
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Sanborn, Adam N. and Chater, Nick. (2017) The sampling brain. Trends in Cognitive Sciences, 
21 (7). pp. 492-493 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/88050     
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP url’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/82896764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/88050
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


		

The	sampling	brain	
	

Adam	N.	Sanborn	

University	of	Warwick,	Coventry,	United	Kingdom	

	

Nick	Chater	

Warwick	Business	School,	Coventry,	United	Kingdom	

	

*Correspondence:	a.n.sanborn@warwick.ac.uk	(A.N.	Sanborn)	

	

Alday,	Schlesewsky	&	Bornkessel-Schlesewsky	(ASB)	[1]	provide	a	stimulating	commentary	on	

the	issues	discussed	in	our	paper	[2],	highlighting	important	connections	between	sampling,	

Bayesian	inference,	neural	networks,	free	energy	and	basins	of	attraction.	Here,	we	trace	some	

relevant	history	of	computational	theories	of	the	brain.		

	

Consider	the	Hopfield	network	[3],	a	“neural	network,”	with	symmetrical	connections	between	

binary	neural	“units.”	Hopfield	showed	how	such	a	network	could	learn:	patterns	were	

“imposed”	on	the	network,	and	connections	modified	by	local	Hebbian	learning.	Remarkably,	

the	network	could	“fill	in”	patterns	from	fragments,	providing	a	form	of	“content-addressable	

memory.”	Hopfield	showed,	too,	that	the	‘free-running’	of	such	a	network	minimized	an	“energy	

function”	across	the	entire	network,	measuring	the	coherence	of	the	pattern	with	respect	to	the	

connection	weights	(roughly,	coherence	involves	positive	weights	between	units	with	the	same	

value;	negative	weights	between	units	with	different	values).	The	behavior	of	the	network	as	it	

falls	into	a	stable	pattern	can	be	viewed	as	falling	into	an	attractor	basin---just	as	the	dynamics	

of	many	physical	systems	can	be	modelled	as	descending	in	an	energy	landscape.		

	

The	Boltzmann	machine	[4],	mentioned	by	ASB,	extends	the	Hopfield	model	in	a	variety	of	ways.	

Crucially,	it	can	learn	from	patterns	presented	on	subsets	of	“visible”	units,	employing	freely-

varying	“hidden”	units	which	allow	more	complex	relationships	between	the	visible	units	to	be	

expressed.	As	before,	the	binary	states	of	the	“neural”	units	in	the	Boltzmann	machine	can	be	

assigned	an	energy	function;	but	in	the	Boltzmann	machine,	the	units	are	stochastic.	Thus,	the	

network	“settles”	not	into	a	fixed	pattern,	but	rather	into	a	probability	distribution	across	

patterns.	Each	“update”	of	a	new	unit	corresponds	to	a	drawing	a	new	sample	from	the	

probability	distribution,	using	the	technique	of	Gibbs	sampling	[5],	first	developed	in	computer	

vision,	and	now	widely	used	in	statistics	and	machine	learning.	Moreover,	the	Boltzmann	

machine	can	be	trained	to	model	a	probability	distribution	presented	over	the	visible	units	via	

Hebbian	learning	during	a	“wake”	phase,	and	anti-Hebbian	learning	during	a	“sleep”	phase,	

where	no	input	is	presented,	and	the	system	runs	freely.		

	

This	exciting	constellation	of	ideas	illustrates	that	a	system	of	interconnected	neuron-like	units	

can	learn	to	sample	from	a	complex	probability	distribution	from	experience;	and,	indeed,	

sample	from	conditional	distributions	where	some	of	the	visible	units	are	“clamped”---



corresponding	to	Bayesian	conditionalization.	A	learning	rule	carries	out	gradient	ascent	in	the	

“likelihood”	of	the	data	presented	at	the	visible	units.	All	of	this	is	achieved	with	no	explicit	

representation	of	probability,	but	merely	simple,	distributed	“neural”	computations.		

	

The	Boltzmann	machine	does	not	scale-up	well.	But	related	ideas	have	evolved	in	a	variety	of	

directions.	One	approach	focusses	on	representing	complex	probability	distributions	through	

sparse	and	structured	“graphical	models”	which	implicitly	capture	dependencies	between	

variables	(e.g.,	[6]).	Indeed,	general	purpose	programming	languages	for	compositionally	

specifying	and	sampling	from	arbitrary	probability	distributions	have	been	created	(e.g.,	[7]).		

	

A	different	development	de-emphasizes	compositional	representation,	and	focusses	on	

learning,	typically	with	richly	connected	networks	without	a	transparent	interpretation.	For	

example,	“restricted”	Boltzmann	machines	can	be	“stacked”	into	multiple	layers	(e.g.,	in	deep	

belief	networks;	[8]).	More	broadly,	deep	learning	has	scaled	up	to	achieve	state-of-the-art	

machine	learning	performance	[9].	

	

More	neurobiologically	realistic	implementations	of	sampling	algorithms	have	recently	been	

developed,	some	of	which	implement	sampling	for	discrete	variables	on	networks	of	spiking	

neurons	(e.g.,	[10]).	Other	schemes	for	sampling	continuous	variables	build	on	the	link	between	

energy	and	probability,	producing	dynamics	in	networks	of	excitatory	and	inhibitory	neurons	

that	implement	an	advanced	sampling	algorithm	(e.g.,	[11]).	

In	contrast	to	our	sampling	proposal,	Friston’s	(e.g.,	[12])	free	energy	approach	does	not	treat	

the	entire	state	of	the	brain	as	a	single	sample	from	a	posterior	probability	distribution.	The	free	

energy	approach	also	does	not	implicitly	represent	the	probability	of	every	possible	hypothesis	–	

far	from	it.	The	true	posterior	distribution	is	approximated	by	a	simpler	distribution,	and	

minimizing	free	energy	brings	this	simpler	distribution	into	approximate	correspondence	with	

the	true	posterior.	In	Friston’s	model,	neurons	encode	the	parameters	of	this	approximating	

distribution	(cf.	[13]),	often	a	simple	Gaussian	distribution,	which	yields	an	elegant	

neurobiological	implementation	of	the	free	energy	approach.		

We	argued	[2]	that	sampling	will	produce	reasoning	errors	such	as	the	unpacking	effect	and	the	

conjunction	fallacy	if	the	sampler	only	samples	a	single	mode	in	a	multimodal	distribution.	

Perhaps	approximating	a	multimodal	posterior	distribution	with	a	single	(e.g.,	Gaussian)	mode	

may	be	a	different	route	to	producing	these	same	errors.	Thus	these	various	approximations	to	

Bayesian	inference	may	provide	competing	explanations	of	observed	fallacies	and	biases	

observed	in	explicit	reasoning	with	probabilities.	
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