

warwick.ac.uk/lib-publications

Original citation:
Dickson, James, Wright, Steven A., Maheswaran, Satheesh, Herdman, J. A., Harris, Duncan,
Miller, Mark C. and Jarvis, Stephen A. (2017) Enabling portable I/O analysis of commercially
sensitive HPC applications through workload replication. In: Cray User Group 2017,
Redmond, California, USA, 7-12 May 2017. Published in: Cray User Group 2017 Proceedings

Permanent WRAP URL:
http://wrap.warwick.ac.uk/88043
Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may be
cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/82896762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/88043
mailto:wrap@warwick.ac.uk

Enabling Portable I/O Analysis of Commercially
Sensitive HPC Applications Through Workload

Replication
James Dickson∗, Steven Wright∗, Satheesh Maheswaran†,

Andy Herdman†, Duncan Harris†, Mark C. Miller‡ and Stephen Jarvis∗

∗Department of Computer Science, University of Warwick, UK
†UK Atomic Weapons Establishment, Aldermaston, UK
‡Lawrence Livermore National Laboratory, Livermore, CA

Corresponding Email: J.Dickson@warwick.ac.uk

Abstract—Benchmarking and analyzing I/O performance
across high performance computing (HPC) platforms is necessary
to identify performance bottlenecks and guide effective use of new
and existing storage systems. Doing this with large production
applications, which can often be commercially sensitive and lack
portability, is not a straightforward task and the availability of
a representative proxy for I/O workloads can help to provide a
solution. We use Darshan I/O characterization and the MACSio
proxy application to replicate five production workloads, showing
how these can be used effectively to investigate I/O performance
when migrating between HPC systems ranging from small local
clusters to leadership scale machines. Preliminary results indicate
that it is possible to generate datasets that match the target appli-
cation with a good degree of accuracy. This enables a predictive
performance analysis study of a representative workload to be
conducted on five different systems. The results of this analysis
are used to identify how workloads exhibit different I/O footprints
on a file system and what effect file system configuration can have
on performance.

I. INTRODUCTION

Gaining insight into the performance characteristics of ap-
plication is vital in the high performance computing (HPC)
life cycle. Detailed knowledge of performance is required
by those tasked with the maintenance and modernization of
production code, enabling application end-users to produce
results in the challenging time-frames of a scientific production
environment. Furthermore, when it comes to performing the
exercise of system procurement, the availability of a repre-
sentative production workload is invaluable to predict what a
potential system might offer in terms of performance, should
it be deployed to support such a workload. Characterizing the
performance of a workload helps to inform system designers
and vendors how new architectures can be developed and
configured to offer the best achievable performance now and
as extreme scale computation continues to grow larger.

The importance of the data input/output (I/O) element
of HPC applications and systems is continuing to grow, as
new computational architectures and programming models
reduce the proportion of runtime spent doing computation
and communication, leading to the storage and retrieval of

results becoming a bottleneck to performance. It has long
been identified that there exists a gap between the rate at
which processing power is increasing and the rate at which
I/O performance is increasing, and this gap is anticipated to
grow as scientific computation strives to achieve exascale.

I/O is vitally important for three primary reasons: visu-
alization, results output, and failure recovery – usually in
the form of checkpointing. Understanding how these three
activities are interleaved over the run of an application is
important to successfully imitate the sensitive workloads of
some organizations. The MACSio Proxy application can be
used to partially achieve this goal, taking input files replicating
commercially sensitive workloads and allowing them to be
simulated in an open environment.

Identifying the I/O performance characteristics of large
production applications is not a straightforward task, with the
peak performance of storage systems impossible to reach in
practice. Furthermore, changes in the architecture of storage
systems present new challenges, the most prominent being
the emergence of burst buffer technologies such as Cray’s
DataWarp I/O accelerator. Understanding how best to con-
figure applications to make best use of these technologies
is a time consuming process, and particularly impractical for
large complex simulations. Additionally, when procuring new
systems it is vital to benchmark I/O performance in a way
that is representative of real and varied workloads to get a
true picture of system potential.

This work presents a study of the workload replication of a
commercially sensitive production application to enable the
analysis of its I/O performance on a range of open HPC
systems. In addition to enabling a portable proxy for a large
controlled application, we assess how I/O performance can
be tuned using this proxy. Specifically, this paper makes the
following contributions:

• We make modifications to the structure of the MACSio
proxy application to develop its capability for generating
realistic I/O workloads. The new application behavior
enables I/O to be performed that resembles real multi-
physics applications used in a production environment.

We show that our replicated I/O data volumes match the
original with a good degree of accuracy, with the overall
size of data transfered differing by less than 10%;

• We use Darshan I/O profiling and identify counters that
can be translated to a set of workload parameters. In
particular, we outline two equations for the estimation of
parameters not readily available from Darshan logs and
demonstrate how the size of the dataset varies based on its
composition parameters. Additionally, we are able to map
the known pattern of dataset growth to the visualization
pattern to account for this information being unavailable
in profiling;

• Finally, we extend our previous replication work by
outlining five distinct I/O patterns exhibited by a com-
mercially sensitive multi-physics application. We use
replications of this application to evaluate and predict I/O
performance on five different systems with various file
system configurations. Using the workload replications,
we make observations about how the different systems
behave under contrasting I/O patterns and volumes of
data demonstrated in the multi-physics application. We
identify which of the application workloads perform less
efficient I/O on the test systems, and predict how these
workloads might be expected to scale beyond their current
use.

The remainder of this paper is structured as follows: Section II
presents a review of related work; Section III provides back-
ground on parallel I/O and the different components important
to this work; Section IV details the changes made to MACSio
and the elements defined to perform the parameter translation;
in Section V, the results of characterizing and replicating
production workloads are presented with analysis; finally,
Section VI concludes this paper and presents opportunities for
future investigation.

II. RELATED WORK

With I/O representing increasing proportions of application
runtime, investigation into its intricacies has been carried out
at a system level on representatively large scale machines. It
has been established that mixed workloads often struggle to
reach peak performance and vary drastically with the use of
different I/O libraries and specific tuning parameters [1].

Snyder et al. propose interesting workload generation tech-
niques and identify three classes of I/O workload repre-
sentations: traces, synthetic and characterization [2]. Trace
workloads refer to those generated using snapshots of in-
dividual I/O operations along with associated timing data.
Tools such as Recorder [3], RIOT [4] and ScalaIOTrace [5]
capture the required granularity of information at multiple
levels in the software stack. With such high fidelity data
collection, it is possible to translate application traces into
a representative proxy using auto-generation tools, such as
the Replayer tool [6]; however these require refinement and
there are questions as to how much of an effect intensive data
collection has on the application behavior being monitored.

Synthetic workloads are manually defined using a domain
specific language to exercise a desired pattern on a storage sys-
tem. An example being the CODES I/O language [7], which
has been used to demonstrate performance improvements in
burst buffer systems for some user interpreted workloads [8].

Characterizing I/O activity uses a technique similar to that
of tracing, however compact high level statistics are produced
rather than comprehensive trace logs. Darshan [9] has been
used to produce characterization data of this form, and is
effective due to its lightweight instrumentation and suitability
for continuous machine wide deployment. Vitally, the data
produced is still rich enough to study I/O behavior at the
demands of petascale machines [10].

A common technique among I/O benchmarks, such as
FLASH-IO [11], MADBench2 [12], Chombo I/O [13] and
S3D-IO [14], is to manually extract important kernels from an
application. FLASH-IO focuses on write performance of the
Flash supernova code, while MADBench2 attempts to gain
a more complete picture through the inclusion of both read
and write operations for the same simulation. This approach
attempts to bridge the gap between a stand-alone benchmark
and the applications it attempts to model. While highly effec-
tive at providing insight for a single application, there is a lack
of flexibility for handling a wider range of I/O paradigms.

IOR [15] is a synthetic parametrized benchmark derived
from workload analysis of applications used at the US National
Energy Research Scientific Computing Center (NERSC). This
work attempts to cover two of the common shortfalls of I/O
benchmarks: a lack of representative access patterns and the
inconsistent use of parallel libraries. With diverse configu-
ration options, the authors claim to be able to reconstruct
the behavior of an application to within 10%. While this
behavioral prediction is only achievable with a very specific
selection of parameters, with careful use, IOR can be an
effective benchmarking tool. We adopt a similar parametrized
approach, attempting to focus on the performance of high level
libraries.

A different approach taken to application benchmarking,
demonstrated by the Skel [16], [17] and APPrime [18] tools,
automatically generates I/O kernels based on application
traces. Skel uses two mark-up based configuration files, a
parameter file and descriptor file, to dictate the structure and
behavior of its kernels. The simplicity of the Skel approach
comes from leveraging the existing parametrization of the
ADIOS high level library [19]. The transport method used
by ADIOS can be varied in a configuration file, requiring no
source recompilation, and hence is valuable for comparing the
performance of different I/O paradigms. Currently the focus
of Skel is the deployment of ADIOS for experimentation
purposes and extension to use alternative high level libraries
is not possible. Similarly, APPrime auto-generates benchmark
code to represent applications, but does so based on statistical
‘trace’ data taken from execution of the original target appli-
cation. Initial evaluation of this technique suggests recreation
of applications with a degree of accuracy; however, the ability
to configure these applications for in depth analysis has yet to

be demonstrated.
In previous work, we have demonstrated a workflow for

using I/O characterization to replicate a mini-application with
a basic I/O pattern, generating a set of parameters for a
configurable proxy application [20]. The outcome of this work
allowed us to demonstrate how leveraging features of a high
level I/O library could improve I/O performance without the
need to modify the target application source code.

III. BACKGROUND

In this section we provide details on the parallel I/O patterns
that are employed in parallel computing and describe how this
is handled in the M-Phys application. Additionally, we give
an overview of the elements of the parallel I/O stack and the
Darshan characterization tool that are used in this study.

A. Parallel I/O Patterns

The reading and writing of data during a simulation is a
process that is performed by almost all applications in sci-
entific computing. The footprint of this I/O can vary dra-
matically between applications and even between multiple
users of the same application or different input decks. It is
possible however, to generalize a large portion of the I/O that
applications perform into two categories: checkpoint restart
and visualization data dumps. The writing of checkpoints often
represents the greatest proportion of application I/O time, and
is intended to preserve intermediate states of a simulation
to protect against system failures that would be costly in
terms of wasted computation time and loss of valuable results.
Visualization files are often associated with smaller volumes
of data but a high frequency of access. Valuable quantities are
preserved that demonstrate the results of a simulation, which
are usually a subset of the dataset required for a checkpoint
based restart.

There are different methods of moving data in or out of an
application in parallel, and they are categorized by the number
of processes and the number of files that are involved in the
I/O exchange. The simplest form of parallel I/O available to
applications is to write a single file for each process, referred
to as N-to-N. The performance of this method can be good
when files are well distributed across a file system, removing
file access contention. The drawback however is the scalability
of file accesses due to the increased metadata load. Shared file
I/O operates in an N-to-1 model where all of the processes
in the simulation write to a single shared file. This method
avoids the inefficiency of generating a large volume of files
but can be difficult to coordinate in a way that does not
create performance bottlenecks due to contention. Mediating
these bottlenecks can be done with file striping to offset
the accesses that are made concurrently to the same file by
multiple processes. To address some of the scalability issues
with both N-to-N and N-to-1, a hybrid between the two of N-
to-M can be used to write data from all processes to a number
of independent files in a way that shared file I/O can also be
performed to each file by a subset of the simulation processes.

B. IO Software Stack
To handle I/O performed in parallel, a software stack com-
prised of parallel file systems, middleware and higher level
libraries exist to coordinate read and write operations from
parallel processes such that this responsibility is removed from
the application itself.

1) Parallel File Systems: Lustre [21] and IBM’s General
Parallel File System (GPFS) [22] are high performance dis-
tributed file systems developed for use in large scale cluster
computing. Data is spread across multiple storage nodes, with
individual files being striped across multiple storage devices.
This allows for blocks of data to be written and read in parallel
and reduces the time to commit large volumes of data to the
storage system.

The Lustre file system is by far the most commonly de-
ployed in HPC systems and is made up of Object Storage
Servers (OSSs) and Object Storage Targets (OSTs), represent-
ing the storage nodes and storage media respectively. The
file system is managed by a central management server in
addition to metadata being stored by a central Metadata Server
(MDS), often containing one or two Metadata Targets (MDT).
The arrangement in Lustre commonly sees groups of OSTs
connected to each OSS rather than connecting all OSSs to all
OSTs.

GPFS has a largely similar design, however with the most
notable difference that metadata is distributed across the stor-
age components including the directory tree. There is no single
directory controller or index server to handle management and
lookup of data in the file system. Distribution can be achieved
in one of two modes, where metadata is either shared across a
metadata target in each storage node or striped across storage
targets. The structure of GPFS also differs in that each file
system node has equal access to each storage disk across a
switching fabric.

2) MPI-IO: The MPI-IO interface forms the middleware
layer in the parallel I/O stack and effectively provides a
standard for describing parallel I/O operations in MPI applica-
tions. MPI-IO was introduced into the MPI 2.0 standard; the
ROMIO implementation provides the MPI-IO functionality in
the majority of MPI implementations used currently.

The function of the middleware layer for parallel I/O is to
translate a file operation distributed across parallel processes
to corresponding calls in the POSIX file layer, allowing the
operations to be passed through to the POSIX compliant
file system underneath. At this middleware layer it is the
responsibility of the call maker, be it application developer
or high level library, to specify details such as the file data
offsets. It is the case that performing I/O at this layer offers the
desired parallel behavior, but its use places a certain amount
of design complexity on the application developer.

3) HDF5: It is becoming increasingly prevalent for large
parallel applications to employ a high level parallel I/O library
such as the Hierarchical Data Format (HDF). HDF5 [23]
is the current version of the file format and accompanying
library, providing a convenient abstraction layer between the
application and the MPI-IO middleware layer. The library

enables more efficient parallel I/O to be coordinated for a
range of use cases from simulations to data storage systems. In
particular HDF5 simplifies the use of more advanced practices
such as two phase I/O where data is aggregated and reordered
to ensure more efficient data placement. The use of a self
describing file format also enables data portability between
systems and applications.

4) TyphonIO: TyphonIO [24] is a library of routines that
perform I/O for scientific data in applications. The library
provides a C/C++ and a Fortran 90 API to write and read
TyphonIO-format files for restart or visualization purposes that
are completely portable across HPC platforms. The library,
which is based on HDF5, provides the portable data infras-
tructure. The way TyphonIO has been designed means that it
would be possible to replace HDF5 with an alternative library
implementation without having to make any code changes to
applications using TyphonIO.

The TyphonIO file format is a hierarchical structure of dif-
ferent objects, with each object corresponding to a simulation
or model feature, like those found in scientific or engineering
applications. Each object is designed to hold the data and
associated metadata for each feature and some of these objects
are chunked. Due to the way TyphonIO is designed, it is
straightforward to add more objects in future and expand the
format to cover more models.

C. Darshan I/O Characterization

Darshan [9] is a lightweight library for instrumenting I/O
activity at multiple levels in the software stack. During ex-
ecution, calls from the application are intercepted as they are
translated down from high level libraries to the middleware
and file systems layers before data eventually reaches the
underlying parallel file system. To perform this monitoring
in a lightweight fashion, complete data is not stored on each
intercepted operation, instead a combination of counters and
timestamps are used alongside data compression to ensure
there is no unacceptable overhead to application execution.
Additionally, the instrumentation can be done dynamically at
runtime and hence enables monitoring of job I/O workloads to
be enforced by default across a system. This makes Darshan
an accessible tool for a wide range of applications and well
suited to the work presented here. Version 3.1.3 introduces a
module into the Darshan framework that enables an extended
tracing capability, complimenting the base characterization
functionality. This capability is implemented in a scalable way,
and hence its use has been included in our studies to deepen
the level of insight we can obtain from our investigation of
I/O.

D. The MACSio Proxy Application

MACSio [25] was developed to fill a long existing void in
co-design proxy applications that allow for I/O performance
testing as well as evaluation of trade-offs in data model
interfaces and parallel I/O paradigms for multi-physics HPC
applications. Two key design features of MACSio set it apart
from existing I/O proxy applications and benchmarking tools.

The first is the level of abstraction at which MACSio operates
and the second is the degree of flexibility MACSio provides
in driving an HPC I/O workload through parametrized, user-
defined data objects and a variety of parallel I/O paradigms
and I/O interfaces. Combined, these features allow MACSio
to closely mimic I/O workloads for a wide variety of real HPC
applications, in particular, multi-physics applications where
data object distribution and composition vary dramatically
both within and across parallel tasks. These data objects are
then marshaled between primary and secondary storage ac-
cording to a variety of application use cases (e.g. restart dump
or trickle dump). Using one or more I/O interfaces (plugins)
and parallel I/O paradigms, allows for direct comparisons of
software interfaces, parallel I/O paradigms, and file system
technologies with the same set of customizable data objects.

In previous work, MACSio was used to replicate a mini-
application to verify its suitability for the purpose of investi-
gating I/O behavior and libraries [20].

E. Production Multi-Physics Application

The application that is the subject of this study is a large
multi-physics application used in a commercially sensitive
production environment, henceforth referred to as M-Phys.
The application is designed to operate with a certain degree of
modularity, with a base physics simulation and based on the
input configuration a variety of different physics packages can
be activated at certain points in the simulation. The different
configurations used in the simulation have a notable effect
on the I/O workload that is generated by M-Phys, causing
large variations in the simulation dataset and requirement
for checkpointing along with visualization output. This work
focuses on five different categories of problem typically solved
with M-Phys, each displaying different characteristics. We
have labeled these problems Simulation A through E.

IV. IMPLEMENTATION

In this section we explain some of the features of our workflow
components and how they have been implemented to enable
proxy replications. In general, the replication workflow that
we have followed is illustrated in Figure 1.

A. MACSio Code Modification

In previous work we have demonstrated the replication of
relatively small volumes of data in a basic write sequence
using MACSio [20]. To enable the replication of some of the
more advanced I/O patterns seen in the M-Phys application,
some modification was required to the MACSio design. In
particular, the original implementation of the main control
loop in MACSio was replaced by one that operates on a
timestep basis rather than counting up through the number
of dumps with an amount of spacing at the end of the loop.
The motivation for this is to replicate the execution behavior
of genuine scientific applications that perform calculations
marshaled by a simulation timestep. This makes it possible
to schedule a mixture of I/O activity in the correct sequence
as would be performed in the M-Phys application.

Multi-Physics
Application

Log ParserDarshan Log MACSio
Parameters

I/O Knowledge

MACSio

TyphonIO
Plugin

Replication
Log

Modified I/O Strategy

File System
Parameters Modified File System

Parameters

Fig. 1: Replication workflow

Another modification required in MACSio for this work
was the introduction of a visualization data capability distinct
from that currently used for handling checkpoint dumps. As
discussed in Section III-A, the requirements for a visualization
dump are often very different to those used in checkpoint
restart. A subset of data is required to produce a visualization
of the simulation data and hence a data object was introduced
to the internal JSON object data structure used in MACSio
to represent the features of this dataset. Additionally, new
file access behavior was introduced to the TyphonIO plugin
for appending new states to a visualization file that remains
open for the length of the simulation. To protect against file
corruption should the simulation fail and avoid the overhead
of file open and close operations, the data was flushed to the
open file at the end of a visualization dump sequence. This
was done with the TIO Flush function, which ensures any data
cached by TyphonIO is committed to the file system.

B. Workload Design Characteristics

Workload characteristics are currently expressed to MACSio
in the form of a command line parameter list. The careful
selection of these parameters is what enable us to work towards
replicating real world applications as closely as possible.

In order to process the knowledge we have about the target
workload and generate a set of parameters for MACSio, there
are a few key areas of the workload description that need to
be modeled.

1) Checkpoint File Size Calculation: The total bytes written
to each checkpoint file is a counter that is provided by the base
POSIX and MPI-IO modules in Darshan. This value for the
volume of data we want to write can not as yet be directly
fed in to MACSio, which generates a dataset based on the

weak scaling of a data ‘part size’ per process. The overall
dataset composition is largely dependent on this part size, the
variable count and the number of processes, and hence we
must translate the overall dataset size to a combination of these
parameters.

Each of the three parameters increase the dataset size in a
pattern that fits a simple linear regression, with the dependent
variable being dataset size and the independent variable being
the processor count, part size or variable count. The combi-
nation of these three linear equations into a single function,
gives the equation seen in Equation 1. In this equation: F is
the filesize; Pr is processor count; PS is the part size; V ars
is the number of dataset variables; and, α, β, γ, δ, ψ and η
are constants. The values of these constants are determined
empirically from a dataset scaling study, and are necessary
terms to account for the base volume of data associated with
the mesh objects and metadata required in the HDF5 file
structure.

F = Pr(PS(αV ars+ β) + γV ars+ δ) + ψV ars+ η (1)

2) Dataset Growth Pattern: A feature of some of the
simulations that we are replicating in the M-Phys applica-
tion is the growth in size of the dataset as the simulation
progresses. A discussion of this simulation characteristic is
given in Section V-B. To incorporate this dataset growth in
our replication, a data growth sequence component has been
added to MACSio that acts a multiplier for the dataset after
each checkpoint timestep has been performed. This set of
growth factors can be easily taken from the file sizes given
from our Darshan characterization.

TABLE I: Experimental Platforms

Titan Archer Cab Taurus Tinis

Platform Cray XK7 Cray XC30 Appro Xtreme-X Bullx DLC 720 Lenovo NeXtScale
Compute Nodes 18,688 4,920 1,296 1,456 203
CPU Architecture 16-core AMD

Opteron 6274
12-core Intel Xeon
E5-2697v2

8-core Intel Xeon
E5-2670

12-core Intel Xeon
E5-2680v3

8-core Intel Xeon
E5-2630v3

Cores per Node 16 24 16 24 16
Total CPU cores 299,008 118,080 20,736 34,944 3,488
Interconnect Cray Gemini Cray Aries Dragonfly InfiniBand QDR InfiniBand FDR QLogic TrueScale In-

finiBand

Parallel File System 40 PB Lustre 1.3 PB/1.5 PB Lustre 5 PB Lustre 2.8 PB Lustre 0.5 PB GPFS
Lustre OSTs 1008 48/56 80 96 N/A

Compiler GCC 4.9.3 GCC 5.1.0 Intel 12.1 GCC 5.3.0 Intel 15.5.223
MPI Cray MPICH 7.5.2 Cray MPICH 7.2.6 Intel MPI 5.1 bullx MPI 1.2.8.4 Intel MPI 5.0.3
HDF5 1.10.0.1 1.8.14 1.8.18 1.8.18 1.8.16

3) Visualization File Scheme: As we have outlined in Sec-
tion III-A, the pattern of I/O in the visualization files we
are replicating differs from checkpoint restart. A single file
is opened at the beginning of the simulation and states are
appended to the open file, marshaled by a timestep frequency.
Due to the limited granularity afforded by the lightweight data
collection of Darshan, a complete picture of the characteristics
of each visualization dump is not reported and so this has to
be modeled using the knowledge we have of the volume of
data in the simulation.

The data reported on the overall size of the visualization
output in combination with the growth factors calculated for
the checkpoints provided can be used to fit the visualization
dump sizes to the implicit dataset growth function. Equation 2
demonstrates how intuitively the overall visualization file is the
sum of all simulation dumps of this type. If we consider the
growth of the simulation dataset, the size of the visualization
data written at any stage is the product of the previous data
volume and the factor of growth between the steps. Combining
Equation 2 and Equation 3 and rearranging we can describe
the size of the initial individual visualization dump in terms of
the total file size and the sequence of growth factors, shown
in Equation 4.

V isTotal = V is0 + V is1 + ...+ V isn (2)

V isn+1 = Fn.V isn (3)

V is0 =
V isTotal

1 + F0(1 + F1(...(1 + Fn)))
(4)

4) Execution Scheduling: To achieve the correct pattern of
interspersed ‘computation’, checkpointing, and visualization
file writing, the total number of I/O blocks is required as well
as timestamp data for the start and end of file accesses. An
end timestep is calculated for the simulation as the product of
the total number of I/O blocks required for both checkpointing
and visualization. The frequency of access for these I/O events
is then calculated to distribute them between the starting and

ending timestep. As the main loop progresses, the timestep
advances by one and the different behaviors are activated when
the relevant timestep frequency is reached.

As we look to model I/O activity in the context of a
simulation as a whole, it is necessary to factor in the often
sparse ‘bursty’ nature of storage accesses. To achieve this, we
account for a variable amount of time between accesses that
relate to periods of compute and communication in the host
simulation. Simulating these elements is currently beyond the
scope of the replication we perform, and so a sleep period is
introduced at the end of a timestep. The total gap between
two accesses is achieved by calculating a seconds by dt from
a division of the timesteps between the accesses and the actual
gap in execution time taken from the Darshan application log.

V. RESULTS

To assess the I/O demands and performance of five M-
Phys simulation problems, we have used MACSio to conduct
a series of experiments.

A. Experimental Configuration

The hardware used in these experiments is summarized in
Table I.

Titan is a Cray XK7 comprised of 18,688 nodes, each
containing a single 16-core AMD Opteron processor. The
system is connected with the Gemini interconnect and is
backed by two identical Lustre file systems. Each of these
contains 1,008 object storage targets (OSTs) and has a total
usable disk space of 14 PB.

Archer is a 4,920 node Cray XC30, with dual 12-core Intel
Ivy Bridge processors per node. The system uses the Cray
Aries interconnect in a Dragonfly topology and is attached to
three Lustre file systems, two of which contain 48 OSTs and
one 56 OSTs. The three file systems provide 1.3 PB, 1.3 PB
and 1.5 PB respectively. We use one of the 48 OST file systems
for our experiments.

Cab is a Linux capacity cluster with 1,296 nodes hosting
two 8-core Intel Sandy Bridge processors. Nodes are con-
nected using QDR InfiniBand and the machine accesses two

parallel file systems. These file systems are both 5 PB of Lustre
storage with 80 OSTs.

The theoretical peak bandwidth of these file systems varies
due to their shared nature and their proximity to Cab. For this
work we elected to use the lscratche file system, which reports
a greater achievable performance ceiling.

Taurus is also a Linux cluster comprised of three tightly
coupled islands. Phase two of the system was used in our
experiments, and is a 1,456 node island with two 12-core Intel
Haswell processors per node. Compute nodes are connected
with FDR InfiniBand and the system is backed by a 2.8 PB
Lustre file system made up of 96 OSTs.

Tinis is a Linux cluster of 203 nodes containing two 8-core
Intel Haswell processors. Nodes in the system are connected
with TrueScale InfiniBand and a 0.5 PB data store is provided
by GPFS. This file system is made up of 120 disks organized
into six data pools, attached to two Network Shared Disk
(NSD) servers with metadata distributed across the data drives.

For completeness, the original application profiling was
performed on the Spruce A system. This machine is an SGI
ICE X with 16 cores per node, backed by a Lustre file system
of 140 OSTs. The configuration of this file system uses a
default stripe width of 8 and default stripe size of 1 MB.
Access to this machine is limited and hence experimental data
collection is difficult to perform.

The software used on each of the machines studied is given
in Table I. Along with these configurations, the 1.6 release of
TyphonIO and Darshan version 3.1.3 are used.

B. M-Phys I/O Patterns

To begin our experiments, we first outline the I/O workload
characteristics extracted from profiling runs of the M-Phys ap-
plication. There are five simulation setups used in this study,
which represent some important workloads generated by the
application. We label these five inputs A to E and present an
overview of their characteristics in Figure 2.

1) Simulation A: The first simulation type is the most
simple to characterize in terms of its I/O behavior. Over the
course of the 119 minute runtime, 49 checkpoints are written
with 213 MB of data stored in each. Additionally there are 50
states written to a visualization file giving a total visualization
output of 1.75 GB. This simulation represents a reference test
problem and so is typically run on a single node.

2) Simulation B: The pattern of the second simulation has
the additional characteristic that the composition of the dataset
used for checkpointing and visualization is varied through the
course of execution. The runtime of 131 minutes spans 27
checkpoints and 28 visualization states.

The dataset growth in the simulation can be seen in the size
of each checkpoint, which grow from 259 MB at the beginning
of the simulation and reach a total size of 1.9 GB. The total
size of visualization data written reaches 285 MB.

The total cumulative data output of the simulation is shown
in Figure 2b. It can be seen that there is a non-linear increase
in the total checkpoint output, with a much greater rate of

increase around fifth checkpoint, which corresponds to the
activation of additional simulation components.

From the perspective of understanding the I/O workload
requirements of the simulation, it could be valuable to exploit
knowledge of when this change will occur to influence a vari-
ation in I/O strategy such as modifying checkpoint frequency.

3) Simulation C: Simulation C performs the same exper-
iment as B, but with an important additional physics pack-
age added. The I/O pattern of this simulation, including the
observed dataset growth, matches Simulation B but a much
larger volume of data is required to visualize the additional
data elements. As a result the total size of visualization data
reaches 20.2 GB.

4) Simulation D: Simulation D represents a much larger
calculation, with very different I/O characteristics. Check-
pointing is only performed at three key stages in the sim-
ulation, with 7.3 GB of data committed to file for each at
notably irregular intervals. The visualization file data totals
1.8 GB, and is stored in 116 separate state outputs, giving a
much higher temporal granularity to the results that can be
visualized than to the restart capability of the calculation.

5) Simulation E: The final input type for the M-Phys ap-
plication considered here performs a similar experiment to
Simulation D. Similarly, three checkpoints of 7.7 GB are
written at irregular intervals, while 1.4 GB of visualization
data is produced across 88 simulation states.

C. Data Volume Accuracy

Matching the volumes of data movement in the simulation
carefully is important to generate similar I/O traffic in our
replication compared to the original. Writing the same quan-
tities of data from memory to the storage media is the first
step towards generating comparable behavior to the original
simulation. Section IV-B provides some of equations used
to translate known quantities from the target simulation to
a dataset description in MACSio, and here we analyze the
accuracy of the data volumes generated.

Table II shows the percentage error seen in bytes written
for both categories of file in each of the five simulations.
There is a small amount of variation in data volume due to
it not being possible to generate identical data to the real
simulation, however overall we are able to replicate the volume
of data with reasonable accuracy. Notably, a larger deviation
can be seen in the maximum error of simulations B and C,
which can be attributed to the way in which the replication
mimics the growth of these datasets. Due to the composition
of the dataset being modified between I/O operations, it is
possible to generate a dataset in which the mesh shape is
especially irregular, the consequence being the overall volume
of data generated for the mesh is lower than expected. This
is highlighted by the change in percentage error shown in
Figure 4. Overall the volumes of data and pattern of growth
during the simulation can be seen to still follow a similar
pattern. The dataset growth can be seen in Figure 3.

0 10 20 30 40 50

0

2

4

6

8

10

Step

To
ta

l
D

at
a

O
ut

pu
t

(G
B

)

Checkpoints
Visualization

(a) Input A

0 5 10 15 20 25

0

10

20

30

40

Simulation Step

To
ta

l
D

at
a

O
ut

pu
t

(G
B

)

Checkpoints
Visualization

(b) Input B

0 5 10 15 20 25

0

10

20

30

40

Simulation Step

To
ta

l
D

at
a

O
ut

pu
t

(G
B

)

Checkpoints
Visualization

(c) Input C

0 20 40 60 80 100 120

0

5

10

15

20

25

Simulation Step

To
ta

l
D

at
a

O
ut

pu
t

(G
B

)

Checkpoints
Visualization

(d) Input D

0 20 40 60 80 100 120

0

5

10

15

20

25

Simulation Step

To
ta

l
D

at
a

O
ut

pu
t

(G
B

)

Checkpoints
Visualization

(e) Input E

Fig. 2: I/O Patterns for Each Simulation Category

TABLE II: Dataset size accuracy

A B C D E

Mean % Error in
Checkpoints size

0.17% 1.90% 3.05% 1.14% 0.46%

Max % Error in
Checkpoint size

0.43% 16.22% 16.27% 1.16% 0.46%

% Error in Visualiza-
tion size

8.29% 0.23% 5.72% 1.88% 1.96%

% Error in Visualiza-
tion size per state

0.16% 0.01% 0.20% 0.02% 0.02%

0 5 10 15 20 25

500

1,000

1,500

2,000

Checkpoint Number

Si
ze

(M
B

)

Original
Replication

Fig. 3: Dataset Growth of Input B

D. Machine Performance

A key motivation for our workload replication is the ability
to understand how a particular application will perform on
different platforms under different file system configurations.
We have used the replication parameters created for each
simulation type to investigate the performance characteristics
of each of the platforms in Table I. In particular, we focus
on the file bandwidth of the checkpoint files written in the
simulations as this can be easily calculated based on the
available Darshan log data.

In Figure 5 the checkpoint bandwidths are given for each
of the original simulations under the default file system
configuration. In order to display the I/O performance for each
of the simulation types in a way that allows direct comparison,
the y-axis here represents execution steps relative to the end
of the run rather than the walltime. It is clear from this plot
that Simulation A achieves the best performance in terms of
bandwidth, which is expected due to the regularity and smaller
scale of the workload. The remaining four simulations demon-
strate more similar performance with regards to the bandwidth
range achieved by checkpointing activity during execution.
Importantly, the I/O performance for Simulations B and C
can be seen to increase during execution. This improvement
in performance shows a correlation with the changes to the
dataset composition seen in these classes of experiment, and

0 5 10 15 20 25
0

2

4

6

8

10

Step

%
E

rr
or

Fig. 4: Percentage error for total checkpoint data output during
Simulation B

0 10 20 30 40 50
0

200

400

600

Step

B
an

dw
id

th
(M

B
/s

)
A B C D E

Fig. 5: File bandwidth achieved for each of the simulation
categories in the original M-Phys application

highlight some of the non-determinism that can be expected
from the I/O workloads in the M-Phys application. In contrast
to the increasing bandwidth trend displayed in B and C,
Simulations D and E display generally worse performance for
their much larger dataset volumes.

We now analyze the performance of each of the simulation
types across our experimental platforms using the MACSio
replication.

1) Simulation A: The first simulation type is both the
smallest scale and uses the most regular pattern of file I/O,
providing a good baseline for the performance of each ma-
chine. Replication runs were repeated with (a) the default file

Titan Archer Cab Taurus Tinis
0

100

200

300

400

500

Machine

B
an

dw
id

th
(M

B
/s

)
(a) Default Setting
(b) Node-count Striping
(c) Proc-count Striping

Fig. 6: File bandwidth achieved for Simulation A under
different file striping conditions

system configuration; (b) with the stripe count set to 1 to match
the node count; and, (c) with the stripe count set to match the
number of cores used.

Figure 6 shows the mean file bandwidth achieved over
the course of the simulation annotated with the calculated
standard error. These results demonstrate a difference in file
bandwidth on Titan for the default Lustre configuration and the
modified stripe counts, with the increase and decrease in stripe
count having an adverse effect on performance. A decrease in
bandwidth here indicates that the performance of a small scale
problem can be particularly sensitive to the underlying file
system configuration when executed on such a large platform.
This characteristic is not mirrored on either Archer or Cab,
both of which which show much smaller variations in data
throughput. Both of these machines display a small decrease
in bandwidth when increasing the stripe count to match the
number of processors, indicating that the problem size is
suitably small that distributing it across a greater number of
storage targets offers no benefit in terms of performance.

2) Simulation B and C: The changing I/O behavior of
Simulations B and C present more varied patterns with re-
gards to the data transfered and the performance footprint
observed. In Figure 7 the file bandwidth of each checkpoint is
shown, along with the corresponding size of each checkpoint
dataset. In each of the plots shown, it can be seen that
the achieved file bandwidth is low initially, showing some
degree of increase as the volume of data increases. The
performance of each system under their default configurations
is shown in Figure 7(a) and Figure 7(b), with each of the
five machines demonstrating a lower checkpoint bandwidth
at the beginning of the simulation than seen in Simulation
A. As the simulation progresses and the size of the dataset
grows, file bandwidth improves similarly for each platform,
however this trend displays different profiles across platforms.
Archer and Tinis achieve the slowest I/O performance, and yet

observe the largest increase in performance as the checkpoint
size grows (by approximately 7.5×), suggesting that they are
more sensitive to non-optimal performance from being unable
to saturate file system components with smaller operations.
Equally, Titan demonstrates a much smaller increasing trend
on average, with a much greater fluctuation in performance
making the expected bandwidth for this simulation less clear
to predict.

For the three machines that allow changes to the Lustre
tuning parameters1, we have made adjustments to the stripe
count used in the replication. Figure 7(c) shows the effect of
aligning the node count on Titan giving more consistent I/O
performance during the simulation and highlights a bandwidth
peak around the time of the tenth checkpoint corresponding
to 1.6 GB of output data. After this point, an increase in data
volume corresponds to a degradation in performance. This
would suggest that after reaching this bandwidth peak, we
encounter a bottleneck with data access to the file system. This
narrows down the point at which lower level characteristics of
the application’s I/O should be investigated for optimizing the
access on Titan to prevent the decrease in performance seen.

There is no notable difference to the performance shown
when increasing the stripe number on Cab to match the nodes
in the simulation. This suggests the write bandwidth to a
single OST is not being saturated and hence not the limiting
factor. Additionally, the stripe number on Archer matches the
number of nodes so rerunning the experiment has identical
performance.

The distribution of I/O access across the file system was
increased by raising the stripe count to match the number of
processors used in the simulation, or in the case of Archer
the maximum number of storage targets. Striping across a
larger number of storage targets is often recommended as a
technique to prevent performance bottlenecks in Lustre when
writing large volumes of data to a single shared file. In our
experiments, shown in Figure 7(d), increasing this number
has a negative impact on the bandwidth achievable for both
Titan and Cab but does not for Archer. Increasing the striping
across a much greater number of disks appears to introduce
a bottleneck for the larger file system machines that could be
explained by an increased load on the metadata server or with
the extra communication required for transferring data to a
larger pool of storage targets.

It is clear that in the two different configurations in which
the Lustre file system in Archer is used that there is no notable
performance difference. Distributing the data stripes across all
of the available disks does not improve performance, and so
we are not seeing a bottleneck due to contention for access
to storage targets. The cause of this poor throughput is not
entirely clear in the scope of this work, but we hope to leverage
our replication tool to explore this as future work.

These results focus primarily on checkpoint bandwidths;
Simulation C displays the same behavior as Simulation B,

1The default Lustre parameters on Taurus cannot be overridden by users.
Additionally, Tinis uses a GPFS file system meaning we are unable to change
its parameters as we have done with Titan, Archer and Cab.

500

1,000

1,500

2,000

C
he

ck
po

in
t

Si
ze

(M
B

)

0 10 20
0

500

1,000

Checkpoint Number

B
an

dw
id

th
(M

B
/s

)
Titan(4) Archer(4) Cab(1)
Checkpoint size

(a) Default Setting

500

1,000

1,500

2,000

C
he

ck
po

in
t

Si
ze

(M
B

)

0 10 20
0

500

1,000

Checkpoint Number

B
an

dw
id

th
(M

B
/s

)

Taurus(96) Tinis(N/A)
Checkpoint size

(b) Default Setting

500

1,000

1,500

2,000

C
he

ck
po

in
t

Si
ze

(M
B

)

0 10 20
0

500

1,000

Checkpoint Number

B
an

dw
id

th
(M

B
/s

)

Titan(5) Archer(4) Cab(5)
Checkpoint size

(c) Node Count Striping

500

1,000

1,500

2,000

C
he

ck
po

in
t

Si
ze

(M
B

)

0 10 20
0

500

1,000

Checkpoint Number

B
an

dw
id

th
(M

B
/s

)
Titan(80) Archer(49) Cab(80)
Checkpoint size

(d) Processor Count Striping

Fig. 7: Simulation B file bandwidth (stripe count is shown in brackets)

and is therefore not presented here.

3) Simulation D and E: The most irregular I/O pattern
and largest volume checkpoints are generated by the final
two classes of simulation and replicating these demonstrates
further interesting characteristics. In Figure 8 we again show
the bandwidth achieved for repeated runs of inputs D and E
under varying striping configurations. The I/O performance for
these runs is consistently higher than that seen in each of the
previous workloads, achieving greater average file bandwidths
on all machines and configurations.

The performance profile shows similarity to Simulation A,
with the differences between configurations amplified here by
the much larger checkpoint sizes. The effect of this increased

problem scale can be seen in the difference between the
bandwidth achieved on Cab with striping by node count or
processor count. By increasing the default striping, a 1.5×
improvement is seen; however upon further increasing this
striping to match processor count, only 0.7× of this bandwidth
is achieved. We can identify here a similar bottleneck to that
seen in Simulation B, where the distribution of the shared file
over a larger portion of the file system means we are unable
to saturate the storage target peak write capability.

Further investigation into the pivot point at which optimal
stripe distribution is achieved would allow for the peak per-
formance I/O footprint of this workload on the file system
to be measured. Considering the expected proportion of this

TinisTitan Archer TaurusCab
0

200

400

600

800

1,000

1,200

Machine

B
an

dw
id

th
(M

B
/s

)
Default Setting Node-count Striping Proc-count Striping

(a) Simulation D

TinisTitan TaurusArcher Cab
0

200

400

600

800

1,000

1,200

Machine

B
an

dw
id

th
(M

B
/s

)

(b) Simulation E

Fig. 8: File bandwidth achieved for under varied file striping conditions

application workload that might be seen on a system, it would
be possible to use a predicted footprint to identify the most
economical configuration for the file system. A prediction like
this is something that could be of use in the procurement of
a new system and provide guidance as to where effort can be
directed in optimizing limiting factors for application I/O.

The performance characteristics of these workloads differ to
those seen in B and C in that the greatest achievable bandwidth
for each machine requires a different striping style. As stated,
the performance on Cab is best when we use a number of
storage targets matching the node count, however the default
configuration and processor count striping achieve greater
average file bandwidth for Titan and Archer respectively. It
is worth noting that for Archer’s case, the number of storage
targets used is in fact less that the processor count as this is
the maximum available. There is however a small amount of
improvement to performance under this configuration when
accounting for the calculated standard error of our measure-
ments. This would suggest that with the stripe count having
minimal effect on this file system, the limiting factor on I/O
throughput in our application is not a result of contention at
the point of the storage servers or storage targets. If we were
using the results of these tests to advise our possible future file
system configuration, we would need to gain more detailed
tracing of the I/O operations to determine the cause of the
performance limitation.

In the case of Titan, increasing the striping of the file across
more storage targets degrades the performance slightly. For
this system, we have evidently not adequately saturated the
available bandwidth to the storage targets in the original setup,
meaning further striping offers no benefit. Due to the size of
Titan, we can judge that I/O is not likely to be a limiting factor
at this scale, however attempting to scale the simulation has

the potential to alter the I/O footprint somewhat.
A characteristic that was observed to a small extent in the

first simulation but is more prevalent here is the variance in
the measured performance for runs on Archer. Observing the
error bars for the bandwidth measurements for Simulations D
and E, it is clear that the standard error in our experiments is
larger on this system than any other. We believe the cause of
the increased performance unpredictability identifies a greater
deal of interference from the machine being under heavy load
than seen on the other platforms.

Comparing the results across the five different machines,
these two workloads display more comparable performance
between all systems than any of those discussed previously. In
particular, there is only a small performance variation between
Titan, Cab and Tinis at their respective optimal setups. This
illustrates the difficulty in assessing I/O performance across
systems, as different classes of system can be seen to perform
similarly despite largely different peak file system bandwidths.

E. Workload Weak Scaling Behavior

Using our replications, we have been able to look at how
the current volume and distribution in the dataset performs
on each of the target platforms. So far, the scale at which
these simulations are run is relatively small in accordance with
the original M-Phys application. To understand how the I/O
performance would be affected by scaling these simulations
further, we have performed a simple scaling test using the
workload parameters based on Simulation E. The volume of
data per process is kept consistent and the number of nodes
used is increased by a factor of two up to 1024 nodes on Titan
and 64 nodes on Archer.

Figure 9 shows the file bandwidth achieved for both sys-
tems when using the default Lustre configuration and when

1 2 4 8 16 32 64
128

256
512

1024
128

256

512

1024

2048

Nodes

B
an

dw
id

th
(M

B
/s

)
Default Titan Striped Titan
Default Archer Striped Archer

Fig. 9: Weak Scaling for Simulation E on Titan and Archer

increasing stripe count as node count increases. Importantly,
the performance we get on Archer exceeds that of Titan by
the 32 node point. In our simulation workload tests on Archer
up to this point, we have identified a lack of throughput in
our application I/O; a greater bandwidth is achievable however
with the same composition but a larger scale dataset. Therefore
we suggest that these workloads are not of an optimal size to
achieve good performance on Archer’s file system.

Increasing the node count and corresponding dataset size,
while keeping the stripe count at the default of 4, prevents a
greater file bandwidth from being achieved on both Archer and
Titan. The performance observed does not decrease however,
and so it is expected that the increased data volume is not yet
introducing contention on the storage targets to the point that
these resources have become saturated.

VI. CONCLUSION

In this paper, we have used profiling in conjunction with a
configurable proxy application to replicate a range of I/O
patterns in a large multi-physics application. We identify
important characteristics of a workload from a limited set of
Darshan log data; translating these characteristics allows us
to represent the workload in a collection of parameters that
protect the commercial sensitivity of the original application.
The abstraction from the target application and the flexibility
of the proxy application makes investigation of the I/O work-
load pattern portable across different systems and file systems.
To arrive at these parameters, we have used expressions for
mapping the known quantities of dataset size and variation
over time to a set of inputs that match the simple data model
in the MACSio application. Furthermore, we have adapted a
configurable proxy application to allow for more representative

I/O behavior replication of these real workloads. This adap-
tation factors in the varied access patterns and data volumes
exhibited by different types of output files that are used in
the same simulation. In particular, we restructured the main
execution body of MACSio to better mimic timestep loops and
schedule interspersed checkpointing and visualization dumps
in the same pattern seen in the original application.

We demonstrate that the checkpoint dataset written for each
of our replications deviates from the original by on average no
more than 3.05%. Additionally, we highlight the points in the
simulation where inaccuracy can be introduced to the proxy
dataset but confirm this does not cause a large margin of error
for the overall I/O pattern.

We have also presented analysis of the performance
achieved by our proxy workloads on five systems ranging from
a 200 node university cluster to a leadership scale supercom-
puter. The results of the analysis carried out show that the
performance characteristics of each of the test platforms vary
in different ways across the classes of workload we replicate.
An example of this is seen in the lack of performance achieved
by some of our workloads on Archer, but how this under-
performance becomes less prominent when scaling up the data
volumes.

In the future, we plan to perform a more detailed analysis
of how the replicated workload is performing on a system
with more detailed I/O data collection, recognizing the lack
of scalability associated with detailed tracing. In addition, we
also plan to further develop the complexity of MACSio to
allow a greater deal of control on the datasets generated and
investigate the I/O operations of the target application at a
lower level. Finally, we intend to use the replicated workloads
shown here in the testing phase for a new system installation.
Ultimately, the goal of this process is to be integrated into a
future procurement exercise for the next generation of system.

ACKNOWLEDGMENTS

This work was supported by the UK Atomic Weapons Es-
tablishment under grant CDK0724 (AWE Technical Outreach
Programme). Furthermore, Professor Stephen Jarvis is an
AWE William Penney Fellow.

We would like to express our thanks to the following
institutions for access to the systems featured in this work: UK
Engineering and Physical Sciences Research Council (Archer),
Oak Ridge National Laboratory (Titan), Lawrence Livermore
National Laboratory (Cab), Technische Universitt Dresden
(Taurus) and the University of Warwick Centre for Scientific
Computing (Tinis).

This work would not have been possible without the as-
sistance of a number of members of the Applied Computer
Science group at AWE, to whom we would also like to express
our gratitude.

MACSio and TyphonIO can be obtained from GitHub (see
https://github.com/jadickson/MACSio and https://github.com/
UK-MAC/typhonio respectively).

REFERENCES

[1] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,
“I/O Performance Challenges at Leadership Scale,” in Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis. ACM, 2009, p. 40.

[2] S. Snyder, P. Carns, R. Latham, M. Mubarak, R. Ross, C. Carothers,
B. Behzad, H. V. T. Luu, S. Byna et al., “Techniques for Mod-
eling Large-scale HPC I/O Workloads,” in Proceedings of the 6th
International Workshop on Performance Modeling, Benchmarking, and
Simulation of High Performance Computing Systems. ACM, 2015, p. 5.

[3] H. Luu, B. Behzad, R. Aydt, and M. Winslett, “A Multi-level Approach
for Understanding I/O Activity in HPC Applications,” in 2013 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2013, pp. 1–5.

[4] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J. Herdman,
I. Miller, A. Vadgama, A. Bhalerao, and S. A. Jarvis, “Parallel File
System Analysis Through Application I/O Tracing,” The Computer
Journal, p. bxs044, 2012.

[5] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, “Scalable I/O
Tracing and Analysis,” in Proceedings of the 4th Annual Workshop on
Petascale Data Storage. ACM, 2009, pp. 26–31.

[6] B. Behzad, H.-V. Dang, F. Hariri, W. Zhang, and M. Snir, “Automatic
Generation of I/O Kernels for HPC Applications,” in Proceedings of the
9th Parallel Data Storage Workshop. IEEE Press, 2014, pp. 31–36.

[7] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross, A. Crume, and
C. Maltzahn, “Modeling a Leadership-scale Storage System,” in Inter-
national Conference on Parallel Processing and Applied Mathematics.
Springer, 2011, pp. 10–19.

[8] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the Role of Burst Buffers in Leadership-class
Storage Systems,” in 012 IEEE 28th Symposium on Mass Storage
Systems and Technologies (MSST). IEEE, 2012, pp. 1–11.

[9] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley,
“24/7 Characterization of Petascale I/O Workloads,” in 2009 IEEE
International Conference on Cluster Computing and Workshops. IEEE,
2009, pp. 1–10.

[10] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat,
S. Byna, and Y. Yao, “A Multiplatform Study of I/O Behavior on
Petascale Supercomputers,” in Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing.
ACM, 2015, pp. 33–44.

[11] R. Latham, C. Daley, W.-k. Liao, K. Gao, R. Ross, A. Dubey, and
A. Choudhary, “A case study for scientific I/O: Improving the flash
astrophysics sode,” Computational Science & Discovery, vol. 5, no. 1,
p. 015001, 2012.

[12] J. Borrill, L. Oliker, J. Shalf, and H. Shan, “Investigation of Leading
HPC I/O Performance using a Scientific-application Derived Bench-
mark,” in Proceedings of the 2007 ACM/IEEE conference on Super-
computing. ACM, 2007, p. 10.

[13] “Chombo I/O benchmark,” http://www.nersc.gov/
ndk/ChomboBenchmarks/chomboIOBenchmark.html.

[14] J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W.-K. Liao, K.-L. Ma, J. Mellor-Crummey, N. Podhorszki
et al., “Terascale Direct Numerical Simulations of Turbulent Combustion
using S3D,” Computational Science & Discovery, vol. 2, no. 1, p.
015001, 2009.

[15] H. Shan, K. Antypas, and J. Shalf, “Characterizing and Predicting the
I/O Performance of HPC Applications using a Parameterized Synthetic
Benchmark,” in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE Press, 2008, p. 42.

[16] J. Logan, S. Klasky, H. Abbasi, Q. Liu, G. Ostrouchov, M. Parashar,
N. Podhorszki, Y. Tian, and M. Wolf, “Understanding I/O Performance
Using I/O Skeletal Applications,” in European Conference on Parallel
Processing. Springer, 2012, pp. 77–88.

[17] J. Logan, S. Klasky, J. Lofstead, H. Abbasi, S. Ethier, R. Grout, S.-H. Ku,
Q. Liu, X. Ma, M. Parashar et al., “Skel: Generative Software for Pro-
ducing Skeletal I/O Applications,” in e-Science Workshops (eScienceW),
2011 IEEE Seventh International Conference on. IEEE, 2011, pp. 191–
198.

[18] Y. Jin, X. Ma, M. Liu, Q. Liu, J. Logan, N. Podhorszki, J. Y. Choi,
and S. Klasky, “Combining Phase Identification and Statistic Modeling
for Automated Parallel Benchmark Generation,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 1, pp. 309–320, 2015.

[19] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS),” in Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments. ACM,
2008, pp. 15–24.

[20] J. Dickson, S. Wright, S. Maheswaran, A. Herdmant, M. C. Miller, and
S. Jarvis, “Replicating HPC I/O Workloads with Proxy Applications,”
in Proceedings of the 1st Joint International Workshop on Parallel Data
Storage & Data Intensive Scalable Computing Systems. IEEE Press,
2016, pp. 13–18.

[21] P. J. Braam and R. Zahir, “Lustre: A scalable, high performance file
system,” Cluster File Systems, Inc, 2002.

[22] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in FAST, vol. 2, no. 19, 2002.

[23] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
Overview of the HDF5 Technology Suite and its Applications,” in
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases.
ACM, 2011, pp. 36–47.

[24] UK Mini App Consortium, “TyphonIO,” https://github.com/UK-MAC/
typhonio, Last Accessed 2017-03-13.

[25] M. Miller, “Design & Implementation of MACSio,” Lawrence Liv-
ermore National Laboratory (LLNL), Livermore, CA (United States),
Tech. Rep., 2015.

