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ABSTRACT 

We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in 

melt-textured YBa2Cu3O7- (Y123) samples with 30 wt% of Y2Ba1Cu1O5 (Y211) phase, in order to 

investigate anomalous paramagnetic moments observed during the experiments. FC magnetic 

relaxation experiments were performed under controlled conditions, such as cooling rate and 

temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. 

Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive 

moments during FC experiments, and related to the magnetic flux compression into the samples. 

After different attempts our experimental data could be adequately fitted by an exponential decay 

function with different relaxation times. We discuss our results suggesting the existence of different 

and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different 

time intervals. This work is one of the first attempts to interpret this controversial effect in a simple 

analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the 

magnetic moment. However, the results may be useful to develop models to explain this interesting 

and still misunderstood feature of the paramagnetic Meissner effect. 
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1. Introduction 

 

     The Meissner effect is one of the most important features of the superconducting state, 

characterized by a diamagnetic response showed by a superconducting material due to exclusion of 

the magnetic flux from its interior, when the temperature is below the critical temperature (TC). The 

effect can be observed during a field-cooled (FC) process, when the sample is cooled under an 

applied magnetic field. In type-II superconductors a perfect diamagnetism can be observed only 

when the magnetic applied field is lower than HC1(T), the lower critical field. When the magnetic 

field is higher than HC1(T) but lower than HC2(T), the upper critical field, the magnetic field 

penetrate in the form of vortices, and the material exhibits an incomplete Meissner effect. 

    However, in several situations the superconducting material exhibits a paramagnetic response 

during a FC process, contrasting with the usual diamagnetic behavior, and the effect is called 

Paramagnetic Meissner Effect, or simply PME. In the PME the magnetic flux is not expelled, but 

penetrates into the material creating a paramagnetic state. In some cases the positive magnetic 

moments can increase with the applied magnetic field in such way that the PME is reinforced with 

the increase of the magnetic field. Originally the PME was observed in polycrystalline samples of 

high temperature superconductors [1,2], however, the effect has been observed in several 

superconducting systems and under different magnetic field ranges [3-18].  

   A curious and interesting feature is the anomalous time dependence of the FC magnetic moment 

observed in some superconducting samples [7,13,14,19,20]. This behavior manifests itself as a 

strong paramagnetic relaxation, contrasting with the expected diamagnetic relaxation. The 

paramagnetic relaxation generally increases with time and shows dependencies with the magnetic 

field, temperature and the cooling rate employed [13]. In spite of the numerous efforts to explain the 

PME [18,21-25], there is not a consistent model to explain the paramagnetic relaxation observed in 

samples that exhibit the PME. 

     In this study we report on FC magnetic moment relaxation experiments in two melt-textured 

YBa2Cu3O7- samples that exhibit the PME and enhanced vortex pinning characteristics. Our goal is 

present a simple model to describe the functional behavior of the paramagnetic relaxation exhibited 

by our samples, that can be useful to understand the possible vortex dynamics acting during the 

time evolution of the PME.  
 

2. Experimental details 

 

2.1. Sample preparation 

 

     The two melt-textured YBa2Cu3O7−δ samples investigated in this work were grown at the 

Institute of Materials Science of Barcelona, and at the Department of Materials Science and 

Metallurgical Engineering of the University of Barcelona, Spain. The samples, labeled as MT30-I 

and MT30-II, were produced by the top-seeding technique. Single crystalline seeds of the 

Nd1Ba2Cu3O7−δ superconductor were placed on top of the YBa2Cu3O7−δ pellets to induce the 

crystallographic texture. Both samples were grown starting from pre-sintered ceramic pellets of 

YBa2Cu3O7−δ containing 30 wt% of the non-superconducting Y2Ba1Cu1O5 (Y211) phase.  

    The melt-textured pieces were cut with a diamond saw in small parallelepipeds with 3.0mm in 

length along the ab plane, 2.1mm in thickness (ab plane) and 2.0mm along the c-axis. The samples 

were characterized by electron microscopy in order to verify the grain alignment. Fig. 1 shows an 

image obtained from MT30-I sample using a scanning electron microscope Nova Nanolab 600 from 

Fei Company, where long platelets (superconducting grains) can be seen along the ab plane, typical 

of good melt-textured samples.  

 



2.2. Magnetic measurements 

 

  The magnetic measurements were performed with a MPMS-XL SQUID magnetometer and a 

vibrating sample magnetometer (VSM), both from Quantum Design, in magnetic fields up to 5T 

applied along the c-axis and parallel to the ab plane. The experimental results were always corrected 

for temperature gradient and demagnetization effects. Initially the magnetic moments were 

measured as a function of the temperature according to the zero-field cooling (ZFC) and field-

cooled (FC) prescriptions. The ZFC results (not shown here) always showed the usual diamagnetic 

response, due to shielding effects. The FC measurements were performed with two different 

procedures namely, field-cooled cooling (FCC) and field-cooled warming (FCW) prescriptions.  

  In the FCC prescription the magnetic moment was measured while cooling the sample to 

temperatures below the critical temperature (TC) in an applied magnetic field. In the FCW 

prescription, always performed in sequence and immediately after the FCC experiment, the 

magnetic moment was measured under the same constant magnetic field while the sample warms up 

to temperatures above TC.  

  The FC magnetic moment relaxation experiments were performed at fixed temperature and 

magnetic field. In this case, similar to FCC prescription, the sample is cooling down to a 

temperature below TC, under a constant magnetic field and also under a fixed cooling rate. In 

sequence the magnetic moment was measured as a function of time in a constant magnetic field and 

a fixed temperature for long time intervals. Part of the experimental results employed in this study 

were extracted from our previous works, however, such measurements were analyzed in details and 

for the first time in the present work.  

 

3. Results and discussion 

 

3.1. FC measurements 

 

      The PME in our samples was clearly identified by FC measurements, as shown in Fig. 2, for 

magnetic fields of 2T and 5T applied along the ab plane in the MT30-II sample. For low magnetic 

fields the magnetic response is diamagnetic, as shown in the inset of the Fig. 2 for a magnetic field 

of 0.06T. Similar behavior was found for MT30-I sample. Inspecting the Fig. 2, for magnetic fields 

of 2T and 5T, it is possible to observe irreversibilities among FCC (closed circle) and FCW (open 

square) measurements. These irreversibilities are stronger for the magnetic field of 2T, as indicated 

by the arrows, where the FCW magnetic moment is more positive than the FCC magnetic moment. 

These irreversibilities were also observed in previous works [7,13,17,19], and have been attributed 

to time effects. For the magnetic field of 0.06T the Meissner effect is conventional (diamagnetic 

response) and such irreversibilities are inexistent. 

       In our view the PME results in our samples may be explained in terms of the compression of 

the magnetic flux, as originally proposed by Koshelev and Larkin [23]. According to this idea, a 

strong nonequilibrium compressed flux state could be originated and stabilized by an 

inhomogeneous cooling of the superconducting material below TC. In this scenario, that can be 

possible in small samples, and even in single crystals [7,13,14,17], the surface of the material could 

become superconducting before the bulk and the magnetic flux could be expelled outside or inside 

the material. As a possible consequence, if the magnetic flux is expelled inside the material it could 

be pushed into its interior, originating a flux compressed state, that can be stabilized by pinning 

centers, in our case the Y211 phase. During the magnetic flux compression the sample can admit the 

entrance of new vortices, increasing the positive moment with time and causing the FCC/FCW 

irreversibilities. These irreversibilities, as shown in the Fig. 2, are a clear evidence of relaxation 

processes occurring in our samples. Similar results can be found in the literature [7,13,14,17,20, 

24]. On the other hand, when low magnetic fields are applied, the magnetic flux compression 

mechanism is weaker than the conventional Meissner effect, and a diamagnetic moment can be 

observed, such as shown in the inset of the Fig. 2. 



3.2. Paramagnetic relaxation measurements and functional analysis 

 

      We performed specific FC magnetic relaxation experiments, according to the experimental 

procedures described in the section 2.2, in order to investigate the time evolution of the FC 

magnetic moment in our samples. Some representative results are shown in the Fig. 3.  

        The Fig. 3 shows three FC magnetic relaxation measurements (open circle), performed under 

different cooling rates, magnetic fields and temperatures. The Figs. 3a and 3b are representative of 

the results obtained with MT-I sample, while the Fig. 3c is representative for the MT-II sample. A 

pronounced paramagnetic relaxation can be observed in all experiments, increasing with time and 

with no apparent tendency to saturation for long time intervals. Similar results were found in several 

experimental situations (not shown here) for both samples, varying the cooling rate, magnetic field 

and temperature.  

       The results shown in the Fig. 3 are not new in the literature, and have been reported in previous 

works [7,13,14,19]. They may be interpreted as the admission of extra magnetic flux into the 

sample as a consequence of the magnetic flux mechanism at fixed temperatures [13], as discussed in 

the section 3.1. This anomalous behavior is the opposite to the expectations based on the flux-creep 

model [26].  

      In order to understand the functional behavior of the magnetic relaxation shown in the Fig. 3, 

and the vortex dynamics acting during the process, we proceeded some tentatives to fit the 

experimental data. An initial and obvious choice was a simple exponential function, like M = Ae-t/t0
, 

however, the results were not satisfactory. The other choice was a double exponential function, 

 

                                                          M(t) = M0 + A1e
-t/t1 +  A2e

-t/t2                     ,                                                                    

(1)             

 

where M(t) is the magnetic moment, M0, A1 and A2 are parameters obtained from the adjust, and t1 

and t2 are the characteristic times. The fitting with the double exponential function proved to be 

satisfactory and adequate to our experimental data. Some representative results are shown in the 

Fig. 3, represented by the black solid curve over the experimental data (open circle), with the 

characteristic times specified in each curve. As can be seen in the Fig. 3, there is a clear difference 

in the order of magnitude among the characteristic times t1 and t2 for all results. This behavior 

apparently indicates the existence of two different mechanisms acting during the relaxation process 

in our samples. 

     The combination of two exponential functions allowed us to define the time intervals of the 

dominance of each one in the Eq. (1). Consequently we performed a separate fitting in order to 

estimate these limits. The results are shown in the Fig. 4, for the same measurements presented in 

the Fig. 3. In this case the function adopted was 

 

                                                                  M(t) = M0 + Ae-t/T                                           ,                                                            

(2) 

 

where M(t) is the magnetic moment, M0 and A are parameters obtained from the adjust, and T is the 

characteristic time. The two black solid curves over the experimental data represent the fitting with 

(2) for each curve. Obviously the fitting quality in this case are not the same that the Fig. 3, due to 

splitting in two independent exponential functions. However, the Fig. 4 shows, for the three 

measurements, an exponential function that quickly saturates in the early stages of the relaxation 

process, followed by an exponential function that dominates the subsequent time interval. 

    In our view, the results presented in the Figs. 3 and 4 may be explained assuming that this 

behavior is representative of the existence of two different magnetic flux dynamics responsible for 

the admission of extra vortices inside the samples. These different magnetic flux dynamics can act 

in different time intervals, as a consequence of the compression flux scenario due to PME.   

       In the early stages of the magnetic relaxation the vortices penetrate in the grain junctions (weak 



links), configuring a Josephson dynamics scenario. Melt-textured samples are known to have 

oriented long platelets microstructure, as can be seen in the Fig. 1. As a consequence, such 

microstructure shows a reduced number of weak links. Therefore, melt-textured materials exhibit a 

reduced granularity, however, although the number of weak links is reduced in this material, there 

are spaces among the superconducting grains that allow the entrance of extra vortices. 

Consequently, the Josephson dynamics is responsible for the fast relaxation observed in the early 

stages of the relaxation process, followed by a subsequent saturation, as can be seen in the Fig. 4. 

We believe that the saturation of the magnetic moment is exactly due to reduction in grain junctions, 

allowing only a limited amount of vortices penetrate into the sample. 

    On the other hand, the black solid curves fitting the long time intervals in the Fig. 4 may be 

representative of the Abrikosov dynamics. The Abrikosov dynamics can be characterized by the 

penetration of vortices into the superconducting platelets in the form of intragrain vortices 

(Abrikosov vortices), with the subsequent pinning by the Y211 particles dispersed into the grains. 

This mechanism practically dominates the relaxation process, as can be seen in the three 

measurements shown in the Fig.4. The two magnetic flux dynamics are indicated in the Fig. 4a. 

More results are presented in the Fig. 5 for different experimental conditions, corroborating the 

results presented in the Figs. 3 and 4. The splitting of the magnetic relaxation in two components 

can be clearly observed for both samples, independent on the cooling rate and the magnetic field 

employed, configuring the different magnetic flux dynamics proposed, as indicated in the Fig. 5b.  

 

4. Conclusion 
 

     We performed an experimental study about the anomalous FC magnetic relaxation in two melt-

textured YBa2Cu3O7−δ samples that exhibit the paramagnetic Meissner effect (PME). The purpose 

of this work is to investigate the functional behavior and consequently the magnetic flux dynamics 

involved during the relaxation process. We believe that our PME can be described in terms of the 

flux compression model developed by Koshelev and Larkin [23]. Based on a fitting with a double 

exponential function, we believe that our experimental data can be governed by two different 

magnetic flux dynamics, in different time intervals of the relaxation process. In the early stages a 

Josephson-type dynamics is the dominant mechanism, responsible for the admission of extra 

vortices among the superconducting grains, reinforcing the flux compression and consequently the 

establishment of the PME. After the relaxation process is governed by an Abrikosov-type dynamics, 

with the magnetic flux being moved to inside the superconducting grains and pinned by the Y211 

particles dispersed.   

      Finalizing, our results constitute a simple and interpretative analysis, sometimes speculative, of 

the FC magnetic relaxation in samples that exhibit the PME. Due to the lacking of works exploring 

the functional behavior of the magnetic relaxation connected to PME, our results may supply 

important elements to more detailed models on this interesting effect. 
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Figure captions 
 

Fig. 1. SEM image of the MT30-I sample showing a platelet structure stacked along the c-axis, 

typical of melt-textured materials.  

 

Fig. 2. FCC (closed circle) and FCW (open square) magnetic moment measurements in the MT30-

II sample for magnetic fields of 2T and 5T, applied along the ab plane. Irreversibilities can be 

observed, as indicated by the arrows. The inset shows the same measurements for a magnetic field 

of 0.06T. The result for 5T was obtained using a SQUID magnetometer, in the first charging of the 

magnet (no overshoot) after the whole magnetometer was warmed up to room temperature. 

 

Fig. 3. FC magnetic relaxation measurements (open circle) for the samples MT30-I and MT30-II 

under different experimental conditions, performed by a vibrating sample magnetometer (VSM). 

The measurements were obtained for the first charging of the field, after the magnetometer be 

warmed up to room temperature and cooled again. The black solid lines are fittings with the Eq. (1), 

with the respective characteristic times indicated for each curve. M0 is the magnetic moment when t 

= 0 s.   

 

Fig. 4. The splitting of the respective fittings presented in the Fig. 3 using the Eq. (2). The 

corresponding vortex dynamics for each time interval are indicated in the Fig. a. 

 

Fig. 5. Left side: FC magnetic relaxation measurements performed by a SQUID magnetometer 

under different experimental conditions for both samples, coupled with fittings from the Eq. (1) and 

similar to the results presented in the Fig. 3. Similar to results of the Fig. 3, the measurements were 

obtained for the first charging of the field, after the magnetometer be warmed up to room 

temperature and cooled again. Right side: The respective splitting from the Eq. (2) with the 

corresponding vortex dynamics, similar to the results presented in the Fig. 4. 
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