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Abstract

This paper presents a study of two lightweight steels, Fe-15Mn-10Al-0.8C-5Ni and

Fe-15Mn-10Al-0.8C where strength is dependent upon the microstructure of 2nd phase

precipitates. We investigate the effects of annealing temperature from 500 ◦C to 1050
◦C on the precipitation of ordered phases size and morphology through phase-field

modelling and experimental studies based on laboratory scale annealing and charac-

terization. The chemical composition of carbides and B2 compounds as a function of

isothermal annealing temperature and the matrix within which they formed are eluci-

dated in this study. It is found that nano-sized disk-shaped B2 particles form at higher

annealing temperatures (e.g. 900 ◦C and 1050 ◦C). The simulation results on car-

bides demonstrated the effects of energetic competition between interfacial energy and

elastic strain energy on the morphological evolution of carbides. In addition to that,

different ordering behaviours observed depending on the Ni content into the steel. The

results demonstrate processing route designed through the phase-field simulations led

to a better combination of strength and ductility. The tensile testing results indicate an

increase in the strength and elongation when B2 precipitate morphology changes from

micro-size faceted shape to nano-size disk-like particles.
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1. Introduction

Lightweight steel alloys based on the Fe-Al-X alloying system (where X stands

for Mn, Ni and/or C) combine the low density and corrosion resistance of aluminium

with the low cost of manufacturability of steel based alloys. Fe-Mn-Al-C steels show

significantly varying characteristics, depending on their respective Al concentration5

[1]. Depending on the constituent phases in their microstructure, lightweight steels can

possess a wide range mechanical properties, with yield strength (YS) from 500 to 940

MPa, ultimate tensile strength (UTS) from 710 to 1020 MPa and tensile elongation

(TE) from 8 to 78 % [1]. The key to obtain desired properties is dependent upon the

ability to form complex strengthening precipitates [2, 3, 4, 5, 6, 7, 8, 9, 10]. In addition10

to κ-carbide, B2 (space group: Pm3M) and DO3 (space group: Fm3M) ordered phases

can also appear in the lightweight steels [17, 18]. Depending on the chemical composi-

tion and heat treatment conditions, β-Mn phases can also form in the microstructure of

low density steels [11, 12, 13, 14, 15, 16]. In recent years, two main lightweight steel

grades have been explored, namely ferritic Fe-Al (with an Al content up to 10 wt.%15

and additions of microalloying elements such as B, V, Ti and Nb (<0.03 wt.%)) and

austenitic high-Mn (Fe-Al-Mn-C) steels [19, 20]. These steels possess a much better

strength-to-weight ratio (specific strength) and toughness, and their density is reduced

from ∼7.85 to 6.5 g/cm3 compared to transformation induced plasticity (TRIP) steels

and twinning-induced plasticity (TWIP) steels [21, 22, 23, 24, 25, 26].20

The formation and metallurgical control of the ferrite phase, (Fe,Mn)3AlCx κ-

carbide (perovskite-type crystal structure) and Al-containing intermetallic compounds,

which determine the mechanical properties and may result in the poor rollability of

this type of steel [26, 27, 28], is one the main aims of the current studies. The cur-

rent challenges for manufacturing high Al lightweight steels include: re-oxidation and25

inclusion control of the liquid metal (increasing amount of Mn can lead to the for-

mation of MnS inclusion, while decreasing Mn content results in the formation of α

matrix with poor formability), clogging in continuous casting caused by the reactivity
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of Al with the mold slag and cracking during cold working [29]. Lu and Qin showed

that cold workability of lightweight steels is affected by the lattice misfit and interface30

shape between κ and matrix [29]. They employed high density short duration electric

current pulses for fabrication of this type of steel and demonstrate that electric current

promotes the spheroidization and refinement of κ structure and leads to a decrease in

the volume fraction of κ-carbides. Yao et al. also reported that the strain caused by the

κ/γ mismatch results in the occupation of Al sites in κ-phase by Mn atoms and thus35

leads to off-stoichiometric concentration of Al[30]. Other recent studies on duplex

austenite-ferrite lightweight steels directed towards the effect of annealing tempera-

ture on the microstructural evolution and mechanical properties [31, 32], work hard-

ening behaviour [33], and tensile deformation [34]. In 2014, the Minerals, Metals and

Materials Society organized a special lightweight steel meeting where recent research40

progress of low density steel was discussed and various in-depth studies on the metal-

lurgical behaviours, thermodynamic calculations and hot deformation mechanisms of

lightweight steels were published [35, 36, 37]. Ding et al. studied different grades of

lightweight steels with Mn content less than 20% and Al content more than 8% (Fe-

12Mn-8Al-0.8C and Fe-18Mn-10Al-(0.8-1.2)C) and demonstrated that the ductility of45

duplex(austenite+ferrite) steels is less than that of steels with microstructure consisted

of austenite and dispersed κ-carbide. However, their results showed that TRIPLEX

lightweight steels (ferrite+austenite+κ-carbide) exhibits similar mechanical properties

to that of austenitic lightweight steel [38, 39].

Nickel is one of the most effective alloying element for forming B2 with aluminium50

[40]. A recent study showed that nickel can expand the stability domain of B2 above

the recrystallization temperature (800-900◦C) of deformed austenite and improve the

mechanical properties of lightweight steels [41]. However, although NiAl-type B2 in-

termetallics are inherently strong, their inadequate ductility at room temperature con-

stitutes a bottleneck that limits their widespread engineering applications [42]. One55

major reason for the low ductility of Ni-containing lightweight steels is the ordering

of the α (body-centred cubic [BCC]) phase and its transformation to B2, which results

in the formation of brittle, coarse (> 100µm, HV=492 HV10) B2 stringer bands. One

approach to improve the ductility is to form fine B2 precipitates in the α phase and,
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thus, avoid the formation of coarse, brittle B2 stringer bands through an appropriate60

treatment [43]. In such a way, the α matrix provides the ductility whereas the nano-

sized B2 precipitated in α yield the desirable strength. Therefore, this strategy can lead

to an elevated strength and improved ductility. Moreover, the precipitation of coarse

triangle-like (> 2µm) B2 precipitates at the grain boundaries results in very poor rolla-

bility making the industrial-scale production of this type of lightweight steels difficult.65

The κ-carbides and B2 particles contribute to the strength only if their shape, size and

density are carefully designed [44] Otherwise, the precipitates will lead to brittleness,

causing poor low-temperature ductility and the initiation of cracking (stress concentra-

tion) during thermomechanical processing.

The morphology of the precipitates can be explained in terms of the competing en-70

ergetic contributions during the growth process [45]. Whereas the gradual increase in

the importance of the strain energy relative to the interfacial energy may be known, the

point during growth at which the effect is noticeable would naturally depend on the sys-

tem, and the quantitative predictability of this point is critical when designing a micro-

structure in which the precipitate morphology is key. Also the additive Ni element75

substantially changes the precipitations of ordered phases and their chemical compo-

sitions. Such a study is of scientific importance since the precipitation behaviours of

ordered phases are substantially different in austenite and ferrite due to the different

formation processes as well as different coherencies with the matrix [42, 46, 47]. In

duplex microstructure, ferrite and austenite have different compositions. Thus, the80

composition of ordered phases will be different in each phase depending on the Ni

content.

The first aim of the present study was to simulate the morphology of ordered phases

in Fe-Mn-Al-C system for the evolution of κ-carbides and in Fe-Al and Fe-Al-Ni for

the evolution of B2 intermetallic compounds. This was done in order to better under-85

stand the microstructure evolution during the ordering processes at different isothermal

holding temperatures in both γ and α phases. In this regard, phase-field modelling was

employed because this method is currently considered as the most powerful approach

for predicting the mesoscale morphological evolution [48, 49, 50, 51, 52, 53, 54, 55, 56,

57]. For the simulation of the B2 phase in binary Fe-Al and ternary Fe-Al-Ni systems,90
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a phase-field model was developed based on the Ginzburg-Landau theory initially pro-

posed by Khachaturyan [58, 59] and further developed by Poduri and Chen [63]. In

order to study the energetic contributions of interfacial energy and elastic strain energy

on the morphological evolution of κ phase, a phase-field method connected to CAL-

PHAD was employed based on our recent report [61], where a three sublattice model95

was used to allow intermixing between Mn and Fe atoms [62].

It is worth to mention that the primary purpose of these simulations was to investi-

gate the combined effects of ordering and long-range elastic interaction on the growth

and coarsening kinetics and the microstructural development of ordered phases in light

weight steels. For this, composition order parameter was chosen since it enabled us to100

formulate the relationship between the gradient coefficients in the coarse grained free

energy model and the interatomic interaction energies in the microscopic free energy

model.

These simulations enabled us to design the thermal profile of heat treatments more

precisely. Based on the simulation results, the heat treatments were then performed at105

500◦C, 700◦C, 900◦C and 1050◦C for two grades of lightweight steels: the first grade

contained 5%Ni and the second grade was Ni-free. For each heat treated sample, the

following changes were investigated:

(i) The microstructural evolution e.g. the formation of ordered phases in the γ and

α phases as a function of isothermal holding temperature.110

(ii) The effect of Ni on the microstructural evolution in both disordered γ and α

phases.

(iii) The change in the chemical compositions of the ordered phases as a function of

temperature, the chemical composition of the bulk material and the phase within

which they were formed.115

(iv) The room temperature mechanical properties of each heat treated sample and its

correlations with the constituent phases.

5
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2. Methods

2.1. Experiments

2.1.1. Materials120

Ni is expected to substantially change the precipitations of ordered phases and their

chemical compositions and is one of the most effective alloying elements for forming

B2 precipitates. A scientific study explaining the precipitation in austenite vs. ferrite

and the role of Ni would be of technical importance when designing low density steels.

For this purpose, two duplex alloys Fe-15Mn-10Al-0.8C-5Ni (S1) and Fe-15Mn-10Al-125

0.8C (S2) were selected for the current study. This enabled us to compare the effects of

FeAl-type B2 intermetallic in austenite vs. ferrite (S1) and the role of Ni compounds

on both the strength and ductility with those of NiAl-type B2 (S1 vs. S2). Furthermore,

the base composition of Fe-15Mn-10Al-0.8C-5Ni was used as a base-line composition

since it corresponds to the one reported in literature [41] where the role of ordered pre-130

cipitates was noted but the kinetics of formation was not investigated and the formation

of disk-like B2 particles was not reported.

The steels under study were produced by an induction melting furnace. The hot-

rolled material was first solution-treated for 35 min at 1250◦C in a protective argon

atmosphere and then water quenched. The samples were prepared with dimensions of135

3-mm (length), 3-mm (width) and 1-mm (thickness). Subsequent ordering treatments

were applied at 500 ◦C and 700 ◦C (for κ and B2 ordering), and 900 ◦C for B2 or-

dering. We also performed an annealing treatment at 1050 ◦C because, based on our

simulations, we anticipated that Ni-enriched nanosized B2 precipitates can form in the

α phase at this temperature. The reason to select such a high annealing temperature was140

only to validate our simulation results and these materials are not designed to withstand

such high temperature. After each heat treatment, the samples were water-quenched.

2.1.2. Characterisation and tensile test

The ordered phases were characterized by selected-area diffraction patterns (SADPs),

bright-field (BF) images of transmission electron microscopy (TEM) JEOL 2000FX.145

Thin foils for TEM observation were prepared by twin-jet polishing in a mixture of
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10% perchloric acid and 90% ethanol with an applied potential of 25 V. The steel spec-

imens were, also, polished and etched in a 5% nital solution and the microstructures

were observed by a Carl Zeiss Sigma Field Emission Scanning Electron Microscope

(FE-SEM) operated at 20 kV. The equipment was fitted with high speed X-ray energy150

dispersive spectroscopy (EDS). The subsequent tensile testing was performed on sub-

sized specimens according to ASTM E8M in an Instron 5800R system at a strain rate

of 10−3/s.

2.2. Phase-field models

2.2.1. B2 intermetallic compound155

A microscopic phase-field model was employed based on the Ginzburg-Landau

theory [58]. In this approach, the atomic configuration and morphology were expressed

by single-site occupation probability functions PA(r, t), PB(r, t), and PC(r, t), which

correspond to the probabilities of finding an A, B, or C atom at any given lattice site r

at a given time t. Since PA(r, t) +PB(r, t) +PC(r, t) = 1.0 for a ternary system, only160

two equations are independent at each lattice site. Assuming the independent variables

are PA(r, t) and PB(r, t), their evolution can be expressed as:

dPA(r, t)

dt
=

1

kBT

∑
r′

[LAA(r− r′)
∂F

∂PA(r′, t)
+ LAB(r− r′)

∂F

∂PB(r′, t)
]

dPB(r, t)

dt
=

1

kBT

∑
r′

[LBA(r− r′)
∂F

∂PA(r′, t)
+ LBB(r− r′)

∂F

∂PB(r′, t)
] (1)

where kB is the Boltzmann constant, T is the temperature, Lαβ(r − r′) (α and

β=A, B or C) is the kinetic coefficient proportional to the exchange probabilities of

elementary diffusion jumps from the lattice site r to r′ per unit of time and F is the165

total free energy of the system and can be expressed as:
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F = −1

2

∑
r

∑
r′

[VAB(r− r′)PA(r)PB(r′) + VBC(r− r′)PB(r)PC(r′)

+ VAC(r− r′)PA(r)PC(r′)] + kBT
∑
r

[PA(r)ln(PA(r)) + PB(r)ln(PA(r))

+ PC(r)ln(PC(r))] (2)

VAB(r − r′) is the effective interactive energies between A and B at lattice site

r and r′ which contains both the short-range chemical interaction and the long-range

strain-induced elastic interaction. Hence, we can write:

VAB(r− r′) = VAB(r− r′)ch + VAB(r− r′)el (3)

In the current study, the fourth nearest-neighbour interatomic model was used, and170

the data for the interchange energies were deducted from Refs [63, 64, 65]. Fourier

transforming both side of the kinetic equation (1) gives:

dP̃A(k, t)

dt
=
L̃AA(k)

kBT
{ṼAC(k)P̃A(k, t)+

1

2
[−ṼAB(k)+ṼBC(k)+ṼAC(k)]P̃B(k, t)

+ kBT{ln(
PA(r, t)

1− PA(r, t)− PB(r, t)
)}k}+

L̃AB(k)

kBT
{ṼBC(k)P̃B(k, t)

+
1

2
[−ṼAB(k)+ṼBC(k)+ṼAC(k)]P̃A(k, t)+kBT{ln(

PA(r, t)

1− PA(r, t)− PB(r, t)
)}k}

(4)

8
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and

dP̃B(k, t)

dt
=
L̃BA(k)

kBT
{ṼAC(k)P̃A(k, t)+

1

2
[−ṼAB(k)+ṼBC(k)+ṼAC(k)]P̃B(k, t)

+ kBT{ln(
PA(r, t)

1− PA(r, t)− PB(r, t)
)}k}+

L̃BB(k)

kBT
{ṼBC(k)P̃B(k, t)

+
1

2
[−ṼAB(k)+ṼBC(k)+ṼAC(k)]P̃A(k, t)+kBT{ln(

PB(r, t)

1− PA(r, t)− PB(r, t)
)}k}

(5)

where {ln( PA(r,t)
1−PA(r,t)−PB(r,t) )}k, {ln( PB(r,t)

1−PA(r,t)−PB(r,t) )}k, P̃A(k, t), P̃B(k, t), L̃AA(k),

L̃AB(k), L̃BA(k), and L̃BB(k) are Fourier transforms of corresponding functions in

real space.175

2.2.2. κ-carbide

We simulated the precipitation of the ordered κ-carbide from both disordered γ

and α phases, according to our recent report [61]. The Gibbs free energy for the multi-

component Fe-Mn-Al-C systems was connected to the CALPHAD-type equations in

order to provide realistic thermodynamic parametrization. We employed a Gibbs en-180

ergy single formalism for the κ/γ and κ/α phases with a three-sublattice model for

this quaternary system [62]. In these simulations, the order parameter of each element

corresponds to long-range ordering in the κ phase because the order parameter is ex-

pressed using the element site fractions of a three-sublattice model in the CALPHAD

method [61, 66].185

The site fraction of each alloying element ’i’ (i=Al, Mn, C or Va) on each sublattice

’s’ was represented by y(s)i . The molar Gibbs energy for the disordered γ and α and

ordered κ-carbide phases was written as [61]:

9
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G(ci, y
(s)i) = Gdisord(ci) + ∆Gord

= [
∑
i

ciG
disord
i +RT

∑
i

cilnci+

∑
i

∑
j>i

cicj

m∑
n=0

(nLdisordi:j (ci − cj)n)+

∑
i

∑
j>i

∑
k>j

cicjckL
disord
i,j:k ] + [

∑
i

∑
j

∑
k

y
(1)
i y

(2)
j y

(3)
k ∆GL

′12
i:j:k+

RT

4

∑
s

∑
i

y
(s)
i ln(y

(s)
i )

+
∑
s

∑
i

∑
j>i

y
(s)
i y

(s)
j

1∑
n=0

(nLL
′12

i:j (y
(s)
i − y

(s)
j )] (6)

ci represents a mole fraction of element ’i’, R refers to the gas constant, and T is

temperature. Gdisordi represents a molar Gibbs energy of element ’i’ with the structure190

of FCC or BCC. nLdisordi,j and Ldisordi , j, k are binary and ternary interaction parame-

ters, respectively. The total free energy F in the Fe-Mn-Al-C system included the local

free energy density and the interface energy, was expressed as:

F ≡
∫
V

(
1

Vm
Gdisord or L12 +

α

2

3∑
i=Mn,Al,(C,V a)

(∇ci)2

+ [
β

2

3∑
i=Mn,Al,(C,V a)

(∇φji )
2] + gelV )dV (7)

where Vm refers to the molar volume which is assumed to be constant. α and β

are the gradient energy coefficients for the compositions and order parameters, respec-195

tively. Interfacial anisotropy was introduced into the phase-field model by making β

orientation-dependant [67]. GelV is the elastic energy density which was expressed as

in Ref. [58]. The temporal evolution of the elemental concentrations and order param-

eters can be obtained by calculating the following non-linear Cahn-Hilliard diffusion

10
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and time-dependant Ginzburg-Landau equations:200

∂ci
∂t

=
∑
j

∇.(M̃ij∇
δF

δcj
), i = Mn,Al, (C, V a), j = Mn,Al, (C, V a) (8)

∂φji
∂t

= −L δF
δφji

, i = Mn,Al, (C, V a), j = 1, 2, 3 (9)

where M̃ij and L are the diffusion mobility and the structural relaxation, respec-

tively. The system size for the simulation is 300∆x × 300∆x × 300∆x (grid size:

∆x = 0.25nm) for 3D single particle simulations. The thermodynamic parameters,

elastic constants, coefficients and mobilities were taken from (Ref. [61, 62, 65, 67, 68,

69, 70]). The required values for the calculation of interfacial energies were determined205

by the methods and experimental values presented in a study by Doi [71], for instance:

0.152 Jm−2 for Fe-Al system with coherent interface, 0.74 Jm−2 for Fe-C system with

incoherent interface, 0.014 Jm−2 for Ni-Al system with coherent interface. A semi-

Implicit-Fourier-Spectral-Method [72] is used for numerical analysis with a periodical

boundary condition.210

3. Results & discussion

3.1. Simulation results on B2

We performed four controlled phase-field simulations for four different annealing

temperatures - 500◦C, 700◦C, 900◦C, and 1050◦C - to determine whether there is any

difference in the B2 precipitation process in the α phase and to examine its composi-215

tional dependency on the formation temperature (Fig.1). We noted that two jumps in

the composition order parameter (COP) occur when the simulations were performed

at 900◦C and 1050◦C (Fig.1c and d). The first jump corresponds to the ordering pro-

cess of the α phase and its transformation to B2 stringer bands. The second jump

corresponds to the precipitation of disk-like B2 particles in the ordered α phase. This220

finding is notably different from that of an earlier study [41] and motivated its experi-

mental validation in the current study.

11
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Figure 1: Variation of the COP with ageing time. (a) and (b) represent the changes in the COP for isothermal
annealing at 500◦C and 700◦C, respectively. After a jump at t∗ = 1800∆t, a slight increase in the value
of COP is evident. Phase-field simulation revealed that the Ni content is richer in the B2 particles formed at
700◦C. (c) and (d) represent the variations of the COP with ageing time for ordering treatments at 900◦C
and 1050◦C, respectively. Two jumps in the values occur: the first jump (t∗ = 1800∆t) corresponds to the
ordering of α at the start of the precipitation, and the second jump (t∗ = 6800∆t) is related to the formation
of disk-like B2 particles in the ordered BCC phase. Phase-field simulations revealed that the Ni content of
the disk-like particles formed at 1050◦C is richer than that of B2 compounds formed after annealing at
900◦C.

The variations of the COP for the binary Fe-Al system (Fig.2a) and the ternary Fe-

Al-Ni system (Fig.2b) were computed. For the ternary Fe-Al-Ni system, Fe atoms were

substituted by Ni and Al atoms, forming NiAl-type B2 compounds. For the binary Fe-225

Al system, Fe atoms were replaced by Al, indicating the formation of FeAl-type B2.

According to these figures, the compositional changes in all three elements occurred

during the early stages of simulation in the presence of Ni (Fig.2b), whereas these

changes occurred later in the absence of Ni (Fig.2a). Our simulation results for B2

intermetallic compounds revealed that the morphology of B2 depends on the matrix230

within which they precipitate: a disk-like shape in the α matrix (Fig.2 c) and a faceted

interface with sharp edges in the γ phase (Fig.5d). The change in the morphology of the

B2 particles is the direct manifestation of the orientation relationship with the matrix:

B2 has a Kurdjumov-Sach (KS) relationship with the FCC γ phase and a cube-to-cube

relationship with the BCC α phase [73]. This morphology is technically important235

because the spheroidization of particles facilitates increasing their ductility while re-

taining desirable strength [43]. The formation of disk-like B2 particles in the α matrix

means that the hard B2 stringer bands would no longer exist after heat treatments at

higher temperature and instead the microstructure would consist of soft α phase which

provide the ductility and hard nanosized disk-like B2 particles as the strengthening240

secondary phase.
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Figure 2: (a) Variation of the COP in the Fe-Al system with ageing time t∗ = 10000∆t. (b) Variation of the
COP in the Fe-Al-Ni system with ageing time t∗ = 10000∆t. (c) Simulated morphology of a FeAl-type
B2 particle in the γ phase t∗ = 10000∆t. (d) Phase-field simulation of a NiAl-type B2 precipitate in the α
matrix t∗ = 10000∆t.

3.2. Simulation results on κ-carbide

We developed a phase-field method coupled with a Computer Coupling of Phase

Diagrams and Thermochemistry (CALPHAD)-type database for three different scenar-

ios: interfacial energy as the only contributing energy with elastic strain ignored, elastic245

strain energy as the only contributing energy with interfacial energy of 10 mJm−2, and

finally, the contributions of both energies to the final morphology (Fig.3). To investi-

gate each energetic contribution to the precipitation of a κ particle in the α phase, the

total elastic strain energyEel and total interfacial energyEint within the simulation re-

gion were computed (Fig.3c). In addition, the change in the length of the κ precipitates250

along the [100], [010] and [001] directions was computed during the phase-field simu-

lations (Fig.3d). Considering the interfacial energy only, the L[100]/L[010] aspect ratio

slightly increased (Fig.3d), whereas in the scenario where only the elastic strain energy
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contributes, the L[100]/L[010] aspect ratio continuously increased with a rate faster than

that of the scenario where only interfacial energy was considered as the contributing255

energy. The elongated needle-like κ-carbides in the α phase result from a high lattice

mismatch between α and κ. Due to the high misfit value, the morphological evolution

of the precipitates in the α phase was mainly determined by the elastic coherency term

rather than by the interfacial energy contribution.

As shown in Fig.3a and b, κ-carbides contain two main morphologies: a faceted260

cuboidal shape in the γ-phase, and an elongated needle-like morphology in α. These

results were in agreement with those determined experimentally [24, 46, 47]. Ad-

ditionally, phase-field simulations demonstrated the interaction between the energetic

contributions and the relative values of the interfacial energy and elastic strain energy.

The main difference between these two contributing energies was that elastic energy265

exists throughout the precipitate, whereas the interfacial energy only contributes to the

γ/κ or α/κ interfaces. Expectedly, the total interfacial energy of the system was larger

than the total elastic strain energy when the initial nucleus was small because, in the

context, the area-to-volume ratio is high. As the κ precipitate grew, the value of the

area-to-volume ratio reduced, and the elastic energy contribution to the morphological270

evolution became dominant. Therefore, the interfacial energy determined the morphol-

ogy of κ-carbides in the initial stages of the simulation, whereas the effect of the elastic

strain energy became dominant as the precipitate grew.

Based on our simulation results, we performed the following experiments to inves-

tigate:275

(i) the morphologies of ordered phases in both disordered γ and α phases,

(ii) the formation of disk-like B2 particles in α for heat treatments at 900◦C and

1050◦C,

(iii) the variation of chemical compositions of ordered phases as a function of anneal-

ing temperature and the matrix within which they form and280

(iv) the change in the room temperature mechanical properties as a function of an-

nealing temperature and of the shape of ordered phases that were formed.
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Figure 3: (a) The simulated morphology of κ-carbide (t∗ = 70000∆t) in the α matrix. (b) The simulated
morphology of a κ particle (t∗ = 70000∆t) in the γ phase. (c) Evolution of the ratio of total elastic strain
energy to total interfacial energy under different anisotropy conditions. (d) Evolution of the l[100]/l[010]
aspect ratio of κ precipitate in the α phase under different anisotropy conditions.

3.3. Microstructure before heat treatment

Fig.4a and b show the as-quenched microstructures of the S1 and S2 samples, re-

spectively. The microstructures of both samples consist of coarse-grain austenite (γ)285

and ferrite (α). The microstructures were examined under TEM and neither κ-phase

nor B2 particles were observed in the as-quenched samples.

Figure 4: SEM micrographs of a) as quenched Fe-15Mn-10Al-0.8C-5Ni and b) as-quenched Fe-15Mn-10Al-
0.8C.
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3.4. Heat treatment at 500 ◦C

Fig.5 shows the SEM micrographs of S1 (Fig.5a) and S2 (Fig.5b) after isothermal

holding at 500◦C. The final microstructure of S1 is composed of γ+κ and coarse NiAl-290

type B2 intermetallics dispersed within the γ phase. The ferrite phase was transformed

to B2 by the ordering of the phase and the enrichment of Ni forming stringer-type

B2 (Fig.6). Coarse B2 intermetallic particles were formed both at grain boundaries and

within the γ phase. The microstructure of S2 after isothermal holding at 500◦C consists

of γ, ferritic matrix (α) and the lamellar structure formed along the grain boundaries.295

In the lamellar structure, there are fine ferrite and κ-carbide. Hence, the γ phase was

partially decomposed into ferrite and needle-like κ-carbide.

Figure 5: SEM micrographs of (a) Fe-15Mn-10Al-0.8C-5Ni and (b) Fe-15Mn-10Al-0.8C after isothermal
holding at 500◦C.
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Figure 6: EBSD map (austenite is red and ferrite is blue) and corresponding elemental maps of Fe-15Mn-
10Al-0.8C-5Ni after annealing at 500◦C. This figure shows the partitioning of Ni (yellow) and Al (green)
atoms into the α phase and hence the formation of NiAl-type B2 stringer bands.

Fig.7a,b,c and d show the TEM-BF micrographs of the steels after isothermal hold-

ing at 500◦C and corresponding SADPs. Fig.7a shows the TEM micrograph of S1

confirming that κ-phase was formed in the γ phase with size of less than 100 nm. No300

κ-carbide were found in the α phase due to the transformation of originally α phase to

the thermodynamically stable B2-phase (Fig.7b). This is because Ni is a very strong

intermetallic former with Al [41] and this type of intermetallics is generally thermo-

dynamically more stable than κ-phase. [42, 74, 75]. In the absence of Ni (S2), the

needle-like κ-phase was observed in α (Fig.7c), while dense cuboid κ-carbide was de-305

tected in the γ phase (Fig.7d). In general, κ formed in the γ phase in the absence of Ni

(S2) was smaller (less than 90 nm) and denser than that formed in the γ phase in the

presence of Ni (S1).
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Figure 7: (a) TEM bright-field image of the γ phase of Fe-15Mn-10Al-0.8C-5Ni isothermally annealed at
500◦C showing the formation of κ-carbides. (b) TEM bright-field image of ordered α (transformed into
NiAl-type B2 stringer) and corresponding SADP (B=[110]). (c) TEM micrograph taken from α phase of
Fe-15Mn-10Al-0.8C subjected to isothermal holding at 500◦C showing the needle-like morphology of a
κ particle in this phase. (d) TEM micrograph and corresponding SADP demonstrating the formation of
nano-sized (<50 nm) κ-phase in the γ phase of Fe-15Mn-10Al-0.8C.

3.5. Heat treatment at 700 ◦C

The microstructures of S1 and S2 after isothermal holding at 700◦C are shown in310

Fig.8. Similar to 500◦C isothermal holding, the α phase of S1 was entirely transformed

to B2 stringer and no κ-carbide was observed in this phase. However, a very dense

population of the κ-phase were formed in the grain interior of γ. The closely packed κ-

carbides in the γ phase had a size of≤150 nm. B2-type particles were, again, observed

both at the γ grain boundaries and in the γ grain interiors. No significant change in315

the size of B2 particles were observed as the isothermal temperature increased. For S2,

κ-carbide lamellar was formed in α-phase while no intermetallics were found in either

γ or α. The κ-phase formed in the α-phase of S2 after isothermal annealing at 700◦C

was coarser than that formed in S2 isothermally annealed at 500◦C.
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Figure 8: SEM micrographs (a) for Fe-15Mn-10Al-0.8C-5Ni after isothermal holding at 700◦C showing
the formation of κ-phase (after etching appeared as white) in γ phase while the α phase was transformed
into B2-type intermetallics. In addition, the formation of B2 particles at grain boundaries and the γ grain
interiors was observed and (b) for Fe-15Mn-10Al-0.8C after annealing at 700◦C showing the formation of
coarse boundary κ-carbides (darker phase).

Fig.9 shows the simulations of multi-particle system in austenite (Fig.9a) and ferrite320

(Fig.9b). Table.1 shows a comparison between the simulated widths of κ-carbides in

α for the isothermal holding temperature of 500◦C and 700◦C with those measured

experimentally. During isothermal holding at 500◦C, a larger driving force for the κ-

carbide precipitation exists. The difference in the evolution of κ-particles for different

isothermal holding temperatures is due to the fact that during isothermal annealing at325

500◦C the γ decomposition kinetics into κ phase is retarded due to the lower diffusion

rate of solutes, especially C, compared to the simulation carried at 700◦C. Thus, the κ-

carbides formed at 500◦C show a finer distribution compared to that formed at 700◦C.

During the growth process, it is the diffusion of C during annealing treatment that

primarily controls the morphology of κ particles [46, 61].330

TEM-BF images of γ and α phases of S1 and S2 are shown in Fig.11. A more dense

and closely packed population of cuboidal κ-carbides were observed in the γ phase of

S1 compared to that formed after isothermal holding at 500◦C (Fig.7a). Moreover,

the average size of cuboidal κ-carbides after isothermal holding at 700◦C increased to

about 150 nm compared with those formed during the isothermal holding at 500◦C.335

For S2, the width of κ-particles increased with a higher annealing temperature: the

average widths of the κ-particles at 500 and 700◦C are 200± 27 nm and 500± 33 nm,

respectively. These values are much greater than the widths of κ-particles reported in

Ref. [47] where κ-particles with an average width 17 ± 7 at 500◦C were observed.
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This implies the great dependency of the morphology of the κ-particles on the com-340

position. The coarser κ-particles formed in the current investigation in comparison to

the previous studies [47] can be due to the higher amount of alloying elements (Al and

Mn) available for the formation of this phase.

Figure 9: Multi particle phase-field simulations of κ-precipitates in (a) γ and (b) α for isothermal holding at
700◦C (t∗ = 60, 000∆t).

Table 1: Comparison between simulation results and experimental values.

Description simulation experiment
Isothermal temperature 500◦C 700◦C 500◦C 700◦C

Width (nm) 188 519 200± 27 500± 33

Fig.10 shows the effect of partitioning of Mn on the morphology of a κ-particle.

At initial stages of simulation where the Mn content of κ is almost twice that of α345

phase (CMn,κCMn,α
, blue curve), the minimum value of the energy/volume ratio occurs at

an aspect ratio (length of the particle/width of the particle) equal to 6. At later stages

when the ratio of the Mn contents becomes larger, the minimization of energy shifts

towards higher aspect ratios. In other words, as Mn partitions into the κ-particle the

morphology becomes rod-like. This happens because the partitioning of Mn into the350

particle increases the lattice misfit between κ and α (by increasing the lattice parameter

of κ [68]) and thus, in order for elastic strain energy to become minimum, the particle

morphology changes to rod (larger length/width ratio).
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Figure 10: The ratio of energy/volume of a κ-particle as a function of time step and the elemental partitioning
of Mn. The larger than unity the ratio, the severe the partitioning for the corresponding element.

The volume fraction of κ-particles in the α-phase increased by the increasing an-

nealing temperature from 7% to 14%, as can be seen by a comparison between Fig.11d355

with Fig.7c. This can be due to the easier diffusion of constituent elements at a higher

annealing temperature. The growth mechanism of κ-carbide was reported [47] to be

nucleation-growth process, however, although it seemed to be the corresponding mech-

anism for κ formed in α, the formation of κ within the γ phase appeared to be due to

spinodal decomposition [78], as can is evident from the TEM micrographs taken from360

the γ of both samples annealed at either 500 or 700◦C.
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Figure 11: (a) TEM bright-field image of the cuboidal κ-carbides formed within the γ matrix in Fe-15Mn-
10Al-0.8C-5Ni after annealing at 700◦C. (b) TEM bright field image of Fe-15Mn-10Al-0.8C-5Ni showing
the formation of a coarse grain boundary B2 (GB-B2) at a triple point. (c) TEM bright-field micrograph of
a γ grain in Fe-15Mn-10Al-0.8C after isothermal holding at 700◦C, showing the densely populated cuboid
κ-particles in this phase with a size of < 50nm. (d) TEM image of coarse needle-like κ-carbides in the α
phase of Fe-15Mn-10Al-0.8C and the corresponding SADP.

Fig.12 shows the SEM micrograph and TEM bright field image of a depleted zone

at γ-α boundary in S1 after isothermal annealing at 700◦C. As can be seen in this

figure, a coarse B2 intermetallic was formed at γ-α grain boundary. This prevented

the formation of κ-phase in the vicinity of the grain boundary, because Al was con-365

sumed by the NiAl-type B2 intermetallic compound formed at the boundary. Similar

phenomenon was also observed for the same sample annealed at 500◦C. In contrast,

no depleted zone was found for S2 during isothermal holding at 500 nor at 700◦C.
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Figure 12: SEM and TEM bright-field images of a depleted zone in the neighbourhood of a coarse GB-B2
particle.

3.6. Heat treatment at 900 ◦C

Fig.13 shows the microstructures of S1 (Fig.13a) and S2 (Fig.13b) after isothermal370

holding at 900◦C. As is shown in Fig.13a, coarse, densely packed NiAl-type B2 inter-

metallics were formed in the γ grains. Almost all γ-γ grain boundaries were decorated

by B2 precipitates. The morphology of B2 particles were rod-type and triangle-type

with size of 2-7 µm. Similar phenomenon was observed for the S1 after annealing at

900◦C (Fig.13b). However, B2 particles were of FeAl-type. B2 particles were also375

formed at γ grain boundaries similar to what was observed for S1 after annealing at

this temperature. No κ was found in the microstructure of S2 nor in that of S1. The

absence of κ at 900◦C was also supported by thermodynamic calculations [79].
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Figure 13: (a)The microstructure of Fe-15Mn-10Al-0.8C-5Ni after annealing at 900◦C showing the forma-
tion of coarse closely packed B2 NiAl-type particles in γ. The coarse B2 precipitates were also formed at γ
grain boundaries. (b) SEM micrograph taken from Fe-15Mn-10Al-0.8C after isothermal holding at 900◦C
showing the formation of B2 FeAl-type intermetallics. The morphology and size of particles were similar to
that observed for Fe-15Mn-10Al-0.8C-5Ni.

A close inspection showed that in addition to coarse triangle-like B2 particles with

sharp edges (Fig.14b), nano-sized disk-like B2 precipitates were also formed in α.380

Similar morphologies of B2, namely triangle-like and disk-like, with equivalent sizes

were detected in the microstructure of S2. Although coarse B2 particles were observed

at lower isothermal holding temperatures, 500◦C and 700◦C, the fine disk-like B2

particles were only observed after annealing at 900◦C. As is evident in this figure, κ

was not formed at this temperature. Fig.14c shows the simulated front view of a disk-385

like FeAl-type B2 in α matrix. Fig.14d shows a NiAl-type B2 precipitate in γ matrix.

The compositional variation of a B2 precipitate formed in S1 shows the similar trend

as was predicted by our simulation (Fig.2b). The formation of disk-like B2 particles

in α matrix corresponds to the second jump in the simulated COP for annealing at

900◦C (Fig.1c). This means that during annealing at higher temperatures, Ni atoms390

partition and form disk-like B2 particles within the α matrix together with Al atoms.

This means that Ni and Al are depleted within the α phase and thus this phase becomes

softer compared to the situation where α phase completely transformed into B2 stringer

bands. Hence, the microstructure has a desirable mixture of strength and ductility.
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Figure 14: TEM micrograph taken from the BCC phase of Fe-15Mn-10Al-0.8C-5Ni showing nanosized
disk-like B2 NiAl intermetallics with sizes of <150 nm and the corresponding SADP. Similar morphologies
and sizes were observed for FeAl-type B2 particles in the BCC phase of Fe-15Mn-10Al-0.8C after annealing
at 900◦C. (b) A coarse triangle-like FeAl-type B2 particle with a size of a few µm in a γ matrix for Fe-
15Mn-10Al-0.8C after annealing at 900◦C. (c) Phase-field simulation of a FeAl-type B2 precipitate in the α
matrix t∗ = 10000∆t. (d) Simulated morphology of a NiAl-type B2 particle in the γ phase t∗ = 10000∆t.

3.7. Heat treatment at 1050◦C395

Fig.15 shows the microstructures of (a) S1 and (b) S2 after annealing at 1050◦C. A

simple comparison between this figure and Fig.13 reveals that (i) the volume fraction

of both coarse NiAl-type and FeAl-type B2 intermetallic compounds in the austenite

phase of S1 and S2 decreased from 38% (isothermal holding at 900◦C) to 11% (isother-

mal holding at 1050◦C) and (ii) the microstructures of both S1 and S2 are much more400

uniform in terms of the distribution of B2 particles in the α phase after isothermal

holding at 1050◦C compared to that after annealing at 900◦C. This was due to the fact

that during the annealing at 1050◦C the driving force for the formation of B2 phase

was much smaller (smaller undercooling (≈ 1200◦C − 1050◦C)) compared with that

during the isothermal holding at 900◦C (≈ 1200◦C − 900◦C). Fig.16 also demon-405
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strate that disk-like B2 particles were uniformly distributed in the ferrite phase of both

S1 and S2. These observations meant that mechanical properties of samples could be

improved after annealing at 1050◦.

Figure 15: SEM micrographs of heat treated samples at 1050◦C for (a) Fe-15Mn-10Al-0.8C-5Ni and (b)
Fe-15Mn-10Al-0.8C. B2 particles in the γ matrix are shown with white arrows.

Figure 16: TEM bright-field image of (a) disk-like NiAl-type B2 particles formed in ferrite matrix of Fe-
15Mn-10Al-0.8C-5Ni and (b) of disk-like FeAl-type B2 particles formed in the ferrite matrix of Fe-15Mn-
10Al-0.8C and corresponding SADP. The images were taken from samples heat treated at 1050◦C.

3.8. The variation of chemical compositions of ordered phases

The post-annealing compositions of samples are summarized in Table. 2. Starting410

with S1, Mn, Al, and Ni contents of B2 phase (in both ordered α and in γ) increased

with increasing annealing temperature because of an easier diffusion of substitutional

atoms at higher temperatures. Al content of B2 stringer (initially α phase) was higher

than those formed in γ whereas the Ni contents were almost the same. This means that

B2 stringer are much harder than B2 particles formed within the γ matrix [75]. Al and415

Ni contents of κ phase in γ remained almost constant whereas a significant increase in
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the Mn content of κ-phase occurred as the annealing temperature increased. Similarly

in S2, Al content of κ-carbides in both α and γ slightly increased whereas Mn content

of the carbides increased considerably. In general, the Mn content of κ formed in the

γ matrix was higher than that of lamellar κ in the α phase. Here, we observed the420

formation of non-stoichiometric κ-carbides in both steels, in agreement with previous

reports on κ-carbides existing over a range of varying Mn and Al contents [42, 78].

According to these results, Al is energetically stable inside either B2 intermetallic or κ

and both product phases are competing sites for Al.

Table 2: Chemical compositions of κ-carbide and B2 compounds as a function of isothermal annealing
temperature and the matrix within which they formed. Please note that the chemical compositions for B2 in
the α phase for isothermal holdings at 500◦C and 700◦C refer to ordered α or namely stringer B2 bands.

Matrix α γ
Temperature(◦C) 500 700 900 1050 500 700 900 1050

Fe-15Mn-10Al-0.8C-5Ni

B2
Mn 3.1 3.2 3.3 3.2 4.4 4.5 4.5 4.5
Al 18.1 19.5 20.4 21.3 14.5 15.6 17.1 18.7
Ni 8.2 10.4 15.1 19.2 9.1 9.4 9.7 10.1

κ-carbide
Mn - - - - 18.9 22.5 - -
Al - - - - 8.1 8.3 - -
Ni - - - - 0.1 0.1 - -

Fe-15Mn-10Al-0.8C

B2 Mn - - 3.3 3.2 - - 5.1 5.1
Al - - 22.8 24.6 - - 18.3 19.1

κ-carbide Mn 18.4 24.8 - - 20.4 25.1 - -
Al 10.2 10.7 - - 9.7 10.1 - -

Despite the fact that κ-phase formed at 500◦C had a stronger undercooling and thus425

an increased driving force for pro-eutectoid ferritic transformation, the Mn content of

κ-phase increased with increasing annealing temperature because of easier diffusion of

relatively large substitutional Mn atoms at higher temperature. This in turn led to an

increase in the contents of Mn in the γ phase and thus the formation of κ-carbide with

a higher content of Mn. This finding is in contradiction with the results reported in430

Ref.[47] where the authors explained the higher content of Mn in κ-carbides at lower

annealing temperature (500◦C) in terms of stronger driving force for the formation of

κ-phase at lower isothermal holding temperature.

The Ni content of B2 particles also increased with increasing annealing tempera-
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ture. This can be also due to the easier diffusion of Ni atoms at higher temperatures435

(900◦C and 1050◦C). Breuer et al. conducted a series of experiment and measured the

enthalpy of formation of B2− Fe1−x −Alx and B2− (Fe,Ni)1−x −Alx at 1073K.

Their results showed that generally enthalpy of formation of B2− (Fe,Ni)1−x −Alx

is of greater magnitude than that of B2− Fe1−x −Alx. It was also shown that starting

with binary B2− Fe1−x −Alx and replacing Fe with Ni, B2− (Fe,Ni)1−xAlx while440

keeping the Al content at a constant value, the enthalpy of formation becomes increas-

ingly more negative [75]. In other words, increasing the Ni content of B2 can result in

the formation of a harder B2 phase. More information about composition change with

increasing annealing temperature as well as EDX maps for each holding temperature

are presented in supplementary information.445

3.9. Mechanical properties

To confirm our hypotheses about the effects of following microstructural changes

on the mechanical properties:

(i) the formation of disk-like B2 particles after annealing at 900◦C and 1050◦C

(ii) the increase in the Mn content of κ-carbides with increasing annealing tempera-450

ture which can result in the formation of harder κ-carbides

(iii) the increase in the volume fraction of needle-like κ-carbides formed in the α

phase of S2 after annealing at 700◦C compared to that after isothermal holdeing

at 500◦C

(iv) the formation of much more uniform microstructure and decreased in the vol-455

ume fraction of B2 particles formed with the γ matrix of both S1 and S2 after

isothermal holding at 1050◦C compared to that formed at 900◦C

(v) the increase in the Ni and Al contents of B2 phase with increasing annealing tem-

perature which may lead to formation of harder strengthening secondary phase

(B2)460

We performed tensile testing of the samples annealed at these four temperatures.

The mechanical response of the as-quenched state is shown in Fig. 17 by green colour:
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ultimate tensile strength (UTS) of as-quenched S1 was measured to be 630 MPa with

an elongation (E) of 22.4%; the UTS of as-quenched S2 was determined to be 590

MPa with an El of 25.7%. As shown in this figure, the subsequent annealing at 500◦C465

significantly increased the UTS for both samples while reduced their ductility: UTS

increased to 980 MPa and El decreased to 10% for S1; UTS increased to 840 MPa for

S2 and its El reduced to 11%.

Fig.17 shows that by increasing the isothermal annealing temperature from 500◦C

to 1050◦C, the UTS increases significantly (from 980 MPa to 1350 MPa for S1 and470

from 840 MPa to 1040 MPa for S2) whereas the ductility remarkably improved the

elongation of S1 to 22% and that of S2 to 25%. In general, S1 had higher UTS and

lower elongation than S2. This is due to the formation of GB-B2 and B2 stringer phases

in S1 which added extra strengths and reduced the ductility of the steel. Fig.17a,b show

that by increasing the isothermal annealing temperature from 500◦C to 700◦C, the475

ultimate tensile strength (UTS) increased slightly: in S1 from 980 MPa to 1040 MPa

and in S2 from 840 MPa to 910 MPa. For S1, the dense closely packed populations of

κ-carbides formed after annealing at 700◦C resulted in the enhancement of the strength

compared to that of the sample annealed at 500◦C. Moreover, the increase in the

Mn content of κ phase makes this phase harder and thus increases the strength. For480

S2, in addition to the increased number of Mn-C bonds which results in harder κ-

carbides [68], the increase in the volume fraction of needle-like κ-phase after annealing

at 700◦C led to an increase in the strength of the material. The formation of depleted

zones in the microstructure of S1 has a negative effect on the mechanical properties and

the increment of strength. That explains why the value of UTS of S1 is only slightly485

higher than that of S2, despite the coexistence of both hard B2 intermetallic particles

and κ-carbides in the microstructure of S1.

At 900◦C, κ-carbides were not form in the microstructures of S1 and S2. This

explained the larger ductility of S2 isothermally hold at 900◦C compared to that of the

same material annealed at 700◦C. However, S1 showed almost the same ductility after490

annealing at 900◦C to that isothermally hold at 700◦C. This was due to the formation

of hard, coarse and densely packed population of NiAl-type B2 particles within the γ

phase interiors of S1. NiAl-type B2 particles are not shearable by gliding dislocation
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whereas κ-carbide has a shearable nature [41, 83]. Moreover, the formation of coarse

GB-B2 also resulted in the reduction of the ductility of S1.495

Comparing the samples annealed at 900◦C and 1050◦C, the strength of both S1

and S2 slightly increased (<20 MPa) while the ductility significantly improved. This

can be due to the formation of more uniform distribution of B2 particles as well as

the reduction of the volume fraction of them in the γ phases of S1 and S2. The slight

increase in the strength of the materials can be explained by the increase of the Ni500

and Al contents of B2 particles in S1 and the Al content of B2 phase in S2 resulting

in the formation of harder B2 particles. The strength of S1 after annealing at 900◦C

and 1050◦C was about 300 MPa higher than that of S2 isothermally hold at the same

temperature because Ni-Al bonds in the B2 phase are generally stronger than Fe-Al

bonds [75, 76]. This also explains the larger ductility of S2 in comparison with that of505

S1: B2 particles formed in the microstructure of S2 was not as strong as those formed

in the microstructure of S1.

The fracture surfaces of both steels were examined under SEM as is shown in the

Fig.17. The fracture mechanism for both S1 and S2 samples annealed at 500◦C and

700◦C was mainly cleavage, and it became more fibrous for isothermal holding at510

1050◦C, confirming their significantly improved ductility. In general S2 showed a

larger ductility compared to S1 because after annealing at 500◦C and 700◦C, the mi-

crostructure of S2 was devoid of B2 phase while significant amount of B2 particles

were formed in the γ phase of S1. Moreover, the α phase of S1 transformed into B2

stringer bands resulting in additional strength and in the reduction of ductility.515

In an elegant study, Gutierrez-Urrutia and Raabe [81] investigated the strain hard-

ening and the evolution of dislocation configuration in lightweight Fe-Mn-Al-C steels.

They showed that this type of steels exhibit a noticeable evolution of the dislocation

substructure during deformation and attributed this to the effect of solute carbon on

dislocation movement. The results demonstrated that aluminium and carbon signifi-520

cantly increases the stacking fault energy (SFE). In addition carbon provides strong

dislocation-solute interaction. They argued that high carbon content in solid solu-

tion retards the formation of dislocations associated with cross-slip and shifts them

to high macroscopic stress levels. Welsch et al [82] also studied the strain hardening
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of lightweight steels by dynamic slip band refinement. They showed that the presence525

of short range order (SRO) and finely distributed long range ordered (LRO) clusters

remarkably increases the stress required to ”bow out” single dislocations in compari-

son with disordered crystal. The abovementioned effects together with the formation

of various ordered precipitates thus elucidate the observed mechanical properties of the

samples under study.530
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Figure 17: (a) Room-temperature tensile properties of Fe-15Mn-10Al-5Ni-0.8C (S1) after isothermal an-
nealing at 500◦C, 700◦C, 900◦C and 1050◦C. (b) Room-temperature tensile properties of Fe-15Mn-
10Al-0.8C (S2) after isothermal annealing at 500◦C, 700◦C, 900◦C and 1050◦C. Fracture surfaces for
both samples at 500◦C and 1050◦C are also shown within the graphs.
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4. Summary

In summary, we investigated the microstructural evolution of Fe-15Mn-10Al-0.8C-

5Ni (S1) and Fe-15Mn-10Al-0.8C (S2) (all in wt.%) duplex steel through phase-field

modelling and during the isothermal annealing at 500◦C, 700◦C, 900◦C, 1050◦C.

Fig.18 shows a schematic overview of the microstructural evolutions of S1 and S2.535

Table.3 summarizes the formed phases at each isothermal temperature and the corre-

sponding mechanical properties. Various aspects of the formation of ordered phases

discussed in this paper are listed below.

Table 3: Summary of microstructural modifications and the variations of mechanical properties as a result of
different annealing temperatures.

Alloy 500◦C 700◦C 900◦C 1050◦C

Fe
-1

5M
n-

10
A

l-0
.8

C
-5

N
i

Matrix phase γ γ γ + α γ + α

Precipitations
Cuboidal κ (<100 nm) Cuboidal κ (<150 nm) Coarse B2 particles (2-7 nm) Coarse B2 particles (2-4 nm)

Coarse B2 particles (2-7 nm) Coarse B2 particles (2-7 nm) Disk-like B2 (≈ 200 nm) Disk-like B2 (≈ 200 nm)
B2 stringer bands B2 stringer bands

Mechanical properties UTS: 960 MPa UTS: 980 MPa UTS: 1335 MPa UTS: 1350 MPa
Elongation:10.2 Elongation:9.8 Elongation:10.4 Elongation:22

Fe
-1

5M
n-

10
A

l-0
.8

C Matrix phase γ + α γ + α γ + α γ + α

Precipitations
Cuboidal κ (<90 nm) Cuboidal κ (<90 nm) Coarse B2 particles (2-4 nm) Coarse B2 particles (2-4 nm)

Coarse B2 particles (2-4 nm) Coarse B2 particles (2-4 nm) Disk-like B2 (≈ 200 nm) Disk-like B2 (≈ 200 nm)
needle-like κ (width of 200 ± 33 nm) needle-like κ (width of 500 ± 33 nm)

Mechanical properties UTS: 840 MPa UTS: 910 MPa UTS: 1015 MPa UTS: 1040 MPa
Elongation:11.3 Elongation:11.3 Elongation:18 Elongation:25
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Figure 18: Schematic overview of the microstructural evolution of the materials under investigation as the
annealing temperature increases.

1. Our simulations on B2 intermetallic compounds showed that the ordering in the

BCC (α) occurs in two discrete stages: This first stage - shorter times and lower540

temperatures (500◦C and 700◦C) - corresponds to the ordering of disordered

α, whereas the second stage is activated at higher temperatures (900◦C and

1050◦C) and correlates with the formation of disk-like B2 particles within the

ordered α phase. The formation of Ni-enriched disk-like B2 particles in a triplex

lightweight steel (γ, α and B2) can significantly improve the room-temperature545

tensile properties of the material by providing increased resistance to shear and

favourable high ductility (disordered γ and α phases).
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2. The simulations on κ-carbides clearly demonstrate that the morphological evo-

lution of κ-carbide is highly dependent on the matrix within which it forms and

on the energetic interactions between the interfacial and elastic strain energy.550

3. Starting with S1, we observed:

(i) After annealing at 500◦C, the microstructure consisted of coarse B2 par-

ticles, frequently with sharp edges and flat interfaces, formed within the

γ grains interiors and at the grain boundaries, and nanosized κ-carbides

dispersed within the γ phase and B2 stringer bands.555

(ii) After annealing at 700◦C, a dense closely packed population of κ-carbides

were formed in the γ phase. Coarse B2 particles were also present both

within the γ grains and at the grain boundaries. B2 stringer bands was also

formed by the ordering process of α phase.

(iii) After annealing at 900◦C, a dense population of coarse B2 particles were560

formed in the γ phase while nanosized disk-like Ni-enriched B2 particles

were formed in the α phase. Hence, the B2 stringer bands formed after

annealing at 500◦C and 700◦C was transformed into α+disk-like B2 par-

ticles. No κ-carbides were found in the microstructure.

(iv) After annealing at 1050◦C, a more uniform distribution of B2 phase within565

γ was observed. The volume fraction of coarse B2 particles in the γ phase

was reduced due to the reduction of undercooling and thus the decrease in

the driving force for the formation of B2 phase. Nanosized disk-like B2

particles was also found within the α-phase.

With increasing annealing temperature, we observed an increase in (all in wt.%):570

(i) the constituent elements of B2 particles formed in the γ phase of S1: Ni

content increased from 9.1 to 10.1, Al content increased from 14.5 to 18.7

and Mn content remained almost constant.

(ii) the constituent elements of B2 stringer bands formed after annealing at

500◦C and 700◦C: Ni content increased from 8.2 to 10.4, Al content in-575

creased from 18.1 to 19.5 whereas Mn content remained almost constant.
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(iii) the constituent elements of nanosized disk-like B2 particles formed after

annealing at 900◦C and 1050◦C: Ni content increased from 15.1 to 19.2,

Al content increased from 20.4 to 21.3 while Mn content did not change

significantly.580

(iv) the constituent elements of cuboidal κ-carbides formed within the γ phase

of S1 after isothermal holdings at 500◦C and 700◦C: Mn content increased

from 18.9 to 22.5, Al content slightly increased from 8.1 to 8.3 while Ni

content remained constant.

We performed tensile testing on S1 and it was found that:585

(i) The samples annealed at 500◦C and 700◦C exhibited similar mechanical

properties (UTS≈980 MPa and elongation around 10%). This was due

to the formation similar microstructures in the samples after annealing at

these isothermal holding temperature e.g. nanosized cuboidal κ-carbides

and coarse B2 particles in γ, and B2 stringer bands formed by the ordering590

of the α phase. The fracture surfaces of the samples were mostly cleavage.

(ii) The samples annealed at 900◦C and 1050◦C showed almost the same

strength (UTS= 1350 MPa). However, the sample annealed at 1050◦C

had a larger ductility (elongation around 22%) because of the less volume

fraction of coarse B2 particles in the γ and their uniform distribution.595

4. For S2, the following microstructural changes were observed:

(i) After annealing at 500◦C, the microstructure consisted of cuboidal κ-carbides

in the γ and coarse needle-like κ carbides with a width of 200 nm ± 33 in

the α. No B2 particles were found within the microstructure.

(ii) After annealing at 700◦C, cuboidal nanosized κ-carbides and coarse pearlitic-600

like α + κ structure was observed. The volume fraction and the aver-

age width of needle-like κ-carbides was increased to 500±33 compared

to those of the same structure formed after annealing at 500◦C.
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(iii) After annealing at 1050◦C, no κ-carbides was formed in γ nor in the α

phase. Instead, coarse FeAl-type B2 particles were found with the γ phase605

while nanosized disk-like FeAl-type B2 particles were observed in the γ.

(iv) After annealing at 1050◦C, the volume fraction of coarse B2 particles de-

creased compared to the sample annealed at 900◦C. The more uniform

distribution of B2 particles within the γ was also observed. Nanosized Al-

enriched disk-like B2 precipitates were formed in the α phase.610

With increasing the isothermal holding temperature, we observed an increase in

(all in wt.%):

(i) the Al content of B2 particles formed in the both disordered γ (from 18.3

to 19.1) and α (from 22.8 to 24.6) phases after annealing at 900◦C and

1050◦C.615

(ii) the Mn content (from 20.4 to 25.1 in γ and from 18.4 to 24.8 in α) and Al

content (from 9.7 to 10.1 in γ and from 10.2 to 10.7 in α) of κ-carbides

after annealing at 500◦C and 700◦C.

We performed tensile testing on S1 and it was found that:

(i) The samples annealed at 500◦C and 700◦C showed almost similar me-620

chanical properties (UTS≈ 840 MPa and elongation around 10%). This

was due to the formation similar microstructures in the samples after an-

nealing at these two isothermal holding temperatures e.g. nanozised cuboidal

κ-carbides, and a lamellar structure of α+κ.

(ii) The samples annealed at 900◦C and 1050◦C showed almost the same625

strength (UTS≈ 1050 MPa). However, the sample annealed at 1050◦C

had a larger ductility (elongation around 27%) because of the less volume

fraction of coarse B2 particles in the γ and their uniform distribution.

5. Comparing the microstructural evolution, chemical composition change and the

variation of mechanical properties of S1 and S2, we can conclude that:630
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(i) For annealing at 500◦C and 700◦C, it was observed that the microstruc-

ture of S1 consisted of γ, κ and NiAl-type B2 intermetallic (formed within

γ interior grains, at grain boundaries and in a form of stringer bands by

the ordering of the α phase). The microstructure of S2 characterized to be

γ+ lamellar structure of α+κ. In the γ phase of S2, nano-size cuboidal κ-635

carbides were formed whereas in the α phase of S2, coarse lamellar struc-

ture consisting of α + κ was observed with a width between 200 nm to 500

nm depending on the annealing temperature. No intermetallics were ob-

served within the grains or at grain boundaries in S2. The additive Ni con-

tent (S1) led to the ordering of α phase and its transformation to stringer B2640

compounds and prevented the formation of lamellar structure of α+κ. The

addition of Ni also resulted in the formation of coarse grain boundary-B2

(GB-B2). The existence of GB-B2 resulted in the formation of depleted

zones in S1. This was not observed in the microstructure of S2. This study

confirmed that the additive Ni content did not make a significant change in645

terms of mechanical properties after these two annealing temperature (less

than 100 MPa increase in the UTS) while its addition may results in the

formation of brittle GB-B2 and B2 stringer bands and led to 2% decrease

in the elongation of S1 compared to that of S2.

(ii) For annealing at 900◦C and 1050◦C, the microstructures of both S1 and650

S2 consisted of γ+coarse B2 particles and α+disk-like B2 precipitates. S1

exhibited higher strength and smaller ductility due to the fact that Ni-Al

bonds are much stronger than Fe-Al bonds formed in B2 intermetallic com-

pounds.

(iii) In both samples, isothermal holding at 1050◦C yielded the highest strength655

and the largest ductility.

(iv) Mn content of B2 particles were almost similar for both samples, whereas

Al content of B2 was higher for S1 due to the high stability of Ni-Al bonds.

(v) The Mn content of κ-carbides were higher in S2 while the Al content was

almost the same for both samples.660
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5. Conclusion

We investigated the strengthening mechanisms in a Fe-15Mn-10Al-0.8C lightweight

steel with and without 5 wt. % Ni addition. The simulations clearly demonstrate that

the morphological evolution of κ-carbide is highly dependent on the matrix within

which it forms and on the energetic interactions between the interfacial and elastic665

strain. Our simulation and experimental observations confirm that the ordering in the

BCC (α) occurs in two discrete stages. The addition of Ni into the alloys led to the

ordering of (α) phase and its transformation to stringer B2 compounds and prevented

the formation of lamellar structure of α + κ. The addition of Ni also resulted in the for-

mation of coarse grain boundary-B2 (GB-B2) which led to the formation of depleted670

zones. Therefore, at after these two annealing (500 C and 700 C) temperature the me-

chanical property of alloy with Ni was not improved. However, annealing at 900 C and

1050 C alloy exhibited higher strength and smaller ductility due to the fact that Ni-Al

bonds are much stronger than Fe-Al bonds formed in B2 intermetallic compounds.
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