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Abstract Many existing signal-to-noise ratio (SNR) esti-
mators were designed and evaluated for conventional one-
hop communications systems. However, for a relaying sys-
tem, it is the end-to-end SNR that determines the system
performance. In this paper, we will fill this gap by evalu-
ating the performances of the existing SNR estimators in a
dual-hop relaying system used for each hop. The probabil-
ity density functions of the SNR estimators are first derived,
whose parameters are fitted as functions of the sample size
and the true value of SNR. Using them, the cumulative dis-
tribution functions of the end-to-end SNR and the bit error
rate performance for a relaying system are derived. Numer-
ical results show that the squared signal-to-noise variance
estimator has the best performance for small SNRs and the
second-order fourth-order moments estimator has the best
performance for large SNRs, while the signal-to-variation
ratio estimator has the worst performance, among the exist-
ing SNR estimators, for AF relaying systems.

Keywords End-to-end SNR · Estimators · Relaying

1 Introduction

The idea of relaying is to forward signals from the source to
the destination using one or more idle nodes via several hops.
In contrast, the source in traditional systems sends signal to
thedestinationdirectly via onehop.Amongdifferent relaying
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protocols, amplify-and-forward (AF) is a simple one, where
the relay receives the signal from the source and then ampli-
fies this signal and forwards it to the destination without any
further processing. Thus, AF relays have short delays.

On the other hand, signal-to-noise ratio (SNR) estima-
tion is a basic requirement inmany communications systems.
When the SNR is constant over a certain period of time, the
knowledge of SNR can be used in various algorithms for
optimal performance by SNR estimation. The knowledge of
the SNR can be used to improve the performances of vari-
ous systems. A lot of applications and techniques require the
SNR knowledge for suitable operations. For instance, rate
adaptation needs SNR information. Also, SNR knowledge is
required in power control for code-division multiple-access
systems, link adaptation for adaptive modulation and coding
systems, and iterative decoding for “turbo” and low-density
parity-check (LDPC) codes [1], in conventional system as
well as in [2–5] for relaying systems where authors anal-
ysed the decode-and-forward (DF) and AF performances in
two-way relaying or multi-way relay networks. Nonetheless,
these works assumed perfect SNR knowledge and did not
consider SNR estimation or SNR error.

Several SNR estimators have been proposed in the lit-
erature for traditional one hop systems. For example, the
split symbol moments estimator (SSME) can provide an
estimate of the symbol SNR for binary phase shift keying
(BPSK) signals [6]. This estimator was designed for oper-
ation with additive white Gaussian noise (AWGN) and at
low data rates so that the bandwidth limit is insignificant.
Maximum-likelihood (ML) estimators were also derived
from samples of a complex received signal using probabil-
ity density functions in [7]. In addition to the SSME and
ML estimators, another estimator called squared signal-to-
noise variance (SNV) estimator was proposed in [8], where
the SNV estimator using data decisions was first derived for
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BPSK modulation in real AWGN and then was extended to
higher orders of modulation in complex channels. In [9], the
second-order and fourth-order moments (M2M4) estimator
was studied using the second- and fourth-order moments of
the signal to avoid carrier phase recovery. In [10], signal-
to-variation ratio (SVR) estimator was designed for M-ary
PSK-modulated signals. An in-service SVR estimator for
complex channels was also developed. All these estimators
provide efficient estimation of SNR for different applica-
tions. However, their performances were only evaluated for
the traditional one-hop systems in [11]. In order to improve
performance for signal-to-noise ratio (SNR) estimator a new
method has been proposed in [12]. For non-constantmodulus
constellations over flat-fading channel a new SNR estimation
have been discussed in [13]. Signal-to-noise estimatation in
time-varying fading channels have been considered in [14].
It is not clear how these estimators will perform in a relaying
system that adopts two or more hops, as it is the end-to-end
SNR that determines the performance of a relaying system.
The exact end-to-end SNR describes the actual relaying per-
formance but is complicated [15]. Several bounds have been
proposed to simplify it. The harmonic mean has the math-
ematical tractability but is only a tight upper bound at high
SNR [15]. The minimum hop SNR is a good indication of
the asymptotic performance of the relaying system [15].

In this paper, we provide such a performance evaluation
for SNR estimation in AF relaying systems by applying the
estimators developed in [8–11] to each hop and examining
the accuracy of the end-to-end SNR estimate in AF relay-
ing. Different forms of the end-to-end SNR are considered:
the exact end-to-end SNR, the harmonic mean and the min-
imum hop SNR. Also, the root mean squared error (RMSE)
performances of the three expressions of the end-to-end SNR
are first examined using simulation for each estimator above.
Then, the probability density functions (PDFs) of the SNR
estimates are derived, as they are not available in the lit-
erature. Based on these PDFs, the cumulative distribution
functions (CDFs) of the three forms of the end-to-end SNR
using these estimates are obtained in closed-form analyti-
cal expressions. The bit error rate is obtained using these
CDFs. Numerical results show that the squared signal-to-
noise variance (SNV) estimator has the best performance
and the signal-to-variation ratio(SVR) estimator performs the
worst for AF relaying system.

2 System model

2.1 AF relaying

This kind of relay serves as a repeater, where the relay
receives the signals from the source and then amplifies the
received signal and forwards it to the destination. AF relays

Fig. 1 AF relaying model

are simple and have short delays. However, this kind of relays
can amplify the noise in the signal too, shown in Fig. 1. Sim-
ilar to [15–18], consider a cooperative diversity system with
one relaying link between the source node and the destina-
tion node. In the first time slot, the amplified signal from the
source is forwarded to the relay using an AF relaying proto-
col in flat fading channels with AWGN. In the second time
slot, the signal from the relay is forwarded to the destination.
The received signal at the relay can be given as:

u(t) = h1
√
E0x(t − T ) + n1(t) (1)

where h1 is the fading gain of the source-to-relay link, E0

is the transmitted signal power, n1(t) is the Gaussian noise
in the source-to-relay link with noise power N1,x(t) is the
transmitted signal. The received signal at the destination can
be given as [15]

y(t) = h2αu(t) + n2(t) (2)

where h2 is the fading gain of the relay-to-destination link,
α is the relay gain and n2(t) is the Gaussian noise in the
relay-to-destination link with noise power N2.

2.2 SNR estimators

Consider a baseband equivalent, discrete and complexmodel
of a coherentM-aryPSKsignal in a complexAWGNchannel.
Assumeperfect timing recovery.Assume that there are Nss =
20 samples for each symbol in a block of Nsym symbols using
a root raised-cosine (RRC) pulse-shaping filter with rolloff
= 0.5 and L = 127,whereL is the number of tap coefficients.
The M-ary PSK symbols are then represented by [11]

an = e jθn , n = 0, 1, . . . , Nsym − 1 (3)

where θn is the phase of the n-th symbol spaced evenly around
the circle. The matched filter (MF) output is then given by
[11]

yn = ynNss = √
Sang0 + √

Nwn (4)

where g0 is the peak of the full raised-cosine impulse
response, S is a signal power scaling factor, N is the noise
power scaling factor, wn is the symbol-spaced filtered noise
samples represented by [11]
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wn = wnNss =
L∑

l

hl zk−l |k=nNss (5)

hl is the RRC filter tap coefficients and zk−l is the complex,
sampled, zero-mean AWGN of unit variance. Since yn rep-
resents the decision variable, the SNR can be expressed as
[11]

ρ =
E
{
|√Sang0|2

}

var
{√

Nwn

} (6)

where E{.} and V AR{.}, respectively, represent the expecta-
tion and variance operations. The SNR is independent of the
channel if the sum of the squares of the RRC tap coefficients
is set to unity such that g0 = 1 and ρ = S

N . Also, one can
use data-aided (DA) estimators that depend on the informa-
tion of the transmitted data. In the following, TxDA denotes
the perfect knowledge of the transmitted symbol for a data-
aided (DA) estimator, and RxDA denotes an estimator that
uses estimates of the transmitted symbols or data decisions.

2.2.1 SNV estimator

The SNV RxDA estimator for BPSK was derived in [8] as

ρ̂SNV RxDA,complex =
[

1
Nsym

∑Nsym−1
n=0 |yn|

]2

1
Nsym

∑Nsym−1
n=0 |yn|2 − 1

Nsym Nsym

[∑Nsym−1
n=0 |yn|

]2
. (7)

When Nss = 1, the SNV estimator actually becomes the
ML estimator [11]. While the ML estimator operates on one
sample for each symbol at the output of the MF, the SNV
estimator operates on multiple samples for each symbol at
the output of the MF.

2.2.2 M2M4 estimator

Let M2 represent the second-order moment of yn as [9]

M2 = E
{
yn y

∗
n

} = S ∗ E
{
|an|2

}
+ √

SN ∗ E
{
anw

∗
n

}

+ √
SN ∗ E

{
wna

∗
n

}+ N ∗ E
{
|wn|2

} (8)

and let M4 represent the fourth-order moment of yn as [9]

M4 = E
{
(yn y

∗
n )

2
}

= S2E
{
|an|4

}
+ 2S

√
SN ∗

(
E
{
|an|2anw∗

n

}

+E
{
|an|2wna

∗
n

}
+ E

{
|an|2wna

∗
n

})
+ SN

∗
(
E
{
(anw

∗
n

)2}+ 4E
{
|an|2|wn|2

}
+ E

{
(anw

∗
n)

2
}

+ 2N
√
SN ∗

(
E
{
|wn|2anw∗

n

}
+ E

{
|wn|2wna

∗
n

})

+ N 2E
{
|wn|4

}
. (9)

For BPSK signals, the M2M4 estimator can be expressed as
[11]

ρ̂′
M2M4,complex = 1

2

√
6M2

2 − 2M4

M2 − 1
2

√
6M2

2 − 2M4

. (10)

The M2M4 estimator is a type of in-service estimator which
is based on the second- and fourth-order moments of the
samples. The good point is that carrier phase recovery is not
required in theM2M4 estimator because it is amoment-based
estimator. It does not need to use the data decisions either.

2.2.3 SVR estimator

This estimator was designed to operate with anyM-ary PSK-
modulated signal. The SVR estimator for BPSK is [11]

ρ̂′
SV R,complex =
(β−1) ±√

(β−1)2 − [1 − β(ka−1)][1 − β(kw − 1)]
1 − β(ka − 1)

.

(11)

where ka = E
{|an|4

}
/E2

{|an|2
}
is the kurtosis of the sig-

nal and kw = E
{|wn|4

}
/E2

{|wn|2
}
is the kurtosis of the

noise.

2.3 End-to-end SNR expressions

2.3.1 Exact end-to-end SNR

The exact end-to-end SNR is derived in [15] as

γeq1 = γ1γ2

γ1 + γ2 + 1
(12)

where γ1 = E0|h1|2
N1

and γ2 = E |h2|2
N2

are the instantaneous
SNRs, E is the radiated energy at relay. The average SNRs
are γ 1 = E0ω1

N1
and γ 2 = Eω2

N2
, where ω1 = E

{|h1|2
}
and

ω2 = E
{|h2|2

}
, E {·} donotes the expectation operation.

When γ1 and γ2 are estimated using the SNR estimators in
Sect. II.A, one has

γ̂eq1 = γ̂1γ̂2

γ̂1 + γ̂2 + 1
(13)
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Table 1 MSE and RMSE of
distribution fitting errors when
SNR=20 dB

Gamma Burr Extreme value

MSE RMSE MSE RMSE MSE RMSE

SNV 1.59618 0.01263 1.68638 0.012986 2.35371 0.015342

M2M4 1.81396 0.01346 1.88009 0.013712 2.629393 0.016215

SVR 2.44885 0.01564 2.55676 0.01599 3.738382 0.019335

2.3.2 Hamonic mean

The major difficulty in (12) comes from the fact that γ is a
non-linear function of γ1 and γ2. The exact probability dis-
tribution function of γ is not available. To overcome this
difficulty, in the literature, one upper bound to the instanta-
neous SNR is widely used as the harmonic mean given by
[18] as

γeq2 ≈ γ1γ2

γ1 + γ2
. (14)

When γ1 and γ2 are estimated using the SNR estimators in
Section II.A, one has

γ̂eq2 ≈ γ̂1γ̂2

γ̂1 + γ̂2
. (15)

2.3.3 Minimum bound

Another approximation to γ uses the minimum of γ1 and γ2
as

γeq3 ≈ 1

2
min {γ1, γ2} . (16)

This bound is tight when γ1 or γ2 are large. When γ1 and γ2
are estimated using the SNR estimators in Section II.A, one
has

γ̂eq3 ≈ 1

2
min

{
γ̂1, γ̂2

}
. (17)

2.4 Gamma and Burr distributions

The distribution for the SNR estimators in (7), (10) and (11)
are not available in the literature. However, we need them
to analyze the relaying performance.Thus, we resort to the
distribution fitting tool in MATLAB. We have tried all dis-
tributions provided by this tool. Table 1 compares several
important distributions. Our tests show that the Gamma and
Burr distributions give the most accurate fitting. Figure 2
compares the data with the fitting.The table show gamma dis-
tribution and burr distribution have the smallest fitting errors.

This part gives the CDF expressions for the Gamma and
Burr distributions, as they will be used later in the deriva-
tion and also in the approximation to the PDFs of the SNR
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Fig. 2 Gamma and Burr distribution

estimators. The Gamma PDF is given by

fγ̂i (γ ) = 1

baii Γ (ai )
γ ai−1exp

(
γ

bi

)
(18)

where ai is the parameter describing the fading severity, bi
is the average SNR, and Γ (ai ) is the Gamma function. The
Gamma CDF is given by:

Fγ̂i (γ ) = 1 − Γ (ai ,
γ
bi

)

Γ (ai )
(19)

where Γ (., .) is the incomplete gamma function. The Burr
PDF is given by

fγ̂i (γ ) = ci ki
γ ci−1

(1 + γ ci )ki+1 (20)

where ci and ki are the parameters of the Burr distribution.
The Burr CDF is given by

Fγ̂i (γ ) = 1 − (1 + γ ci )−ki . (21)
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3 Derivation of CDF

This section derives the CDFs for different forms of end-to-
end SNR using the Gamma and Burr approximations to the
SNR estimators.

3.1 Exact end-to-end SNR

3.1.1 Gamma approximation

The exact cumulative distribution function Fγ̂eq1
(γ ) for (13)

using the Gamma approximations of γ̂1 and γ̂2 can be
expressed as

Fγγ̂eq1
(γ ) = Pr

[
γ̂1γ̂2

γ̂1 + γ̂2 + 1
≤ γ

]

= Pr

[
γ̂1 ≥ γ (γ̂2 + 1)

γ̂2 − γ
|γ̂2 < γ

]

+ Pr

[
γ̂1 ≤ γ (γ̂2 + 1)

γ̂2 − γ
|γ̂2 > γ

]

= I1 + I2

(22)

where γ̂1 and γ̂2 are approximated by theGammadistribution
and

I1 = Pr
{
γ̂2 < γ

} =
∫ γ

0
fγ̂2(y)dy

= Fγ̂2(y)

= 1 −
Γ
(
a2,

γ
b2

)

γa2

(23)

I2 =
∫ ∞

γ

Fγ̂1

(
γ (y + 1)

y − γ

)
fγ̂2(y)dy

=
∫ ∞

γ

⎧
⎨

⎩
1 −

Γ
(
a1,

1
b1

γ
(

y+1
y−γ

))

Γ (a1)

⎫
⎬

⎭
fγ̂2(y)dy

=
∫ ∞

γ

fγ̂2(y)dy −
∫ ∞

γ

Γ
(
a1,

1
b1

γ
(

y+1
y−γ

))

Γ (a1)
fγ̂2(y)dy

=
∫ ∞

γ

1

ba22 Γ (a2)
ya2−1exp

(
− y

b2

)
dy

−
∫ ∞

γ

Γ
(
a1,

1
b1

γ
(

y+1
y−γ

))

Γ (a1)

∗ 1

ba22 Γ (a2)
ya2−1exp

(
− y

b2

)
dy

=
Γ
(
a2,

γ
b2

)

Γ (a2)
− 1

ba22 Γ (a1)Γ (a2)
I3 (24)

with

I3 =
∫ ∞

γ

ya2−1exp

(
− y

b2

)
× Γ

(
a1,

γ

b1

(
y + 1

y − γ

))
dy.

(25)

The integral I3 can be written in the general form as

I3 =
∫ ∞

γ

xa−1exp(−bx) × Γ

(
c, d

(
x + e

x − γ

))
dx (26)

where a, b, c, d, e are constants and [19]

Γ

(
c, d

(
x + e

x − γ

))
dx = (c − 1)!e(−d) × e

[
−d
(

x+e
x−γ

)]

∗
c−1∑

k=0

k∑

l=0

dk

k! .

(
k
l

)(
x + e

x − γ

)l

.

(27)

Thus, one has

I3 = (c − 1)!exp(−(d + bγ ))

∗
c−1∑

k=0

k∑

l=0

a−1∑

r=0

dk

k!
(
k
l

)(
a − 1
r

)
(γ + e)lγ a−r−1

×
∫ ∞

0
xr−l exp(−bx)exp

[
−d

(
γ + e

x

)]
dx

(28)

∫ ∞

0
xr−1exp(−bx)exp

[
−d

(
γ + e

x

)]
dx =

2
c−1∑

k=0

k∑

l=0

a−1∑

r=0

(γ + e)
r+1
2

(
d

b

) r−l+1
2

Kl−r−12
√
bd(γ + e)

(29)

Finally,

I3 = 2(a1 − 1)!exp
[
−
(

γ

b1
+ γ

b2

)]

×
a1−1∑

k=0

k∑

l=0

a2−1∑

r=0

(
1

k!
)

×
(
k
l

)
×
(
a2 − 1

r

)
×
(

1

b2

) l−r−2
2

×
(

1

b1

) 2k−l+r+1
2 × γ

2k+2a2−l−r−1
2 × (γ + 1)

l+r+1
2

×Kl−r−1

(

2

√
γ (1 + γ )

b1b2

)

(30)

The integral I3 in (30) is solved in closed-form expres-
sion.Using (30) and after some straightforwardmathematical
manipulations, Fγeq1

(γ ) can be derived as
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Fγeq1
(γ ) = 1 −

2(a1 − 1)!exp
[
−
(

γ
b1

+ γ
b2

)]

ba22 Γ (a1)Γ (a2)

×
a1−1∑

k=0

k∑

l=0

a2−1∑

r=0

(
1

k!
)(

k
l

)
×
(
a2 − 1

r

)(
1

b2

) l−r−1
2

×
(

1

b1

) 2k−l+r+1
2 × γ

2k+2a2−l−r−1
2 (γ + 1)

l+r+1
2

×Kl−r−1

(

2

√
γ (1 + γ )

b1b2

)

(31)

where a1, a2, b1 and b2 are the parameters of the Gamma
distributions for γ̂1 and γ̂2 to be determined later.

3.1.2 Burr approximation

TheBurr distribution is found to give good approximations to
the PDFs of the SNR estimates too. The Burr CDF Fγeq1

(γ )

for the exact end-to-end SNR can be expressed as

Fγγ̂eq1
(γ ) = Pr

[
γ̂1γ̂2

γ̂1 + γ̂2 + 1
≤ γ

]

= Pr

[
γ̂1 ≥ γ (γ̂2 + 1)

γ̂2 − γ
|γ̂2 < γ

]

+ Pr

[
γ̂1 ≤ γ (γ̂2 + 1)

γ̂2 − γ
|γ̂2 > γ

]

= I1 + I2

(32)

where γ̂1 and γ̂2 are approximated by the Burr distributions
and

I1 =
∫ 0

γ

fγ2(y)dy = Fγ2(y) = 1 − (1 + yc2)
−k2 (33)

I2 =
∫ ∞

γ

Fγ̂1

[
γ (y + 1)

y − γ

]
fγ̂2(y)dy

=
∫ ∞

γ

{

1 −
[

1 +
(
1 +

(
γ (y + 1)

y − γ

)c1)−k1
]}

∗ c2 ∗ k2

∗ yc2−1

(1 + yc2)k2+1 dy

= (1 + yc2)−k2 − I3 (34)

I3 =
∫ ∞

γ

[(y − γ )c1 + γ c1(y + 1)c1 ]−k1

(y − γ )−c1k1

× c2k2
yc2−1

(1 + yc2)k2+1 dy

(35)

Thus,

Fγeq1
(γ ) = 1 −

∫ ∞

γ

[(y − γ )c1 + γ c1(y + 1)c1]−k1

(y − γ )−c1k1

× c2k2
yc2−1

(1 + yc2)k2+1 dy

(36)

where c1,c2, k1 and k2 are parameters of theBurr distribution.
The integration can’t be solved due to its complexity.

3.2 Harmonic mean

3.2.1 Gamma approximation

Repeating the steps above, we can get the Gamma approxi-
mation for the harmonic mean Fγ̂eq2 (γ ) as

Fγ̂eq2
(γ ) = Pr

[
γ̂1γ2

γ̂1 + γ̂2
≤ γ

]

= Pr

[
γ̂1 ≥ γ γ̂2

γ̂2 − γ
|γ̂2 < γ

]

+ Pr

[
γ̂1 ≤ γ γ̂2

γ̂2 − γ
|γ̂2 > γ

]
(37)

which can be solved as

Fγ̂eq2
(γ ) = 1 − 2(a1 − 1)!exp[−(b1γ + b2γ )]

ba22 Γ (a1)Γ (a2)

×
a1−1∑

k=0

k∑

l=0

a2−1∑

r=0

1

k!
(
k
l

)
×
(
a2 − 1

r

)(
1

b2

) l−r−1
2

×
(

1

b1

) 2k−l+r+1
2 × γ

2k+2a2−l−r−1
2 (γ + 1)

l+r+1
2

× Kl−r−1

⎛

⎝2

√
γ 2

b1b2

⎞

⎠ . (38)

3.2.2 Burr approximation

The harmonic mean using the Burr approximation can give
Fγ̂eq2

(γ ) as

Fγγ̂eq1
(γ ) = Pr

[
γ̂1γ̂2

γ̂1 + γ̂2 + 1
≤ γ

]

= I1 + I2

(39)

which is solved to give

Fγ̂eq2
(γ ) = 1 −

∫ ∞

γ

[(y − γ )c1 + γ yc1 ]−k1

(y − γ )−c1k1

× c2k2
yc2−1

(1 + yc2)k2+1 dy.

(40)
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3.3 Minimum bound

3.3.1 Gamma approximation

Theminimumbound has the cumulative distribution function
Fγ̂eq3

(γ ) as

Fγ̂eq3
(γ ) = 1 − (1 − Fγ̂1(γ ))(1 − Fγ̂2(γ )). (41)

Using the Gamma approximation, Fγ̂eq3
(γ ) can be solved as

Fγ̂eq3
(γ ) = 1 − (1 − Fγ̂1(γ ))(1 − Fγ̂2(γ ))

= 1 −
⎛

⎝1 − 1 −
Γ
(
a1,

γ
b1

)

Γ (a1)

⎞

⎠

∗
⎛

⎝1 − 1 −
Γ
(
a2,

γ
b2

)

Γ (a2)

⎞

⎠

= 1 −
(

γ (a1, γ b1)

Γ (a1)

)(
Γ (a2, γ b2)

Γ (a2)

)
.

(42)

3.3.2 Burr approximation

The minimum bound using the Burr approximation gives
Fγ̂eq1

(γ ) is given by

Fγ̂ eq3(γ ) = 1 − (1 − Fγ̂1(γ ))(1 − Fγ̂2(γ ))

= 1 − (1 − 1 − (1 + γ c1)−k1)

∗ (1 − 1 − (1 + γ c2)−k2)

= 1 − (1 + γ c2)−k2(1 + γ c2)−k2 .

(43)

3.4 BER for exact bound using Gamma and Burr
distributions

In addition, we analyse the average bit error rate(BER) for
Gamma and Burr distributions used in the exact SNR. The
functions have been derived below.

BER =
∫ ∞

0

(
1

2
er f c

(√
γ
))

fγeq1(γ )dγ

=
∫ ∞

0

(
1

2
er f c

(√
γ
))

dFγeq1(γ )

=
[(

1

2
er f c(

√
γ )

)
Fγeq1(γ )

]∞

0

−
∫ ∞

0

1

2

der f c
(√

γ
)

dγ
Fγeq1dγ

(44)

1

2

der f c
(√

γ
)

dγ
= − e−γ

2
√

πγ
(45)

Thus, the BER function for Gamma distribution can be
expressed as

BERgamma = 0 + 1

2

∫ ∞

0

e−γ

√
πγ

⎛

⎝1 −
2(a1 − 1)!exp

[
−
(

γ
b1

+ γ
b2

)]

ba22 Γ (a1)Γ (a2)

×
a1−1∑

k=0

k∑

l=0

a2−1∑

r=0

(
1

k!
)(

k
l

)
×
(
a2 − 1

r

)(
1

b2

) l−r−1
2

×
(

1

b1

) 2k−l+r+1
2 × γ

2k+2a2−l−r−1
2 (γ + 1)

l+r+1
2

×Kl−r−1

(

2

√
γ (1 + γ )

b1b2

))

dγ (46)

And the BER function for Burr distribution can be expressed
as

BERburr = 0

+1

2

∫ ∞

0

e−γ

√
πγ

(
1−

∫ ∞

γ

[(y−γ )c1+γ c1(y + 1)c1]−k1

(y − γ )−c1k1

×c2k2
yc2−1

(1 + yc2)k2+1

)
dydγ

= 1

2
− 1

2

∫ ∞

0

∫ ∞

γ

e−γ

√
πγ

[(y − γ )c1+γ c1(y + 1)c1]−k1

(y − γ )−c1k1

×c2k2
yc2−1

(1 + yc2)k2+1 dydγ (47)

Results for harmonic mean and the minimum hop SNR
bound can be derived similarly. They are not presented here.

4 Sample PDFs of SNR estimates and their fitting

In this section, we generate samples of the SNR estimates γ̂i
for different values of γi and different values of sample size.
Then, we use the distribution fitting tool in MATLAB to fit
the samples of the SNR estimates γ̂i to different distributions.
After trying different distributions, we have found that the
Gamma and Burr distributions fit the PDFs of γ̂i the best,as
mentionedbefore.The specific steps are described as follows:

Step 1 The value of γi is set from 1 to 40 dB with an
interval of 2 dB. Thus, we have 19 different values of γi . The
value of the sample size K is set from 100 to 1000 with an
interval of 100. Thus, we have 10 different values of K.

Step 2 For each value of γi and each value of K, we gen-
erate K samples in (2) with ρ = γi .We use the K samples in
the SNV, M2M4 and SVR estimators to obtain three different
estimators of γi .
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Table 2 ai using the SNV estimator

γi\K 100 200 300 400 500 600 700 800 900 1000

1 47.9403 97.8566 149.252 192.457 245.396 297.239 339.765 399.307 432.903 476.399

3 45.4576 95.6528 142.623 192.333 231.336 288.864 332.579 379.624 418.73 479.164

5 44.1036 89.361 136.175 175.869 227.815 269.037 324.693 360.724 421.868 446.398

7 42.306 85.2651 128.994 168.427 219.473 256.565 297.218 337.341 393.173 427.111

9 40.5695 83.0914 126.165 171.695 212.457 257.366 291.439 336.227 387.337 425.395

11 42.4255 86.9637 128.265 170.575 214.629 260.24 304.297 347.081 390.424 436.371

13 44.5994 88.5449 136.605 178.001 229.426 271.912 315.262 357.669 406.7 459.347

15 46.0872 90.907 140.059 187.633 230.276 270.46 325.156 372.518 423.939 456.776

17 46.8823 96.5346 143.443 193.687 233.981 284.828 340.595 380.669 424.201 470.669

19 48.7951 95.3367 146.971 191.973 239.717 296.22 344.025 382.618 434.423 486.616

21 49.2608 97.2791 148.054 195.566 242.884 287.253 344.647 392.773 443.948 496.86

23 47.9082 97.9482 149.375 195.05 242.578 292.267 344.858 396.92 437.952 489.116

25 47.5061 98.8366 149.327 197.36 247.521 303.653 342.738 393.299 437.762 494.938

27 48.1978 99.3182 148.502 195.883 250.674 301.263 343.526 400 445.629 487.642

29 47.7138 99.4051 151.498 204.714 250.595 303.512 351.642 388.133 439.144 491.019

31 48.4319 97.9269 150.562 199.431 241.231 299.55 337.788 402.109 438.222 495.481

33 47.8244 99.7584 148.776 200.722 249.527 299.495 350.766 401.527 445.683 502.106

35 49.8504 97.54 146.553 198.687 252.173 304.097 340.23 391.74 455.327 506.799

37 49.4519 99.997 151.088 197.165 242.5 298.495 350.819 405.339 451.317 500.957

39 49.6798 101.989 147.765 197.403 253.132 294.073 349.533 404.205 466.724 498.924

Step 3 We repeat Step 2 for 10,000 times. Thus, we will
have 10,000 estimates of γi for the SNV estimator, 10,000
estimates of γi for theM2M4 estimator and 10,000 estimates
of γi for the SVR estimator.

Step 4 Using the 10,000 estimates of γi , we perform
distribution fitting in MATLAB using the Gamma and Burr
distributions. The fitting will give us a pair of ai and bi for
Gamma and a pair of ci and ki for Burr for each estimator.

Step 5 We repeat Step 2, Step 3 and Step 4 for different
values of γi and K . Each gives us a pair of a pair of ai and
bi and ci and ki for each estimator.

Following these steps, we have a 19 × 10 matrix for ai ,
bi , ci and ki for different estimators. Table 2 gives the fitted
values of ai for different values of γi and K using the SNV
estimator. Other matrices for other parameters and other esti-
mators are also available but are not given here to save space.

Using the values of ai , bi , ci and ki fromdistribution fitting
for different values of γi and K and different estimators, we
can then use curve fitting to find ai , bi , ci and ki as functions
of γi and K Table 3 gives the curve-fitting results. Using
Table 3 and Eqs. (18)–(21), the PDFs of the estimates γ̂1 and
γ̂2 are obtained and used in Sect. 4 for derivation.

The pseudo code for the whole process is as follows.
for γi=1:2:40 dB
for K=100:100:1000
for estimate=1:1:10000 samples of three different estima-

tors for γi

Apply SNV estimator to the samples to find γ̂i
Apply M2M4 estimator to the samples to find γ̂i
Apply SVR estimator to the samples to find γ̂i
end
10000 estimates of γi for SNV estimator
10000 estimates of γi for M2M4 estimator
10000 estimates of γi for SVR estimator
Apply distribution fitting to γi for SNV estimator
Apply distribution fitting to γi for M2M4 estimator
Apply distribution fitting to γi for SVR estimator
Get ai , bi , ci and ki for γi , K and SNV estimator
Get ai , bi , ci and ki for γi , K and M24M4 estimator
Get ai , bi , ci and ki for γi , K and SVR estimator

end
end
Curve fitting ai , bi , ci and ki as functions of γi , K
Done.

5 Numerical results and discussion

This section compares the performances of the three estima-
tors (second- and fourth-order moments estimator, signal-to-
variation ratio estimator and squared signal-to-noise variance
estimator) used in the AF relaying for the end-to-end SNR.
We use computer simulation to find the mean squared error
(MSE) values for each estimator. Then, the square root of the
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Table 3 Gamma and Burr distribution parameter functions

SNV estimator

Gamma ai 0.4772*K-0.3976

Gamma bi [(2.053)/(K-12.66)]*exp(0.229226316*γi )

Burr ci 1.303 ∗ K 0̂.486

Burr ki 0.7652 ∗ K 0̂.04808

M2M4 estimator

Gamma ai 0.2357 ∗ K 1̂.037 − (0.2656 ∗ K (̂0.9876)) ∗ cos(γi

∗0.089418947) + (0.6126 ∗ K (̂0.7383)) ∗ sin(γi

∗0.089418947) − (0.00684 ∗ K (̂1.281)) ∗ cos(2 ∗ γi

∗0.089418947) + (0.1841 ∗ K (̂0.8405)) ∗ sin(2∗
γi*0.089418947)

Gamma bi [(2.073)/(K -12.53)]*exp(0.2291*γi )

Burrci (1.422 ∗ sin(0.05153 ∗ γi i + 0.1295)) ∗ K (̂0.09282

*exp(-0.1563*γi )+0.4837)

Burr ki (7914 ∗ K (̂−1.228)) ∗ exp(−(3.787 ∗ K (̂−0.3451)) ∗ γi ) + 1.054368421

SVR estimator

Gamma ai (0.1257-0.1199*cos(K*0.1624)+0.04694

*sin(K*0.1624))*γiˆ1.824 − 1.047 ∗ cos(K∗
0.05637)+0.461*sin(K*0.05637)+0.1963

*cos(2*K*0.05637)+0.2509

*sin(2*K*0.05637))

Gamma bi (-2.547+2.482*cos(γi*0.07179)+0.8113

*sin(γi*0.07179)-0.5418*cos(2*γi*0.07179)-0.9172*sin(2*γi*0.07179))*K^(-2.547+2.482*cos(γi*0.07179)+0.8113

*sin(γi*0.07179)-0.5418

*cos(2*γi*0.07179)-0.9172*sin(2*γi*0.07179))

+0.00002019*exp(0.4*γi )

Burrci (7.142-7.244*cos(γi*0.04273)-6.64*sin(γi*0.04273)+0.155

*cos(2*γi*0.04273)+3.661*sin(2*γi*0.04273))

∗K 0̂.539655

Burr ki (45.65*exp(-0.002548*K))

*exp(-0.609752631578947*γi )-66.47+79.27*cos(K*0.0007496)+43.16

*sin(K*0.0007496)-12.41*cos(2*K*0.0007496)-19.09*sin(2*K*0.0007496)

MSE is calculated to obtain the estimator root mean squared
error (RMSE) in dB.

5.1 Different estimator performances

Figure 3 shows the root mean squared errors by using
100 samples for the exact end-to-end SNR, the harmonic
mean and the minimum hop SNR bound. One sees that for
small SNRs, the SNV estimator has higher RMSE than the
SVR estimator and the M2M4 estimator. Then, all of them
decrease when the SNR increases. The M2M4 estimator and
the SNV estimator have similar RMSE values when the true
value of SNR is larger than 10 dB, but the SVR estimator’s
RMSE increases when the SNR is larger than 15 dB.

Comparing the accuracies of the bounds, we can see from
Fig. 3 that the estimators have the largest RMSE for the exact
end-to-end SNR and the harmonic mean and the smallest
RMSE for the minimum hop SNR bound. This is because the
minimum hop SNR bound is only affected by the estimation
error of either γ̂1 or γ̂2, while the exact ann harmonic mean
are affected by both.

Figure 4 shows three estimators’ root mean squared errors
by using 1000 samples. Similar observations can be made.
Again, the SNV estimator and the M2M4 estimator have
decreasing RMSE when the SNR increases, and the SVR
estimator has RMSE first decrease then increase when the
SNR increases.

Figure 5 shows the estimator bias by using 100 and 1000
samples for the exact end-to-end SNR. The SNV estimator
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(c)

(b)

(a)

Fig. 3 Estimator root mean squared error for the a exact bound b har-
monic mean bound c minimum hop SNR bound using 100 samples

(a)

(b)

(c)

Fig. 4 Estimator root mean squared error for the a exact bound b har-
monic mean bound c minimum hop SNR bound using 1000 samples

has a decreasing bias when the SNR increases, and the SVR
estimator has a bias first increasing then decreasing when
the SNR increases. Three estimators have similar bias values
when the SNR is larger than 5 dB.

Comparing the performances of the SNV,M2M4andSVR
estimators using the figures, we conclude that the SVR esti-
mator performance is worse than the other two estimators,

(a)

(b)

Fig. 5 Estimator bias for the exact end-to-end SNR using a 100 sam-
ples b 1000 samples

(a)

(b)

(c)

Fig. 6 The cumulative distribution function of the a exact end-to-end
SNR b hamonic mean end-to-end SNR cminimum end-to-end SNR for
SNR=11 dB using the Burr distribution

while the SNV estimator has the best performance for large
SNRs and the M2M4 estimator has the best performance
for small SNRs. All estimator performances are improving
when increasing the sample size. However, the M2M4 esti-
mator and SVR estimator have similar performances in most
cases.

5.2 Comparing the CDFs of end-to-end SNR estimate

Figure 6 shows the CDFs by using the Burr distribution for
the exact, the harmonic mean, the minimum hop SNR bound
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Fig. 7 Bit-error-rate (BER) for the a Gamma distribution b Burr dis-
tribution

with a fixed SNR 11 dB.We can see that the SNV andM2M4
estimators have overlapping CDFs in all cases, all of which
approach 1 when γ increases.

By comparing the CDF figures of different bounds, we
can see the exact end-to-end SNR has the best performance
since the three estimators approach 1 faster than the other
two bounds.

5.3 Bit-error-rate for Gamma and Burr distribution

Figure 7 shows the the bit error rate using the Gamma
and Burr approximations when K=100 for different val-
ues of SNR. Both gamma distribution and burr distribution
have decreasing bit-error-rate when the SNR increases as
expected. Also, their bit error rate performances are almost
identical, indicating that both approximations have similar
accuracies.

Similar observations can be made for gamma distribution
and burr distribution. Comparing the performance of gamma
distribution and burr distribution, we conclude that they have
similar performances in most cases.

6 Conclusion

This paper has used the distribution fitting toolbox and curve
fitting toolbox in MATLAB to approximate the SNR esti-
mates of SNV,M2M4andSVRusing theGammadistribution
and the Burr distribution.

The estimator root mean squared error has been simulated
and simulation shows that the SNV estimator has the best
performance for small SNRs and the M2M4 estimator has
the best performance for large SNRs, while SVR has the
worst performance.

Also, the CDF for each distribution for different expres-
sions of the end-to-end SNR have been derived.
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