection

and many other forces both external and internal to the population in question.

This thesis will focus solely on genetic drift and recurrent mutation, which never-

theless necessitates more degrees of freedom than could feasibly be specified in any

comprehensively realistic model of a population. The key to successful modelling in

the face of such complexity is robustness: use of models which capture the essential

features of genetic evolution regardless of the fine details of the process itself. In

this context such robustness is achieved by coalescent processes, which are a core

subject of the thesis.
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Coalescent processes have been a central tool in population genetic modelling

and inference ever since their introduction by Kingman [1982a,b]. Kingman’s coa-

lescent is a model of the ancestry of lineages sampled from an infinite, panmictic

population undergoing random mating. Ancestral trees are generated by merging

each pair of lineages into a common ancestor at rate 1, thus reducing the number

of lineages by one. The process terminates once the most recent common ances-

tor (MRCA) of all sampled lineages is reached, so that a realisation of Kingman’s

coalescent is a random, binary tree.

Kingman’s coalescent is the attractor of a broad class of individual-based,

finite population models of evolution. This is the class is conveniently described in

terms of Cannings models [Cannings, 1974, 1975]. Consider a stationary population

of fixed size n ∈ N, undergoing random mating in discrete time with non-overlapping

generations. At time t ∈ N individual i ∈ {1, . . . , n} =: [n] produces a random

number ni(t) of offspring, so that the generation at time t + 1 is given by the

random vector (n1(t), . . . , nn(t)) with
∑n

i=1 ni(t) = n. The population is stationary,

and offspring numbers between different generations are assumed independent, so

that the vectors {n1(t), . . . , nn(t)}t∈N are IID. Further, assume that each vector is

exchangeable, so that for any permutation σ ∈ Sn of [n] it holds that

(n1(t), . . . , nn(t))
d
= (nσ(1)(t), . . . , nσ(n)(t)),

where
d
= indicates equality in distribution.

Kingman’s coalescent is obtained by defining the time scale

cn :=
E [n1(1)(n1(1)− 1)]

n− 1

and thus the rescaled process

(ñ1(t), . . . , ñn(t)) := (n1(bt/cnc), . . . nn(bt/cnc)). (1.1)

If cn → 0 and
E [n1(1)(n1(1)− 1)(n1(1)− 2)]

cnn2
→ 0 (1.2)

as n→∞, then the rescaled population model (1.1) lies in the domain of attraction

of Kingman’s coalescent [Möhle and Sagitov, 2001; Birkner and Blath, 2009]. Note

that (1.2) enforces the binary nature of Kingman’s coalescent trees by ensuring that

the probability of three or more lineages merging in one generation vanishes in the

limit.

4



The assumptions of discrete time and non-overlapping generations have been

made for ease of exposition. Neither assumption is necessary for obtaining conver-

gence, although the time scale cn may have to be altered when they don’t hold. The

assumption of a fixed population size can also be relaxed. For a detailed exposition

on Kingman’s coalescent and coalescent theory, the interested reader is directed to

[Wakeley, 2009] and references therein. In particular, the effect of changing popula-

tion size, crossover recombination [Griffiths and Marjoram, 1997], natural selection

[Krone and Neuhauser, 1997] and spatial structure [Herbots, 1997] on ancestries can

all be incorporated into the coalescent framework.

The domain of attraction of Kingman’s coalescent is determined by two cru-

cial assumptions: exchangeability of the offspring vectors and the moment conditions

cn → 0 and (1.2). The former has a biological interpretation as a neutral, homoge-

neous population with no natural selection or population structure, and the latter

as small family sizes compared to the size of the whole population. I will focus on

two relaxations of these conditions: allowing high fecundity events in which a small

number of ancestors give rise to a significant fraction of the whole population in a

small number of generations, and spatial structure across a continuous geography.

The resulting families of coalescent models under study are, respectively, the Λ- and

Ξ-coalescents for high fecundity events, and spatial Λ-coalescents for geographical

structure. As with Kingman’s coalescent, changing population size, recombination

[Birkner et al., 2012; Etheridge and Véber, 2012] and selection [Etheridge et al.,

2010, 2014] can be incorporated into both families of coalescents, and a spatially

structured version of the Λ-coalescent has also been derived [Heuer and Sturm,

2013]. However, none of these extensions are within the scope of this thesis.

1.1.1 Λ- and Ξ-coalescents

The Λ-coalescents, introduced by Donnelly and Kurtz [1999], Pitman [1999] and

Sagitov [1999], generalise Kingman’s coalescent by permitting multiple lineages to

merge in one event. Such multiple mergers correspond to high fecundity reproduc-

tion events, in which a single individual becomes ancestral to a significant fraction

of the whole population in a single generation. The merger rate of any k out of n

lineages is given by

λn,k :=

∫ 1

0
rk−2(1− r)n−kΛ(dr)

for some finite measure Λ on [0, 1], which can be taken to be a probability measure

without loss of generality. Λ-coalescents model infinite population ancestries from
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Cannings-like models with cn → 0,

n

cn
P(n1(1) > nx)→

∫ 1

x
r−2Λ(dr) (1.3)

for 0 < x < 1, and

E [n1(1)(n1(1)− 1)n2(1)(n2(1)− 1)]

cnn2
→ 0 (1.4)

as n→∞ [Möhle and Sagitov, 2001]. Note that while (1.3) permits large family sizes

and hence mergers involving more than two lineages with positive probability, (1.4)

ensures only one merger can take place at any given time. Simultaneous mergers

are ruled out.

Popular choices of Λ include Λ = δ0, which corresponds to Kingman’s coa-

lescent, Λ = δ1 leading to star-shaped genealogies, Λ = 2
2+ψ2 δ0 + ψ2

2+ψ2 δψ where ψ ∈
(0, 1] [Eldon and Wakeley, 2006], Λ = Beta(2−α, α) where α ∈ (1, 2) [Schweinsberg,

2003; Birkner and Blath, 2008; Birkner et al., 2011], and Λ(dr) = cδ0(dr) + 1−c
2 rdr

where c ∈ [0, 1] [Durrett and Schweinsberg, 2005]. Birkner and Blath [2009] provide

a review of Λ-coalescents.

The Λ-coalescents allow multiple mergers, but only permit one merger at a

time. They are generalised further by the Ξ-coalescents, which permit any number

of simultaneous, multiple mergers. Ξ-coalescents were introduced by Schweinsberg

[2000] and Möhle and Sagitov [2001], and can be expressed in terms of a finite

measure Ξ on the infinite simplex

∆ =

{
r = (r1, r2, . . .) ∈ [0, 1]N :

∞∑
i=1

ri ≤ 1

}
.

Again, Ξ can be taken to be a probability measure without loss of generality.

Let λn;k1,...,kp;s denote the rate of jumps involving p ≥ 1 mergers with sizes

k1, . . . , kp, with s = n−
∑p

i=1 ki lineages not participating in any merger. The total

number of lineages before the mergers is denoted by n. This rate is given as

λn;k1,...,kp;s :=∫
∆

s∑
l=0

(
s

l

)∑
i1∈N

. . .
∑
ip+l∈N

rk1
i1
. . . r

kp
ip
rip+1 . . . rip+l

(1−
∑∞

i=1 ri)
s−l∑∞

i=1 r
2
i

Ξ(dr).

Note that if Ξ assigns full mass to the set {r ∈ ∆ : r2 = r3 = . . . = 0}, the resulting

process is a Λ-coalescent.
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Ξ-coalescents correspond to Cannings-type models for which limn→∞ cn = 0

and the limits

lim
n→∞

E
[
(n1(1))k1 . . . (np(1))kp

]
cnnk1+...+kp−p (1.5)

exist for any p ∈ N and k1, . . . , kp ∈ N, where (n)k := n(n − 1) . . . (n − k + 1)

is the falling factorial. Any combination of p simultaneous mergers involving, re-

spectively, k1, k2, . . . , kp lineages is permitted with positive probability provided the

corresponding limit (1.5) is positive. The case limn→∞ cn = c > 0 results in discrete

time versions of Ξ-coalescents [Möhle and Sagitov, 2001].

1.1.2 Spatial Λ-coalescents

This section presents the spatial Λ-coalescent, introduced by Etheridge [2008] and

Barton et al. [2010a] as a generalisation of Kingman’s coalescent for structured pop-

ulations in a continuous geography. Previous generalisations typically incorporate

spatial structure by modelling the geography as a graph with panmictic populations

at the vertices and migration along edges [Wright, 1931; Kimura, 1953]. Natural

population habitats are continuous, which makes an accurate subdivision difficult

to specify. The choice of graph structure can also have an effect on inference. An-

other alternative is the Isolation by Distance model [Wright, 1943; Malécot, 1948],

which suffers from the “Pain in the Torus” [Felsenstein, 1975] of either extinction or

unstable population growth and clustering. The “Pain in the Torus” can be avoided

by local population density regulation which stabilises the population, but typically

renders models intractable.

The spatial Λ-coalescent circumvents both these difficulties by being defined

on a continuous geography, and achieving local density regulation tractably by mod-

elling reproduction via extinction-recolonisation events driven by a space-time Pois-

son process, which is independent of the state of the population. For concreteness

I focus on a two-dimensional geography, which I take to be a torus of side length

L > 0 denoted by T := T(L). Let z1:n := (z1, . . . , zn) ∈ T(L)n be the locations of

n ∈ N sampled lineages. For simplicity I assume all locations are distinct.

The dynamics of the spatial Λ-coalescent are driven by a Poisson process N

on R × T with rate dt ⊗ dx. The points (t, x) ∈ N model extinction-recolonisation

events, with the two co-ordinates specifying the time and place of the event re-

spectively. Tracing backwards in time, at each point (t, x) ∈ N , all lineages within

Br(x), a closed ball of radius r > 0 centred at x, flip a coin with success probability

u ∈ (0, 1]. Successful lineages merge to a common ancestor with location sampled

uniformly from Br(x), while lineages which fail their coin flip are unaffected by
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the event. Once the whole sample has merged into a single lineage (the MRCA),

the process terminates yielding a random tree with nodes labelled by geographical

locations and edges denoting jumps in spatial locations and mergers.

This is the so called disc model of the spatial Λ-coalescent process defined

by the replacement kernel u1Br(x)(y), but it is straightforward to construct variants

by using e.g. Gaussian or heavy-tailed replacement around each event centre x. The

Gaussian replacement model has been studied in [Barton et al., 2010b], and the

heavy-tailed case in [Berestycki et al., 2013].

The spatial Λ-coalescent is also the attractor of high density limits of a

broad class of individual-based models. Examples of such families are described

in [Etheridge and Kurtz, 2014]. Barton et al. [2013b] provide a review of spatial

Λ-coalescents and related processes.

1.1.3 Mutation

In addition to describing ancestral relationships between lineages, coalescent pro-

cesses can be used to tractably sample genetic types from populations. In the

notation of Paul and Song [2010], suppose that the genetic material of an organism

of interest is formed of k linearly arranged loci, or a haplotype. Suppose the state

of a locus l ∈ [k] can be one of a finite collection of alleles El = {1, . . . , |El|}, and

mutates at rate θl with mutant alleles sampled from a stochastic matrix M (l). Let

θ :=
∑

l∈[k] θl denote the total mutation rate, H := E1 × . . . × Ek denote the set

of possible haplotypes, and let M denote the stochastic matrix on H formed as a

mixture distribution from weights {θl/θ}l∈[k] and mixture components {M (l)}l∈[k].

Assume also that M has a unique stationary distribution m. For a haplotype h ∈ H
let h[l] denote the allele at locus l of haplotype h, and let Sal (h) denote the haplotype

obtained from h by substituting allele a at locus l.

When θ > 0 and M is irreducible, all haplotypes will persist in the population

and mutation is called recurrent. Given a realised coalescent tree, haplotypes from

a stationary population can be generated by sampling a haplotype for the MRCA

from m, and propagating it along the edges of the tree with mutations occurring

at rate θ and mutant haplotypes sampled from M . Non-stationary samples can be

obtained by changing the distribution of the MRCA haplotype, but I will focus on

the stationary case in this thesis.

When incorporating mutation, the coalescent processes introduced above can

be viewed as stochastic processes Π := (Πt)t≥0 taking values in PHn , the set of H-

labelled partitions of [n]. I will use Π to refer to a generic coalescent process,

ΠΛ for Λ-coalescents, ΠΞ for Ξ-coalescents and ΠSL for spatial Λ-coalescents. The
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coalescent starts from the unlabelled, trivial partition ψn := {{1}, {2}, . . . , {n}},
mergers of lineages correspond to merging the corresponding blocks in the partition,

and haplotype labels can be propagated along the realised tree as described above

once the MRCA is reached. Of course, in the spatial case it is also necessary to label

the partitions with their spatial locations while the lineages are coalescing, and the

resulting tree will be labelled both with haplotypes and locations.

As with the coalescent processes, I will denote the resulting laws on spaces

of labelled trees by PΛ
n(·), PΞ

n(·) and PSL
n (·) for Λ-, Ξ- and spatial Λ-coalescents

respectively. The corresponding expectations will be denoted by EΛ
n [·], EΞ

n [·] and

ESL
z1:n

[·], where in the spatial Λ-coalescent case the vector z1:n denotes initial sampling

locations. The symbols Pn(·) and En[·] will refer to generic coalescent processes.

The finite alleles model is arguably the most realistic model of mutation, as

it mimics the structure of DNA sequences when El = {A,C,G, T} for each l ∈ [k].

However, it can result in very computationally intensive simulations and inference

when the number of loci is large. I will focus on recurrent finite alleles mutation in

this thesis, but conclude the section by mentioning some popular alternatives.

The infinite alleles model depicts the allele at each locus as a point along

the unit interval. Mutations occur at rate θ, and result in sampling a new allele

uniformly, so that all information of the parental allele is lost. This model is coarse,

but was often appropriate before modern DNA sequencing became widespread, when

it was only possible to determine whether or not two DNA segments were identical.

The infinite sites model is a refinement of the infinite alleles model, in which

haplotypes are depicted as a continuous line segment. Mutations occur at rate θ,

and result in a mutant allele at a uniformly sampled location along the haplotype.

Sampled haplotypes are identified relative to a reference, usually the ancestral hap-

lotype, and their state can be specified by listing all the mutant locations at which

the reference and sample differ. Note that no location can ever mutate more than

once, which is problematic because real genetic data sets frequently contain loci

with three or more observed alleles. However, the infinite sites assumption can be

reasonable when the number of sampled loci is large, and the model is computation-

ally more tractable than the finite alleles model. Note also that the infinite alleles

model can be obtained from the infinite sites model by simply recording whether or

not at least one mutation has taken place along a sampled haplotype.

Finally, the stepwise model depicts the allele at a locus as a repeat count,

again measured relative to a reference so that negative counts are possible. As

before, mutations occur at rate θ, and result in the repeat count being increased or

decreased by a set or random amount. This model is natural for modelling biological
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microsatellites, which consist of repeating a fixed pattern of DNA, e.g. AT, a variable

number of times, so that the state of a microsatellite locus might be (AT )m for any

m ∈ Z, again relative to a reference number of repeats.

1.2 Jump diffusions and duality

A successful model in population genetics consists of a historical model of ancestry,

as well as a corresponding model of population allele frequencies forwards in time.

When endowed with a set of haplotypes H and inheritance of haplotypes from

parents, the Cannings models and their generalisations introduced in Section 1.1 are

examples of finite population models of allele frequencies. Infinite population limits

are most naturally expressed in terms of measure-valued jump diffusions. In this

section I will introduce the Λ-Fleming-Viot, Ξ-Fleming-Viot and spatial Λ-Fleming-

Viot processes, corresponding in the obvious way to the coalescent processes outlined

in Section 1.1. I will also make the correspondence precise via a duality relation

which connects each measure-valued allele frequency process to its corresponding

coalescent.

1.2.1 Λ- and Ξ-Fleming-Viot processes

Let ∆H := {x ∈ [0, 1]|H| :
∑d

i=1 xi = 1} denote the |H|-dimensional probability

simplex. The Λ-Fleming-Viot process XΛ := (XΛ
t )t≥0 with mutation rates {θl}l∈[L],

mutation matrix M and Λ-measure Λ ∈ M1([0, 1]) is a ∆H-valued jump diffusion

with generator

GΛf(x) =
Λ({0})

2

∑
i,j∈H

xi(δij − xj)
∂2

∂xi∂xj
f(x) + θ

∑
i,j∈H

xj(Mji − δij)
∂

∂xi
f(x)

+
∑
i∈H

xi

∫
(0,1]

[f((1− r)x + rei)− f(x)] r−2Λ(dr) (1.6)

acting on functions f ∈ C2(∆H), where ei is the canonical unit vector with a 1 in the

ith place and zeros elsewhere. It was introduced by Bertoin and Le Gall [2003], and

models the distribution of haplotypes H in a large population undergoing recurrent

mutation and random mating with high fecundity reproduction events, in which a

single individual becomes ancestral to a non-trivial fraction r ∈ (0, 1] of the whole

population. The effect of high fecundity events is modelled by the jump term in (1.6),

and gives rise to the multiple mergers in Λ-coalescent ancestries. Without this jump

term, i.e. when Λ = δ0, the process (XΛ
t )t≥0 reduces to the classical Wright-Fisher
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diffusion (see e.g. [Durrett, 2008], chapters 7 and 8) on ∆H with recurrent mutation.

The law of a Λ-Fleming-Viot process with initial condition x ∈ ∆H will

be denoted by PΛ
x(·), and expectation with respect to this law by EΛ

x [·]. I will

suppress dependence on initial conditions whenever the stationary process is meant.

For bounded f : ∆H 7→ R, let PΛ
t f(x) := EΛ

x [f(XΛ
t )] be the associated transition

semigroup, pΛ
t (x,y)dy := PΛ

x(XΛ
t ∈ dy) be the transition density and πΛ(x)dx the

corresponding unique stationary density on ∆H. The transition semigroup is Feller

for any Λ ∈M1([0, 1]) [Bertoin and Le Gall, 2003], and all densities are assumed to

exist with respect to a common dominating measure dx.

The following duality between Λ-coalescents and Λ-Fleming-Viot jump dif-

fusions was established in Bertoin and Le Gall [2003]:

EΛ

[∏
h∈H

XΛ
t (h)nh

]
= EΛ

n

[∏
h∈H

m(h)|Π
Λ
t (h)|

]
, (1.7)

where nh denotes the number of observed individuals of haplotype h ∈ H sampled

IID from the random measure XΛ
t , and |ΠΛ

t (h)| denotes the number of blocks in

partition ΠΛ
t of haplotype h ∈ H. In words, it states that the distribution of the

allele frequencies generated by a Λ-coalescent started from ψn coincides with the

distribution of a multinomial sample drawn from the corresponding stationary Λ-

Fleming-Viot process.

Birkner et al. [2009] constructed the Ξ-Fleming-Viot process, and established

the same duality between it and the Ξ-coalescent. The Ξ-Fleming-Viot process is

a jump diffusion similar to the Λ-Fleming-Viot process, but with a wider class of

possible jumps reflecting the more general mergers of the Ξ-coalescent. I denote the

Ξ-Fleming-Viot process by XΞ := (XΞ
t )t≥0.

With state space as above, the Ξ-Fleming-Viot process is the jump diffusion

with generator

GΞf(x) =
Ξ({0})

2

∑
i,j∈H

xi(δij − xj)
∂2

∂xi∂xj
f(x) + θ

∑
i,j∈H

xj(Mji − δij)
∂

∂xi
f(x)

∫
∆

∫
HN

[
f

(
1− ‖r‖1x +

∞∑
i=1

rieh′i

)
− f(x)

](∑
h∈H

xhδh

)⊗N
(dh′)

Ξ(dr)

‖r‖22
,

where Ξ is a probability measure on the infinite simplex

∆ :=

{
r ∈ [0, 1]N :

∞∑
i=1

ri = 1

}
,
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and ‖r‖p denotes the p-norm of r. For more details, including the specification of

a suitable class of test functions, see Proposition 1.3 of [Birkner et al., 2009]. The

law, expectation, transition semigroup, density and stationary distribution of the Ξ-

Fleming-Viot process will be denoted by PΞ
x(·), EΞ

x [·], PΞ
t , pΞ

t (x,y)dy and πΞ(x)dx,

respectively.

1.2.2 Spatial Λ-Fleming-Viot processes

The spatial Λ-Fleming-Viot process is the analogue of the Λ-Fleming-Viot process,

and describes the allele frequencies at each point in the continuous geography. It

was introduced by Barton et al. [2010a], who also established a duality between the

spatial Λ-Fleming-Viot process and the spatial Λ-coalescent.

Recall the Poisson process N from Section 1.1.2. The spatial Λ-Fleming-

Viot process XSL := (XSL
t (x, ·))x∈T,t≥0 specifies a probability measure on ∆H at

each location x ∈ T and time t ≥ 0. This probability measure describes the allele

frequencies in the population at that location and time.

The dynamics of XSL are driven by N , in that at each point (t, x) ∈ N a

parental location z is sampled uniformly from Br(x), and a parental haplotype h

from XSL(t, z, ·). The surface XSL then undergoes the update

XSL
t (y, ·) =

(1− u)XSL
t−(y, ·) + uδh(·) if y ∈ Br(x)

XSL
t−(y, ·) otherwise.

The spatial analogue of the duality relation (1.7) has precisely the same

interpretation as before: the distribution of a sample drawn at locations z1:n from a

stationary Λ-Fleming-Viot process coincides with that obtained by running a spatial

Λ-coalescent from those locations until merging to the MRCA, sampling an ancestral

type from m and propagating types along the coalescent tree with mutations at rate

θ sampled from M .

The duality relation (1.7), and its generalisations will play a central role

in designing sequential Monte Carlo inference algorithms for evaluating likelihoods

of multinomial samples from the allele frequency processes. They will also prove

convenient in proving the nonparametric consistency results of Section 3.3.1.

1.2.3 General jump diffusions

In Chapter 3 I will show that that the consistency results for Λ-coalescents gener-

alise naturally to consistency results for more general jump diffusions. Hence, this
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section introduces the general formulation of a time homogeneous jump diffusion on

a domain Ω ⊆ Rd in preparation for stating these results.

Jump diffusions are a broad wide class of stochastic processes encompassing

systems undergoing deterministic mean-field dynamics, microscopic diffusion and

macroscopic jumps. Jump diffusions are used as models across broad spectrum of

applications, such as economics and finance [Merton, 1976; Aase and Guttorp, 1987;

Bardhan and Chao, 1993; Chen and Filipović, 2005; Filipović et al., 2007], biology

[Kallianpur, 1992; Kallianpur and Xiong, 1994; Bertoin and Le Gall, 2003; Birkner

et al., 2009] and engineering [Au et al., 1982; Bodo et al., 1987]. They also contain

many important families of stochastic processes as special cases, including diffusions

and Lévy processes.

A general time-homogeneous, d-dimensional jump diffusion X := (Xt)t≥0 is

the solution of a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dWt + c(Xt−, dZt) (1.8)

X0 = x0

where σ : Ω 7→ Rd×d is known as the diffusion coefficient, b : Ω 7→ Rd as the drift

and c : Ω × Rd 7→ Rd0 as the jump coefficient. The process W := (Wt)t≥0 is a

d-dimensional Brownian motion and Z := (Zt)t≥0 is a pure jump Lévy process with

jumps in Rd0 := Rd \ {0}. The process Z is taken to be independent of W, and has

Lévy measure M(dz) satisfying∫
Rd0

(‖c(x, z)‖22 ∧ 1)M(dz) <∞

for any x ∈ Rd. Note that the space in which Z takes values can also be a more gen-

eral Lusin space [El Karoui and Lepeltier, 1977], but this possibility is not considered

in this thesis for ease of notation.

Under regularity conditions summarised below, jump diffusions are recurrent,

ergodic Feller-Markov processes with transition densities pt(x,y)dy and a unique

stationary density π(x)dx with respect to the d-dimensional Lebesgue measure.

For diffusions such conditions are widely available in standard textbooks, but the

same is not true of jump diffusions, even though sufficient conditions are known.

Hence I conclude this section by formalising them into a proposition under the

simplifying assumption σ ≡ Id. This is a strong assumption whenever d > 1, though

some models which fail to satisfy it outright can still be treated via the Lamperti

transform [Aı̈t-Sahalia, 2008]. Sufficient conditions for the Lamperti transform to
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be well defined are non-singularity of σ and the following symmetry condition [Yu,

2007; Aı̈t-Sahalia, 2008]:

∂(σ−1)ij(x)

∂xk
=
∂(σ−1)ik(x)

∂xj
for all i, j, k ∈ {1, . . . , d}.

Whenever well defined, this transformation maps a diffusion with general σ to one

with unit diffusion but altered drift and jump size distribution. Results which can

be deduced for the transformed diffusion must then be mapped by via an inverse

Lamperti transform to the original problem.

Proposition 1. Assume that c(·, 0) ≡ 0, and that there exist constants C1, C2, C3, C4 >

0 such that

‖b(x)− b(y)‖22 +

∫
Rd0
‖c(x, z)− c(y, z)‖22M(dz) ≤ C1‖x− y‖22 (1.9)

‖c(x, z)− c(x, ξ)‖22 ≤ C2‖z− ξ‖22 (1.10)

For every x ∈ Ω : ‖x‖2 > C3 the following holds: x · b(x) ≤ −C4‖x‖22 (1.11)∫
Rd0:‖z‖2>1

‖z‖22M(dz) <∞. (1.12)

Then (1.8) has a unique, ergodic weak solution X with the Feller and Markov proper-

ties. Furthermore, X has a unique stationary density πb,ν(x)dx with a finite second

moment, and the associated semigroup P b,νt has transition densities pb,νt (x,y)dy.

Proof. Existence and uniqueness of X are obtained from (1.9), as well as the lin-

ear growth bounds implied by Lipschitz continuity, by Theorem 6.2.9 of [Apple-

baum, 2004]. Theorem 6.4.6 of [Applebaum, 2004] gives the Markov property

under the same conditions. Finally, the corollary in Appendix 1 of [Kolokoltsov,

2004] yields the Feller property. In turn, the Feller property and the fact that

log(1 + ‖ξ‖2)−1‖ξ‖22 → ∞ as ‖ξ‖2 → ∞ mean that the hypotheses of Theorem

1.1 of [Schilling and Wang, 2013] are fulfilled, so that X has bounded transition

densities with respect to the Lebesgue measure.

Existence and uniqueness of πb,ν , as well as ergodicity of X will follow from

Theorem 2.1 of [Masuda, 2007], the hypotheses of which will now be verified. Along

with c(·, 0) ≡ 0, conditions (1.9) and (1.10) above imply Assumption 1 of [Masuda,

2007]. Now, for every u ∈ (0, 1) let

bu(x) := b(x)−
∫
u<‖z‖1≤1

c(x, z)M(dz).
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Assumption 2(a)’ of [Masuda, 2009] requires X to admit bounded transition densi-

ties, and the diffusion which solves

dXu
t = bu(Xu

t )dt+ σ(Xu
t )dWt

to be irreducible for each u > 0. Boundedness of the transition density of X was

established above, and irreducibility of Xu holds because σ ≡ 1 by Theorem 2.3 of

[Stramer and Tweedie, 1997].

Next, I will verify Assumptions 3 and 3* of [Masuda, 2007] by checking the

conditions of Lemma 2.4’ of [Masuda, 2009]. The diffusion coefficient is constant,

and hence o(‖x‖1−q/22 ) for any q ∈ (0, 2). Condition (1.12) is the corresponding

hypothesis of [Masuda, 2009], and both ‖x‖q−2
2 x · b(x)→ −∞ and ‖x‖−2

2 x · b(x) ≤
−C4 follow from (1.11). Hence, Assumptions 3 and 3* of [Masuda, 2007] hold.

This yields ergodicity (and mixing) by Theorem 2.1 of [Masuda, 2007], and second

moments of the stationary distribution (and exponential mixing) by Theorem 2.2 of

[Masuda, 2007].

It remains to show the invariant measure has a density. By combining Propo-

sition 5.1.9 and Theorem 5.1.8 of [Fornaro, 2004] it can be seen that invariant mea-

sures of irreducible strong Feller processes are equivalent to the associated transition

probabilities, which is sufficient in this case. Assumption 1 of [Masuda, 2007] and

Assumption 2(a)’ of [Masuda, 2009] imply irreducibility of X (c.f. Claim 1 on page

42 of [Masuda, 2007]). Condition (1.9) guarantees the strong Feller property by The-

orem 2.3 of [Wang, 2010]. Hence the invariant measure has a density with respect

to the transition densities, and thus also the Lebesgue measure. This concludes the

proof.

1.3 Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a very general technique for sampling from a se-

quence of complicated distributions of increasing dimension and known pointwise

up to a normalising constant; for an introduction see e.g. Doucet et al. [2001]; Liu

[2001]; Doucet and Johansen [2011]. Briefly, a “cloud” of weighted particles is ex-

tended from one distribution to the next by a combination of sequential importance

sampling and resampling. Each set of weighted particles then forms an empirical

approximation of each subsequent distribution, provided adjacent distributions are

sufficiently similar. This is typically the case when interest is in inference from a

sequence of observations from e.g. a hidden Markov model, and thus SMC finds

widespread use in this context, known as filtering (see e.g. Doucet et al. [2001];

15



Liu [2001]; Del Moral [2004]; Fearnhead [2008]; Doucet and Johansen [2011], and

references therein).

Sequential importance sampling consists of sampling from a sequence of pro-

posal distributions to build up a single, high-dimensional realisation. The proposals

are typically not the conditional distributions of the model of interest, and so sam-

ples must be reweighted by the Radon-Nikodym derivative of the model and the

proposal. Let X1:n := (X1, . . . , Xn) be a random vector with law P , and suppose it

is of interest to evaluate an intractable functional

E[f(X1:n)] =

∫
f(x1:n)P (dx1:n)

=

∫
. . .

∫
f(x1:n)

n⊗
i=1

P (dxi|X1:i−1 = x1:i−1), (1.13)

with the convention that x1:0 = 0. This expectation can be approximated by the

sample mean of function evaluations of f on data {x(i)
1:n}ki=1 with x

(j)
i:n

IID∼ P , but

this approach can lead to very high variance if the dominant contributions to the

integral are from regions which are unlikely under P . Variance can be reduced by

introducing a proposal distribution Q with P � Q, and estimating (1.13) with

Î :=
1

k

k∑
j=1

f(x
(j)
1:n)

n⊗
i=1

P (dx
(j)
i |X

(j)
1:i−1 = x

(j)
1:i−1)

Q(dx
(j)
i |X

(j)
1:i−1 = x

(j)
1:i−1)

=:
1

k

k∑
j=1

f(x
(j)
1:n)wn(x

(j)
1:n),

with x
(j)
1:n

IID∼ Q.

Sequential Monte Carlo involves the combination of sequential importance

sampling with a resampling step, where particles {x(j)
1:n}kj=1 and weights {w(x

(j)
1:n)}kj=1

are built up in parallel. The weighted collection can then be resampled at interme-

diary steps to discard particles with low weight and duplicate promising ones with

high weight. Good choices of Q and resampling schedule can dramatically reduce

the variance of estimators, and can be shown to be asymptotically efficient under

mild conditions [Cérou et al., 2011]. On the other hand, poor choices of Q can yield

estimators with higher variance than näıve Monte Carlo [Glasserman and Wang,

1997].

Good design of a resampling schedule is also crucial, as without resampling

the variance of estimators typically increases exponentially in the number of sequen-

tial steps [Doucet et al., 2001; Liu, 2001]. In the simplest case particles are resampled

multinomially between the ith and (i + 1)th sequential step with probabilities pro-

portional to their respective importance weights {w(x
(j)
1:i )}kj=1. Then all weights are
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equalised, subject to preserving the total weights of the particle ensemble, and the

resulting collection of particles is treated as the starting point of generating the

(i+ 1)th sample. While intuitive, multinomial resampling is outperformed in terms

of variance by other, more complicated resampling mechanisms [Douc et al., 2005].

It is also typically detrimental to resample at every stage of the algorithm. The

most common heuristics for when resampling should be performed are based on the

effective sample size (ESS) of the ensemble falling below a specified threshold [Kong

et al., 1994].

1.3.1 SMC for coalescent processes

It is of great interest to estimate parameters describing the evolutionary history

of a population from a sample of DNA sequences. This can be done by assuming

an appropriate coalescent model, writing down a likelihood as a function of the

parameters and evaluating the likelihood for various parameter values. Such an

approach is common to both frequentist and Bayesian analyses, with the additional

stage of prescribing a prior distribution on parameters in the Bayesian case.

Let n ∈ N|H| denote an observed configuration of allele frequencies of size

n :=
∑

h∈H nh, and θ ∈ Θ be a parameter value and a parameter space, respectively.

Let A ∈ A denote, respectively, a realisation of the coalescent ancestry and the

space of possible ancestries, i.e. the support of Pn. For A ∈ A define pn(A) = 1

if the haplotypes at the leaves of A gives rise to allele frequencies n, and pn(A) =

0 otherwise. The likelihood L(θ; n) can be decomposed by conditioning on the

ancestry as

L(θ; n) = En [1n(A)|θ] =

∫
A
pn(A)Pn(A|θ)dA (1.14)

The likelihood function L will be endowed with a superscript Λ, Ξ or SL when a

particular coalescent model is meant.

The space of coalescent trees is prohibitively large for all but trivially small

data sets, so in practice the integral on the RHS of (1.14) is approximated by Monte

Carlo, or replaced by a pseudo-likelihood from a simpler model. A näıve Monte Carlo

approximation is obtained by simulating IID ancestries A1, . . . , Ap from Pn, and

counting the fraction that yield alleles at the leaves of the tree compatible with n.

The problem with this approach is that the hitting probability of leaves compatible

with n is vanishingly small for any realistic data sets, so that the number of samples

required for stable estimates is prohibitively large, and SMC is a technique which

has been successfully used to overcome this difficulty to some extent. Alternative

approaches include Markov chain Monte Carlo (MCMC), approximate Bayesian
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computation, and pseudo-likelihood methods, which will be outlined in the next

section. Developing good approximations to (1.14) for large, whole-genome data

sets under any but the simplest genetic models remains an open problem.

SMC has a well established role in population genetic inference as a means

of approximating likelihoods. In this context the method was introduced by Grif-

fiths and Tavaré [1994a,b,c, 1999], who derived a recursion for quantities of interest

under Kingman’s coalescent [Kingman, 1982a,b] and simulated a Markov chain to

approximate its solution. Their approach was identified as importance sampling by

Felsenstein et al. [1999]. SMC has been investigated and applied to genetic problems

such as demographic and other parameter inferences [Griffiths and Marjoram, 1996;

Fearnhead and Donnelly, 2001; De Iorio et al., 2005; Griffiths et al., 2008; Gorur

and Teh, 2008; Hobolth et al., 2008; Jenkins and Griffiths, 2011].

In brief, the idea of SMC for coalescent processes is to sample the ancestry

A sequentially in reverse time, so that every sample will be compatible with the

leaves and promising ancestries can be prioritised in favour of ones which are in-

compatible with the dynamics of the coalescent. Let {Ai}Ki=0 denote the state of

the ancestry i mutation or coalescence events into the past, so that A0 denotes the

coalescent leaves, AK denotes the haplotype of the MRCA and the other Ai’s are

intermediate configurations along the tree. Let Q be a proposal distribution sat-

isfying supp(Pn) ⊆ supp(Q). Then (1.14) can be decomposed into the sequential

updates

L(θ; n) =

∫
A
m(AK)

K−1∏
i=0

Pn(Ai|Ai+1, θ)

Q(Ai+1|Ai, θ)
Q(dAi+1|Ai, θ) (1.15)

Note that the indicator function pn(A) is no longer needed as all trees will be

compatible with the data by construction. Coalescent histories {{A(j)
i }

Kj
i=0}

p
j=1 can

now be sampled according to the proposal distribution Q, and the likelihood can

be approximated by the weighted average L̂(θ; n) = p−1
∑p

j=1wKj where wK =
Pn(A|AK ,θ)

Q(A|θ) m(AK) is the importance weight associated with the jth fully recon-

structed coalescent tree.

Choice of proposal distribution Q is crucially important to the efficiency of

the SMC algorithm. The optimal proposal (in terms of estimator variance) is the

conditional distribution Pn(A|n), in which case all particle weights equal the true

likelihood by Bayes’ theorem:

Pn(A|AK , θ)m(AK)

Pn(A|n, θ)
=

Pn(A|θ)Pn(n|θ)
Pn(n|A, θ)Pn(A|θ)

= Pn(n|θ),

since Pn(n|A, θ) = 1 by construction. The resulting estimator is exact with proba-
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bility one, and has zero variance.

Unfortunately, the conditional distribution is as intractable as the likelihood.

The typical approach of approximating the optimal proposal distribution using large

deviations [Sadowsky and Bucklew, 1990] is also rendered intractable by the high

dimension of the space of coalescent trees. Progress can be made by designing

proposal distributions which mimic the features of the optimal proposal distribu-

tion. This was done for Kingman’s coalescent by Stephens and Donnelly [2000], who

expressed the optimal sequential proposal distribution in terms of a family of con-

ditional sampling distributions (CSDs). The CSDs are also intractable in general,

but the authors introduced an approximation which yielded dramatic improvements

in efficiency and accuracy in comparison to earlier SMC algorithms. However, even

optimised SMC algorithms fail to scale to modern data sets, so that scalable but

biased methods have also received much interest.

Approximating the CSDs for various generalisations of Kingman’s coalescent

has received plenty of attention, both as a means of deriving approximations to

the optimal importance sampling algorithm and due to the product of approximate

conditionals (PAC) method introduced by Li and Stephens [2003]. The PAC algo-

rithm is an example of the scalable but biased methods mentioned above. De Iorio

and Griffiths [2004a,b] derived an approximation to finite alleles CSDs based on the

Fleming-Viot generator while Paul and Song [2010] provided a genealogical inter-

pretation and included crossover recombination. Further approximations based on

hidden Markov models have been obtained by Paul et al. [2011] and Steinrücken

et al. [2013b], and applied by Sheehan et al. [2013].

In the context of coalescent processes, resampling should take into account

the weight of the particle and the progress it has made towards the MRCA. This can

be achieved by introducing a sequence of intermediate sets; propagating all samples

until they hit the next set; and performing resampling based on current weights

once all particles have been stopped. This has been alternatively termed multilevel

SMC or stopping-time resampling in Section 12.2 of [Del Moral, 2004] and in [Chen

et al., 2005] respectively. It is natural to define the sets based on the number of

coalescence and mutation events encountered by the partially reconstructed tree.

This approach was investigated by Chen et al. [2005] and Jenkins [2012], and found

to yield dramatic improvements to the accuracy of SMC algorithms.

1.3.2 Alternatives to SMC

In this section I will review three other computational approaches to population

genetic inference: Markov chain Monte Carlo (MCMC), approximate Bayesian com-

19



putation (ABC) and product of approximate conditionals (PAC). I will present a

brief simulation study of the PAC algorithm for Λ-coalescents in Section 2.4, for

which this serves as an introduction, and the other two methods are included for

completeness. For further details of MCMC and ABC for population genetics, the

interested reader is directed to [Marjoram and Tavaré, 2006], and references therein.

MCMC involves constructing a Markov chain on A whose stationary distri-

bution is the conditional law of the coalescent given the observed data, Pn(·|n). The

a simulated trajectory of this Markov chain can be used as an autocorrelated sample

from Pn(·|n). Provided the chain has been run sufficiently long, the collection of

samples closely approximates a sample from the target posterior distribution.

A typical implementation of this idea is the Metropolis-Hastings algorithm

[Metropolis et al., 1953; Hastings, 1970], which is based on an arbitrary transition

kernel q : A 7→M1(A). If the current state of the chain is A, a step is generated by

sampling a proposal A′ ∼ q(A, ·), and the proposed step is accepted with probability

1 ∧ Pn(A′|n)q(A′, A)

Pn(A|n)q(A,A′)
.

The ratio of conditional distributions can be evaluated by Bayes’ theorem, even

though the numerator and denominator individually are intractable. If the move is

rejected then the chain remains at A. This algorithm can be extended to parameter

inference by extending the state space of the chain to the product space A × Θ,

introducing transition kernels on the extended space, and marginalising the resulting

sample over A.

Kuhner et al. [1995] and Felsenstein et al. [1999] developed a Metropolis-

Hastings algorithm for Kingman’s coalescent in which moves are proposed by sam-

pling a node uniformly at random in the coalescent tree, disconnecting it from it’s

parent and reattaching it after an exponentially distributed waiting time to a uni-

formly sampled parent edge alive at the time of the merger, or the MRCA if it

survives past the current MRCA. Other proposal mechanisms have also been in-

vestigated for Kingman’s coalescent, and it’s various generalisations [Wilson and

Balding, 1998; Nielsen, 2000; Wilson et al., 2003].

Like SMC, MCMC algorithms are unbiased but suffer the high dimension-

ality of the space of coalescent trees. Hence faster, heuristic methods have become

prominent for modern genetic data sets. ABC and PAC algorithms are two examples

of such heuristic methods.

The idea of ABC was introduced by Tavaré et al. [1997] and developed fully

by Pritchard et al. [1999]. In the simplest setting it consists of proposing parameters
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θ ∈ Θ from a prior Q(dθ), and then data n|θ ∼ L(dn|θ) from the model. The

proposal is accepted if n = n∗, where n∗ denotes the observation. The distribution

of the accepted proposals is the posterior Q(dθ|n).

However, the data is often extremely high-dimensional and hence the prob-

ability that n = n∗ is vanishingly small, or 0 when simulated data has a density.

The innovation of the ABC algorithm is to introduce a summary statistic S(n) and

a tolerance ε > 0, and accept the proposal when ‖S(n)−S(n∗)‖ < ε in some norm.

The algorithm is exact if S is a sufficient statistic and ε = 0, but typically neither of

these requirements is feasible and the resulting algorithm is approximate. The ba-

sic rejection ABC algorithm has been improved upon in numerous ways [Beaumont

et al., 2002; Marjoram et al., 2003; Sisson et al., 2007; Beaumont et al., 2009]. The

interested reader is directed to [Beaumont, 2010] for a review of ABC algorithms

applied to evolutionary and ecological problems.

The PAC algorithm of Li and Stephens [2003] is based on a decomposition

of the likelihood into a product of CSDs, and substituting a tractable, heuristic

version of the CSDs in place of the intractable, true CSDs. Suppose that observed

allele frequencies n are generated by haplotypes h1:n = (h1, . . . , hn) ∈ Hn. Then

the likelihood can be written as

L(θ|n) = Pn(h1:n|θ) = π(hn|h1:n−1, θ)π(hn−1|h1:n−2, θ) . . . π(h2|h1, θ)π(h1, θ),

where π(h|h1:n) denotes the distribution of the type of the (n + 1)th leaf of a coa-

lescent tree, given the types of the first n leaves.

Approximate CSDs are typically not exchangeable so that the value of the

approximation depends on the choice of ordering of haplotypes. This difficulty

could be overcome completely by averaging over all possible orderings, but the

computational cost is too high for practical data sets. Instead, a common approach

is to average over a small, random subset of permutations [Li and Stephens, 2003].

Coalescent processes and their dual diffusions have been instrumental in designing

heuristic approximations to CSDs [Fearnhead and Donnelly, 2001; De Iorio and

Griffiths, 2004a,b; Paul and Song, 2010; Paul et al., 2011; Sheehan et al., 2013;

Steinrücken et al., 2013b], and the resulting PAC algorithms are widely used due to

their scalability.

1.4 Bayesian nonparametric inference

As outlined above, Bayesian inference rests on the specification of a prior distribution

Q on a set of models {Pθ : θ ∈ Θ}. This prior represents existing information or
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beliefs about the parameter set Θ. The nonparametric development is to allow Θ to

be infinite dimensional, yielding greater modelling flexibility at the cost of greater

analytical and computational challenges. Typical nonparametric model sets include

spaces of functions (e.g. C2
b (Ω) for some Ω ⊆ Rd) or measures (e.g. M1([0, 1])). I

will abuse terminology and refer to elements of such spaces as “parameters”, with

the understanding that they may be infinite dimensional.

Given n ∈ N data points x1:n, the central object of Bayesian inference is the

posterior distribution, defined for sets A ⊂ Θ as

Q(A|x1:n) :=

∫
A Pθ(x1:n)Q(dθ)∫
Θ Pθ(x1:n)Q(dθ)

. (1.16)

It is well known that in the Bayesian setting the posterior contains all the informa-

tion about the parameter carried by the data. In the nonparametric setting neither

existence nor uniqueness of the posterior is guaranteed. When a unique posterior

does exist, it is given by (1.16). I will neglect issues of existence and uniqueness,

and simply assume that a unique posterior exists.

The next consideration is computing the posterior. This can be done ana-

lytically for so called conjugate pairs of priors and likelihoods. Theses are pairs for

which the prior and posterior both belong to the same family with altered parame-

ters. Examples in the parametric case include beta priors and binomial likelihoods

for estimating the binomial success probability, Gaussian priors and likelihoods for

estimating the mean, and Gamma priors with Poisson likelihoods for estimating the

rate. A nonparametric example is the Dirichlet process prior [Ferguson, 1973] with

IID observations for estimating the unknown sampling distribution. Conjugate fam-

ilies impose very restrictive assumptions on the prior, and are often not available,

most prominently whenever the likelihood is intractable. When conjugate priors

are not available or appropriate, the posterior typically has to be approximated

numerically, using Monte Carlo or other methods. This setting is the focus of this

thesis.

In addition to reflecting prior information, the prior distribution Q can be

seen as specifying a model for learning parameters from data. From this perspective,

it makes sense to ask that Q(·|x1:n) concentrates on the “true”, data generating

parameter θ0 as n increases, reflecting the potential to learn the true model from a

sufficient amount of data. This property is known as posterior consistency, which

can be stated more formally as

lim
n→∞

Q({θ : ‖θ − θ0‖ > ε}|x1:n) = 0
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for any ε > 0 and some norm ‖ · ‖ on Θ, for some appropriate norm, topology

and mode of convergence. In the nonparametric setting, posterior consistency is an

intricate property which depends in subtle ways on Θ and Q. However, it is also

regarded as a minimal requirement for well justified Bayesian inference [Diaconis and

Freedman, 1986]. The typical properties required of the prior and the parameter

space for posterior consistency to hold are a prior mass condition, i.e. Q must place

sufficient mass in a neighbourhood of θ0 (and, in particular, not exclude it), and

regularity conditions to suitably limit the “size” of Θ.

Stronger, and more analytically demanding forms of posterior asymptotics

consist of identification of contraction rates for consistent posteriors, and ultimately

Bernstein-von Mises theorems:

sup
A∈B(Θ)

|Q(A|x1:n)− µ(θ̂,Σ)(A)| → 0,

where µ is a Gaussian measure on Θ (see Section 6.3 of [Dashti and Stuart, 2016] for

an overview of Gaussian measures on infinite dimensional spaces), θ̂ is an efficient

estimator of the posterior mean and Σ is the posterior covariance. Contraction

rates are typically established by constructing hypothesis tests with exponentially

small error probability Schwartz [1965], for example in [Ghosal et al., 2000; Ghosal

and van der Vaart, 2007; Gugushvili et al., 2015; Nickl and Söhl, 2015] in various

nonparametric settings. The main drawback of this approach is the need to be

able to construct exponentially consistent tests, which is rarely possible when the

likelihood is intractable.

The Bernstein-von Mises theorem bridges the Bayesian and frequentist worlds

by enabling the computation of asymptotic, frequentist estimators and confidence

regions from the posterior. The earliest proof in a parametric setting was pub-

lished by Doob [1949], and the modern form for parametric statistics was developed

by Le Cam [1986]. Like contraction rates, nonparametric versions of Bernstein-von

Mises theorems are an emerging and challenging area of research [Castillo and Nickl,

2013, 2014]. In this thesis I focus on establishing posterior consistency, and neglect

more advanced notions of posterior contraction.

I will conclude this section by presenting an example nonparametric prior.

Analytic formulae are rarely available in infinite dimensional spaces, and priors

are typical specified by providing a sampling algorithm instead. Perhaps the most

famous nonparametric prior is the Dirichlet process [Ferguson, 1973], the support

of which consists of a.s. discrete probability measures on a general space Ω. Let ζ

be a probability measure on Ω, and fix α > 0. The following constructive definition
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is due to Sethuraman [1994], and is called the stick-breaking construction:

• Sample {zi}i∈N
IID∼ ζ.

• Sample {β̃i}i∈N
IID∼ Beta(1, α).

• For each i ∈ N set βi =
∏i−1
k=1(1− β̃k)β̃i with the convention

∏0
k=1 = 1.

• A draw from the Dirichlet process is given by
∑∞

i=1 βiδzi(·).

The stick-breaking construction can be used to sample Dirichlet processes in practice

using truncation with exponentially small error [Ishwaran and James, 2001], and

an exact algorithm is available for sampling from measures generated by Dirichlet

process priors [Papaspiliopoulos and Roberts, 2008]. A prior placing full mass on

absolutely continuous densities can be obtained by using a Dirichlet process as a

mixing measure for suitable kernels [Lo, 1984].

For a further overview of Bayesian nonparametric statistics, the interested

reader is directed to [Hjort et al., 2010], and references therein.
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Chapter 2

Sequential Monte Carlo in

reverse time

2.1 Introduction

In this section I will specialise the SMC algorithm introduced in Section 1.3 for

estimating functionals of Markov chains. Section 2.2 will then introduce the general

reverse-time proposal distribution, of which the coalescent exposition in Section 1.3.1

turns out to be an example. The reverse-time SMC algorithm is most advantageous

when the initial condition of the chain is typical and the terminal conditions lie in

a set which is rare under the law of the chain. Hence reverse-time SMC can also be

regarded as an example of rare event simulation. The interested reader is directed

to e.g. Rubino and Tuffin [2009] and references therein for more details.

Consider the canonical Markov chain(
Ω :=

∞∏
n=0

Ωn,F :=

∞⊗
n=0

Fn, {Xn}∞n=0,Pµ

)
(2.1)

where Pµ is defined via its finite dimensional distributions as

Pµ(X0:n ∈ dx0:n) = µ(dx0)
n−1∏
i=0

P (xi, dxi+1). (2.2)

Here x0:n := (x0, . . . , xn), and P is a given transition kernel. I assume both P and µ

can be evaluated pointwise, but not that (2.1) is stationary or even has a stationary

distribution.

Two space-time sets are needed to specify the rare event problem. Let I ⊂
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N × Ω be an entrance set, and without loss of generality suppose µ(I) = 1. Let

T ⊂ N× Ω be the target set, which is assumed to have finite expected hitting time

under the dynamics of the chain {n,Xn}n∈N. For a set A ∈ F , let τA := inf{n ≥
0 : Xn ∈ A} denote the hitting time of {Xn}∞n=0 with initial distribution µ. The

problem in question is estimating expectations of trajectories of the form

Eµ[f(τT , X0:T )|τT < τI ]

for integrable functions f . I emphasize that these trajectories are defined between

the last exit time of I and the hitting time of T . In particular, re-entry into I before

hitting T is not permitted. As an example, let T depend only on space, and consider

the hitting probability (resp. density) of a point x ∈ T whenever Ω is discrete (resp.

continuous), before any other point of T . The corresponding functional is

Eµ[f(τT , X0:T )|τT < τI ] = Eµ[1{x}(XτT )|τT < τI ].

Similar rare events in the case of in the case of homogeneous Markov chains and

recurrent initial sets were termed dynamic rare events by Johansen et al. [2006].

In the following Section I show how the reverse-time approach can be used to

design proposal distributions based on the time-reversal of the process of interest.

The distribution of the time-reversal can be expressed via the Green’s function

(c.f. Nagasawa’s formula (2.4)). The Green’s function is typically at least as difficult

to compute as the quantity of interest, but progress can be made by introducing

an ad-hoc approximation, and substituting it into Nagasawa’s formula. The better

the approximation, the more efficient the algorithm. Moreover, because the Green’s

functions appear in (2.4) only as ratios, conditioning arguments can often be used to

cancel these ratios to a low-dimensional quantity that can be approximated directly

(c.f. Proposition 2 in Section 2.2). This avoids the need to design high-dimensional

proposal distributions even when the state space is itself high-dimensional. The

method can be expected to be particularly efficient in contexts where

(i) the function f depends only on the terminal point in T , or a small length of

trajectory preceding it,

(ii) the dimension and/or volume of the regions in T which contribute non-negligibly

to Eµ[f(τT , f(X0,τT )] are small, while I is high dimensional and/or has large

volume,

(iii) the majority of the contribution to Eµ[f(τT , X0:τT )] arises from a region of low

conditional probability given that the chain has hit T , and
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(iv) the process of interest is high-dimensional and transitions only alter a small

number of components at a time.

Properties (i) and (ii) ensure that time-reversal is an effective strategy. In the

extreme case where f is the indicator function of a singleton in T (corresponding to

estimation of a conditional hitting density), I is a set which is hit by the reverse-

time dynamics in finite time with probability 1, and T is a reverse-time entrance

boundary, the optimal proposal distribution leading to zero variance estimators is

the unconditional time-reversal. These conditions are very restrictive, but typically

satisfied by coalescent processes. On the other hand, all of the examples in Section

2.6 violate at least one of them, which demonstrates that reverse-time proposals can

still yield efficient algorithms under the milder conditions (i)-(iv).

Property (iii) is helpful in ensuring that T acts like a reverse-time entrance

boundary with high probability, as proposal trajectories will naturally be pushed

away from the rare hitting point of T and back towards I. Property (iv) means that

it is only necessary to come up with a proposal distribution for the coordinates which

differ between transitions, given the value of all other coordinates. This dimension-

ality reduction can greatly reduce the difficulty of designing proposal distributions

in high dimension. Proposition 2 in Section 2.2 provides a precise formulation, and

Sections 2.6.2 and 2.6.3 contain concrete examples.

The choice of resampling schedule also has a strong impact on the efficiency of

the SMC algorithm. Few theoretical guidelines are available, though developments

have been made in determining good schedules adaptively [Cérou et al., 2012; Jasra

et al., 2014]. I will neglect the problem of optimising the resampling schedule, except

to mention that implementing the method of Cérou et al. [2012] requires a reaction

coordinate, i.e. a tractable function

g : Ω 7→ R (2.3)

which captures closeness of a particle to the target set, e.g. via mapping positions

closer to the target to higher values in a monotonic way. Reaction coordinates can

be difficult to derive in high dimension, and reverse time SMC does not require one

to be implemented, but when one is available then the results of Cérou et al. [2012]

apply. In contrast, the particle MCMC approach of Jasra et al. [2014] is directly

applicable.
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2.2 Time-reversal as a SMC proposal distribution

This section reviews some relevant facts about time-reversal of Markov chains and

introduces the reverse-time SMC proposal distribution. Concrete examples are given

in Sections 2.3, 2.5 and 2.6.

Define the time-reversal of (2.1) by extending the chain to the negative time-

axis, and letting (−∞∏
n=0

Ωn,

−∞⊗
n=0

Fn,
{
X̃n

}−∞
n=0

, P̃ν

)
denote the reverse-time chain. Note that the initial time-indices are set to 0 by

convention, and are not necessarily intended to coincide with the starting time of

(2.1). The law P̃ν is again defined via its finite dimensional distributions as

P̃ν(dx0:−n) = ν(dx0)

−n+1∏
i=0

P̃ (xi, dxi−1).

Here, ν is the initial distribution of the reverse time chain, that is, the law of the

random variable XτT |τT < τI . For simplicity, all the transition kernels above, and

Green’s functions below, are assumed absolutely continuous with respect to the same

reference measure (e.g. Lebesgue or counting measure), and the same notation is

used for both the kernels/Green’s functions and their densities.

The reverse transition kernel is related to its forward counterparts via Naga-

sawa’s formula (c.f. Chapter III.46 of [Rogers and Williams, 1994]):

P̃ (xi, xi−1) =
G(µ, xi−1)

G(µ, xi)
P (xi−1, xi), (2.4)

where for a measurable set A

G(µ,A) := Eµ

[
τT∑
i=0

1A(Xi)

]
=:

∫
I

∫
A
g(x, y)dyµ(dx)

is the Green’s function of (2.1), and Eµ denotes expectation with respect to Pµ.

When A = {z} is a null set (with respect to the reference measure), G(µ, z) is

defined as a density via the kernel g(x, z):

G(µ, z) :=

∫
I
g(x, z)µ(dx),

which is assumed to exist. Nagasawa’s formula can be seen as a generalisation of

the detailed balance condition to non-stationary chains; when X admits a unique
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stationary distribution π, the stopping time τT is deterministic and the chain is at

stationarity, then
G(µ, y)

G(µ, x)
=
π(y)

π(x)
,

and (2.4) is the detailed balance condition. Reverse time proposal distributions akin

to (2.4) have been studied previously in [Birkner et al., 2011] for Λ-coalescents under

infinite sites mutation.

The Green’s functions in (2.4) cannot be computed in most cases of interest,

but their qualitative behaviour can often be described. I assume that such a descrip-

tion is available, and that it is possible to write down a family of tractable functions

with similar qualitative behaviour. These will be referred to as approximate Green’s

functions. It is not necessary for the match to be very precise, because importance

weights will correct for the mismatch, though better approximations yield more

efficient SMC algorithms.

The strategy for defining a reverse-time SMC proposal is as follows:

1. Design an approximate Green’s function Ĝ(µ, x) to be substituted into (2.4) to

yield an approximate reverse-time transition kernel P̂ and a proposal Markov

chain (−∞∏
n=0

Ωn,
−∞∏
n=0

Fn,
{
X̂n

}−∞
n=0

, P̂ν

)
(2.5)

where P̂ν is defined from its finite dimensional distributions via P̂ as before.

2. If necessary, modify P̂ν locally to incorporate first hitting time constraints by

preventing (2.5) from returning to T upon leaving it and from entering R at

all.

3. If necessary, introduce further local modifications to the proposal distribution

to ensure (2.5) hits I in finite time with P̂ν-probability 1 so that the reverse-

time chain terminates in finite time with certainty.

These steps can seem laborious because of their generality, but as will be

seen in Sections 2.3, 2.5 and 2.6, they can be feasibly carried out in many cases of

interest. Steps 2 and 3 could be incorporated automatically and more efficiently

by considering the time-reversal of an appropriately h-transformed version of (2.1).

However, the h-transform is typically intractable, whereas local modifications are

widely implementable and still result in efficient algorithms when the dominant

contribution to Eµ[f(τT , X0:τT )] arises from a region of low Pµ-probability. This is

because the ratio of Green’s functions will drive sample paths away from T and

towards I even without conditioning on no re-entry.
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Proposition 2 presents a practical way of designing approximate ratios of

Green’s functions for a wide class of models. For notational simplicity I assume

a countable state space, but the same argument holds for continuous state spaces

provided the Green’s densities g(x, z) exist.

Proposition 2. Consider a transition of the Markov chain (2.1) from xn−1 to xn,

and suppose the state space can be partitioned so that xn−1 = (z, y) and xn = (z, ȳ).

Note that the decomposition may depend on the exact pair (xn−1, xn), and need to

coincide across pairs. Assume that the conditional sampling distribution (CSD)

π(y|z) := Pµ(Yn = y|Zn = z)

is independent of n ∈ N for Pµ-almost every z. Then the ratio of Green’s functions

in (2.4) cancels to the ratio of CSDs:

G(µ, (z, y))

G(µ, (z, ȳ))
=
π(y|z)
π(ȳ|z)

.

Proof. Let ∂ be a cemetery state, and define the process

X∂
t =

Xt if t ≤ τT
∂ otherwise

.

Note that the laws of {X∂
n}

τT
n=0 and {Xn}τTn=0 coincide, and thus so do their Green’s

functions evaluated at states (z, y) ∈ (T ∪ ∂)c. Hence, for any such state, Fubini’s

theorem and conditioning on Zn = z yield

G(µ, (z, y)) = Eµ

[ ∞∑
n=0

1{z,y}(Z
∂
n , Y

∂
n )

]
=
∞∑
n=0

Eµ
[
1{z,y}(Z

∂
n , Y

∂
n )
]

=

∞∑
n=0

Eµ
[
Eµ
[
1{y}(Y

∂
n )|Z∂n = z

]
1{z}(Z

∂
i )
]
,

where (Z∂n , Y
∂
n ) := X∂

n . Now π(y|z) = Eµ
[
1{y}(Y

∂
n )|Z∂n = z

]
is independent of n by

assumption. Thus

G(µ, (z, y)) = π(y|z)
∞∑
n=0

Eµ
[
1{z}(Zn)1n:∞(τT )

]
= π(y|z)

∞∑
n=0

∞∑
t=0

Pµ(Zn = z, τT = t).

Now note that the final double sum cancels whenever the Green’s functions are

evaluated as ratios, which completes the proof.
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Remark 1. The hypothesis of Proposition 2 is a weak stationarity condition, and

is relatively mild. However, since ad hoc approximations to the true ratio of Green’s

functions is all that is required, it is possible to extend the scope of the reverse time

framework by defining the proposal distribution based on a family of approximate

CSDs π̂(y|z) even when Proposition 2 fails. This is because the importance weights

will still correct for any bias, resulting in a valid, unbiased algorithm. Because of

their lower dimension, approximate CSDs can be much easier to design than either

proposal kernels {Q(·, ·)} or approximate Greens functions {Ĝ(µ, ·)}. Indeed, this

dimensionality reduction in the design task is one of the main advantages of the

reverse-time framework.

Choosing a family of approximate CSDs {π̂(·|·)} and applying Proposition 2

to (2.4) yields proposal transition probabilities of the form

P̂ (x, y) =
π̂(y \ x|y ∩ x)

C(x)π̂(x \ y|x ∩ y)
P (y, x),

where C(x) is a normalising constant, x∩y is the vector of coordinates for which xi =

yi, and x \ y is the vector of coordinates of x for which xi 6= yi. The corresponding

incremental importance weight at step n is

C(x)π̂(x \ y|x ∩ y)

π̂(y \ x|x ∩ y)
.

Once a proposal chain has been constructed, functionals of interest can be unbiasedly

estimated as

Eµ[f(X0:τT )] ≈ 1

N

N∑
j=1

f(x
(j)

0:τ
(j)
T

)
dPµ
dP̂ν

(x
(j)

0:τ
(j)
T

)

=
1

N

N∑
j=1

f(x
0:τ

(j)
T

)
µ(x

(j)
0 )

ν(xτT )

τT∏
n=1

π̂(x
(j)
n−1 \ x

(j)
n |x(j)

n ∩ x(j)
n−1)

π̂(x
(j)
n \ x(j)

n−1|x
(j)
n ∩ x(j)

n−1)
C(x(j)

n ), (2.6)

with the convention 0/0 = 0 for trajectories that are incompatible with the forward

dynamics of X, and where {x(j)

0:τ
(j)
T

}Nj=1 is a sample from the SMC algorithm that

uses (2.5) as its proposal mechanism.

Remark 2. Approximating (2.6) can be a computationally daunting task if f

takes non-negligible values across a set of trajectories with end points in a high-

dimensional or large (in terms of Lebesgue-volume) subset of T . In such cases the

reverse-time approach cannot always be expected to be competitive with forwards-
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in-time algorithms, particularly if the initial set I is also small and hence difficult

for the reverse-time chain to hit.

Remark 3. Normalising constants C(x) in (2.6) would all be identically equal to

one if an algorithm using the true CSD could be implemented. Thus, the realised

values of these constants for a given approximate CSD could be used to design

proposal distributions adaptively from trial runs, at least for discrete systems where

the constants can easily be computed. However, developing this strategy is beyond

the scope of this thesis.

I conclude this section with a formal specification of the reverse-time SMC

algorithm (Algorithm 1).

2.3 SMC for Λ- and Ξ-coalescents

Investigations by Boom et al. [1994], Árnason [2004], Eldon and Wakeley [2006],

and Birkner and Blath [2008] have concluded that Λ-coalescents can provide better

descriptions of some populations than Kingman’s coalescent, particularly among

marine species. Thus, similar strategies of inference to those outlined in Section 1.3.1

have been developed for them. An analogue of the Griffiths-Tavaré recursion for Λ-

coalescents was derived by Birkner and Blath [2008]. In a subsequent paper Birkner

et al. [2011] characterised the optimal SMC proposal distribution in terms of a family

of Green’s functions related to the time-reversal of the Λ-coalescent, and used their

representation to obtain an approximately optimal algorithm for the infinite sites

model of mutation. [Steinrücken et al., 2013a] contains a detailed discussion of

inference under Beta-coalescents and their applicability to marine populations.

Ξ-coalescents have also been used to model genealogies of marine organisms

[Sargsyan and Wakeley, 2008] and populations undergoing mass extinctions [Taylor

and Véber, 2009], although the question of which measures Ξ are biologically relevant

remains open.

The coalescent inference problem can be cast into the rare event simulation

framework by regarding the coalescent as a branching process starting from a single

lineage, and branching outwards to grow a random labelled tree. The likelihood

is then given as the probability that this labelled tree hits a configuration that is

compatible with the observed haplotype frequencies before the tree grows larger

than the observed sample. The dynamics of the branching tree processes can be

obtained from lookdown constructions, which embed both the coalescent and the
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Algorithm 1 Reverse-time multilevel SMC algorithm for Eµ[f(τT , X0:τT )].

Require: Particle number N , approximate conditional distributions {π̂(·|·)}, stop-
ping times {{τ ji }1i=n}Nj=1 such that 0 = τ jT ≤ τ

j
n ≤ τ jn−1 ≤ . . . ≤ τ

j
1 = τ jI .

1: for j = 1 to N do
2: Sample Xj

0 ∼ ν. . Initial particle locations.

3: Set wj = 1/ν(Xj
0). . Initial importance weights.

4: Set kj = 0, k̄j = 0. . Time indices.
5: Set Aj = j. . Ancestral indices are used for resampling.
6: end for
7: for i = n to 1 do
8: if ESS(w1, . . . , wN ) < N

2 then . Resample if the ESS is too low.
9: for j = 1 to N do

10: Sample Aj ∼
∑N

k=1wkδk. . Sample ancestral particle ∝ weights.
11: Set k̄j = kAj .
12: Set wj = 1. . Equalise weights.
13: end for
14: end if
15: for j = 1 to N do
16: if k̄j < τ ji then . First step if next level not yet hit.
17: Set kj = k̄j + 1.

18: Sample Xj
kj
∼

π̂

(
·\X

Aj

k̄j

∣∣·∩XAj

k̄j

)
π̂

(
X
Aj

k̄j
\·
∣∣·∩XAj

k̄j

) P

(
·,X

Aj

k̄j

)
C

(
X
Aj

k̄j

) 1T c∩Rc(·).

19: Set wj =
π̂

(
X
Aj

k̄j
\Xj

kj

∣∣Xj
kj
∩X

Aj

k̄j

)
C

(
X
Aj

k̄j

)
π̂

(
Xj
kj
\X

Aj

k̄j

∣∣Xj
kj
∩X

Aj

k̄j

) .

20: Set Aj = j.
21: end if
22: while kj < τ ji do . Propagate until the next level is hit.
23: Set kj = kj + 1.

24: Sample Xj
kj
∼

π̂
(
·\Xj

kj−1

∣∣·∩Xj
kj−1

)
π̂
(
Xj
kj−1\·

∣∣·∩Xj
kj−1

) P
(
·,Xj

kj−1

)
C
(
Xj
kj−1

) 1T c∩Rc(·).
25: Set wj = wj

π̂
(
Xj
kj−1\X

j
kj

∣∣Xj
kj
∩Xj

kj−1

)
C
(
Xj
kj−1

)
π̂
(
Xj
kj
\Xj

kj

∣∣Xj
kj
∩Xj

kj−1

) .

26: end while
27: end for
28: end for
29: for j = 1 to N do

30: Set wj = wjµ
(
Xj
kj

)
. . Account for entrance law µ.

31: end for

return
∑N

j=1

wjf(τ jT ,X
j

0:τ
j
T

)∑N
j=1 wj

. . Unbiased estimator of Pµ(τT < τR).
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dual Fleming-Viot process into the same countable particle system [Donnelly and

Kurtz, 1996, 1999; Birkner et al., 2009].

Let {Π̃k}k∈N denote the jump skeleton of the coalescent, and define τn :=

infk≥0{|Π̃k| ≥ n}. From the hitting probability perspective, the coalescent inference

problem is characterised by the sets

I = {eh : h ∈ H}, the MRCA, and

T = {m ∈ N|H| : |m| ≥ n+ 1}, exceeding n leaves,

and the test function

Eµ[f(τT , Π̃0:τT )] = Eµ[1{Π̃τn+1−1=n}],

i.e. the probability that the last configuration of leaves before growing beyond size

n matches the observed data.

I will begin this section with the simpler Λ-coalescents, and cover SMC for

Ξ-coalescents in Section 2.3.3 after a simulation study for Λ-coalescents in Section

2.3.2.

Recall the decomposition of the coalescent likelihood (1.15) and the nota-

tion introduced in Section 1.1.3, and note that for the Λ-coalescent the conditional

transition probabilities can be written as

PΛ
n(Ai+1|Ai) =


θl

nθ+qnini
(n

(Sal (h))
i + 1− δah[l])M

(l)
ah[l] if Ai+1 = Ai − eSal (h) + eh(

ni
k

) λni,k
nθ+qnini

n
(h)
i −k+1
ni−k+1 if Ai+1 = Ai + (k − 1)eh

(2.7)

where qnn =
∑n−1

j=1

(
n

n−j+1

)
λn,n−j+1 is the total rate of coalescence of n untyped

lineages, ni is the number of lineages in Ai and n
(h)
i is the number of lineages of

type h in Ai. See [Birkner and Blath, 2008] for a detailed derivation. Here, and

in Theorem 1 below, the MRCA corresponds to time index 0, and higher indices

denote the number of mutations or coalescence events in the tree, counting up from

the MRCA towards the leaves.

The following theorem is a Λ-coalescent analogue of Theorem 1 of Stephens

and Donnelly [2000]. Lemma 2.2 of [Birkner et al., 2011] presents a similar result

using ratios of Greens functions instead of CSDs.

Theorem 1. Let π(m|n) denote the sampling distribution of the next m individuals

given the types of the first n from a population evolving according to the stationary
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Λ-Fleming-Viot process. Then the optimal proposal distributions P̃n are given by

P̃n(Ai−1|Ai) ∝

n
(h)
i−1θl

π(eSa
l

(h)|Ai−eh)

π(eh|Ai−eh) M
(l)
ah[l] if Ai−1 = Ai − eh + eSal (h)(n(h)

i−1

k

) λni+1,k

π((k−1)eh|Ai−(k−1)eh) if Ai−1 = Ai − (k − 1)eh

where the first term ranges over all possible mutations for all haplotypes present in

the sample, and the second over all present haplotypes and k ∈ {2, . . . n(h)
i }.

Proof. The argument giving the mutation term is identical to that in Theorem 1 of

Stephens and Donnelly [2000] and is omitted.

For the coalescence term suppose the n lineages evolve according to the

lookdown construction of Donnelly and Kurtz [1999], and denote the types of the n

particles at time t by Dn(t) = (h1, . . . , hn). Define Υk as the event that in the last

δ units of time there was a merger involving lineages n− k+ 1, n− k+ 2, . . . , n. To

simplify the presentation let hi:j := (hi, hi+1, . . . , hj−1, hj). Then

P(Υk|Dn(t) = (h1:n−k, h, . . . , h))

=
∑

g2:k∈Hk−1

P(Υk ∩Dn(t− δ) = (h1:n−k, h, g2:k) ∩Dn(t) = (h1:n−k, h, . . . , h))

P(Dn(t) = (h1:n−k, h, . . . , h))

=
∑

g2:k∈Hk−1

P(Dn(t− δ) = (h1:n−k, h, g2:k))δλn,k
P(Dn(t) = (h1:n−k, h, . . . , h))

+ o(δ)

=
δλn,k

π((k − 1)eh|Dn(t)− (k − 1)eh)
+ o(δ).

By exchangeability every set of k lineages coalesces at this same rate, so the total

rate is obtained by multiplying by
(
nh
k

)
.

Remark 4. It is tempting to simplify the situation further by decomposing

π((k − 1)eh|n− (k − 1)eh) =
k−2∏
j=0

π(eh|n− (k − 1 + j)eh)

and thus requiring only univariate CSDs. In general a decomposition like this re-

quires exchangeability, which the CSDs satisfy but approximations typically do not.

However, in the Λ-coalescent setting the argument being decomposed will always

consist of only one type of haplotype. Permuting lineages which feature only in the

sample being conditioned on does not affect the outcome even for non-exchangeable

families of distributions, so in this particular context univariate CSDs are sufficient.

Note that this will not be the case for Ξ-coalescents since simultaneous mergers of
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several types of lineages is permitted.

2.3.1 Approximate CDSs for Λ-coalescents

An approximation to the CSDs for Kingman’s coalescent was derived in De Iorio

and Griffiths [2004a] by noting that the Fleming-Viot generator can be written

component-wise as Gδ0 =
∑

h∈H G
δ0
h , then assuming that there exists a probability

measure and an expectation Êδ0 with respect to that measure, such that the standard

stationarity condition Eδ0 [Gδ0f(X)] = 0 holds component-wise:

Êδ0 [Gδ0h f(X)] = 0 for every h ∈ H and f ∈ C2(∆H).

Substituting the probability of an ordered sample q(n|x) =
∏
h∈H x

nh
h yields a re-

cursion whose solution is defined as the approximate CSD. The same argument

can be applied to the Λ-Fleming-Viot process to define approximate CSDs for the

Λ-coalescent.

Theorem 2. Let π̂Λ(m|n) denote the approximate Λ-coalescent CSD as defined

above. It solves the recursion

m

[
Λ({0})(n+m− 1)

2
+ θ +

1

n+m

n+m∑
k=2

(
n+m

k

)
λn+m,k

]
π̂Λ(m|n)

=
∑
h∈H

mh

[
Λ({0})(nh +mh − 1)

2
π̂Λ(m− eh|n)

+
∑
l∈[k]

θl
∑
a∈El

M
(l)
ah[l]π̂

Λ(m− eh + eSal (h)|n)

+
1

nh +mh

{
mh+1∑
k=2

(
nh +mh

k

)
λn+m,kπ̂

Λ(m− (k − 1)eh|n)

+

nh+mh∑
k=mh+2

(
nh +mh

k

)
λn+m,k

π̂Λ(m−mheh|n− (k −mh − 1)eh)

π̂Λ((k −mh − 1)eh|n− (k −mh − 1)eh)

}]
. (2.8)
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Proof. The generator of the Λ-Fleming-Viot jump diffusion can be written as

GΛf(x) =
∑
h∈H

Λ({0})xh
2

∑
h′∈H

(δhh′ − xh′)
∂2

∂xh∂xh′
f(x) (2.9)

+
∑
h∈H

∑
l∈[k]

θl
∑
a∈El

xSal (h)

(
M

(l)
ah[l] − δah[l]

) ∂

∂xh
f(x)

+
∑
h∈H

xh

∫
(0,1]
{f((1− r)x + reh)− f(x)} r−2Λ(dr) =:

∑
h∈H
GΛ
h f(x).

Substituting q(n|x) yields the following three terms on the RHS

∑
h∈H

Λ({0})nh
2

[
(nh − 1)q(n− eh|x)−

∑
h′∈H

(nh′ − δhh′)q(n|x)

]
(2.10)

+
∑
h∈H

nh
∑
l∈[k]

θl

∑
a∈El

M
(l)
ah[l]q(n− eh + eSal (h)|x)− q(n|x)

 (2.11)

+

∫
(0,1]

{∑
h∈H

nh∑
p=0

(
nh
p

)
rp(1− r)n−pq(n− (p− 1)eh|x)

−
n∑
p=0

(
n

p

)
rp(1− r)n−pq(n|x)

}
r−2Λ(dr).

The p = 0 terms inside the integral cancel because
∑

h∈H xh = 1 and the p = 1 terms

cancel because
∑

h∈H nh = n, which means the third summand can be written

∑
h∈H


nh∑
p=2

(
nh
p

)
λn,pq(n− (p− 1)eh|x)− nh

n

n∑
p=2

(
n

p

)
λn,pq(n|x)

 . (2.12)

Substituting (2.10), (2.11) and (2.12) into (2.9) and rearranging gives

∑
h∈H

nh

[
Λ({0})(n− 1)

2
+ θ +

1

n

n∑
k=2

(
n

k

)
λn,k

]
q(n|x)

=
∑
h∈H

nh

{
Λ({0})(nh − 1)

2
q(n− eh|x) +

∑
l∈[k]

θl
∑
a∈El

M
(l)
ah[l]q(n− eh + eSal (h)|x)

+
1

nh

nh∑
p=2

(
nh
p

)
λn,pq(n− (p− 1)eh|x)

}
. (2.13)
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The component-wise vanishing property implies

ÊΛ

[∑
h∈H

mhGΛ
h q(n|XΛ)

]
=
∑
h∈H

mhÊΛ[GΛ
h q(n|XΛ)] = 0,

so that (2.13) becomes

m

[
Λ({0})(n− 1)

2
+ θ +

1

n

n∑
k=2

(
n

k

)
λn,k

]
ÊΛ[q(n|XΛ)]

=
∑
h∈H

mh

{
Λ({0})(nh − 1)

2
ÊΛ[q(n− eh|XΛ)]

+
∑
l∈[k]

θl
∑
a∈El

M
(l)
ah[l]Ê

Λ[q(n− eh + eSal (h)|XΛ)]

+
1

nh

nh∑
p=2

(
nh
p

)
λn,pÊΛ[q(n− (p− 1)eh|XΛ)]

}
.

Note that πΛ(m|n) = EΛ[q(n + m|XΛ)]/EΛ[q(n|XΛ)] so that substituting n 7→
n + m, assuming that EΛ = ÊΛ and dividing by EΛ[q(n|XΛ)] gives the desired

recursion.

Corollary 1. The univariate approximate CSDs π̂(eh|n) satisfy[
Λ({0})n

2
+ θ +

1

n+ 1

n+1∑
k=2

(
n+ 1

k

)
λn+1,k

]
π̂Λ(eh|n)

=
nh
2

(Λ({0}) + λn+1,2) +
∑
l∈[k]

θl
∑
a∈El

M
(l)
ah[l]π̂

Λ(eSal (h)|n)

+
1

nh + 1

nh+1∑
p=3

(
nh + 1

p

)
λn+1,p

π̂Λ((p− 2)eh|n− (p− 2)eh)
. (2.14)

Proof. The result follows by substituting m = eh into (2.8).

As per Remark 4 it is sufficient to work with the simpler recursion (2.14) as

opposed to the full recursion (2.8). However, because of the denominator in the final

term of (2.14), the resulting system of equations still contains as many unknowns

as the recursion for the full likelihood. Hence further approximations are needed to

obtain a family of proposal distributions which is feasible to evaluate and sample.

Definition 1. Setting Λ = δ0 in (2.14) results in the approximate CSDs derived in

Stephens and Donnelly [2000] for Kingman’s coalescent. This approximation ignores

38



the dynamics of the Λ-coalescent but results in a valid IS proposal distribution that

still simulates Λ-coalescent trees. I denote this proposal distribution by P̂Λ,SD
n .

Paul and Song [2010] introduced the trunk ancestry, which can be used to

obtain an approximation which makes better use of the Λ-coalescent structure. I

will briefly recall the definition of the trunk ancestry here before using it to define

a second approximate CSD family.

Definition 2. The trunk ancestry A∗(n) of a sample n is a deterministic, degenerate

process started from n and evolving backwards in time but undergoing no dynamics.

In the trunk ancestry, the lineages that form n do not mutate or coalesce,

and hence do not reach a MRCA. Instead they form an ancestral forest or “trunk”

that extends infinitely into the past.

The first two terms on the RHS of (2.14), corresponding to pairwise mergers

and mutations, can be interpreted genealogically as the rates with which the (n+1)th

lineage mutates and is absorbed into A∗(n) by a pairwise merger. The third term

corresponds to a multiple merger between the (n + 1)th lineage and two or more

lineages in n of the same type. Because this last term involves coalescence between

lineages in n it does not have an interpretation in terms of A∗(n). However it can

be forced into this framework by noting that the only relevant information is the

time of absorption of the (n+ 1)th lineage and the type of the lineage(s) in n with

which it merges. The following definition introduces dynamics for mutation and

absorption into the trunk ancestry, which closely mimic the rates in (2.14). Hence,

it can be expected to yield a good, tractable approximation to (2.14).

Definition 3. Let π̂Λ,K(eh|n) be the distribution of the type of a lineage which,

when traced backwards in time, encounters mutation events with rates θl according

to the transition matrix M (l) at each locus l ∈ L and is absorbed into A∗(n) with

rate
Λ({0})n

2
+

1

n+ 1

n+1∑
p=2

(
n+ 1

p

)
λn+1,p,

choosing its parent uniformly upon absorption. A parental type being thus acquired,

the mutation events can be resolved forwards in time, yielding a random type at the

leaf. The corresponding SMC proposal distribution is denoted by P̂Λ,K
n .
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Proposition 3. π̂Λ,K(eh|n) solves the equations[
Λ({0})n

2
+ θ+

1

n+ 1

n+1∑
p=2

(
n+ 1

p

)
λn+1,p

]
π̂Λ,K(eh|n) =

Λ({0})nh
2

+
∑
l∈[k]

θl
∑
a∈El

M
(l)
ah[l]π̂

Λ,K(eSal (h)|n) +
nh

n(n+ 1)

n+1∑
p=2

(
n+ 1

p

)
λn+1,p

and is the stationary distribution of the Markov chain on H with transition matrix

θM +
[
Λ({0})/2 + 1

n(n+1)

∑n+1
p=2

(
n+1
p

)
λn+1,p

]
N

θ + Λ({0})n
2 + 1

n+1

∑n+1
p=2

(
n+1
p

)
λn+1,p

, (2.15)

where N is the |H| × |H| matrix with each row equal to (n1, . . . , n|H|), and M is

the |H| × |H| stochastic matrix corresponding to the mixture distribution of H with

mixture weights θl/θ and mixture components M (l), suitably extended from |El|×|El|
matrices to |H| × |H| matrices by adding zero entries as appropriate.

Proof. The simultaneous equations follow by tracing the (n+1)th lineage backwards

in time and decomposing based on the first event, and the transition matrix follows

immediately from the simultaneous equations.

Note that P̂Λ,K
n has a very similar form to P̂Λ,SD

n , and as a consequence

of the linearity in N in (2.15) the efficient Gaussian quadrature approximation of

Appendix A in [Stephens and Donnelly, 2000] can be applied to both with minor

modifications for P̂Λ,K
n .

2.3.2 Λ-coalescent simulation study

In this section I present an empirical comparison between the SMC algorithms de-

fined by P̂Λ,K
n and P̂Λ,SD

n , as well as the generalised Griffiths-Tavaré proposal dis-

tribution of Birkner and Blath [2008] which will be denoted by P̂Λ,GT
n . Simulated

samples have been generated using the efficient sampling algorithm provided in

Section 1.4.4 of [Birkner and Blath, 2009]. Approximate CSDs have been evaluated

using a Gauss quadrature of order four. See Appendix A of [Stephens and Donnelly,

2000] for details.

Simulated haplotypes consist of 15 loci with binary alleles denoted {0, 1} and

mutation matrix M (l) =

(
0 1

1 0

)
at each locus. The coalescent is a Beta(2−α, α)-

coalescent for α ∈ (1, 2). All simulations have been run on a single core on a Toshiba
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laptop, and make use of a stopping time resampling scheme with resampling checks

made at hitting times of all sample sizes reaching B = {n− 5, n− 10, . . . , 5}. This

generic resampling regime has been chosen for simplicity and without regard for any

particular proposal distribution.

The total mutation rate is θ = 0.1 spread evenly among all 15 loci. The

coalescent is The Beta(0.5, 1.5)-coalescent corresponding to α = 1.5. The data

consists of 100 sampled haplotypes, 95 of which share a single type, four lineages

a second type one mutation away from the main block, and a single lineage is of a

third type one different mutation removed from the main block.

I will consider inferring both θ and α individually, assuming all other param-

eters are known and that θl = θ/15 for every l ∈ [15]. Eight independent simulations

of 30 000 particles each were run on an evenly spaced grid of mutation rates span-

ning the interval θ ∈ [0.025, 0.2]. The same simulations were then repeated on an

evenly spaced grid spanning α ∈ [1.1125, 1.9]. The resulting likelihood surfaces are

shown in Figure 2.1.

The most striking observation is that both approximate CSD proposals yield

algorithms which are two orders of magnitude faster than the Griffiths-Tavaré pro-

posal algorithm. Moreover, it is clear that the α-surface obtained from P̂Λ,GT
n has

not yet converged. The wide confidence envelope at the left hand edge and the

lack of monotonicity at the right hand edge of the P̂Λ,GT
n θ-surface are indicative of

poorer performance when inferring θ as well.

The runtimes of P̂Λ,SD
n and P̂Λ,K

n are very similar for both parameters, and

all four surfaces from these proposals are good approximations of the truth. In

the θ-case the accuracy of the two is very similar, but in the α-case P̂Λ,K
n yields

noticeably tighter confidence bounds and a smoother surface. This is particularly

true of low values of α, which correspond to Beta-coalescents that are very different

from Λ = δ0.

Joint inference of α and θ is also of interest. Figure 2.2 shows a joint likeli-

hood heat map for the two parameters constructed from a grid of simulations of 30

000 particles from the P̂Λ,K
n proposal. The surface is flat due to the limited amount

of information in 100 samples, but the maximum likelihood estimator is close to the

true (1.5, 0.1) and the surface shows a high degree of monotonicity.

The performance of the P̂Λ,SD
n proposal can be expected to deteriorate with

more demanding data sets, and when the true model is very different from Kingman’s

coalescent. To that end the one dimensional inference problems for θ and α were

repeated for a sample of 150 lineages with true parameters θ = 0.15 and α = 1.2.

The data set consists of 144 lineages of a given type with four other types present,

41



Figure 2.1: Simulated log-likelihood surfaces from 30 000 particles with ±2SE con-
fidence envelopes based on assuming IID Gaussian weights. The left column is for θ
and the right for α. The true surfaces are based on a 1 000 000 particle simulation
using the P̂Λ,K

n proposal distribution.

each a single mutation removed from the main group. The sizes of these groups are

3, 1, 1, 1. The results are shown in Figure 2.3.

The algorithm using P̂Λ,K
n is noticeably faster when inferring θ, and slightly

faster when inferring α. It also produces substantially more accurate estimates

than P̂Λ,SD
n for small values of θ. 30 000 particle runs have not yielded an accurate

estimate for large values of θ from either algorithm. The α-surface from P̂Λ,SD
n looks

superficially better, but both surfaces are very similar and good matches to the true

likelihood.

This deterioration of the performance of P̂Λ,SD
n is to be expected because

the true Beta(0.8, 1.2)-coalescent is a significant departure from the Λ = δ0 as-

sumption used to derive the corresponding approximate CSDs. Such coalescents

are of particular interest because significantly more efficient implementations exist

for Kingman’s coalescent, and these should be preferred whenever the Kingman hy-

pothesis of Λ = δ0 cannot be rejected. It seems plausible that the high values of the
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Figure 2.2: Simulated likelihood surface for the Beta(2 − α, α)-coalescent family
from 30 000 particles using P̂Λ,K

n . Values of α run on the x-axis, and values of θ on
the y-axis. The surface is interpolated from an 8×8 grid of independent simulations.
The star denotes the MLE, which must lie on one of the grid points.

likelihood estimator near θ = 0.06 using P̂Λ,SD
n coincide with the MLE for this data

set under the assumption Λ = δ0, and is thus an artefact of the mismatch between

the proposal distribution and the target likelihood. Hence P̂Λ,K
n is the recommended

proposal distribution in practice.

The reported run times in Figures 2.1 and 2.3 suggest that the SMC algo-

rithm using P̂Λ,K
n as its proposal distribution remains feasible for samples containing

hundreds of lineages formed of tens of loci, or an order of magnitude more if meth-

ods such as a driving value [Griffiths and Tavaré, 1994c] or bridge sampling [Meng

and Wong, 1996] are employed to reduce the number of independent simulations.

There is also a strong dependence on model parameters: fast coalescence (or low α

in this setting) corresponds to faster simulation runs, and both high mutation rate

and large haplotype space will result in a slower algorithm.

2.3.3 Ξ-coalescents

The important tools in deriving the optimal proposal distributions P̂Λ,K
n and the

approximate CSDs π̂Λ,K(·|·) were, respectively, the lookdown construction Donnelly
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Figure 2.3: Simulated log-likelihood surfaces from 30 000 particles with ±2SE con-
fidence envelopes assuming IID Gaussian weights. The left column is for θ and the
right for α. The downward spike in the lower confidence boundary of the bottom
left surface is an artefact caused by a negative value of the estimate, where the real
part of the logarithm has been plotted. The values of the standard errors have no
such spike.

and Kurtz [1996, 1999] and the trunk ancestry Paul and Song [2010]. Both of these

are also available for the Ξ-coalescent, and in this section I make use of them to

extend the SMC algorithm to this family of coalescent processes.

A lookdown construction for the Ξ-coalescent and the Ξ-Fleming-Viot pro-

cess was derived by Birkner et al. [2009] and can be described as follows. For ease

of notation I assume Ξ({0}) = 0. If Ξ does have an atom at zero, its treatment is

identical to the Λ-case.

Let NΞ be a Poisson point process on on R+ ×∆× [0, 1]N with rate

dt⊗ ‖r‖−2
2 Ξ(dr)⊗ du⊗N
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and associate to each lineage a level {1, . . . , n}. Define the function

g(r, u) :=

min
{
j ∈ N :

∑j
i=1 ri ≥ u

}
if u ≤

∑∞
i=1 ri

∞ otherwise
.

At each (tj , (rj1, rj2, . . .), (uj1, uj2, . . .)) ∈ NΞ group the n particles such that all

particles d ∈ [n] with g(rj , ujd) = k form a family for each k ∈ N. Among each

family every particle copies the type of the particle with the lowest level. In addition

each particle follows an independent mutation process similarly to the Λ-coalescent.

This lookdown construction will be instrumental in establishing the following

recursion, which is a finite sites analogue of the sampling recursion derived by Möhle

[2006] for the infinite alleles model. The coefficients of the recursion will form

the forwards-in-time transition probabilities of a branching and mutating particle

system, analogously to (2.7) in the Λ-coalescent case.

Theorem 3. The likelihood of type frequencies n ∈ N|H| sampled from the stationary

Ξ-Fleming-Viot process solves

PΞ
n(n) =

1

gn + nθ

{ ∑
h:nh>0

∑
l∈[k]

θl
∑
a∈El

(
nSal (h) + 1− δah[l]

)
M

(l)
ah[l]P

Ξ
n(n− eh + eSal (h))

+

n1∑
k1=1

. . .

n|H|∑
k|H|=1

∑
π1∈Pk1

n1

. . .
∑

π|H|∈P
k|H|
n|H|

1[n]

(∑
h∈H

kh

)(
n

|π1
1|, |π1

2|, . . . , |π
|H|
|H||

)

×
(
| ∨h∈H πh|
|π1|, . . . , |π|H||

)−1

λn;K(∨h∈Hπh);S(∨h∈Hπh)P
Ξ
k (k)

}
, (2.16)

with the convention that
∑0

k=1 f(k) = f(0) and with boundary condition PΞ
1 (eh) =

m(h), where m is the stationary distribution of the mutation process, which is as-

sumed to exist and be unique. Here P khnh denotes the set of equivalence relations on

nh ∈ N elements with kh ≤ nh equivalence classes, πh = (πh1 . . . π
h
kh

) denotes such an

equivalence relation so that
∑kh

i=1 |πhi | = nh and ∨h∈Hπh is the equivalence relation

on n elements obtained from applying each πh to the corresponding nh elements.

When ∨h∈Hπh consists of only singletons, the whole corresponding summand is set

to 0 by convention. The vector K(π) lists the sizes of all equivalence classes with

more than one member, S(π) is the number of classes with exactly one member and
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gn is the total coalescence rate of n untyped lineages given by

gn =
n−1∑
a=1

n!

a!

∑
b1,...,ba∈N
b1+...+ba=n

λn;K(b);S(b)

b1!× . . .× ba!
.

Proof. The proof is the same as in Section 1.4.1 of Birkner and Blath [2009], adapted

here from the Λ-coalescent to the Ξ-coalescent. Let p denote the distribution of the

types of the first n levels of the stationary lookdown construction. Decomposing

according to which event (whether mutation or a merger) occurred first when tracing

backwards in time yields

p(y1, . . . , yn) =
1

gn + nθ

{
n∑
i=1

∑
l∈[k]

θl
∑
a∈El

M
(l)
ah[yi]

p(y1, . . . , yi−1, S
a
l (yi), yi+1, . . . , yn)

+
∑

π∈P (y)

λn;K(π);S(π)p(γπ(y1, . . . , yn))

}
(2.17)

where P (y) is the set of equivalence relations describing permissible mergers for

the sample y = (y1, . . . , yn) (that is, mergers where no equivalence class contains

lineages of more than one type) and γπ(y1, . . . , yn) is the vector of types which

results in (y1, . . . , yn) if the look-down-and-copy event denoted by the equivalence

relation π takes place.

By exchangeability, only a vector of type frequencies n = (n1, . . . , n|H|) is

needed. For such a vector, define the canonical representative as

κ(n) := (1, . . . , 1︸ ︷︷ ︸
n1

, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . , |H|, . . . , |H|︸ ︷︷ ︸
n|H|

)

and the likelihood as

p0(n) :=

(
n

n1, . . . , n|H|

)
p(κ(n)).
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The following two identities yield the desired recursion when substituted into (2.17):

nh

(
n

n1, . . . , n|H|

)
p(κ(n− eh + eSal (h)))

=(nSal (h) + 1− δah[l])p
0(n− eh + eSal (h)),(

n

n1, . . . , n|H|

) ∏
h∈H

(
nh

|πh1 |, . . . , |πhkh |

)
p(κ(k))

=

(
n

|π1
1|, |π1

2|, . . . , |π
|H|
|H||

)(
k

k1, . . . , k|H|

)−1

p0(k).

The coefficients of (2.16) are the Ξ-coalescent analogues of the forwards prob-

abilities (2.7). The solution to (2.16) can be approximated by importance sampling

as in the Λ-coalescent case, and the following theorem is a straightforward extension

of Theorem 1.

Theorem 4. The optimal proposal distributions for recursion (2.16), denoted P̃Ξ
n ,

are

P̃Ξ
n(Ai−1|Ai) ∝

nhθl
π(eSa

l
(h)|Ai−eh)

π(eh|Ai−eh) M
(l)
ah[l] if Ai−1 = Ai − eh + eSal (h)∑

π1∈Pk1
n1

. . .
∑

π|H|∈P
k|H|
n|H|

∏
h∈H

(
nh

|πh1 |, . . . , |πhkh |

)
λn;K(∨h∈Hπh);S(∨h∈Hπh)

π(n− k|k)

if Ai = n and Ai−1 = k for kh ∈ [nh] and
∑

h∈H kh < n

where n and nh denote haplotype frequencies of Ai.

Proof. The argument is identical to the proof of Theorem 1 taking into account

the larger class of permitted simultaneous multiple mergers and hence different

combinatorial coefficients.

As before, the CSDs used in the statement of Theorem 4 are intractable, but

any approximation to them will yield an unbiased algorithm and better approxi-

mations can be expected to correspond to more efficient algorithms. The generator

of the Ξ-Fleming-Viot process is not as immediately tractable as its Fleming-Viot

and Λ-Fleming-Viot counterparts, so I present a derivation from the trunk ancestry

A∗(n).
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Definition 4. Let π̂Ξ,K(eh|n) be the CSD obtained by letting the (n+ 1)th lineage

mutate with rates {θl}l∈L with transition matrices {M (l)}l∈L, and be absorbed into

A∗(n) with rate

1

n+ 1

n∑
k=1

∑
π∈Pkn+1

(
n+ 1

|π1|, . . . , |πk|

)
λn+1;K(π);S(π),

choosing its parent uniformly upon absorption. A parental type being thus acquired,

the mutation events can be resolved forwards in time, yielding a random type at the

leaf.

Proposition 4. The approximate CSDs π̂Ξ,K(eh|n) solve the following recursion:[
θ+

1

n+ 1

n∑
k=1

∑
π∈Pkn+1

(
n+ 1

|π1|, . . . , |πk|

)
λn+1;K(π);S(π)

]
π̂Ξ,K(eh|n)

=
nh

n(n+ 1)

n∑
p=1

∑
π∈P pn+1

(
n+ 1

|π1|, . . . , |πp|

)
λn+1;K(π);S(π)

+
∑
l∈[k]

θl
∑
a∈El

P
(l)
ah[l]π̂

Ξ,K(eSal (h)|n)

and is the stationary distribution of the Markov Chain on H with transition proba-

bility matrix

θM +
{

1
n(n+1)

∑n
p=1

∑
π∈P pn+1

(
n+1

|π1|,...,|πp|
)
λn+1;K(π);S(π)

}
N

θ + 1
n+1

∑n
p=1

∑
π∈P pn+1

(
n+1

|π1|,...,|πp|
)
λn+1;K(π);S(π)

.

where N and M are as in Proposition 3.

Proof. The proof is identical to Proposition 3 and follows by considering the first

event backwards in time encountered by the lineage.

Note that because simultaneous multiple mergers can take place, the de-

composition in Remark 4 is no longer valid and multivariate approximate CSDs

π̂Ξ,K(m|n) must also be specified. This is most naturally done by averaging over all

permutations of the lineages in m, but this is computationally infeasible for all but

very small samples m. The PAC approach of averaging over a relatively small num-

ber of random permutations can be used to yield a more practical family, although

algorithms will still be limited by the fact that evaluating the CSDs requires comput-

ing all equivalence classes on n elements. This burden can be alleviated considerably
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by assuming that the measure Ξ places full mass on a finite dimensional simplex,

which amounts to restricting the number of permitted simultaneous mergers to the

same, finite number. If this number is small compared to the size of the data set, far

fewer terms will need to be computed at each stage of the algorithm but the model

still allows for more general ancestral trees than any Λ-coalescent. In particular,

the case of up to four simultaneous mergers arising in coalescent models of diploid

populations [Möhle and Sagitov, 2003; Birkner et al., 2013] seems computationally

feasible. In such a scenario care must be taken when using driving value or bridge

sampling methods, because while a measure Ξ placing full mass on an n-dimensional

simplex can be used to drive a simulation for any other measure Ξ placing full mass

on a k ≤ n dimensional simplex, the converse will result in mutually singular target

and proposal distributions.

2.4 An alternative to SMC: product of approximate

conditionals

In this section I will introduce two PAC algorithms for Λ-coalescents making use

of, respectively, π̂Λ,K and a modification π̂Λ,K2, as well as investigate their efficiency

and accuracy. The CSD π̂Λ,K2 is defined as the distribution of the haplotype of a

lineage which encounters mutations with rates {θl}l∈[k] as before, and is absorbed

into A∗(n) with rate

∑
h∈H

Λ({0})nh
2

+
1

nh + 1

nh+1∑
p=2

(
nh + 1

p

)
λn+1,p

 ,

choosing its parent uniformly, and inheriting the parental haplotype. Mutations are

then resolved forwards in time from the parental haplotype with transition matrices

{M (l)}l∈[k].

Note that because π̂Λ,K2(·|n) depends nonlinearly on the exact frequencies

{nh}h∈H, the precomputations which were possible for all other CSDs introduced

thus far are not possible for it. See Proposition 1 of [Stephens and Donnelly, 2000] for

details. For an SMC algorithm this loss of efficiency in evaluating the CSDs would be

devastating, but PAC algorithms are fast enough to remain feasible. The increased

speed of PAC algorithms has also enabled the order of the Gauss quadrature used to

approximate the CSDs to be increased from four to ten for both families, resulting

in more accurate approximations of PAC-estimators.

Neither approximate CSD family is exchangeable, so the estimates of the
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likelihood depend on the order in which the count data n is conditioned upon. Fixing

a representative ordering is inadequate, because it is well known that the ordering

can substantially influence the PAC estimator [Li and Stephens, 2003]. This issue is

partially addressed by averaging estimates across 1 000 uniformly sampled random

permutations of the data, following the approach of Li and Stephens [2003] as well

as subsequent works making use of the PAC method. The number of permutations

is substantially larger than what has been used for PAC models based on Kingman’s

coalescent, and proved necessary in trial runs (results not shown), but comes at little

additional cost. The results of applying these PAC algorithms to both simulated

data sets from Section 2.3.2 are summarised in Figures 2.4 and 2.5.

Figure 2.4: The PAC log-likelihood surfaces normalised to 0 following Li and
Stephens [2003]. The true likelihood surfaces in the left column are those from
Figure 2.1, and the true surfaces in the right column are those from Figure 2.3.

The results of the PAC simulations are mixed. Both PAC algorithms are

extremely fast, and likely to remain feasible even for large data sets, but the PAC

likelihood estimates are consistently too low by many orders of magnitude. Never-

theless, the PAC MLEs in Figure 2.4 are close to the true maximisers, particularly

for the smaller data set in the left column. On the other hand, the joint PAC
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Figure 2.5: The PAC joint log-likelihood surfaces normalised to 0. Locations of
MLEs are indicated by stars. Figure 2.2 provides a suitable SMC comparison to the
top row.

likelihood surfaces in Figure 2.5 broadly capture the diagonal shape seen in Figure

2.2, but the location of the PAC MLEs is significantly offset. The two PAC meth-

ods perform very similarly in the one-dimensional problems in Figure 2.4, but the

2D surface obtained from π̂Λ,K2 is a better fit than that from π̂Λ,K for the smaller

sample. For the larger sample the two surfaces are nearly identical.

The run times in Figure 2.4 indicate that the PAC method will remain com-

putationally feasible for substantially larger data sets than the IS algorithm, at least

up to tens of thousands of lineages and/or thousands of loci. Of course, the accuracy

of the PAC method to such data sets cannot be concluded from the trials presented

here, and careful verification will be necessary on a case-by-case basis. In further

contrast to SMC, the runtime of the PAC algorithm is independent of the model

parameters, and influenced only weakly by the size of the space of haplotypes.

A substantial amount of work will be required to develop a thorough un-

derstanding of the accuracy and pitfalls of these PAC algorithms, and whether or

not the more advanced PAC algorithms developed for Kingman’s coalescent can be

adapted to the Λ-coalescent setting as well. These preliminary simulations moti-
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vate the undertaking, and confirm that the PAC method is able to provide useful,

principled and fast results for Λ-coalescents in some cases.

2.5 SMC for spatial Λ-coalescents

As with the panmictic coalescent processes in the previous section, the likelihood of

an observed haplotype configuration n from the spatial Λ-coalescent is intractable.

However, it too can be cast into the framework of stopped Markov processes by

conditioning on N , the Poisson process driving the extinction-recolonisation events,

and using the lookdown construction [Véber and Wakolbinger, 2015] to yield the

following integral recursion, which is the analogue of the sampling recursion (2.16).

A standing assumption of this section will be that all sampling locations

are distinct, which also means that any two lineages can be distinguished from

one another. This is in stark contrast to the earlier panmictic coalescents, for

which exchangeability guaranteed that the only relevant information was haplotype

frequencies. To reflect this difference, I abuse notation and denote a sample n ∈
(T,H)n as an unordered set of pairs of locations and haplotypes. The operation

n ⊕ (z, h) denotes the sample n with a further lineage (z, h) added to it, while

n 	 (z, h) denotes n with the entry (z, h) removed. The assumed distinctness of

sampling locations ensures that this notation causes no ambiguity.

The coefficients of the following recursion once again form transition prob-

abilities of a forwards-in-time branching and mutating particle system started at

the MRCA, analogously to (2.7) in the Λ-coalescent case. Identifying these transi-

tion probabilities will enable the use of reverse time SMC to approximate hitting

probabilities, or spatial Λ-coalescent likelihoods.

Proposition 5. The likelihood of an observed configuration PSL
n (n) solves

PSL
n (n) =

1

L2 + θn

n∑
i=1

∑
l∈[k]

θl
∑
a∈El

M
(l)
ahi[l]

PSL
n (n	 (zi, hi)⊕ (zi, S

a
l (hi)))

+
1

L2 + θn

∑
h∈H

∫
T(L)

∫
Br(x)

∑
J⊆Nx

n :
h′=h ∀(z,h′)∈J

u|J |(1− u)|N
x
n	J |

(|J | ∨ 1)πr2

×PSL
n−|J |+1{1,2,...}(|J |)(n	 J ⊕ (z, h)1∅c(J))dzdx, (2.18)

with boundary condition PSL
1 ((z, h)) = m(h) for any z ∈ T(L), where

Nx
n := {(z, h) ∈ n : z ∈ Br(x)}
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is the set of lineages within the disc of the extinction-recolonisation region Br(x).

Remark 5. The notation PSL
n−|J |+1{1,2,...}(|J |)

(n	 J ⊕ (z, h)1∅c(J)) denotes PSL
n (n)

when J is empty, and PSL
n−|J |+1(n	 J ⊕ (z, h)) when J is non-empty.

Proof. Consider a configuration n given by the n particles with the lowest levels in

the lookdown construction, and trace their trajectories backwards in time until the

first event is encountered. If the event in reverse time is a mutation from a type h

to Sal (h) then, forwards in time, the corresponding event happens at rate θlM
(l)
ah[l].

If the event is an extinction-recolonisation event at x ∈ T(L) in which

0 < m ≤ n particles lie within Br(x) and 0 ≤ k ≤ m particles jump, then the

corresponding jump forwards in time happens with probability uk(1− u)m−k. The

event that the particles which jump have the locations required by n happens with

density (πr2)−k, but interpreting the jumps as coalescences means that only the

location of the particle with the lowest level plays a role. Hence the locations of

k − 1 particles can be integrated out, as they correspond to the same coalescence

event, leaving a total density of (πr2)−1 provided that at least one particle jumped.

The ordering of levels is only relevant in that the particle with the lowest

level must end up at the correct parental location. The levels of all other particles

play no role in the coalescence event. Hence mixing uniformly over levels produces

a factor of k−1 when at least one particle jumped. Finally, extinction-recolonisation

events centred at x ∈ T(L) happen at rate 1 when mixed over realisations of N ,

which completes the proof.

The coalescence rates in (2.18) are computationally intractable due to the∫
T(L)· · · dx-integral over possible extinction-recolonisation event centres. To make

progress I extend the state space to include the sample configuration n and the

almost surely finite, ordered vector of event centres x := {xk}Kk=1 connecting the

sample to the MRCA. The joint likelihood (PSL
n ⊗ N)(n,x) can then be used to

recover the marginal likelihood of interest via

PSL
n (n) =

∫
(PSL

n ⊗N)(n,x)dx =

∫
PSL
n,x(n)N(dx), (2.19)

where I have abused notation and let N(dx) denote the marginal distribution of x.

Since the MRCA is reached using only finitely many events with probability 1 and

N(dx) is easy to sample, it is sufficient to obtain a sample {xi}pi=1 of vectors of
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event centres as well as a conditional estimator P̂SL
n,x(n), and estimate (2.19) via

P̂SL
n (n) =

1

p

p∑
i=1

P̂SL
n,xi(n).

Note that the number of required event centres is random, but new event centres can

be sampled on-line as necessary due to the independence structure of the Poisson

process which drives the events. It will not be necessary to store the locations of

events once their effect on the genealogy has been resolved.

The analogue of (2.18) for the conditioned process given x is readily obtained

from the lookdown construction by mixing only on the times of the events of N while

retaining the conditioning upon locations of centres:

PSL
n,x((n, q)) =

1

L2 + θn

n∑
i=1

∑
l∈[k]

θl
∑
a∈El

M
(l)
ahi[l]

PSL
n,x(n	 (zi, hi)⊕ (zi, S

a
l (hi)), q)

+
L2

L2 + θn

∑
h∈H

∫
Br(xk)

∑
J⊆Nxq

n :
h′=h ∀(z,h′)∈J

u|J |(1− u)|N
xq
n 	J |

(|J | ∨ 1)πr2

×P SL
n−|J |+1{1,2,...}(|J |),x((n	 J ⊕ (z, h)1∅c(J), q + 1))dz, (2.20)

where the index q ∈ N has been introduced to track the index of the next event in

x. The associated boundary condition is PSL
n,x(((z, h), q)) = m(h) for any x, q ∈ N

and z ∈ T(L). The coefficient L2 in front of the second term arises as the rate of

arrival of the next event, given the location of its centre.

The coefficients in (2.20) are specified in closed form, and can be interpreted

as the forwards transition probabilities

PSL
n,x((n, q)|(n	 (z, h)⊕ (z, Sal (h)), q)) =

θl
L2 + θn

M
(l)
ah[l],

PSL
n,x((n, q + 1)|(n	 J ⊕ (z, h), q)) =

L2

L2 + θn

u|J |(1− u)|N
xq
n 	J |

|J |πr2
,

PSL
n,x((n, q + 1)|(n, q)) =

L2

L2 + θn
(1− u)|N

xq
n |.

Denote the corresponding stochastic process by {(Xj , qj)}j∈N with X0 being the

MRCA and q0 = K, where K is unknown number of events of N needed to reach

the MRCA. Let τ1 = 0 and {τn}n≥2 be a family of stopping times defined inductively

via

τn := inf{j ≥ τn−1 : |Xj | ≥ n}.
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Analogously to Section 2.3, the sets defining the trajectory of interest are

I = {((z, h),K) : (z, h) ∈ T(L)×H}, the MRCA,

T = {(Xτn+1 , qτn+1)}, any sample whose size exceeds n,

and the quantity of interest is

Eµ[f(τT , X0:τT )] = Eµ[1{Xτn+1−1=n}],

i.e. the probability of the observed state n occurring immediately before the sample

size exceeds n.

As in Section 2.3, the optimal (in terms of estimator variance) reverse-time

proposal distribution can be expressed in terms of the forwards transition prob-

abilities and a family of CSDs {πx,qz (·|n)}z∈T(L), which can be interpreted as the

distribution of a genetic type sampled from a point z ∈ T(L) between the times of

the (q− 1)th and qth events of a given a realisation x given an observed sample n. I

immediately introduce the first simplifying assumption and assume the only depen-

dence on x and q is via xq, the centre of the qth event. The resulting approximate

family is denoted by {π̂xqz (·|n)}z∈T(L).

The corresponding approximation to the optimal proposal distribution can

then be written as

P̂SL
n,x((n	 (z, h)⊕ (z,Sal (h)), k)|(n, k)) ∝

π̂
xq
z (Sal (h)|n	 (z, h))

π̂
xq
z (h|n	 (z, h))

θl
L2 + θn

M
(l)
ah[l],

P̂SL
n,x((n, k + 1)|(n, k)) ∝ L2

L2 + θn
(1− u)|Nn(xk)|,

P̂SL
n,x((n	 J ⊕ (z,h), k + 1)|(n, k))

∝ π̂
xq
z (h|n	 J)

π̂
xq
zJ (h, . . . , h︸ ︷︷ ︸

|J |

|n	 J)

L2

L2 + θn

u|J |(1− u)|Nn(xq)	J |

πr2
,

where zJ denotes the vector of locations of lineages in J , and π̂
xq
zJ (h, . . . , h|n) is

the multivariate extension of π̂
xq
z (h|n). The proof of optimality of this proposal

distribution (allowing for the simplifying assumptions on the CSD introduced above)

is identical in form to Theorem 1 of Stephens and Donnelly [2000], or either Theorem

1 or 4 above, and is omitted. The construction of the approximate CSDs below will

ensure that π̂
xq
zJ (·|n) is invariant under permutations of J whenever all lineages in J

share a common type. These are the only kinds of mergers permitted by the spatial

Λ-coalescent, so that the multivariate extension will be well-defined for all necessary

55



arguments.

I will construct the CSDs for coalescence and mutation separately, and focus

first on the univariate π̂
xq
z (h|n) for the mutation term. In this case I ignore spatial

structure and view a sample n as arising from a standard Λ-coalescent with non-

standard coalescence rates given by

λn,p = up(1− u)n−p. (2.21)

A family π̂Λ,K(·|n) of approximate CSDs for Λ-coalescents was derived in Section

2.3.1, and can be used here with the modification (2.21) to yield a tractable family

π̂
xq
z (·|n) = π̂Λ,K(·|h(n)), where h(n) ∈ Nd is the vector of haplotype frequencies in

the sample n.

For the coalescence terms I neglect all lineages outside the disc Br(xq), and

treat the lineages in Br(xq) as a sample from a Λ-coalescent with coalescence rates

given by (2.21). Thus the type and number of lineages to merge can be sampled

from π̂
xq
z (·|n) = π̂Λ,K(·|h(N

xq
n )), followed by selecting the precise set of lineages to

merge uniformly at random among all those of the correct type. Finally, the parental

location is sampled uniformly from Br(xq). This construction is uniquely defined

because only lineages inside the disc Br(xq) are allowed to coalesce, so ignoring

lineages outside of it causes no ambiguity.

Remark 6. Introducing approximations of the conditional distribution of parental

locations, and of the random environment Π, can be expected to yield more effi-

cient algorithms than that outlined above. I attempted several heuristic models

based on mixtures of Gaussian distributions centred on the locations of remaining

lineages, but obtained importance weights with very high (and seemingly infinite)

variance (results not shown). Deriving practically useful approximations remains an

important open problem in likelihood-based inference for the spatial Λ-coalescent.

The multivariate extensions π̂
xq
zJ (h, . . . , h|n 	 J) can be defined from the

univariate distributions via

π̂
xq
zJ (h, . . . , h|n	 J) :=

|J |∏
i=1

π̂
xq
(zJ )i

(h
∣∣n	 J ⊕i−1

j=1 ((zJ)j , h)). (2.22)

Despite the fact that the approximate CSDs are not exchangeable, the product

on the RHS of (2.22) is uniquely defined because it depends on the vector zJ only

through the fact that all locations satisfy (zJ)i ∈ Br(xq), and it is only evaluated for

sets of lineages that are identical in type. Analogously to Remark 4, these two facts
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ensure that π̂
xq
zJ (h, . . . , h|n) is invariant under permutations of J . This would not be

true if more than a single parent were permitted in each extinction-recolonisation

event, because then simultaneous mergers of several types of lineages to different

parents would be possible. Strategies for defining approximate CSDs for such spatial

Ξ-coalescents might include fixing a canonical permutation to ensure (2.22) is well-

defined, or averaging over a small number of random permutations as in [Li and

Stephens, 2003].

In summary, the proposal distribution is defined as

P̂SL
n,x((n	 (z, h)⊕ (z, Sal (h)), q)|(n, q)) ∝

π̂Λ,K(Sal (h)|h(n	 (z, h)))

π̂Λ,K(h|h(n	 (z, h)))

θl
L2 + θn

M
(l)
ah[l],

P̂SL
n,x((n, q + 1)|(n, q)) ∝ L2

L2 + θn
(1− u)|Nn(xq)|,

P̂SL
n,x((n	 J ⊕ (z, h),q + 1)|(n, q))

∝ u|J |(1− u)|Nn(xq)	J |

π̂K(h, . . . , h︸ ︷︷ ︸
|J |−1

|h(Nxk
n 	 J ⊕ (z, h)))

L2

L2 + θn

1

πr2
.

Efficient algorithms for simulating samples from the spatial Λ-coalescent have

been developed by Kelleher et al. [2013, 2014] and were used to simulate a sample

of 100 lineages uniformly distributed within a torus of side length L = 10. The type

space consists of 10 binary loci, with mutations flipping a randomly chosen locus at

rate θ = 10−3. The resulting sample is depicted in Figure 2.6.

Natural parameters of the model are the mutation rate θ, the radius r and the

impact u. The latter two can be related to classical population genetics parameters:

Wright’s neighbourhood size is N = 1
u , and the variance per unit time of the spatial

location of a lineage traced backwards in time is σ2 = πur4

2 [Barton et al., 2013a].

I consider inferring all three parameters separately, assuming that the other two

are known. Likelihood surfaces for all three parameters are shown in Figure 2.7.

Stopping-time resampling has been used in all simulation runs, with trajectories

being stopped whenever the sample size first hits or falls below {99, 98, . . . , 3, 2} and

resampling performed if the effective sample size is lower than one half of the number

of particles. Note that because of multiple mergers it is possible for a trajectory to

hit multiple stopping times at once, in which case it will remain stopped until all

particles reach the same level provided it survives all intermediate resampling steps.

Figure 2.7 demonstrates that reverse time SMC can produce convergent esti-

mators for very small likelihoods, even if the computational run times are daunting.

The mutation rate θ can be identified to within an order of magnitude, and the

57



●

●

●

0 2 4 6 8 10

0
2

4
6

8
10 ● 110100010

110110010
110010010
111010010

Figure 2.6: Sampling locations and observed types of the simulated observation from
a spatial Λ-coalescent. The model parameters are L = 10, θ = 10−3, r = 1.0 and
u = 0.3. The type space consists of binary vectors of length 10, with mutations
flipping a randomly chosen element.

impact u to within a factor of 2. Radii which are too small can also be ruled

out clearly, though large radii cannot be excluded similarly. This is most likely

due to the relatively small ratio of the torus side length L to the event radius r,

with larger tori resulting in greater radius identifiability. Simulations by Guindon

et al. [2016] reached similar conclusions, with accurately estimated neighbourhood

sizes N = 1/u and higher uncertainty estimates of dispersal rate σ2 = πur4/2, at

comparable computational cost.

As with SMC algorithms in general these can be greatly reduced by par-

allelising the algorithm, which is typically trivial, or by reducing the number of

independent simulations through use of driving values [Griffiths and Tavaré, 1994c]

or bridge sampling [Meng and Wong, 1996], at least in the case of a fixed radius r.

Mismatches in radius cause mutual singularity of the proposal and target distribu-
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Figure 2.7: Simulated likelihood surfaces for each of the three parameters of the
spatial Λ-coalescent, assuming the other two parameters are known and using 4
million particles. Points correspond to independent simulations, and are labelled
with their effective sample sizes and run times using 12 cores on the MidPlus cluster
Minerva. Some noise is still clearly present in the surfaces, but their general shapes
are identifiable.

tions by allowing mergers in the model with larger radius which are not possible in

the smaller radius. However, the mutation rate θ and impact u can be varied freely,

provided both are strictly positive.
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2.6 Other examples of reverse time SMC

As outlined in Section 2.2, time reversal is not a tool that is exclusive to coalescent

processes, although it is most well studied in this context. Indeed, use of time re-

versal and approximate CSDs to write down proposal distributions is a completely

general method. In this section I demonstrate this fact by deriving families of ap-

proximate CSDs for a diffusion process, a queueing model, and an epidemic model on

a network, and present accompanying simulation studies for estimating intractable

hitting probabilities.

2.6.1 Containment probabilities of a hyperbolic diffusion

The one-dimensional hyperbolic diffusion is the solution of the SDE

dXt =
−Xt√
1 +X2

t

dt+ dWt, (2.23)

where (Wt)t≥0 is a Brownian motion. It was introduced by Barndorff-Nielsen [1978]

in connection to hyperbolic distributions in geostatistical modelling [Barndorff-

Nielsen, 1977], and its heavier-than-Gaussian tails have also made it a popular model

in mathematical finance [Bibby and Sørensen, 2003].

The transition probabilities of the diffusion are intractable, but the stationary

distribution is known to be the hyperbolic distribution

π(x) =
1

2K1(1)
e−
√

1+x2
, (2.24)

where K1 is the modified Bessel function of the second kind. I assume that the

diffusion is started at stationarity, and focus on the probability that a trajectory

lies in an interval (l0, u0) at time 0, and hits interval (lt, ut) at time t ∈ N, without

leaving the strip obtained by connecting l0 to lt and u0 to ut with straight lines

at intermediate times. Similar containment probabilities have been studied e.g. in

[Casella and Roberts, 2008] in the context of double barrier option pricing. The sets

defining the event of interest are

I = {0} × (l0, u0),

T =

 ⋃
s∈(0,t)

{s} ×
{
lt − l0
t

s+ l0,
ut − u0

t
s+ u0

} ∪ ({t} × (lt, ut)),
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the initial distribution is

µ(·) = π(·|l0 < · < u0),

and the quantity of interest is

Eµ[f(τT , X0:τT )] = Eµ[1{t}(τT )],

i.e. the probability that the diffusion remains contained within the strip, and only

hits the set T at the end at time t. I will consider a discretisation of (2.23), and

use the Euler scheme with grid spacing δ > 0 to define a family of approximate

transition densities forwards in time:

Pδ(x, y) = Pδ((m,x), (n, y)) =
1{m+δ}(n)
√

2πδ
exp

(
− 1

2δ

[
y − x

{
1− δ√

1 + x2

}]2
)
.

(2.25)

Note that in this case (2.25) is also the Milstein scheme because of the unit diffusion

coefficient. The discretised transition density (2.25) and the unconditional station-

ary distribution (2.24) can be used to define a discretised reverse time proposal:

P̂δ(y, x) = P̂δ((n, y), (m,x)) ∝ π(x)

π(y)
Pδ(x, y)1{( lt−l0

t
m+l0,

ut−u0
t

m+u0

)}(y).

I assume for simplicity that ∆ divides t exactly, and consider the analogous discreti-

sation of the target set T . I have also neglected the issue of bias due to unobserved

boundary crossings between time discretisation points, though more sophisticated

interpolation schemes [Gobet, 2000] could also be implemented.

This family of proposal distributions can be normalised numerically, and

sampled by proposing x
(

1− δ√
1+x2

)
from a N (y, δ) proposal distribution, solving

for x and accepting the proposal with probability e−
√

1+x2
. In the above definition,

Step 2 of the strategy outlined in Section 2.2 has been implemented by automatically

rejecting proposed values outside the permitted strip. Dynamic resampling, in which

particles are resampled whenever their effective sample size falls below half the

particle number, was also employed.

Figure 2.8 presents estimated probabilities of excursions containment as a

function of the height of the end interval. The resulting effective sample size is

not monotonically decreasing in the rarity of the terminal interval due to the fact

that rarer intervals push the reverse time dynamics to the mode more rapidly. The

increase in run time along the x-axis in Figure 2.8 is due to the exponential decay

of the acceptance probability in the rejection sampler used to generate proposals. A
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Figure 2.8: Simulated containment probabilities of the hyperbolic diffusion with
initial interval (l0, u0) = (−1, 1), trajectory length t = 10, time discretisation ∆ =
0.01, N = 1000 particles, and terminal window (lt, ut) given on the x-axis. Each
experiment corresponds to an independent simulation, and is labelled with a run
time on an Intel i5-2520M 2.5 GHz processor, and the effective sample size.

more uniformly efficient proposal sampler would result in run times which are more

or less independent of the height, and thus the rarity, of the terminal condition as

well.
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2.6.2 Hitting probabilities of ATM queueing networks

The second example is the ATM (asynchronous transfer mode) network studied

by Glasserman et al. [1999] in the context of rare events. The network consists

of d sources, each of which is either on or off. Sources which are off do nothing,

while sources which are on produce packets at rate λ. Packets are serviced by a

common server with rate µ using the first-in-first-out policy. Off sources turn on

at rate α0 and on sources turn off at rate α1. The state of the system is specified

as (i, j) ∈ N0 × [d], where i denotes the number of packets in the queue and j the

number of on sources.

Glasserman et al. [1999] estimated the probability of the queue length hitting

a barrier b ∈ N before emptying, given an empty initial queue and dα0/(α0 + α1)

on sources. Reverse-time SMC could be used for this example by summing over

all possible numbers of terminal open sources, but this results in a d-fold increase

in computational burden and hence cannot be expected to be competitive with a

forwards-in-time approach. I focus instead on the joint probability of an initially

empty queue hitting a barrier b before emptying with exactly k sources open at

the hitting time, and assume the initial number of open sources is Bin(d, α0/(α0 +

α1))-distributed. In this scenario a forwards-in-time algorithm would face the same

difficulties as a reverse-time algorithm does in the scenario of Glasserman et al.

[1999].

The sets which define the event of interest are

I =

d⋃
j=0

{(0, j)},

T =

d⋃
j=0

{(0, j)} ∪ {(b, j)},

the quantity of interest is the hitting probability

Eµ[f(τT , X0:τT )] = Eµ[1{(b,k)}(XτT )],

and the initial law is

µ({(0, j)}) =

(
d

j

)(
α0

α0 + α1

)j ( α1

α0 + α1

)d−j
.

To define the proposal distribution it is only necessary to specify approximate con-

ditional distributions of i given j and j given i. These are denoted by π̂i(i|j) and
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π̂j(j|i) respectively, and chosen to be

π̂i(i|j) ∝
(
λj

µ

)i
for i ∈ [b] and j ∈ [d],

π̂j(j|i) ∝ π̂i(i|j)
(
d

j

)(
α0

α0 + α1

)j ( α1

α0 + α1

)d−j
for i ∈ [b] and j ∈ [d].

The former is the true distribution of a queue with arrival rate λj and service rate

µ whenever µ > λj, and well-defined otherwise as well because the range of possible

values of i is finite. The latter is obtained from the former via Bayes’ rule. These

probabilities also implicitly define the rule for choosing which coordinate to update:

both π̂i(i|j) and π̂j(j|i) are evaluated for all moves allowed by the current state of

the system, and a move is sampled proportional to the resulting probabilities.

I also employ stopping time resampling again, with simulations stopped every

time a new minimum queue length is reached in reverse time. Once all simulations

have been stopped, resampling takes place if the effective sample size is below half

of the number of particles.

Figure 2.9 presents simulated hitting probabilities of a queue length of 30

across all possible fixed numbers of terminal on sources. Despite some residual

noise the shape and magnitude of the surface can be distinguished clearly, and

the effective sample size shows at most weak decay as the estimated probability

decreases. This is because increased problem difficulty (as measured by the rarity

of the event of interest) is compensated for automatically by stronger drift towards

the mode by the reverse-time dynamics.

2.6.3 Initial infection in a susceptible-infected-susceptible network

Consider a finite network with vertices V and undirected edges E, and with vertices

labelled as either susceptible (S) or infected (J). For a vertex v ∈ V , let l(v) ∈ {J, S}
denote its label, Nv := {v′ ∈ V : (v, v′) ∈ E} denote its neighbourhood and, for

a ∈ {J, S}, let

Na
v := {v′ ∈ V : (v, v′) ∈ E and l(v′) = a}

denote the sub-neighbourhood with label a. Then the susceptible-infected-susceptible

(SIS) epidemic evolves as follows.

Every infected node is cured with rate β > 0, at which point it immediately

becomes susceptible again. A susceptible node is infected by each infected neighbour

at rate α > 0, so that a vertex v ∈ V becomes infected at total rate α|NJ
v |. These

types of dynamics on networks are popular models e.g. for the spread of biological
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Figure 2.9: Simulated hitting probabilities of an ATM network with parameters
d = 20, b = 30, λ = 0.5, µ = 10.0, α0 = 1.0, α1 = 3.0. An independent simulation of
500 000 particles was run for each value of k for a runtime of around 20 minutes for
each k on an Intel i5-2520M 2.5 GHz processor. Estimates are labelled with their
corresponding effective sample sizes.

epidemics in structured populations [Moore and Newman, 2000; Pastor-Satorras

and Vespignani, 2001; Ganesh et al., 2015], malware in computer networks [Shah

and Zaman, 2010], and rumours in social networks [Fuchs and Yu, 2015; Shah and

Zaman, 2016], and are also sometimes referred to as contact processes. In addition,

let γ > 0 be the rate at which a new infection enters the network, infecting one

uniformly sampled node. Such new infections are assumed to only enter when all
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vertices are susceptible, i.e. only one infection can exist in the population at one

time.

Suppose that there is no infection in the initial population, and that small

infections go undetected. An infection is defined as large once it infects at least

b|V |/10c nodes. Assume that the labels of all nodes are immediately observed

as soon as a large infection arises. Infection times are not observed, nor is any

information about the history of the infection, such as whether a vertex that is now

susceptible was previously infected. The object of interest is inferring the initial

location of the observed large infection, which may no longer be infected itself. Point

estimators for similar inference problems have been studied in [Shah and Zaman,

2010; Fuchs and Yu, 2015; Shah and Zaman, 2016]. Suppose that β � α, so that

the epidemic is subcritical and large infections are rare. Corresponding inference

for supercritical infections falls outside the scope of reverse-time SMC as outlined

in this thesis, because the initial state of no infection is rare while the target state

of a large infection is typical.

More formally, consider the jump skeleton of the above continuous time

Markov process, let lt(v) denote the label of vertex v ∈ V at time t ∈ N0, and

let the Markov chain {Xt}τTt=0 be given as

Xt = {v ∈ V : lt(v) = J},

i.e. the set of infected vertices at time t. Then the initial condition I is the empty

set, the initial distribution is µ(∅) = 1, the target set T := {X : |X| = b|V |/10c}
is the set of observed epidemics that are sufficiently large to be detected, and the

quantity of interest is the likelihood of the location of the initial infection given an

observed infection XτT = v∗:

Eµ[f(τT , X0:τT )] = |V |Eµ[1{v∗}(XτT )1{v}(X1)] =
Pµ(X1 = v,XτT = v∗)

Pµ(X1 = v)

= Pµ(XτT = v∗|X1 = v).

Note that approximating Eµ[f(X0:τT )] using a forwards-in-time algorithm is chal-

lenging because it can be difficult to know a priori which nodes are likely to be

the one initially infected, and hence the algorithm may spend much effort sampling

trajectories of low probability. The problem also lacks a natural reaction coordinate

(2.3) because nodes can be uninfected and reinfected, which makes driving samples

towards the observed configuration difficult. Neither of these problems causes any

difficulty in reverse time: a reaction coordinate is not needed and sampled trajecto-
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ries drift towards initial locations of high probability automatically.

It remains to specify the proposal distribution, which is done by specifying

the CSD of the label of one vertex given the labels of all the others. Conditioned

on the labels of all other vertices, vertex v ∈ V becomes infected at fixed rate NJ
v

and susceptible with rate β, so a natural choice of approximate CSD is

π̂(l(v)|{l(v′)}v′ 6=v) =


α|NJ

v |+ε
α|NJ

v |+β+ε
if l(v) = J

β
α|NJ

v |+β+ε
if l(v) = S

,

where ε > 0 is a regularisation term correcting for the fact that isolated individ-

uals can become infected in reverse time, corresponding to an infection spreading

outwards and all connecting individuals becoming uninfected before the final, leaf

one. An approximate CSD based on a larger neighbourhood size would yield a more

accurate approximation at greater computational cost. Note that this formula also

captures the final transition from a single infected to a fully susceptible graph, with

probability proportional to

Pµ(X1 = {v}) π̂(S|{S, . . . , S})
π̂(J |{S, . . . , S})

=
β

|V |ε
,

because the probability of a fully susceptible graph acquiring an infection at site

v ∈ V in the next time step is |V |−1.

Figure 2.10 shows a estimated likelihood surface produced from SMC output

for the initial infected location, along with a plot of the observed infection. The

surface shows a high degree of monotonicity, and concentrates around the observed

epidemic as expected.

2.7 Discussion

In this chapter I have presented a general framework for designing SMC proposal dis-

tributions which proceed backwards in time. Time-reversal makes it straightforward

to ensure realisations of the process hit desired regions of the state space, essentially

irrespective of the probability assigned to them by the law of the process of interest.

Even the extreme case of conditioning paths on a terminal point of probability 0

can be dealt with easily. This makes time-reversal a natural and efficient choice

when the end point of a path is known with high accuracy, but its initial distribu-

tion is diffuse. As most existing rare event and path simulation algorithms make

the opposite assumptions about initial and terminal conditions, time-reversal can
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Figure 2.10: Simulated likelihood surface for the location of the initial infected on a
10 x 10 nearest neighbour network with α = 1, β = 12, γ = 1, ε = 10−8 and using 10
000 particles for a run time of 40 minutes on an Intel i5-2520M 2.5 GHz processor.
The black dots denote the observed infection, and the true initial location is row 7,
column 2.

be expected to be a useful tool in extending the scope of simulation-based inference

and computation.

Expressing the law of the reverse-time process via Nagasawa’s formula (2.4)

often leads to a substantial reduction in the dimensionality of the design task of

defining a proposal distribution via Proposition 2. The difficulty of designing effi-

cient proposal distributions in high dimension is a central barrier to practical SMC,

so this cancellation of dimensions is an important advantage. Furthermore, I want

to emphasize that it is not inherently linked to time-reversal: re-weighting jump

probabilities by an approximate stationary distribution and cancelling out common

co-ordinates would lead to a forwards-in-time proposal defined by low dimensional

approximate CSDs. For rare terminal conditions a reverse-time approach is eas-

ier because the conditional and unconditioned stationary distributions share the

qualitative behaviour of rapidly leaving the rare state for a stationary mode. A

forwards-in-time algorithm would have to use CSDs approximating the behaviour of
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an appropriate Doob’s h-transform in order to drive the process away from modes

and into the rare state. Nevertheless, analogues of Proposition 2 can be a useful

design tool beyond the scope of this thesis.

All example simulations considered in this chapter have had the property that

the proposal distribution could be normalised numerically, so that proposals could

be sampled via standard methods. This property is computationally convenient, but

is often not necessary since importance weights typically only need to be evaluated

up to a normalising constant. In such cases samples from unnormalised proposals

can be generated via Metropolis-Hastings and the only modification to Algorithm 1

is a step to self-normalise weights after line 28.

Section 2.6 presents examples, each of which would be inefficient to solve

using forwards in time methods. For the diffusion containment problem in Section

2.6.1, a forwards in time proposal distribution would have to mimic an intractable

h-transform. For the ATM queue in Section 2.6.2 a forwards in time method would

have to explicitly average over initial conditions. Finally, the SIS network model

in Section 2.6.3 lacks a natural reaction coordinate (2.3), so that it is difficult to

design proposal distributions which drive an empty network towards the observed

configuration efficiently. All three problems are tackled easily by the reverse time

approach.

In Section 2.3 I presented reverse-time SMC algorithms for inference under

the Λ- and Ξ-coalescent models, which retain the rigorous motivations of proposals

that have been designed for Kingman’s coalescent De Iorio and Griffiths [2004a],

De Iorio and Griffiths [2004b], Paul and Song [2010]. Furthermore, they outperform

existing algorithms for Λ-coalescent inference. It should be noted however that the

greater modelling flexibility provided by Λ- and Ξ-coalescents comes with additional

computational cost in comparison to the more restrictive Kingman’s coalescent.

The inference problems considered in this paper have consisted of small samples

of chromosomes comprised of a small number of loci, each with a simple mutation

model. While some cost is certainly unavoidable, these computations can be sped

up considerably by reducing the number of independent simulations, and through

paralellisation, which can be done very effectively as is typical for SMC algorithms.

In particular, use of GPUs for parallel Monte Carlo simulations has been found to

speed up computations by up to 500 fold in comparison to serial simulation [Lee

et al., 2010].

The limits on coalescent data sets that can be feasibly analysed using SMC

are restrictive even under Kingman’s coalescent, so alternate methods have been de-

veloped to tackle broader classes of problems. The PAC method is a prime example,
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and simulations in Section 2.4 suggest it can also a viable approach for Λ-coalescents.

Much work has been done on sophisticated approximations to CSDs for Kingman’s

coalescent with recombination and other features, and results in Section 2.4 indicate

that investigating similar approaches under Λ- and Ξ-coalescents is a fruitful direc-

tion for future research. Many of the generalisations of interest result in coalescents

with generators that differ from those studied in this thesis only by additive terms,

so the machinery used here can be applied more generally with little added difficulty.

Section 2.5 demonstrates that reverse-time SMC can handle very high di-

mensional missing data and conditioning on events of extremely small probability,

albeit at high computational cost. The algorithm introduced in Section 2.5 is also

the first published inference algorithm for the spatial Λ-coalescent, which solves a

number of long-standing problems in spatially structured population genetics. It was

made possible by a recursion of the form (2.20) in combination with the reverse-time

framework, and the cancellation of dimensions outlined in Proposition 2. As such,

it provides a concrete example of a model of practical interest which is rendered

computationally tractable by this method.
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Chapter 3

Bayesian nonparametric

inference

3.1 Introduction

Bayesian nonparametric statistics differs from classical, parametric inference in only

one way: parametric inference is concerned with learning a finite number of param-

eters from data, while nonparametric statistics allows the parameter space to be

infinite dimensional. This relaxation enables learning function- or measure-valued

quantities of interest from observations, without the restrictive assumption of a

parametric family of candidates. However, this flexibility often comes at the cost of

considerable analytic and computational complexity.

Recall that the Bayesian inference procedure is to specify a prior Q for a

quantity of interest b, and make inferences from the posterior given observed data

x1:n as

Q(db|x1:n) =
P(x1:n|b)Q(db)∫
P(x1:n|b)Q(db)

.

To fix intuition, consider for example the problem of inferring the drift coefficient

of the scalar SDE

dXt = b(Xt)dt+ dWt

from discretely sampled observations from trajectories at stationarity. The drift

function b must satisfy regularity conditions for the model to be well defined and

possess a unique stationary distribution to sample, but such drifts are still function-

valued parameters which cannot be captured in full generality by finitely many

parameters. The first technical difficulty brought about by the infinite dimensional

setting is that existence and uniqueness of the posterior are not guaranteed. More-
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over, the highly desirable property of posterior consistency, Q(U cb0 |x1:n) → 0 as

n → ∞, where Ub0 is an open neighbourhood of the data generating parameter

b0, is non-trivial and depends in subtle ways on details of the topology, mode of

convergence and the prior [Diaconis and Freedman, 1986].

This section investigates Bayesian posterior consistency for the more general,

d-dimensional jump diffusion models

dXt = b(Xt)dt+ dWt + c(Xt−, dZt),

introduced in Section 1.2.3 (see (1.8)), as well as the genetically motivated Λ-

Fleming-Viot processes which are specified via their generators,

GΛf(x) = θ
d∑

i,j=1

xj(Mji − δij)fi(x) +
Λ({0})

2

d∑
i,j=1

xi(δij − xj)fij(x)

+
d∑
i=1

∫
(0,1]

xi{f((1− r)x + rei)− f(x)}r−2Λ(dr),

as in Section 1.2.1 (see (1.6)). I will give criteria for joint inference of the drift and

jump components in the jump diffusion case, and for inferring Λ assuming θ and M

are known in the Λ-Fleming-Viot case. With the exception of an identifiability con-

dition, which seems difficult to check in general, all consistency criteria are tractable

and can be verified. I will also provide a parametric algorithm for practical nonpara-

metric inference for Λ-Fleming-Viot processes. This parametric approach is similar

to the method of likelihood-informed subspaces for accelerating MCMC inference in

the case of Gaussian measures [Cui et al., 2014], with the further advantage that

the parametric method presented here captures the likelihood fully resulting in no

truncation or approximation error.

3.2 Jump diffusions

As outlined above, Bayesian nonparametric consistency is highly sensitive to details

of the prior, topology and mode of convergence. Hence it is important to specify

these details before moving on to discuss consistency.

For Borel sets A ∈ B(Rd0), let c∗(x, ·) denote the pull-back of the jump

coefficient c(x, ·):
c∗(x, A) := {z ∈ Rd0 : c(x, z) ∈ A}.

Definition 5. Let Θ = {(b, ν)|b : Ω 7→ Rd, ν : Ω × Rd0 7→ R+} denote a set of
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pairs of drift functions b(x) and Lévy measures ν(x, dz) = M(c∗(x, dz)) with each

pair satisfying the hypotheses of Proposition 1 with uniformly bounded Lipschitz

constant C1 in (1.9). Furthermore, suppose that for each x ∈ Ω and any pair of

Lévy measures (·, ν), (·, ν ′) ∈ Θ, the measures ν(x, ·) ∼ ν ′(x, ·) are equivalent with

Radon-Nikodym density satisfying

0 < inf
x∈Ω,z∈Rd0

{
dν ′

dν

}
≤ sup

x∈Ω,z∈Rd0

{
dν ′

dν

}
<∞,

and that either

1. all Lévy measures supported by Θ are finite, or

2. there exists an open set A containing the origin such that ν(x, ·)|A = ν ′(x, ·)|A
uniformly in (·, ν) 6= (·, ν ′) ∈ Θ.

Remark 7. The conditions of Definition 5 mean that the unit diffusion coefficient

and the infinite intensity component of the Lévy measure can be thought of as

known confounders of the joint inference problem for the drift function and the

finite intensity compound Poisson component of the Lévy measure.

The following assumption ensures that the drift function and Lévy measure

can be uniquely identified from discrete data.

Assumption 1. For any pair (b, ν) 6= (b′, ν ′) ∈ Θ and any δ > 0 there exists an x ∈
Ω and a bounded, measurable function f : Ω 7→ R such that P b,νδ f(x) 6= P b

′,ν′

δ f(x).

Note that both sides of the inequality are real numbers for a fixed x. In particular,

identifying P b,νδ is equivalent to identifying (b, ν).

Assumption 1 states that the mapping (b, ν) 7→ P b,νδ is injective, or that the

same semigroup cannot arise from two different generators. If this were to happen,

then it would be impossible to tell the corresponding drift and jump coefficients

apart from discrete data, so that consistency necessarily fails. Transition densities

of jump diffusions are typically intractable, which makes verifying Assumption 1

challenging in general. One approach which can sometimes be fruitful is to verifying

that the mapping (b, ν) 7→ πb,ν is injective, because

lim
k 7→∞

(P b,νδ ◦ . . . ◦ P b,νδ︸ ︷︷ ︸
k-fold

)f(x) = lim
k 7→∞

P b,νkδ f(x) =

∫
Ω
f(y)πb,ν(y)dy

by the semigroup property and ergodicity. Of course, the stationary densities of

jump diffusions are also intractable in general. It seems likely that in a case where
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identifiability fails but all other consistency criteria hold, the posterior will converge

to be supported on the set of all pairs (b, ν) that give rise to the semigroup generating

the data, with weights proportional to the prior densities of the pairs, at least subject

to the set of these pairs being sufficiently regular. However, this conjecture has not

been verified rigorously.

The topology under consideration is defined as in [van der Meulen and van

Zanten, 2013; Gugushvili and Spreij, 2014] by specifying a subbase determined by

the semigroups P b,νt . For details about the notion of a subbase, and other topological

concepts, see e.g. [Dudley, 2002].

Definition 6. Fix a sampling interval δ > 0 and a finite measure ρ ∈Mf (Ω) with

positive mass in all non-empty, open sets. For any (b, ν) ∈ Θ, ε > 0 and f ∈ Cb(Ω)

define the set

U b,νf,ε := {(b′, ν ′) ∈ Θ : ‖P (b′,ν′)
δ f − P b,νδ f‖1,ρ < ε},

where ‖ · ‖1,ρ is the L1(ρ)-norm. A weak topology on Θ is generated by requiring

that the family {U b,νf,ε : f ∈ Cb(Ω), ε > 0, (b, ν) ∈ Θ} is a subbase of the topology.

The following lemma is a direct analogue of Lemma 3.2 of [van der Meulen

and van Zanten, 2013]:

Lemma 1. The topology generated by a subbase of sets of the form U b,νf,ε is Hausdorff.

Proof. Consider (b, ν) 6= (b′, ν ′) ∈ Θ. By Assumption 1 there exists f ∈ C(Ω) and

x ∈ Ω such that P b,νδ f(x) 6= P b
′,ν′

δ f(x), and hence by continuity a non-empty, open

set J ⊂ Ω where P b,νδ f and P b
′,ν′

δ f differ. Hence ‖P b,νδ f − P b
′,ν′

δ f‖1,ρ > ε for some

ε > 0 so that the neighbourhoods U b,νf,ε/2 and U b
′,ν′

f,ε/2 are disjoint.

I am now in a position to formally define posterior consistency.

Definition 7. Let x0:n := (x0, . . . ,xn) denote n + 1 samples observed at times

0, δ, . . . , δn from X at stationarity, i.e. with initial distribution X0 ∼ πb,ν . Weak

posterior consistency holds if Q(U cb0,ν0
|x0:n)→ 0 with Pb0,ν0-probability 1 as n→∞,

where Ub0,ν0 is any open neighbourhood of (b0, ν0) ∈ Θ.

3.2.1 Posterior consistency

This section contains the statement and proof of the posterior consistency result for

jump diffusions.

74



Theorem 5. Let x0:n be as in Definition 7, and suppose that the prior Q is supported

on a set Θ which satisfies the conditions of Definition 5, as well as Assumption 1.

If

Q

(
(b, ν) ∈ Θ :

1

2

(
‖b0 − b‖2,πb0,ν0 +

∥∥∥∫
Rd0

[
dν0

dν
(·, z)− 1

]
1(0,1](‖z‖2)zν(·, dz)

∥∥∥
2,πb0,ν0

)2

+
∥∥∥∫

Rd0

[
log

(
dν0

dν
(·, z)

)
− dν0

dν
(·, z) + 1

]
ν0(·, dz)

∥∥∥
1,πb0,ν0

< ε

)
> 0 (3.1)

for any ε > 0 and any (b0, ν0) ∈ Θ (which are thought of as the true parameters

generating the data), then weak posterior consistency holds for Q on Θ.

Proof. The proof of Theorem 1 is a generalisation of the proof of Theorem 3.5 of

van der Meulen and van Zanten [2013] and Theorem 1 of Gugushvili and Spreij

[2014]. For (b, ν) ∈ Θ let KL(b0, ν0; b, ν) denote the Kullback-Leibler divergence

between pb0,ν0

δ and pb,νδ :

KL(b0, ν0; b, ν) :=

∫
Ω

∫
Ω

log

(
pb0,ν0

δ (x,y)

pb,νδ (x,y)

)
pb0,ν0

δ (x,y)πb0,ν0(x)dydx,

and for two probability measures P and P ′ on the same σ-field let K(P, P ′) :=

EP
[
log
(
dP
dP ′

)]
. The law of a random object Z under a probability measure P is

denoted by L(Z|P ).

The following two properties are required:

1. A prior mass condition at the “truth”: Q((b, ν) ∈ Θ : KL(b0, ν0; b, ν) < ε) > 0

for any ε > 0.

2. Uniform equicontinuity of the semigroups {P b,νδ f : (b, ν) ∈ Θ} for f ∈ Lip(Ω),

the set of Lipschitz functions on Ω. The test functions employed in [van der

Meulen and van Zanten, 2013; Gugushvili and Spreij, 2014] were f ∈ Cb(Ω),

but by the Portemanteau theorem these families both determine weak conver-

gence so there is no discrepancy.

These two properties will be established in Lemmas 2 and 3 below, which are the

necessary generalisations of Lemmas 5.1 and A.1 of [van der Meulen and van Zanten,

2013], respectively.
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Lemma 2. Condition (3.1) implies that Q((b, ν) ∈ Θ : KL(b0, ν0; b, ν) < ε) > 0 for

any ε > 0.

Proof. As in Lemma 5.1 of [van der Meulen and van Zanten, 2013] it will be sufficient

to bound KL(b0, ν0; b, ν) from above by a constant multiple of

1

2

(
‖b0 − b‖2,πb0,ν0 +

∥∥∥∫
Rd0

[
dν0

dν
(·, z)− 1

]
1(0,1](‖z‖2)zν(·, dz)

∥∥∥
2,πb0,ν0

)2

+
∥∥∥∫

Rd0

[
log

(
dν0

dν
(·, z)

)
− dν0

dν
(·, z) + 1

]
ν0(·, dz)

∥∥∥
1,πb0,ν0

.

A formal calculation yields

∫
Ω

∫
Ω

log

(
πb0,ν0(x)pb0,ν0

δ (x,y)

πb,ν(x)pb,νδ (x,y)

)
pb0,ν0

δ (x,y)πb0,ν0(x)dydx

=K(πb0,ν0 , πb,ν) + KL(b0, ν0; b, ν) = K(L(X0,Xδ|Pb0,ν0),L(X0,Xδ|Pb,ν))

≤ K(L((Xt)t∈[0,δ]|Pb0,ν0),L((Xt)t∈[0,δ]|Pb,ν))

= K(πb0,ν0 , πb,ν) + Eb0,ν0

[
log

(
dPb0,ν0

X0

dPb,νX0

((Xt)t∈[0,δ])

)]
(3.2)

by the conditional version of Jensen’s inequality.

The aim is to identify the Radon-Nikodym derivative using Theorem 2.4 of

[Cheridito et al., 2005], the hypotheses of which will now be verified. The local

boundedness assumptions of [Cheridito et al., 2005] follow from Lipschitz continuity

(1.9). Moreover, let {Ωn}∞n=1 denote a sequence of bounded, open subsets of Ω such

that Ω1 ⊂ Ω2 ⊂ . . . and ∪n≥1Ωn = Ω. Then Lipschitz continuity, and the assumed

finiteness of the Radon-Nikodym derivatives in Definition 5 ensure that there exists

a sequence of finite constants {KN}∞n=1 such that

sup
x∈Ωn

{∥∥∥b0(x)− b(x)−
∫
Rd0

[
dν0

dν
(x, z)− 1

]
1(0,1](‖z‖2)zν(x, dz)

∥∥∥
2

}
< Kn (3.3)

sup
x∈Ωn

{∫
Rd0

[
dν0

dν
(x, z) log

(
dν0

dν
(x, z)

)
− dν0

dν
(x, z) + 1

]
ν(x, dz)

}
< Kn (3.4)

for each (b, ν) ∈ Θ and each n ∈ N. In particular, the conditions in Remark 2.5 of

[Cheridito et al., 2005] are satisfied. Hence Theorem 2.4 of [Cheridito et al., 2005]

holds, and the Radon-Nikodym derivative on the RHS of (3.2) can be expressed

as Eb0,ν0 [log(E(Lδ))], where E is the Doléans-Dade stochastic exponential and the
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process L := (Lt)t∈[0,δ] is given as

Lt =

∫ t

0

∫
Rd0

[
dν0

dν
(Xs−, z)− 1

]
(Zν(Xs−, dz, ds)− ν(Xs−, dz)ds)

+

∫ t

0
b0(Xs)− b(Xs)−

∫
Rd0

(
dν0

dν
(Xs−, z)− 1

)
1(0,1](‖z‖2)zν(Xs−, dz)dXc

s,

where (Xc
s)s≥0 is the continuous martingale part of X, i.e. a Brownian motion in

this setting, and Zν(x, ·, ·) is a Poisson random measure with intensity ν(x, dz)⊗ds.
Note that under Pb0,ν0 the process L is a local martingale, Lc is a continuous local

martingale with quadratic variation

〈Lc〉t =

∫ t

0

∥∥∥b0(Xs)− b(Xs)−
∫
Rd0

(
dν0

dν
(Xs−, z)− 1

)
1(0,1](‖z‖2)zν(Xs−, dz)

∥∥∥2

2
ds

and jump discontinuities of L can be written as

∆Lt =

[
dν0

dν
(Xt−,∆Xt)− 1

]
1(0,∞)(‖∆Xt‖2),

where ∆Xt denotes a jump discontinuity of X at time t. Now, the expected quadratic

variation of 〈Lc〉t can be bounded by

Eb0,ν0 [〈Lc〉t] ≤
∫ t

0
Eb0,ν0 [‖b0(0) + b(0) + 2C1Xs +K‖22]ds

for some constant K > 0, using (1.9), the uniform upper and lower bounds on dν0
dν ,

and the fact that either ν and ν0 are equivalent and either both finite, or dν0
dν ≡ 1 on

a neighbourhood of 0 and ν is finite on any open set not containing the origin. The

stationary density has a first moment by Proposition 1, so that Eb0,ν0 [〈Lc〉t] ≤ K ′t

for some other constant K ′ > 0. Likewise,

Eb0,ν0

 ∑
t:‖∆Xt‖2 6=0

∆L2
t

 =

∫ t

0
Eb0,ν0

[∫
Rd0

(
dν0

dν
(Xs−, z)− 1

)2

ν(Xs, dz)

]
ds

is finite due to the aforementioned conditions on ν0 and ν. Thus L has expected

quadratic variation

Eb0,ν0 [〈L〉t] = Eb0,ν0

 ∑
t:‖∆Xt‖2 6=0

∆L2
t ν(Xs, dz)ds+ 〈Lc〉t

 <∞
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for any t > 0, and is a true Pb0,ν0-martingale by Corollary 3 on page 73 of [Protter,

2005]. Then, the Radon-Nikodym term in (3.2) can be written as

Eb0,ν0

[
log

(
dPb0,ν0

x

dPb,νx
((Xt)t∈[0,δ])

)]
= Eb0,ν0 [log(E(Lt))]

= Eb0,ν0

[
Lδ − L0 −

1

2
〈Lc〉δ +

∑
t:∆Xt 6=0

{log(1 + ∆Lt)−∆Lt}

]

= Eb0,ν0

[
−1

2

∫ δ

0

∥∥∥b0(Xt)− b(Xt)

−
∫
Rd0

(
dν0

dν
(Xt−, z)− 1

)
1(0,1](‖z‖2)zν(Xt−, dz)

∥∥∥2

2
dt

+
∑

0≤t≤δ:∆Xt 6=0

{
log

(
dν0

dν
(Xt−,∆Xt)

)
−
(
dν0

dν
(Xt−,∆Xt)− 1

)}]

≤ δ

[
1

2

(
‖b0 − b‖2,πb0,ν0 +

∥∥∥∫
Rd0

(
dν0

dν
(·, z)− 1

)
1(0,1](‖z‖2)zν(·, dz)

∥∥∥
2,πb0,ν0

)2

+
∥∥∥∫

Rd0

{
log

(
dν0

dν
(·, z)

)
− dν0

dν
(·, z) + 1

}
ν0(·, dz)

∥∥∥
1,πb0,ν0

]
, (3.5)

where the first equality follows from Theorem 2.4 of [Cheridito et al., 2005], the

second by definition of E for jump diffusion processes, and the remainder of the

calculation by stationarity and because ν0 is the compensator of the Poisson random

measure driving the jumps of X under Pb0,ν0 . The result now follows from (3.2) and

(3.5).

Lemma 3. For each δ > 0 and f ∈ Lip(Ω), the collection {P b,νδ f : (b, ν) ∈ Θ} is

locally uniformly equicontinuous: for any compact K ∈ Ω and ε > 0 there exists

γ := γ(ε, f, δ) > 0 such that

sup
(b,ν)∈Θ

sup
x,y∈K:
‖x−y‖2<γ

|P b,νδ f(x)− P b,νδ f(y)| < ε.

Proof. Theorem 2.2 of [Wang, 2010] uses a coupling argument to establish global

equicontinuity for jump diffusions satisfying (1.9). A sufficient condition is that for

78



some constant β ∈ (0, 1) there exists a constant Cβ > 0 such that

‖b(x)− b(y)‖2(1 + ‖x− y‖2) + Cβ‖x− y‖2(1 + ‖x− y‖2)2

+
(1 + ‖x− y‖2)(1

2 + ‖x− y‖2(1 + ‖x− y‖2))
∫
Rd0
‖c(x, z)− c(y, z)‖22M(dz)

‖x− y‖2
≤ 1

whenever ‖x− y‖2 < β. By (1.9), the LHS can be bounded above by

√
C1β(1 + β) +

(
1

2
+ β(1 + β)

)
β(1 + β)C1 + Cββ(1 + β)2,

which can clearly be made arbitrarily small by choosing a sufficiently small β. Note

that a uniform bound on the Lipschitz constant C1 is required because, to leading

order, β ∼ C−1
1 . A uniform bound on C1 implies uniform equicontinuity, since then

both β and Cβ can be chosen uniformly.

The remainder of the proof follows as in [van der Meulen and van Zanten,

2013]. It suffices to show that Q(B|x0:n)→ 0 with Pb0,ν0-probability 1 for f ∈ Lip(Ω)

and B := {(b, ν) ∈ Θ : ‖P b,νδ f − P b0,ν0

δ f‖1,ρ > ε}. To that end, fix f ∈ Lip(Ω) and

ε > 0 and thus the set B. Lemma 2 implies that Lemma 5.2 of [van der Meulen

and van Zanten, 2013] holds, so that if, for measurable subsets Cn ⊂ Θ, there exists

c > 0 such that

enc
∫
Cn

πb,ν(x0)

πb0,ν0(x0)

n∏
i=1

pb,νδ (xi−1,xi)

pb0,ν0

δ (xi−1,xi)
Q(db, dν)→ 0

Pb0,ν0-a.s. then Q(Cn|x0:n) → 0 Pb0,ν0-a.s. as well. Likewise, Lemma 3 implies

Lemma 5.3 of [van der Meulen and van Zanten, 2013]: there exists a compact subset

K ⊂ Ω, N ∈ N and compact, connected sets I1, . . . , IN that cover K such that

B ⊂
N⋃
j=1

B+
j ∪

N⋃
j=1

B−j ,

where

B+
j :=

{
(b, ν) ∈ Θ : P b,νδ f(x)− P b0,ν0

δ f(x) >
ε

4ρ(K)
for every Ij

}
,

B−j :=

{
(b, ν) ∈ Θ : P b,νδ f(x)− P b0,ν0

δ f(x) <
−ε

4ρ(K)
for every Ij

}
.

Thus it is only necessary to show Q(B±j |x0:n) → 0 Pb0,ν0-almost surely. Define the
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stochastic process

Dn :=

(∫
B+
j

πb,ν(x0)

πb0,ν0(x0)

n∏
i=1

pb,νδ (xi−1,xi)

pb0,ν0

δ (xi−1,xi)
Q(db, dν)

)1/2

.

Now Dn → 0 exponentially fast as n→∞ by an argument identical to that used to

prove Theorem 3.5 of [van der Meulen and van Zanten, 2013]. The same is also true

of the analogous stochastic process defined by integrating over B−j , which completes

the proof.

3.2.2 An example prior

The conditions of Theorem 5 are verifiable in the sense that they do not depend

on intractable quantities (with the exception of Assumption 1), but it is not im-

mediately clear whether a prior Q satisfying its assumptions exists, in particular

in the infinite dimensional setting. The following example demonstrates that there

is at least one family of priors which satisfies these assumptions: independent dis-

crete net priors of Ghosal et al. [1997] for b(·) and c(·, ·), and a further, independent

Dirichlet process mixture model prior [Lo, 1984] for M(·). Discrete net priors were

also used in both van der Meulen and van Zanten [2013] and Gugushvili and Spreij

[2014] to demonstrate the existence of priors for nonparametric inference of drifts

for diffusions.

Firstly, let Θb be a collection of uniformly Lipschitz functions from Ω to Rd,
each satisfying (1.11) for some (not necessarily uniform) constants C3 and C4. Let

Θ
(m)
b := {b|

B0(m)
: b ∈ Θb} be the set of restriction in Θb to the closed ball of radius

m centred at the origin. By uniform equicontinuity and the Arzelà-Ascoli theorem,

Θ
(m)
b is totally bounded in the uniform norm. Hence, for every n, it is possible to

construct a finite εn-net Θ
(m,n)
b over Θ

(m)
b , where {εn}n∈N is a sequence of strictly

positive numbers tending to 0. In other words, Θ
(m,n)
b is a finite set with the property

that every element of Θ
(m)
b is within distance εn of some element of Θ

(m,n)
b in the

supremum norm. Finally, every b ∈ Θ
(m,n)
b is extended to Ω by setting b(x) =

b(P
B0(m)

x)−x+P
B0(m)

x outside B0(m), where P
B0(m)

is the orthogonal projection

onto B0(m). Now, a discrete net prior is constructed by fixing two probability mass

functions on N, {pm}m∈N and {qn}n∈N, both of which assign positive mass to every

positive integer. Then, a draw from the prior is generated by sampling m ∼ pm

and n ∼ qn, followed by b|m,n ∼ U(Θ
(m,n)
b ). Samples from this prior are bounded,

uniformly Lipschitz continuous, and satisfy (1.11) by construction.

Now let J ⊂ Rd be a fixed, compact domain including the origin, and let Θc
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be a set of uniformly Lipschitz continuous functions c : Ω×J 7→ J which satisfy the

following:

1. c(·, 0) ≡ 0,

2. c(x, ·) : J 7→ J is a surjection for each x ∈ Ω,

3. for any c ∈ Θc, any x ∈ Ω and z ∈ Rd0, there exists an open ball of strictly

positive radius centred at z, Bz(ε), such that c(x, z) 6= c(x, ξ) for any z 6= ξ ∈
Bz(ε),

4. for each c ∈ Θc there exists Kc > 0 such that

sup
x∈Ω

{
sup
z∈J
{c(x, z)}

}
= sup

x:‖x‖2≤Kc

{
sup
z∈J
{c(x, z)}

}
, (3.6)

and likewise for infima.

Condition 2. guarantees that ν(x, dz) has a positive density everywhere whenever

M(dz) does, while condition 3. rules out atoms in ν(x, dz). Let Θ
(m)
c := {c|

B0(m)
:

c ∈ Θc} be the set of restrictions of the first coordinate to the ball B0(m) ⊂ Ω,

and let Θ
(m,n)
c be a ε̃n-net over Θ

(m)
c for a strictly positive sequence ε̃n ↘ 0. Each

element of Θ
(m,n)
c can again be extended to a function on the whole Ω × J by

setting c(x, z) = c(P
B0(m)

x, z) outside B0(m), where P
B0(m)

denotes the orthogonal

projection to B0(m) as before. An independent discrete net can be used to define a

prior for c(·, ·), by specifying two probability mass functions {p̃m}m∈N and {q̃n}n∈N,

both assigning positive mass to all positive integers, and sampling draws analogously

to the discrete net prior on Θb.

Finally take the prior for the intensity measure M(·) to be a Dirichlet pro-

cess mixture model [Lo, 1984]. Let φτ (z) denote the d-dimensional centred Gaussian

density with covariance matrix τ−1Id×d restricted to J , and renormalised to be a

probability density. Let F be a probability measure on (0,∞) assigning positive

mass to all non-empty open sets, and let DP(ζ) denote the law of a Dirichlet pro-

cess (c.f. Section 1.4) with the mean measure ζ ∈ Mf (J), which is taken to be a

probability measure with a finite first moment, independent of F . Let DΥ(J) de-

note the space of continuous, positive densities on J with total mass at most Υ > 0.

The Dirichlet process mixture model on DΥ(J) with truncated Gaussian mixture

kernel φτ and mixing distribution U(0,Υ)⊗F ⊗DP(ζ) is specified via the following

sampling procedure:

1. Sample P ∼ DP(ζ). Then P is a discrete probability measure on Rd with
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countably many atoms with DP(ζ)-probability 1 [Ferguson, 1973]. Let z1, z2, . . .

denote these atoms in some fixed ordering.

2. Sample IID copies τ1, τ2, . . . ∼ F .

3. Sample α ∼ U(0,Υ).

4. Set M(dz) = α
∑∞

j=1 P (zj)φτj (z− zj)dz.

Note that samples are finite measures with strictly positive densities on J , which

also means they have second moments because J is compact.

Sampling all three components, b(·), c(·, ·) and M(·) independently from the

priors specified above yields draws which almost surely satisfy (1.9) by uniform

Lipschitz continuity of b and c, as well as a uniform bound on the total mass of M :

‖b(x)− b(y)‖22 +

∫
J
‖c(x, z)− c(y, z)‖22M(dz)

≤ Cb‖x− y‖22 +

∫
J
Cc‖x− y‖22M(dz) ≤ (Cb + ΥCc)‖x− y‖22.

Condition (1.10) is immediate from the uniform Lipschitz continuity of c, and (1.11)

holds by construction of the prior for b. The requirement that c(·, 0) ≡ 0 holds

by constructions. Finally, ν(x, dz) = M(c∗(x, dz)) is a finite measure for each x

because M is finite and c∗(x, z) is a finite union of points by non-constancy, Lipschitz

continuity and compactness of J . The Radon-Nikodym derivative dν
dν0

exists for the

same reason, and is bounded both from above and away from 0 by compactness of

J and (3.6). Thus, the conditions of Definition 5 are fulfilled.

It remains to verify that (3.1) holds for this product prior. This will be

achieved by controlling the three πb0,ν0-norms separately, and showing that samples

which result in all three taking arbitrarily small values are drawn with positive

probability.

First, fix b0 ∈ Θb, c0 ∈ Θc and M0 ∈ DΥ(J), as well as ε > 0, and define

‖b‖m,∞ := sup
‖x‖2≤m

‖b(x)‖∞. (3.7)

Note that ‖ · ‖m,∞ is well defined for Lipschitz functions because they are locally

bounded. Then

‖b0 − b‖22,πb0,ν0 ≤ ‖b0 − b‖
2
m,∞ +

∫
‖x‖2>m

‖b0(x)− b(x)‖22πb0,ν0(x)dx

≤ ‖b0 − b‖2m,∞ +

∫
‖x‖2>m

‖b0(0) + b(0) + 2C1x‖22πb0,ν0(x)dx,
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by Lipschitz continuity. Now, choose m to be large enough that the second term

on the RHS is bounded above by ε/8, which can be done because πb0,ν0 has second

moments by Proposition 1. Likewise, the first term can be bounded by ε/8 by

choosing n large enough that εn ≤ ε/8. Note that by construction, the probability

of sampling a corresponding function b from the prior is at least pmqn > 0, and that

for such a b we have

‖b0 − b‖2,πb0,ν0 ≤
√

2ε/8 =
√
ε/2.

For the second norm, an elementary calculation using Jensen’s inequality and

the fact that ‖z‖2 ≤ 1 yields that∥∥∥∫
J

[
dν0

dν
(·, z)− 1

]
1(0,1](‖z‖2)zν(·, dz)

∥∥∥
2,πb0,ν0

≤
∫

Ω
ν(x, B0(1))

∫
J

(
ν0(x, z)2 − 2ν0(x, z)ν(x, z) + ν(x, z)2

ν(x, z)2

)
ν(x, dz)πb0,ν0(x)dx

≤
∫

Ω
πb0,ν0(x)ν(x, B0(1))

(∣∣∣ ∫
z:‖z‖2≤1

dν0

dν
(x, z)ν0(x, dz)− ν0(x, B0(1))

∣∣∣
+ |ν(x, B0(1))− ν0(x, B0(1))|

)
dx

=

∫
x:‖x‖2≤m

πb0,ν0(x)ν(x, B0(1))

(∣∣∣ ∫
z:‖z‖2≤1

dν0

dν
(x, z)ν0(x, dz)− ν0(x, B0(1))

∣∣∣
+ |ν(x, B0(1))− ν0(x, B0(1))|

)
dx

+

∫
x:‖x‖2>m

πb0,ν0(x)ν(x, B0(1))

(∣∣∣ ∫
z:‖z‖2≤1

dν0

dν
(x, z)ν0(x, dz)− ν0(x, B0(1))

∣∣∣
+ |ν(x, B0(1))− ν0(x, B0(1))|

)
dx. (3.8)

Both ν(x, ·) and ν0(x, ·) are finite measures with Radon-Nikodym derivative bounded

from above and away from 0. Thus, finiteness of πb0,ν0 ensures that the second in-

tegral on the RHS can be made arbitrarily small by choosing large enough m. Now

consider

|ν(x, B0(1))− ν0(x, B0(1))| = |M(c∗(x, B0(1)))−M0(c∗0(x, B0(1)))|

≤ |M(c∗(x, B0(1)))−M(c∗0(x, B0(1)))|+ |M(c∗0(x, B0(1)))−M0(c∗0(x, B0(1)))|,
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and note that if ‖c− c0‖m,∞ ≤ γ1 then

c∗(x, B0(1)) ⊆ c∗0
(

x,

{
ξ ∈ J : inf

y∈B0(1)
{‖ξ − y‖∞} ≤ γ1

})
(3.9)

for any x : ‖x‖2 ≤ m. The sets on the RHS are decreasing with decreasing γ1 >

0 and of finite M -mass, so that continuity of measure gives |M(c∗(x, B0(1))) −
M(c∗0(x, B0(1)))| ≤ γ2 for some γ2, which decreases to 0 as γ1 ↘ 0. Likewise,

|M(c∗0(x, B0(1)))−M0(c∗0(x, B0(1)))| ≤ ‖M −M0‖∞.

Hence

|ν(x, B0(1))− ν0(x, B0(1))| ≤ γ2 + ‖M −M0‖∞,

which can be made arbitrarily small by first choosing a sufficiently large m, then a

sufficiently small γ2 as well as c : ‖c−c0‖m,∞ < γ2, and finally an M : ‖M−M0‖∞ <

γ3 for sufficiently small γ3.

Similarly, (3.9) gives that

dν0

dν
(x, z) =

M0(c∗0(x, z))

M(c∗(x, z))
≤ M0(c∗(x, {ξ ∈ J : ‖ξ − z‖∞ ≤ γ1}))

M(c∗(x, z))

for x : ‖x‖2 ≤ m whenever ‖c − c0‖m,∞ < γ1. Hence taking such a c, as well as

M : ‖M −M0‖∞ < γ3, and using continuity of measure yields the estimate

dν0

dν
(x, z) ≤ M(c∗(x, z)) + γ3 + γ4

M(c∗(x, z))

for some γ4 ↘ 0 as γ1 ↘ 0. The denominator is bounded from below, so that

dν0

dν
(x, z) ≤ 1 +

γ3 + γ4

inf‖x‖2≤m,‖z‖2≤1{ν(x, z)}
,

which can be made arbitrarily close to 1 by choosing small enough γ3 and γ4. An

analogous lower bound follows by reversing the roles of ν and ν0, and lower bounding

the Radon-Nikodym derivative instead. Thus

(1− γ3 − γ4)ν0(x, B0(1)) ≤
∫
z:‖z‖2≤1

dν0

dν
(x, z)ν0(x, dz) ≤ ν0(x, B0(1))(1 + γ3 + γ4),

so that ∣∣∣ ∫
z:‖z‖2≤1

dν0

dν
(x, z)ν0(x, dz)− ν0(x, B0(1))

∣∣∣ ≤ γ3 + γ4.
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Taken together, the above bounds imply that (3.8) can be bounded by
√
ε/2

by first choosing a large enough m, and then c and M such that ‖c − c0‖m,∞ < γ

and ‖M − M0‖m,∞ < γ for sufficiently small γ > 0. Fix n such that ε̃n ≤ γ.

Then a suitable c is sampled from the prior with probability at least p̃mq̃n > 0.

The probability of sampling a suitable M is also positive, because by Theorem 1

of Bhattacharya and Dunson [2012], the support of the Dirichlet process mixture

model is dense in DΥ(J).

The third norm in (3.1) can be treated identically to the second, because

x 7→ log(x) is continuous and J is compact. Hence, its value is also bounded by ε/2

with strictly positive Q-probability. Thus, with positive Q-probability

1

2

(
‖b0 − b‖2,πb0,ν0 +

∥∥∥∫
Rd0

[
dν0

dν
(·, z)− 1

]
1(0,1](‖z‖2)zν(·, dz)

∥∥∥
2,πb0,ν0

)2

+
∥∥∥∫

Rd0

[
log

(
dν0

dν
(·, z)

)
− dν0

dν
(·, z) + 1

]
ν0(·, dz)

∥∥∥
1,πb0,ν0

<
1

2

(√
ε

2
+

√
ε

2

)2

+
ε

2
= ε,

and hence (3.1) holds.

3.2.3 Discussion

In this section I have shown that posterior consistency for joint, nonparametric

Bayesian inference of drift and jump coefficients of jump diffusion SDEs from dis-

crete data holds under criteria which can be readily checked in practice, subject to an

identifiability assumption which is difficult to verify in general. This generalises pre-

vious work by [van der Meulen and van Zanten, 2013; Gugushvili and Spreij, 2014],

in which similar results were proven for diffusions without jumps, in which setting

identifiability can also be verified. Products of discrete net priors and Dirichlet pro-

cess mixture models were shown to satisfy the conditions for consistency, provided

that identifiability holds.

These results share the limitation of [van der Meulen and van Zanten, 2013;

Gugushvili and Spreij, 2014] of being established for a weak topology, for which

the martingale approach of [Walker, 2004; Lijoi et al., 2004] is well suited. An

approach based on constructing hypothesis tests for the true coefficients (b0, ν0)

with exponentially small error probability in n, such as that of [Ghosal and van der

Vaart, 2007], would yield convergence in a stronger topology as well as rates of

convergence, but it is not clear how to adapt their results to the diffusion or jump
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diffusion settings. Currently, results in this direction are only available for scalar

diffusions [van der Meulen et al., 2006; Panzar and van Zanten, 2009; Pokern et al.,

2013; Nickl and Söhl, 2015].

Practical implementation of inference algorithms is beyond the scope of this

thesis, but note that algorithms based on exact simulation for jump diffusions are

available, at least in the scalar case [Casella and Roberts, 2011; Gonçalves, 2011;

Pollock et al., 2015b]. Exact simulation of jump diffusions is an active area of

research [Gonçalves and Roberts, 2013; Pollock et al., 2015a; Pollock, 2015] and

well suited for applications in Monte Carlo inference algorithms, with preliminary

results in the continuous diffusion setting indicating that nonparametric algorithms

can be feasibly implemented [Papaspiliopoulos et al., 2012; van Zanten, 2013; van der

Meulen et al., 2014].

3.3 Λ-coalescents

Let Q ∈M1(M1([0, 1])) be a prior distribution for Λ, and n ∈ N|H| denote observed

haplotype frequencies of n ∈ N H-labelled lineages generated by the Λ-coalescent.

For Borel sets B ∈ B(M1([0, 1])), define the posterior as

Q(B|n) =

∫
B PΛ

n(n)Q(dΛ)∫
M1([0,1]) PΛ

n(n)Q(dΛ)
.

I will begin this section by showing that the posterior given contemporaneously

observed haplotypes is necessarily inconsistent for any non-trivial prior. Since con-

temporaneous samples are typical in population genetics, this result is of great

applied importance whenever Λ cannot be assumed known with certainty. Unlike

the consistency result of Theorem 7, the inconsistency result of Theorem 6 is very

universal and does not depend on mode of convergence or topology.

Theorem 6. Let n ∈ N|H| denote the observed haplotype frequencies in a sample

of size n ∈ N generated by a Λ-coalescent started from n leaves at a fixed time,

and let x := limn→∞
n
n ∈ M1(H) denote the limiting observed relative haplotype

frequencies. Then the limiting posterior is given by

lim
n→∞

Q(B|n) =

∫
B π

Λ(x)Q(dΛ)∫
M1([0,1]) π

Λ(x)Q(dΛ)
.

In particular, the RHS is positive for any B ∈ B(M1([0, 1])) which has a non-null

intersection with the support of Q, regardless of the Λ ∈ M1([0, 1]) generating the
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data.

Proof. Conditioning on the ancestral tree of the observed sample give the following

representation for the posterior:

Q(A|n) =

∫
A PΛ

n(n)Q(dΛ)∫
M1([0,1]) PΛ

n(n)Q(dΛ)
=

∫
AE

Λ
n

[
1{n}(Π0)

]
Q(dΛ)∫

M1([0,1])E
Λ
n

[
1{n}(Π0)

]
Q(dΛ)

.

Using (1.7) the above can be written as

Q(A|n) =

∫
A EΛ [q(n|X)]Q(dΛ)∫

M1([0,1]) EΛ [q(n|X)]Q(dΛ)
,

where q(n|X) :=
(

n
n1,...,n|H|

)∏
h∈HX

nh
h is the multinomial sampling probability. I

will show the requisite convergence of the numerator and denominator separately,

and the result will follow by the algebra of limits.

Consider first the numerator. By Fubini’s theorem∫
A
EΛ [q(n|X)]Q(dΛ) =

∫
∆H

q(n|y)

∫
A
πΛ(y)Q(dΛ)dy =:

∫
∆H

q(n|y)FQ;A(y)dy,

where FQ;A(y) is a sub-probability density on ∆H since it is a mixture of probability

densities. Hence FQ;A(y)dy defines a finite measure on ∆H, and q(n|y) ≤ 1 so that

by the Dominated Convergence theorem

lim
n→∞

∫
∆H

q(n|y)FQ;A(y)dy =

∫
∆H

lim
n→∞

q(n|y)FQ;A(y)dy.

By the Law of Large Numbers n ∼ bnxc so that q(n|y) → q(bnxc|y), and

by Stirling’s formula

q(bnxc|y) ∼
∏
h∈H

(
yh
xh

)nxh
,

or

log(q(bnxc|y)) ∼ n
∑
h∈H

xh log

(
yh
xh

)
= −n

∑
h∈H

xi log

(
xi
yi

)
= −nKL(x,y),

where KL(x,y) denotes the Kullback-Leibler divergence between the probability

mass functions x and y. By Gibbs’ inequality KL(x,y) ≥ 0 and KL(x,y) = 0 if

and only if x = y, so that q(n|·)→ δx(·) almost surely. Hence∫
∆H

lim
n→∞

q(n|y)FQ;A(y)dy = FQ;A(x) =

∫
A
πΛ(x)Q(dΛ),
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as required. The argument for the denominator is identical after substituting

M1([0, 1]) for the domain of integration A.

Remark 8. There is an apparent contradiction between the negative conclusion of

Theorem 6 and recent positive results [Spence et al., 2016, Theorems 2, 3, 4 and 5]

showing that Λ-measures can often be identified from their site frequency spectra.

The contradiction is resolved by noting that Spence et al. [2016] work directly with

the expected site frequency spectrum, thereby sidestepping both the randomness

of the ancestral tree and the randomness of the mutation process given the tree.

Numerical investigations by Spence et al. [2016] show that their method is unreliable

unless a modest number (10-100) of independent realisations of ancestral trees is

available. Independent trees cannot be sampled from populations whose ancestry

is described by any non-Kingman Λ-coalescent, even in the idealised scenario of

an infinitely long genome in the presence of recombination. However, as noted by

[Spence et al., 2016], in some cases the decay of correlations with increasing genome

length is determined by the prelimiting model of evolution, and not necessarily

the limiting Λ-coalescent. For example, the selective sweep model of Durrett and

Schweinsberg [2005] can allow for asymptotically independent trees across a genome

in the presence of multiple mergers for some combinations of parameters, in which

case the identifiability results of Spence et al. [2016] hold.

The following example is an extension of a result by Der and Plotkin [2014],

and demonstrates that the lack of consistency can have dramatic consequences for

statistical identifiability even in the case of very simple priors.

Example 1. Consider H = {0, 1}, Mhh′ = 1/2 for h, h′ ∈ H, and set Q(dΛ) =
1
2δδ0(dΛ)+ 1

2δδ1(dΛ). The stationary law πΛ(x) is known in the parent-independent,

two-allele case for both of these atoms [Der and Plotkin, 2014]:

πδ0(x) =
Γ(2θ)

[Γ(θ)]2
xθ−1(1− x)θ−1

πδ1(x) =
1

θ
|1− 2x|

1−θ
θ ,

so the expected limiting posterior probabilities can be computed assuming either

data-generating measure. These are listed in Table 3.1 for some candidate values

of θ, while Figure 3.1 depicts limiting posterior probabilities as functions of the

observed allele frequencies. The extreme sensitivity of the posterior probabilities in

Figure 3.1 is akin to the “Bayesian brittleness” investigated by Owhadi et al. [2015],

resulting in inferences which are not robust to small changes in the observed allele
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frequencies, prior probabilities or latent parameters.

θ Eδ0 [Q(δ0|X)] Eδ1 [Q(δ0|X)]

0.04 0.84 0.16
0.1 0.73 0.27
0.5 0.54 0.46
1 0.5 0.5
5 0.65 0.35
10 0.75 0.25
17 0.82 0.18

Table 3.1: Expected posterior probabilities given an infinite number of simultaneous
observations in the parent-independent, two-allele model.
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Figure 3.1: Limiting posterior probabilities as functions of the observed allele fre-
quency x for θ = 0.1 and 10 in the parent-independent, two-allele model. Q(δ0|x)
is dotted, Q(δ1|x) is dash-dotted, πδ0(x) is solid and πδ1(x) is dashed. Note the
extreme sensitivity of the posterior to the observed allele frequencies near x = 0.5
when θ = 10 and near x = 0 or 1 when θ = 0.1.

The fact that πδ0(x) = πδ1(x) when θ = 1 in Example 1 was pointed out by

Der and Plotkin [2014] as proof of the fact that Λ-measures cannot in general be

uniquely identified from independent draws from πΛ(x). These calculations illus-

trate that inference suffers from low power even when θ 6= 1 if all observations are

contemporaneous.

The inconsistency result of Theorem 6 holds for essentially arbitrary priors.

The next aim is to show that the posterior can be consistent when the data set is

a time series of increasing length. This does not contradict the non-identifiability

claim of Der and Plotkin [2014], because they only consider independent draws

from πΛ. In contrast, in this setting it is information about transition probabilities

pΛ
∆(x, dy) which facilitates posterior consistency.
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3.3.1 Posterior consistency

The topology and definition of weak posterior consistency are still as in Section 3.2,

but I will restate them here for continuity of presentation.

Definition 8. Fix η > 0 and let Dη be a collection of Lebesgue densities on [η, 1]

satisfying infr∈[η,1] φ(r) > 0 and supr∈[η,1] φ(r) < ∞ for each φ ∈ Dη. Note that

neither bound need be uniform in D(η). Assume that Λ(dr) = φ(r)dr for φ ∈ Dη,
and denote the data generating density by φ0.

Restricting the support of φ to [η, 1] ensures that the Λ-coalescent can have

no Kingman component, and that the corresponding Λ-Fleming-Viot process is a

compound Poisson process with drift. Furthermore, most previously studied para-

metric families of Λ-measures, such as those mentioned in Section 1.1.1, are ruled

out. However, Section 3.3.3 will show that the prior can be chosen to satisfy the

conditions of Definition 8 and place mass arbitrarily close to any desired Λ-measure,

or family of Λ-measures, in a way which will be made precise in Example 2.

Assumption 1 continues to be a standing assumption in this section, for

the same reasons as in the previous section. It is restated below for continuity of

presentation.

Assumption 2. For any pair φ 6= φ′ ∈ Dη and any δ > 0 there exists x ∈ ∆H

and f : ∆H 7→ R such that P φ
′

δ f(x) 6= P φδ f(x). In particular, identifying P φδ is

equivalent to identifying φ.

Definition 9. Fix a sampling interval δ > 0 and a finite Borel measure ρ on

∆H placing positive mass in all non-empty open sets. A weak topology on Dη is

generated by requiring that open sets of the form

Uφf,ε := {φ′ : ‖P φ
′

δ f(x)− P φδ f(x)‖1,ρ < ε},

for any φ ∈ Dη, ε > 0 and f ∈ C(∆H) form a subbase of the topology [Dudley,

2002].

Lemma 4. The topology generated by a subbase of sets of the form Uφf,ε is Hausdorff.

Proof. This proof is identical to that of Lemma 1 in Section 3.2.

Definition 10. Let n0, . . . ,np denote p+ 1 samples observed at times 0, δ, . . . , δm

generated by a stationary Λ-coalescent, with each sample being of size n ∈ N.

See e.g. [Beaumont, 2003] for details of how temporally structured samples can be

generated.
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Theorem 7. Let n0, . . . ,np be as in Definition 10 and x0, . . . ,xp denote the observed

limiting type frequencies as n → ∞, i.e. xi = limn→∞ ni/n. Suppose that the

prior Q is supported on a set Dη which satisfies the conditions in Definition 8, that

Assumption 2 holds, and that

Q

(
φ ∈ Dη :

∫ 1

η

{∣∣∣ log

(
φ0(r)

φ(r)

) ∣∣∣+
∣∣∣φ0(r)

φ(r)
− 1
∣∣∣} r−2φ0(r)dr < ε

)
> 0 (3.10)

for any ε > 0 and any φ0 ∈ Dη. Then weak posterior consistency holds for Q on

Dη.

Remark 9. This result is similar to Theorem 5, and the proof will follow a simi-

lar structure. Both proofs of consistency require verification of a Kullback-Leibler

condition for the prior, and uniform equicontinuity of the family of semigroups cor-

responding to densities supported by the prior. The former result is immediate by

the same argument used to prove Lemma 2 in Section 3.2.1. The latter, Lemma

6 below, is different to its counterpart, Lemma 3 in Section 3.2.1. In particular,

uniform Lipschitz continuity of the functions specifying jump sizes turns out not to

be necessary here.

Proof. For fixed p ∈ N, the same argument used to prove Theorem 6 yields that the

following convergence holds Pφ0-a.s. as n→∞:

lim
n→∞

Q(dφ|n0, . . . ,np) ∝ πφ(x0)

p∏
i=1

pφδ (xi−1,xi)Q(dφ).

Hence it is sufficient to establish posterior consistency for discrete observations from

a stationary Λ-Fleming-Viot process as p → ∞. This is achieved by adapting

the proof of Theorem 5. For φ ∈ Dη let KL(φ0, φ) denote the Kullback-Leibler

divergence between pφ0

δ and pφδ :

KL(φ0, φ) :=

∫
∆H

∫
∆H

log

(
pφ0

δ (x,y)

pφδ (x,y)

)
pφ0

δ (x,y)πφ0(x)dydx,

and recall that for two probability measures P, P ′ on the same σ-field

K(P, P ′) := EP
[
log

(
dP

dP ′

)]
.

The law of a random object Z under a probability measure P is denoted by L(Z|P ).

As in the case of Theorem 5, the following two properties are required:

1. Q(φ ∈ Dη : KL(φ0, φ) < ε) > 0 for any ε > 0.
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2. Uniform equicontinuity of the semigroups {P φδ f : φ ∈ Dη} for f ∈ Lip(∆H),

the set of Lipschitz functions on ∆H.

The first will be established in Lemma 5 below. It is a straightforward adaptation

of Lemma 2 in Section 3.2.1, and hence the proof is omitted.

Lemma 5. Condition (3.10) implies that Q(φ ∈ Dη : KL(φ0, φ) < ε) > 0 for any

ε > 0.

The second condition can be established by verifying the hypotheses of

Lemma 3 continue to hold in this setting without a positive definite diffusion coef-

ficient.

Lemma 6. For each δ > 0 and f ∈ Lip(∆H), the collection {P φδ f : φ ∈ Dη} is

uniformly equicontinuous: for any ε > 0 there exists γ := γ(ε, f, δ) > 0 such that

sup
φ∈Dη

sup
‖x−y‖2<γ

|P φδ f(x)− P φδ f(y)| < ε.

Proof. It is again sufficient to verify the hypotheses of Proposition 2.2 of Wang

[2010], which establishes uniform equicontinuity for general Lévy-driven SDEs. It

will be convenient to write the generator (1.6) in the following form:

Gφf(x) = θ
∑

h,h′∈H
xj(Mh′h − δhh′)

∂

∂xh
f(x)

+

∫ 1

η

∫ 1

0
{f(x + rΨ(u,x))− f(x)− rΨ(u,x)∇f(x)}r−2φ(r)dudr,

where Ψ(u,x) :=
∑

h∈H(1(Sx
h−1,S

x
h ](u) − xh)eh, Sx

h :=
∑h

j=1 xh and Sx
0 = 0, and

where H has been endowed with a fixed but arbitrary ordering and associated with

a set {1, . . . , d} for some d ∈ N. As pointed out by Bertoin and Le Gall [2005], the

two generators are equal because
∫ 1

0 Ψ(u,x)du = 0 for any x ∈ ∆H.

For functions f ∈ C2(∆H ×∆H) let Lφ be the coupling generator

Lφf(x,y) := θ
∑

h,h′∈H
(Mh′h − δhh′)

(
xh′

∂

∂xh
f(x,y) + yh′

∂

∂yh
f(x,y)

)

+

∫ 1

η

∫ 1

0
{f(x + rΨ(u,x),y + rΨ(u,y))− f(x,y)

− rΨ(u,x)∇xf(x,y)− rΨ(u,y)∇yf(x,y)}r−2φ(r)dudr,

where ∇x and ∇y are the gradient operators with respect to the x and y variables,

respectively.
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Fix the test function g(z) := z(1 + z)−1. It is straightforward to check that

for this function

Lφg(‖x− y‖2) ≤
2B(x,y) +

∫ 1
0 ‖Ψ(u,x)−Ψ(u,y)‖22du

2‖x− y‖2(1 + ‖x− y‖2)
g(‖x− y‖2)

=: K(x,y)g(‖x− y‖2)

uniformly in φ ∈ Dη, where B(x,y) := θ(x − y)T (M − IH)(x − y) and IH is the

|H| × |H| identity matrix.

Proposition 2.2 of Wang [2010] requires that K(x,y)‖x− y‖2 ≤ Cγ‖x− y‖2
for ‖x − y‖2 ≤ γ, and some constant Cγ depending only on γ, θ and M . Note

that B(x,y) ≤ θ‖M − IH‖2‖x− y‖22, so that the result will follow if
∫ 1

0 ‖Ψ(u,x)−
Ψ(u,y)‖22du ≤ C‖x− y‖2 for some constant C. Now∫ 1

0
‖Ψ(u,x)−Ψ(u,y)‖22du = 2− ‖x− y‖22 − 2

∑
h∈H

∫ 1

0
1(Sx

h−1,S
x
h ](u)1(Sy

h−1,S
y
h ](u)du

= 2
∑
h∈H

(
Sx
h − Sx

h−1 −
∫ 1

0
1(Sx

h−1,S
x
h ](u)1(Sy

h−1,S
y
h ](u)du

)
− ‖x− y‖22,

and hence it suffices to bound

∑
h∈H

Sx
h − Sx

h−1 −
∫ 1

0
1(Sx

h−1,S
x
h ](u)1(Sy

h−1,S
y
h ](u)du ≤ C‖x− y‖2.

Consider a single index h ∈ H and suppose without loss of generality that Sy
h ≤ S

x
h

and if Sy
h = Sx

h then Sx
h−1 < Sy

h−1. There are two cases: either (Sy
h−1, S

y
h ] ⊆

(Sx
h−1, S

x
h ] or Sy

h−1 < Sx
h−1 and Sy

h < Sx
h . In the former case

Sx
h − Sx

h−1 −
∫ 1

0
1(Sx

h−1,S
x
h ](u)1(Sy

h−1,S
y
h ](u)du = xh − yh ≤ ‖x− y‖1,

while in the latter

Sx
h − Sx

h−1 −
∫ 1

0
1(Sx

h−1,S
x
h ](u)1(Sy

h−1,S
y
h ](u)du = Sx

h − Sx
h−1 − (Sy

h − S
x
h−1)+

≤ Sx
h − S

y
h + Sx

h−1 − S
y
h−1 ≤

|H|∑
h′=h+1

|xh′ − yh′ |+
h−1∑
h′=1

|xh′ − yh′ | ≤ ‖x− y‖1

because the L1-distance between the sub-probability measures (x1, . . . , xh−1) and

(y1, . . . , yh−1) on [h − 1] is at least as large as the difference in their total masses,
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and likewise for the corresponding pair on {h + 1, . . . , |H|}. Summing over indices

yields ∫ 1

0
‖Ψ(u,x)−Ψ(u,y)‖22du ≤ 2|H|3/2‖x− y‖2

since ‖z‖1 ≤
√
|H|‖z‖2 by the Cauchy-Schwarz inequality. Hence by Proposition

2.2 of Wang [2010]

sup
‖x−y‖2<γ

|P φδ f(x)− P φδ f(y)| < ε

uniformly in φ ∈ Dη as required.

The remainder of the proof of Theorem 7 is identical to that of Theorem 5,

and is omitted.

Note that bounding the support of Λ away from 0 is not necessary: the proof

could be adapted to equivalent collections of measures supported on (0, 1] for which

(3.10) holds, e.g. by requiring φ(r) ∼ r2 as r ↘ 0 for Q-a.e. φ ∈ Dη. However,

any such condition is bound to be mathematically restrictive. In the next section

I will show that given a data set of size n, it is natural to parametrise inference

with the first n − 2 moments of Λ because they fully capture the signal in the

data set. Example 2 in Section 3.3.3 provides a family of priors which satisfy the

hypotheses of Theorem 7, and whose support can be chosen to contain arbitrarily

close approximations to finite moment sequences of any Λ ∈M1([0, 1]).

Remark 10. The hypotheses of Theorem 7 are strong, and thus it would be desir-

able to obtain a posterior contraction rate in addition to just consistency. In fact,

methods akin to that employed in the proof have been extended to provide rates

for compound Poisson processes [Gugushvili et al., 2015] and scalar diffusions on

compact intervals [Nickl and Söhl, 2015]. However, extending either approach to

this setting would require bounds of the form

‖πφ − πφ0‖2 ≤ Cn−β, ‖πφ/πφ0 − 1‖2 ≤ C̃n−β̃

for some constants β, β̃, C, C̃ > 0. Since the Λ-Fleming-Viot stationary density is

intractable in nearly all cases, it does not seem possible to extend this approach to

obtain rates of posterior consistency.

3.3.2 A parametric approach to nonparametric inference

Consider a set of haplotype frequencies n ∈ N|H| of size n :=
∑

h∈H nh generated by

a Λ-coalescent with finite alleles mutation started from ψn.
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Lemma 7. The likelihood satisfies PΛ
n(n) = P

λ3,3,λ4,4,...,λn,n
n (n). That is, Λ is con-

ditionally independent of n given {λp,p}np=3.

Proof. Let qnn =
∑n−1

p=1

(
n

n−p+1

)
λn,n−p+1 be the total merger rate of the Λ-coalescent

with n blocks. It is well known that the Λ-coalescent likelihood is the unique solution

to the recursion Möhle [2006]; Birkner and Blath [2008, 2009]:

PΛ
n(n) =

θ

nθ + qnn

∑
h,h′∈H

(nh′ − 1 + δhh′)Mh′hP
Λ
n(n− eh + eh′)

+
1

nθ + qnn

∑
h:nh≥2

nh∑
p=2

(
n

p

)
λn,p

nh − p+ 1

n− p+ 1
PΛ
n−p+1(n− (p− 1)eh), (3.11)

with boundary condition PΛ
1 (eh) = m(h). This recursion and its analogues were

used in Chapter 2 to derive forwards transition probabilities for reverse time SMC.

In this chapter the relevant observation is that repeated application of the recursion

yields a closed system of linear equations for the likelihood. This is because all

sample sizes on the RHS are equal to or smaller than the one on the LHS, and

finiteness of H guarantees that only finitely many configurations of a given size

are possible. This system is far too large to solve for all but very small sample

sizes, but it is clear that the solution can depend on Λ only through the polynomial

moments {λq,p}np≤q=2. Polynomial moments can be written as a linear combination

of monomial moments:

λq,p =

q−p∑
j=0

(
q − p
j

)
(−1)jλp+j,p+j , (3.12)

which means that only the monomial moments {λp,p}np=2 are required. Since λ2,2 =∫ 1
0 Λ(dx) = 1, the moments {λk,k}nk=3 are sufficient.

Lemma 7 motivates the following definition:

Definition 11. Let ∼n be the equivalence relation on M1([0, 1]) defined via

Λ1 ∼n Λ2 if λ(1)
p,p = λ(2)

p,p for p ∈ {3, . . . , n}

where λ
(i)
p,p =

∫ 1
0 r

p−2Λi(dr). Let the equivalence classes of ∼n be called moment

classes of order n.

In view of Lemma 7 it is natural to consider the problem of inferring Λ

from n in the quotient spaceM1([0, 1])/ ∼n, not inM1([0, 1]). Moreover, requiring
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all linear combinations of the form (3.12) to be non-negative guarantees a unique

solution to the Hausdorff moment problem, so that each moment sequence bounded

by 1 corresponds to some Λ ∈ M1([0, 1]). Hence, the space M1([0, 1])/ ∼n can

be parametrised by completely monotonic sequences of length n − 2 with leading

term λ3,3 ≤ 1. This approach yields a compact, finite-dimensional parameter space

which nevertheless captures all the signal in the data. Table 3.2 lists some moment

sequences corresponding to popular families of Λ-measures.

Λ δ0 δ1 Beta(2− α, α) U(0, 1) 2
2+ψ2 δ0 + ψ2

2+ψ2 δψ cδ0 + (1−c)
2 rdr

λk,k 0 1
(2−α)(k−2)

(2)(k−2)

1
k−1

ψk

2+ψ2
1−c
2k

Table 3.2: Moment sequences of particular Λ-coalescents. Here (a)(k) := a(a +
1) . . . (a+ k − 1) denotes the rising factorial.

Naturally, the prior Q ought to be chosen to yield tractable a tractable

push-forward prior on finite moment sequences. These push-forward priors inherit

posterior consistency whenever Q satisfies the conditions of Theorem 7 because finite

moment sequences can be written as bounded functionals of Λ.

3.3.3 An example prior

This section provides an example family of priors which satisfy the consistency cri-

teria of Theorem 5, and have tractable push-forward distributions on finite moment

sequences.

Definition 12. Let Q ∈M1(M1([0, 1])) be a prior distribution for Λ. Then the mo-

ments {λp,p}np=3 have joint prior Qn on the space of completely monotonic sequences

of length n− 2 given by

Qn(λ3,3 ∈ dy3, . . . , λn,n ∈ dyn)

:=

∫
M1([0,1])

n∏
p=3

1{dyp}

(∫
(0,1]

rp−2Λ(dr)

)
Q(dΛ). (3.13)

The prior Q should to be chosen such that the RHS of (3.13) is tractable,

and the following examples illustrate that such a choice is possible. Note also that

this mapping of priors is not invertible: starting with any prior Q, computing Qn

and lifting it back to a distribution M1([0, 1]) will yield a prior that is constant on

equivalence classes of ∼n.
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Example 2. Fix η > 0 and α ∈ M([η, 1]) with finite mass and a strictly positive

Lebesque density α(r). Suppose Dη satisfies the conditions of Definition 8, and in

addition that every φ ∈ Dη is continuous. Let R(dτ) be a probability measure on

(0,∞) placing positive mass in all non-empty open sets. For x ∈ [η, 1] and τ > 0 let

qx,τ (r) :=
1[η,1](r − x)hτ (r − x)

hτ ([η, 1])
,

where hτ is the Gaussian density on R with mean 0 and variance τ−1.

Let DP (α) be the law of a Dirichlet process centred on α [Ferguson, 1973]

and let Q be given by the Dirichlet process mixture distribution [Lo, 1984] with

mixing distribution DP (α)⊗R and mixture components qx,τ . See Section 3.2.2 for

a specification of this prior.

The prior Q places full mass on equivalent densities bounded from above

and away from 0 by construction, and satisfies (3.10) by the argument obtained by

taking b = b0 and c = c0 in Section 3.2.2.

Next, the machinery of Regazzini et al. [2002] is used to give an explicit

system of equations for the distribution function of Qn under this choice of Q.

Define the family of functions

gp(x) :=

∫ 1

η
rpqx,τ (r)dr

for p ∈ N and x ∈ [η, 1], as well as the vectors gn(x) := (g1(x), g2(x), . . . , gn(x))

and sn := (s1, . . . , sn) ∈ Rn. For brevity, for a measure ν and a function f let

ν(f) :=
∫
fdν whenever the integral exists.

Let γα be a Gamma random measure with parameter α, that is, a random

finite measure on [η, 1] such that for any measurable partition {A1, . . . , An} the

random variables (γα(A1), . . . , γα(An)) are independent and gamma distributed with

common scale parameter 1 and respective shape parameters α(Ak). Let

hn(sn; gn;α) := E [exp (isn · γα(gn))]

be the characteristic function of γα(gn) := (γα(g1), . . . , γα(gn)). Note that hn(sn; gn;α) =

hn(1; sn · gn;α) and by [Regazzini et al., 2002, Proposition 10]

hn(sn; gn;α) = exp

(
−
∫ 1

0
log(1− isn · gn)dα

)
. (3.14)

Now let Fn(σ,gn, α) be the joint distribution function of F (gn) := (F (g1), . . . , F (gn))
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under DP (α). The following trick was introduced in [Hannum et al., 1981, equation

(2.9)]:

Fn(σ,gn, α) = Fn(0, γα(gn − σ), α)

for any σ ∈ Rn, so that it is sufficient to invert hn at the origin to obtain Fn. This

can be done using the multidimensional version of the Gurland inversion formula

[Gurland, 1948, Theorem 3]:

Let C0, . . . , Cn ∈ Rn+1 solve

Cn = −1

n−r−1∑
k=0

(
n− r
k

)
Cr+k = 1 for r ∈ {0, . . . , n− 1}. (3.15)

Then

(−1)n+12nFn(σ,gn, α) = C0

+
n∑
k=1

Ck
(πi)k

∑
1≤j1<...<jk≤n

∫ ∞
0

. . .

∫ ∞
0

hk(sk; gj1 − σj1 , . . . , gjk − σjk ;α)

s1 × · · · × sk
dsk.

The characteristic functions hk and the constants Ck can be computed from (3.14)

and (3.15) respectively, so that the RHS can be evaluated numerically for practical

applications. Numerical methods are discussed in [Regazzini et al., 2002, Section 6].

Finally, I will demonstrate that the restrictive assumptions of Theorem 5

still allow inference for broad classes of moment sequences with arbitrarily small

approximation errors. Let β(r) be any non-negative probability density on [0, 1], and

define the truncation β̄(r) := κ(η, c,K)−1(β(r)∨ c∧K), where κ is the normalising

constant

κ(η, c,K) :=

∫ 1

η
β(r)− (β(r)−K)+ + (c− β(r))+dr.

Note that Q(φ ∈ Dη : ‖φ − β̄‖∞ < δ) > 0 for any δ > 0, and fix such a φ. Now

consider the error on the kth moment:∣∣∣ ∫ 1

0
rkβ(r)dr −

∫ 1

η
rkφ(r)dr

∣∣∣ ≤
β((0, η)) + (1− η)δ +

(κ(η, c,K)− 1)β([η, 1]) + c(1− η)

κ(η, c,K)
+

∫ 1

η

(β(r)−K)+

κ(η, c,K)
dr.

Each term on the RHS can be made small by choosing η, c and δ sufficiently small,

98



and K sufficiently large because κ→ 1 as η → 0, c→ 0 and K →∞, and∫ 1

η
(β(r)−K)+dr = 1−

∫ 1

η
β(r) ∧Kdr → β((0, η))

as K →∞ by the Monotone Convergence Theorem. A further approximation step

also enables consideration of atoms by choosing β which places all of its mass in

neighbourhoods of the desired locations for atoms. Hence it is possible to ensure

the support of Q extends arbitrarily close to any desired moment sequences despite

the restrictive assumptions on Dη in Theorem 7.

3.3.4 Robust bounds on functionals of Λ

Having established consistency criteria for the posterior and a finite parametrisation

via n−2 leading moments, I now turn to what can be said about Λ based on inferring

the parameters. It would be ideal if the diameter of moment classes shrunk with

increasing n, as then it would be possible to fix a representative Λ ∈M1([0, 1]) with

specified n − 2 leading moments and control the remaining within-moment-class

error. In Theorem 8 I show that such shrinking does not happen, and devote the

remainder of the section to presenting quantities which can be controlled based on

n− 2 moments alone. I begin by recalling some standard results from the theory of

orthogonal polynomials.

Definition 13. Suppose n is odd. Let u := n−3
2 and {φk}uk=0 be the first u + 1

Λ-orthogonal polynomials. Let {ξp}up=1 be the zeros of φu.

Remark 11. It is a standard result that {φp}u−1
p=0 and {ξp}up=1 are constant within

moment classes of order at least n.

The following bounds on Λ in terms of its leading n−2 moments are classical:

Lemma 8 (Chebyshev-Markov-Stieltjes (CMS) inequalities). Define

ρu−1(z) :=

u−1∑
p=0

|φp(z)|2
−1

.

Then the following inequalities are sharp:

Λ([0, ξj ]) ≤
j∑

p=1

ρu−1(ξp) ≤ Λ([0, ξj+1)) for j ∈ [u],

where ξu+1 := 1.
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Theorem 8. For any n ∈ N and any completely monotonic sequence of moments

{λp,p}np=3 with λ3,3 ≤ 1 there exist uncountably many measures Λ ∈ M1([0, 1]), all

with leading moments {λp,p}np=3 and all satisfying the CMS inequalities, such that

any pair, Λx and Λy, satisfy dTV (Λx,Λy) = 2, where dTV is the total variation

norm.

Proof. It will be convenient to write the CMS inequalities in the following, equivalent

form:

0 ≤ Λ([0, ξ1)) ≤ ρu−1(ξ1)

0 ≤ Λ([ξj , ξj+1)) ≤ ρu−1(ξj) + ρu−1(ξj+1) for j ∈ [u− 1]

0 ≤ Λ([ξu, 1]) ≤ ρu−1(ξu)

where the last inequality follows from the fact that
∑u

p=1 ρu−1(ξp) = 1. This equality

holds because
∑u

p=1 ρu−1(ξp) is the sum of all order u Gauss quadrature weights, or

equivalently the quadrature applied to the constant function 1, which is a polynomial

of degree 0. The equality follows by recalling that Gauss quadrature is exact for

polynomials of order up to 2u− 1.

Now let the measures Λx and Λy be described by sequences of (u+1) weights

(x0, x1, . . . , xu) and (y0, y1, . . . , yu), with the jth weight denoting the mass that the

corresponding measure places in the interval [ξj , ξj+1), with obvious adjustments for

the rightmost boundary terms.

For brevity let ζj := ρu−1(ξj). Suppose first that u is odd, and let the vectors

of weights be given as

(x0, x1, x2, x3, x4, . . . , xu−1, xu) = (ζ1, 0, ζ2 + ζ3, 0, ζ4 + ζ5, . . . , 0, ζu)

(y0, y1, y2, y3, y4, . . . , yu−1, yu) = (0, ζ1 + ζ2, 0, ζ3 + ζ4, 0, . . . , ζu−1 + ζu, 0)

Both measures have total mass
∑u

j=1 ζj = 1, and the interlacing masses have no

overlap so dTV (Λx,Λy) = 2. The case where m is even is similar.

Remark 12. The same result holds in Kullback-Leibler divergence due to Pinsker’s

inequality:

dTV (P,Q) ≤
√

1

2
K(P,Q),

for probability measures P and Q, so that K(Λx,Λy) ≥ 8 for Λx and Λy as in

Theorem 8.

Despite this seemingly disappointing result, it is possible to make some con-
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clusions about Λ based on n − 2 moments. For example, the Kingman hypothesis

can be tested in a robust way by checking whether the vector (0, 0, . . . , 0) lies in a

desired credibility region of the posterior PΛ
n(·|n), and the plausibility of any other

Λ of interest can be assessed similarly. More generally, it is possible to extremise

a certain class of functionals subject to moment constraints obtained from a credi-

bility region to obtain robust bounds for quantities of interest. I begin by recalling

some relevant definitions.

Definition 14. For p, n ∈ N, R+-valued constants {cq}pq=1, a sequence {iq}pq=1 of

{3, . . . , n}-valued indices and a binary sequence {jq}pq=1 of zeros and ones, let

Cp :=
{

Λ ∈M1([0, 1]) : (−1)jqλiq ,iq ≤ cq for q ∈ [p]
}

(3.16)

be a subset of M1([0, 1]) with leading n − 2 moments in a desired region specified

by p linear inequalities. Let ext(Cp) be the extremal points of Cp, i.e. those which

cannot be written as non-trivial convex combinations of elements in Cp, and

CD :={
ν ∈ Cp : ν =

q∑
r=1

wrδxr where 1 ≤ q ≤ p+ 1, wr ≥ 0, xr ∈ [0, 1] and

q∑
r=1

wr = 1

}

be the set of discrete probability measures on [0, 1] with at most p+ 1 atoms. Here

Cp should be thought of as a convex envelope expressed using finitely many linear

constraints and containing a desired credibility region of finite, completely mono-

tonic moment sequences. I postpone discussion of how an approximate credibility

region can be obtained to the next section, and simply assume one is available.

Example 3. The extremal points of M1([0, 1]) are the Dirac measures:

ext (M1([0, 1])) = {δx : x ∈ [0, 1]}.

Definition 15. The functional F : C 7→ R is measure-affine if, for every ν ∈ C and

p ∈ M1(ext(C)) such that ν(E) =
∫

ext(C) γ(E)p(dγ) for every E ∈ B([0, 1]), F is

p-integrable and

F (ν) =

∫
ext(C)

F (γ)p(dγ).

Intuitively, ν is a barycentre of C with weights on extremal points given by

p, and F is measure-affine if it commutes with the operation of expressing ν as the

weighted sum of extremal points. If C consis of finitely many points, this definition
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coincides with the usual definition of affine functions.

The following two results are due to Winkler [1988]:

Lemma 9. If q : [0, 1] 7→ R is bounded on at least one side then F : ν 7→ Eν [q] is

measure-affine.

Lemma 10. Let Cp be as in Definition 14 and F : Cp 7→ R be measure-affine. Then

inf
ν∈Cp

F (ν) = inf
ν∈CD

F (ν) (3.17)

sup
ν∈Cp

F (ν) = sup
ν∈CD

F (ν). (3.18)

Remark 13. The importance of Lemma 10 is that the optimisation problems on

the RHS of (3.17) and (3.18) are finite-dimensional and can be solved numerically.

Hence tight bounds for measure-affine functionals F (Λ) over credibility regions can

be computed in an assumption-free manner.

In order to specify Cp it remains to be able to approximate the posterior,

which will be achieved via MCMC. This will be detailed in the next section. Before

that, I conclude this section with a simple example computation.

Example 4. Suppose a posterior credible region is specified via two linear con-

straints as

C2 = {Λ ∈M1([0, 1]) : λ3 ≤ 0.5 and 0.3 ≤ λ4},

and that the measure-affine functional of interest is the exponential:

F (Λ) :=

∫ 1

0
e−rΛ(dr).

Then the finite dimensional subspace CD ⊂ C2 consists of discrete probability mea-

sures on [0, 1] with at most three atoms:

CD =

{
Λ ∈ C2 : Λ =

p∑
k=1

wkδrk where 1 ≤ p ≤ 3, wk ≥ 0, rk ∈ [0, 1] and

p∑
k=1

wk = 1

}
.

This yields three maximisation/minimisation problems, one corresponding to each

number of atoms, though in practice only the largest needs to be solved since the two

others can be recovered as special cases. In this case, the constrained optimisation
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problem is

Maximise/Minimise: ae−x + be−y + (1− a− b)e−z

Subject to: ax+ by + (1− a− b)z ≤ 0.5

− ax2 − by2 − (1− a− b)z2 ≤ −0.3

a, b ≤ 1

− a,−b ≤ 0

a+ b ≤ 1

x, y, z ≤ 1

− x,−y,−z ≤ 0.

Numerical evaluation in Mathematica yields the bounds F (Λ) ∈ (0.620, 0.810).

3.3.5 A simulation study

Efficient methods for approximating the Λ-coalescent likelihood pointwise were pre-

sented in Section 2.3 and can be readily adapted to the form developed by Beau-

mont [2003] for time series data. These likelihood estimators can then be used

in the pseudo-marginal Metropolis-Hastings algorithm [Beaumont, 2003; Andrieu

and Roberts, 2009], in which the likelihood evaluations required in a standard

Metropolis-Hastings algorithm are replaced with unbiased estimators. The result-

ing algorithm still targets the correct posterior and inherits the efficient exploration

of parameter space of MCMC methods. Thus it is well-suited to high-dimensional

situations with intractable likelihood.

Let S(n) denote the space of completely monotonic sequences of length n−2,

and for λ ∈ S(n) let L(λ; n) be the likelihood function, and L̂(λ; n) be an unbiased

estimator, e.g. one obtained from SMC, as is often the case in practice. The pseudo-

marginal Metropolis-Hastings algorithm is presented in Algorithm 2 below.

Algorithm 2 returns a sample of moment sequences S, whose limiting dis-

tribution is the posterior. A credible region C can be approximated from MCMC

output, and used to form Cp as per (3.16). Measure-affine quantities of interest can

then be maximised or minimised using finite computation by making use of Lemma

10.

By way of demonstration I focus on assessing the Kingman hypothesis,

Λ = δ0, which can be robustly evaluated based upon whether or not λ3,3 = 0.

The type space consists of 10 binary loci, or 210 types, with mutations flipping a

uniformly chosen locus. The total mutation rate is θ = 0.1. Samples of 20 lineages
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Algorithm 2 Pseudo-marginal Metropolis-Hastings for finite moment sequences

Require: Prior Pn, observation n, transition kernel K : S(n) × S(n) 7→ R+ and
N ∈ N.

1: Initialise sample S ← ∅ and moment sequence λ← λ0.
2: Compute likelihood estimator L̂(λ; n).
3: for j = 1, . . . , N do
4: Sample λ′ ∼ K(λ, ·).
5: Compute likelihood estimator L̂(λ′; n).

6: Set a← 1 ∧ K(λ′,λ)L̂(λ′;n)Pn(λ′)

K(λ,λ′)L̂(λ;n)Pn(λ)
.

7: Sample U ∼ U(0, 1).
8: if U < a then
9: Set S ← S ∪ {λ′}, L̂(λ)← L̂(λ′) and λ← λ′.

10: else
11: Set S ← S ∪ {λ}.
12: end if
13: end for

return S

were generated at each of five time points from both the Kingman (λ3,3 = 0) and

Bolthausen-Sznitman (Λ = U(0, 1), λ3,3 = 0.5) coalescents. These are summarised

in Table 3.3. Both data sets come from independent simulations, and are sampled

from a population at stationarity. The Kingman coalescent is a classical model of

genetic ancestry, while the Bolthausen-Sznitman coalescent has recently been sug-

gested as a ancestral model for influenza and HIV [Neher and Hallatschek, 2013].

Time Bolthausen-Sznitman Kingman

0.0 20 x 1001001111 20 x 0010000000

0.5 19 x 1001001111 15 x 0010000000
1 x 1101001111 5 x 0000000000

1.0 20 x 1001001111 8 x 0010000000
6 x 0000000000
6 x 0010001000

1.5 19 x 1001001111 10 x 0010000000
1 x 1001101111 6 x 0000000000

4 x 0010001000

2.0 19 x 1001001111 16 x 0010000000
1 x 1001001110 4 x 0010001000

Table 3.3: Observed sequences sampled from the two models.

Let η = 10−6 and let the prior for the density of Λ on [η, 1] be a Dirichlet pro-

cess mixture model of truncated Gaussian kernels [Ferguson, 1973; Lo, 1984]. The

base measure is the uniform measure on [η, 1], with total mass scaled to 0.1. Finally,
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the prior for τ−1/2, the standard deviations of the truncated Gaussian kernels was

chosen to be the Beta(1.0, 3.0) distribution on [0, 1]. Truncating the maximal stan-

dard deviation at 1 excludes some very flat densities from the support of the prior,

but the standard normal density is already very flat across [η, 1] and the truncation

was found to yield substantial gains in speed of convergence of algorithms. Note

that neither data generating model lies in the support of this prior, but both can

be well approximated by members of the support. The choice of hyperparameters

was made because it yields a relatively flat marginal prior for λ3,3, the quantity of

interest (c.f. Figure 3.3), and the prior satisfies the requirements of the consistency

result in Theorem 7.

I make use of the Sethumaran stick-breaking construction of the Dirichlet

process [Sethuraman, 1994] and truncate after the first four atoms. See Section 1.4

for a brief specification of the stick-breaking construction. For the chosen of base

measure and concentration parameter this results in a total variation truncation

error of order 400e−30 ≈ 3.7 × 10−11 [Ishwaran and James, 2001]. Any truncation

error could be avoided by pushing forward the prior directly onto the space of

moment sequences as illustrated in Section 3.3.3. The cost is a more computationally

expensive prior to sample and evaluate, as well as a higher dimensional parameter

space consisting of 98 moments for these data sets. This strategy is not investigated

further in this thesis.

The four atom truncation results in 11 parameters: four locations and stan-

dard deviations of truncated Gaussian kernels, and three stick break points. The

fourth break point is set to fulfil the constraint of the weights summing to 1. Up-

dates to these four parameters are proposed using a truncated Gaussian random

walk on [η, 1]4 × [0, 1]4 × [0, 1]3 with covariance matrix 0.0025 Id. This scaling was

found to result in a reasonable balance of acceptance probability and jump size for

the first moment λ3,3.

The likelihoods required for computing the acceptance probability a are ap-

proximated using a straightforward adaptation of the optimised importance sam-

pling method of Section 2.3 to the time series setting of [Beaumont, 2003], but it is

necessary to specify the number of particles in the approximation. More particles

will result in more accurate approximations, but at greater computational cost. In

[Doucet et al., 2015] the authors show that tuning the variance of the log likelihood

estimator to 1.44 results in efficient algorithms under a wide range of assumptions.

Preliminary simulations showed this was achieved in this setting by choosing 75

particles for Bolthausen-Sznitman data, and 180 particles for Kingman data.

Remark 14. In the context of real data, when the true data generating parameters
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are not known, optimising the number of particles using trial runs may require an

infeasible amount of computation. In practice, adaptive algorithms, which optimise

parameters online, can be used to circumvent this problem.

It is well known that the standard, exact pseudo-marginal algorithm suffers

from “sticking” behaviour, where an unusually high likelihood estimator prevents

the algorithm from moving for a macroscopic number of steps [Andrieu and Roberts,

2009]. The usual solution is to use a noisy version of the algorithm, in which the

likelihood estimator is recomputed at each stage. This doubles the number of re-

quired likelihood evaluations and biases the algorithm into an incorrect stationary

distribution, but can greatly reduce the variance of estimates. A comparison of

independent runs of both the exact and noisy versions of the pseudo-marginal algo-

rithm is presented in Figure 3.2. In addition, I also investigated the effect of delayed

acceptance acceleration [Christen and Fox, 2005], in which proposed moves are first

subjected to an accept-reject decision based on an approximate likelihood function

that is cheap to compute. Only samples which are accepted at this first stage are

subjected to an accept-reject decision based on the full likelihood estimates, or more

specifically a slight modification to ensure that the delayed acceptance mechanism

does not affect the stationary distribution of the algorithm. In the Λ-coalescent

setting approximate likelihoods are readily available in the form of Product of Ap-

proximate Conditionals (or PAC) methods (c.f. Section 2.4), which were used to

implement delayed acceptance chains.

Figure 3.2 shows trace plots of 20 000 steps from the four algorithms intro-

duced above. The exact pseudo-marginal algorithm exhibits sticking behaviour as

might be expected, but it is surprising to see that the noisy algorithm does not

completely eliminate it. I conjecture that the remaining stickiness in the noisy trace

plot is due to multiple, narrow modes in the 11 dimensional posterior. It is also

clear that the bias in the noisy algorithm is confounding the signal in the data, as

the traces are much more intermixed than those of the exact algorithm.

Both the noisy and exact pseudo-marginal algorithm are very computation-

ally expensive to run, particularly for the Kingman data set due to the larger number

of particles used to estimate likelihoods. Delayed acceptance acceleration reduces

these run times as expected, particularly for the Kingman case. Both delayed ac-

ceptance algorithms also suffer from sticking, and show less clear separation of the

traces than the exact algorithm. They also look very similar to each other.

Since it appears to be difficult to eliminate sticking behaviour in this case,

leveraged the speed up obtained by making use of delayed acceptance and ran a

further exact, delayed acceptance pseudo-marginal algorithm for 200 000 steps. A
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Figure 3.2: Trace plot of the pseudo-marginal algorithm (top left), the noisy algo-
rithm (top right) and corresponding delayed acceptance algorithms (bottom row).
Also shown are computation times (on a mid-range Toshiba laptop with an Intel
i5 processor) and acceptance probabilities. Delayed acceptance runs show accep-
tance probabilities for both stages, as well as an overall probability. All runs are
independent and initialised from the prior.

trace plot is shown in Figure 3.3. Sticking behaviour is still present, but on a much

shorter scale relative to the run length. Run times are comparable to the noisy

algorithm without delayed acceptance, and the Bolthausen-Sznitman trace is again

clearly centred at a higher level than the Kingman trace. The output of this long

run was thinned by a factor of 4 000 to reduce the effect of sticking to obtain 50

samples of first moments, which were used to plot the histograms in Figure 3.3.

It is clear from both the trace plots and histograms in Figure 3.3 that the

run length is still not sufficient for fully converged estimates. However, both plots

already show a clear shift of posterior modes toward the values generating the data.

The red histogram is consistent with the Kingman coalescent, while the blue one is

consistent with the Bolthausen-Sznitman coalescent. Moreover, approximate 95%

credible intervals are λ3,3 ∈ [0.1, 0.6] for the Bolthausen-Sznitman posterior, and

λ3,3 ∈ [η, 0.5] for the Kingman posterior. This suggests the relatively short time
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Figure 3.3: (Left) Trace plot of the delayed acceptance exact pseudo-marginal algo-
rithm, along with computation times (on a mid-range Toshiba laptop with an Intel
i5 processor) and acceptance probabilities for both stages as well as overall. Both
runs are independent and initialised from the prior. (Right) Histograms of both
Kingman (dashed) and Bolthausen-Sznitman (solid) posteriors estimated from 50
MCMC samples obtained by thinning the runs shown on the left. The estimated
prior density is shown (dotted), based on 10 000 independent samples from the prior.

series is nevertheless sufficiently informative to reject the incorrect model in both

cases.

3.3.6 Discussion

This section has presented a robust framework for Bayesian non-parametric infer-

ence for Λ-coalescent processes with time series data, and studied the feasibility of

implementable families of algorithms for practical inference. Posterior consistency

for time series data was obtained under verifiable conditions on the prior, provided

that the Λ-measure is identifiable in the sense that the mapping Λ 7→ PΛ
δ is in-

jective. Identifiability seems difficult to verify in practice, but the results from a

numerical simulation using time series data were promising even without an iden-

tifiability proof. In contrast, as seen in Example 1, lack of consistency can lead

to very low statistical power and high sensitivity of inference both to confounding

parameters, such as mutation rate, and the observed allele frequencies. A theo-

retical guarantee of consistency is crucial as expressions for statistical power rely

on intractable stationary distributions and transition densities of Λ-Fleming-Viot

jump-diffusions, making the reliability of experiments without time series data very

difficult to evaluate.

Efficient methods for importance sampling Λ-coalescent trees are available as

outlined in Section 2.3, and references therein, and these can be used to generalise
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the pseudo-marginal MCMC algorithms of [Beaumont, 2003] for temporally spaced

data. The consistency conditions of Theorem 7 on the prior are sufficiently mild

to permit the use of Dirichlet process mixture model priors, which can be readily

truncated for implementable algorithms. Alternatively, parametrising the inference

problem via truncated moment sequences leads to implementable algorithms with no

discretisation or truncation error. This work provides a strong indication that time

series data, and accompanying inference methods such as the one outlined above,

should be adopted as standard whenever the coalescent generating the data cannot

be assumed to be known.

Generalising of consistency result within the Λ-Fleming-Viot process class to

include unknown drift, which can be used to model e.g. mutation, recombination

and selection, as well as more general Λ-measures is of great interest. However, it

is difficult for a number of reasons. Firstly, relaxing conditions on Λ near 0 while

ensuring the integral in (3.1) remains finite is challenging. Likewise, it is well known

that equivalent changes of measure for Lévy processes necessitate equivalent Lévy

measures (see e.g. [Sato, 1999], Theorem 33.1), and this is also the condition needed

for the jump-diffusions considered in [Cheridito et al., 2005]. The way in which

the drift can be transformed while maintaining absolute continuity in [Cheridito

et al., 2005] is also restrictive, and depends on the diffusion coefficient and Lévy

compensator. Finally, any difference in diffusion coefficients will obviously destroy

absolute continuity outright, so if there were an atom Λ({0}) > 0, its size would

have to be known with certainty.

It would also be of great interest to obtain contraction rates of the posterior

under verifiable conditions. Obtaining rates is a challenging problem in non-IID

Bayesian non-parametric inference, and existing results by Gugushvili et al. [2015]

for compound Poisson processes and Nickl and Söhl [2015] for scalar diffusions do

not seem generalisable. A different approach by Nguyen [2013] for mixing measures

of infinite mixture models could present a promising directions of future work by

viewing the Λ-coalescent tree as a mixture of merger events, but adaptation into the

present setting is a formidable task and is beyond the scope of this paper.

The method of parametrising the unknown Λ-measure by its first n− 2 mo-

ments when the data set is of size n ∈ N reflects the limited amount of signal in

finite data. More precisely, the likelihood given a sample of size n ∈ N is constant

within moment classes of order n, so that any variation in the posterior within these

moment classes is due solely to the prior. Hence this parametrisation can be seen

as regularising an under-determined inference problem in an infinite dimensional

space by identifying an appropriate, data-driven, finite dimensional quotient space
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in which to conduct inference. I believe this approach to have more broad applica-

bility in non-parametric statistics as well as an alternative to direct regularisation

by a prior in the infinite dimensional space, or to approximate projections onto finite

dimensional subspaces [Cui et al., 2014].

The algorithms used to approximate the posterior and maximise/minimise

quantities of interest given the posterior are highly computationally intensive, and

this approach cannot be expected to be competitive with well-chosen parametric

families when the number of observed lineages or loci is large. However, the sim-

ulations in Section 3.3.5 demonstrate that the assumption-free framework can be

used to empirically evaluate the modelling fit of parametric families given moder-

ately sized pilot data, for instance by ensuring that the family contains a candidate

Λ which matches the MAP estimators of some small number of moments. Such

parametric families can then be confidently used to process larger data sets. The

pseudo-marginal method can also be adapted to incorporate unknown mutation pa-

rameters, recombination and other forces not considered in this paper, albeit at the

cost of greater computational cost and lower parameter identifiability. This cost can

be alleviated to a large extent by modern GPU and cluster computing approaches,

because the importance sampling algorithm used to estimate likelihoods is readily

parallelisable. For example, up to 500 fold speed up was reported by Lee et al.

[2010] when computations were parallelised on GPUs instead of being run in serial

on CPUs. Such gains in computation speed would make the algorithms employed

in Section 3.3.5 practical for many realistic genetic data sets.
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Chapter 4

Discussion

In this thesis I have extended Bayesian consistency results from unit diffusions with

unknown drift [van der Meulen and van Zanten, 2013; Gugushvili and Spreij, 2014]

to more general unit jump diffusions with unknown drift and Lévy measure (Section

3.2), as well as to Λ-coalescent processes (Section 3.3). Both extensions were sub-

ject to an identifiability assumption, which is easy to verify in the diffusion case but

intractable in the jump diffusion and Λ-coalescent cases, due to the intractability of

transition and stationary densities. I have also introduced the reverse-time sequen-

tial Monte Carlo framework, building on the work of Stephens and Donnelly [2000],

as a method for sampling certain classes of complex distributions and rare events

in an asymptotically exact way (Chapter 2). Both results were applied to com-

plex coalescent models of population genetics, resulting in computationally feasible,

theoretically sound inference algorithms.

A fundamental assumption underlying this work is that consistency, asymp-

totic exactness of algorithms and exact, interpretable models are of value. This

assumption has yet to be examined, and the answer is not obvious. In fact, many

modern algorithms are moving away from such restrictive criteria. Approximate

Bayesian computation (ABC) [Beaumont, 2010] replaces likelihood evaluations with

a noisy, binary approximation based on simulated summary statistics from the

model. The noisy pseudo-marginal method introduced in Section 3.3.5 samples

a biased target to improve mixing, in what can be seen as a bias-variance trade-off.

Composite likelihoods [Varin et al., 2011] correspond to inference based on a mis-

specified model. A comprehensive list of methods would be too long to list here, but

the common theme is abandoning consistency, unbiasedness or some notion of exact-

ness or error control for a gain in computational efficiency. Likewise, the necessity

of Bayesian posterior consistency is not always clear: it may be perfectly adequate
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in practice for the posterior to concentrate on a sufficiently narrow neighbourhood

close to the truth, rather than the truth exactly. For example, the two-parameter

Poisson-Dirichlet prior is known to give rise to an inconsistent posterior for certain

combinations of parameters [James, 2008], but is still widely used, for instance in

Bayesian statistics, population genetics and physics [Pitman, 2006].

In population genetics specifically, the intractability of likelihood functions

arising from coalescent models has motivated many approximations. Indeed, both

ABC [Tavaré et al., 1997; Beaumont et al., 2002] and the (noisy) pseudo-marginal

method [Beaumont, 2003] were originally motivated by problems in population ge-

netic inference. In addition, the product of approximate conditionals (PAC) method

(Section 2.4) is used very widely in genetics due to its scalability, despite the fact

that there is no known error bound between PAC and coalescent likelihoods. A fur-

ther concern is that the copying models typically used in PAC inference do not give

rise to exchangeable data. Despite these limitations, PAC-based inference has been

very successful in practice [Li and Stephens, 2003; Crawford et al., 2004; Stephens

and Scheet, 2005; Li and Abecasis, 2006; Scheet and Stephens, 2006; Gay et al.,

2007; Marchini et al., 2007; Hellenthal et al., 2008, 2009; Howie et al., 2009; Yin

et al., 2009].

In most cases a model is at best a cartoon of the phenomenon under study, so

it is perhaps not surprising that misspecified models or inexact methods can lead to

useful inferences. However, careful analysis of models and methods is still needed to

avoid pitfalls. For example, it is known that carelessly adopting the noisy version of a

pseudo-marginal algorithm to speed up mixing of MCMC can turn an ergodic chain

into a transient one [Medina-Aguayo et al., 2015]. This behaviour might be very

computationally expensive to detect reliably without reliable, exact methodology

for benchmarking, and an understanding of when bad behaviour should be expected

can only been reached through careful analysis of precisely specified models.

Likewise, the inconsistency results and example calculations in Section 3.3

demonstrate a pitfall in naively sampling contemporaneous DNA when the repro-

duction dynamics of the population are uncertain. For decades population genetics

has been focused on the domain of attraction of Kingman’s coalescent, where these

dynamics are assumed known, and hence contemporaneous samples presented no

danger. In the Λ-coalescent world this received wisdom is false, and time series data

is necessary. Still more work is needed in determining sufficient numbers of time

points and samples, for instance by identifying concentration rates of the posterior,

but it is clear that these questions cannot be addressed by checks based on simula-

tion, and a failure to address them can lead to imprecise inference and compromised
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decision making. For a model used in fields such as conservation ecology, immunol-

ogy, cancer research and public health, the consequences can be dramatic. The

PAC simulations in Section 2.4 further demonstrate that heuristic inference without

a theoretically sound benchmark can lead to biased results and false confidence.

Ultimately, it seems unlikely that the challenges of inference from complex

models and challenging data could be tackled without a grounding in statistical

theory and algorithms with theoretical guarantees, even if the theorems and algo-

rithms cannot be applied to the most challenging applications directly. They can

certainly motivate and evaluate heuristics, and thus lead to improved, more reliable

conclusions in applications.
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K.-I. Sato. Lévy processes and infinitely divisible distributions. Cambridge University

Press, 1999.

P. Scheet and M. Stephens. A fast and flexible statistical model for large-scale pop-

ulation genotype data: applications to inferring missing genotypes and haplotype

phase. Am. J. Hum. Genet., 78:629–644, 2006.

R. L. Schilling and J. Wang. Some theorems on Feller processes: transience, local

times and ultracontractivity. T. Am. Math. Soc., 365(6):3255–3286, 2013.

L. Schwartz. On Bayes procedures. Z. Warsch. Verw. Gebiete, 4:10–26, 1965.

J. Schweinsberg. Coalescents with simultaneous multiple collisions. Electron. J.

Probab., 5:1–50, 2000.

J. Schweinsberg. Coalescent processes obtained from super-critical Galton-Watson

processes. Stoch. Proc. Appl., 106:107–139, 2003.

J. Sethuraman. A constructive definition of Dirichlet priors. Stat. Sinica, 4:639–650,

1994.

D. Shah and T. Zaman. Detecting sources of computer viruses in networks: theory

and experiment. In Proc. ACM Sigmetrics, volume 15, pages 5249–5262, 2010.

D. Shah and T. Zaman. Finding rumor sources on random trees. arXiv preprint,

1110.6230, 2016.

S. Sheehan, K. Harris, and Y. S. Song. Estimating variable effective population sizes

from multiple genomes: A sequentially Markov conditional sampling distribution

approach. Genetics, 194:647–662, 2013.

S. Sisson, Y. Fan, and M. M. Tanaka. Sequential Monte Carlo without likelihoods.

Proc. Natl. Acad. Sci. USA, 104:1760–1765, 2007.

J. P. Spence, J. A. Kamm, and Y. S. Song. The site frequency spectrum for general

coalescents. Genetics, 202:1549–1561, 2016.

M. Steinrücken, M. Birkner, and J. Blath. Analysis of DNA sequence variation

within marine species using Beta-coalescents. Theor. Popln Biol., 87:15–24, 2013a.

128



M. Steinrücken, J. S. Paul, and Y. S. Song. A sequentially Markov conditional sam-

pling distribution for structured populations with migration and recombination.

Theor. Popln Biol., 87:51–61, 2013b.

M. Stephens and P. Donnelly. Inference in molecular population genetics. J. R.

Statist. Soc. B, 62(4):605–655, 2000.

M. Stephens and P. Scheet. Accounting for decay of linkage disequilibrium in haplo-

type inference and missing-data imputation. Am. J. Hum. Genet., 76(3):449–462,

2005.

O. Stramer and R. L. Tweedie. Existence and stability of weak solutions to stochastic

differential equations with non-smooth coefficients. Stat. Sinica, 7:577–593, 1997.
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