Original citation:

Shaikh, Maha and Henfridsson, Ola. (2017) Governing open source software through
coordination processes. Information and Organization, 27 (2). pp. 116-135.
Permanent WRAP URL:

http://wrap.warwick.ac.uk/87892

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/87892
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

GOVERNING OPEN SOURCE SOFTWARE THROUGH COORDINATION PROCESSES

Maha Shaikh
Warwick Business School
The University of Warwick
United Kingdom

Ola Henfridsson
Warwick Business School
The University of Warwick

United Kingdom

Abstract

Governance provides the authoritative frameworkcfmrdinating activities in open source development
Prior studies of open source governance have jafgelised on its changing nature over time. Inwuosk,

we argue that the nature of governance varies s.lo@sn source communities, and, in its evolutionl- m
tiple traces of authority may co-exist. We propthes such multiplicity can be understood by closane-
ination of the authoritative structures embeddecbiordination processes. We collected eight yefaiata

on the coordination related to version controlhaf Linux kernel. Drawing on in-depth qualitativeabysis,

we investigate how coordination processes witrediffit authoritative structures come together irgthe
ernance of open source software. We trace fourdamation processes (autocratic clearing, oligarchic
cursion, federated self-governance, and meritacidgia-testing), each grounded in different authtivie
structures (autocracy, oligarchy, federation, roericy) with their own form of legitimation. We effa
two-fold contribution in this paper. First, we enka the open source governance literature by ath@nc
a new theoretical perspective in which governasceeen as a configuration of coordination processes
Configurations give complementary support and asewsice of tension and renewal. Second, we arteula
a view on the conceptual relationship between geuere and coordination where these concepts are un-
derstood as a duality, both working together t@ gise to efficient and dynamic organizing in ogearce.

INTRODUCTION

Open source development is a powerful means taéecegal maintain software. The most signifi-
cant open source communities such as the Linuxédasuccessfully gather the contributions of thou-
sands of distributed developers to further evdlssaftware. To make such coordination possible, ve
sion control software is used to track, trace awtlise the complete development process. It essbnti
allows distributed development to take place whieeenumber of developers has grown beyond a small,
manageable number. At the same time, it is als@iatjve for realizing governance of the open source
community because access and different roles pbresbility are embedded within its design. In ttés

gard, version control software offers a meetingipfir governance and coordination.

Prior open source literature pays attention to lasghects. First, there is a significant body of re-
search dealing with governance (De Noni et al. 28drkus 2007; O'Mahony 2007). Governance pro-
vides the authoritative framework for organizingengsource software development (O'Mahony and Fer-
raro 2007). As an example, such authority mightdfiected in the decision rights over changes e co
modules of the software. Second, in addition te tertical dimension of open source, coordinatibthe
many developers involved is needed for presenhiegbftware’s installed base in terms of prior dent
butions of software code (Fogel 1999; Fogel 20@53.also vital for effectuating new ones (von pigb
2001; von Krogh et al. 2005). Yet, despite the ificamce of vertical authority and horizontal coioat
tion, little has been done to investigate the clesationship between governance and coordination.

In this paper, we propose that governance and gwiron can be seen as a duality where both co-
exist and work in parallel (Farjoun 2010), and bath required simultaneously to be effective. Vi¢e al
propose coordination processes as a concept farstatiding how this duality plays out in the cowke
developing open source software. We refer to coatdin processes as the common sets of rulegjéastr
tions, and activities that operationalize a sped@fithoritative structure. In open source softweneydi-
nation processeare embedded in the software tools used for vexmoitrol (Cornford et al. 2010). In
addition, they are embedded in the social strustaféhe open source organization as reflectedin-c
munication patterns (Bezroukov 1999; Raymond 12@@) values (Orek and Nov 2008).

Another significant aspect of open source commesmitvith implications for governance relates to
its innate emphasis on contributors self-seledtiregy own tasks. Developers are not tied to a conityiu
through a contract so there is no obligation tdioute, instead open source communities rely derdi
ent motivations of developers like delayed extdrgiatification, and a compelling intrinsic neecctim-
tribute (Roberts et al. 2006; Spaeth et al. 20b5; Krogh et al. 2012). To cater for the manifoldsens
that might underlie developers’ commitment, thedstemultiple, and sometimes heterogeneous, authori
tative structures observed as the governance of apérce software evolves (Aaltonen and Lanzara
2015; Markus 2007; Meyer and Montagne 2007; Midié Bhattacherjee 2012; O'Mahony 2007,
O'Mahony and Ferraro 2007; Weber 2005); as one &drgovernance transforms into another (Bryson et

2

al. 2014; Daily et al. 2003; Fielding 1999; Garwcile 2006); and, as more than one form of goverean
co-exist and eventually converge (O'Mahony anddfer2007). In studies of open source governance, it
is therefore imperative to develop conceptions tlaatcater for the multiplicity of open source guowe
ance. We advance the view that in-depth examinati@oordination processes and their underlying au-
thoritarian structures is significant for underslisng this aspect of open source governance. Wedalefi
open source governance as a configuration of nhelléipthoritative structures (each embedded in & coo
dination process) that guide and steer activitgsks, motivations and effort towards a collectaa
mutually understood goal.

Rather than finding evidence of convergence (dfldd'ony and Ferraro 2007) towards a single
form of governance, our in-depth study of the Liidecnel reveals how multiple coordination processes
reflecting heterogeneous authoritative structudadiectively shaped the governance process. Thig mot
vated us to further investigate coordination preessand the governance of open source softwaresdy p
ing the following research questidmw do coordination processes with different authoritative structures
come together in the governance of open source software?

We offer a two-fold contribution in this paper. $tirwe enhance the open source governance litera-
ture by advancing a new theoretical perspectiwehith governance is seen as configurations of ¢oord
nation processes, which gives both complementgrget and triggers for tension and renewal. Govern-
ance is then multiple and not singular in suchdaemnd complex projects and each configuratioroof-c
dination processes encapsulates this multiplichitenallowing for complex coordination to occur.cse
ond, we articulate a conception of the relationdigfween governance and coordination as a duality,

where they work together to reinforce each othgjive rise to change.

CONCEPTUAL BACKGROUND
Governance is a shared basis of authority (O'MalamalyFerraro 2007). Rooted in the ideas of

Weber (1946) and Etzioni (1959), authority in agamizational setting typically encompasses a mix of

legitimacy, ties, and obedience (Harrison 1960)aA&xample, bureaucracy as an authority strubtase

seen significant research (Adler and Borys 1996zier 1964; Kallinikos 2004; Meyer 1968; Ouchi
1980; Riccucci et al. 2016; Weber 1946). Some atiamples include adhocracy (Miller 1987; Miller
1990; Mintzberg 1980; Mintzberg and McHugh 198%)aaces (Faems et al. 2008; Gulati 1998; Han et
al. 2012; Osborn and Hagedoorn 1997; Ring and eavieth 1992), and networks (Davis and Eisenhardt
2011; Ingram and Torfason 2010; Peng et al. 20aBd&rarajan et al. 2013).

Perhaps because of its image of representing sorgaitofoundly new in terms of organizing
(Crowston et al. 2007; Crowston and Scozzi 2002ebaos 2001; Gallivan 2001), open source software
has attracted its own body of governance studiesieer, a closer examination of this literatureciads
how governance in open source displays varietgnms of its underlying authority structure. In famir
literature review helped us distinguish three typeauthority reflected in this body of work: cealized,

libertarian, and collective (see Table 1).

Table 1: Views of Authority Structures in Open Sour ce Governance

Authority Struc- Definition Example references
tures
Centralized Shared understanding that the central core of develop- | (Aaltonen and Lanzara 2015; Crowston and
ers know best how to manage and organize develop- Howison 2005; Dahlander and O'Mahony 2011;
ment work. Koch and Schneider 2002; Kogut and Metiu

2001; Moon and Sproull 2000; Tullio and
Staples 2014; Weber 2005)

Libertarian Shared understanding that individual freedom is very (Dahlander and O'Mahony 2011; de Laat 2007;
important, and that all members should be able act au- | De Noni et al. 2011; De Noni et al. 2013;
tonomously and voice their opinion. Fitzgerald 2006; Gallivan 2001; Howison and

Crowston 2014; Kuwabara 2000; O'Mahony and
Ferraro 2007; Raymond 1999)

Collective Shared understanding that the needs of the many out- | (Fielding 1999; Hemetsberger and Reinhardt
weigh those of the few. 2009; Markus 2007; Mockus et al. 2002;
O'Mahony and Ferraro 2007; Shah 2006;
Sharma et al. 2002)

Centralized authority reflects a shared understanding thatémral core of actors, typically key
developers, know best how to manage and coordigatelopment work (Aaltonen and Lanzara 2015;
Dahlander and Frederiksen 2012; Dahlander and @MaR011; Koch and Schneider 2002; Kogut and

Metiu 2001; Tullio and Staples 2014; Weber 200&)ifheral actors are happy to support the core team

unless it is seen to cross radical boundaries adability and ideology. A study of the online usem-
munity of Propellerhead in Sweden showcases hoeaed "cosmopolitans” bring innovative ideas into
the community yet the core developers exerciseep dense of centralized authority over the commu-
nity’s direction and well-being (Dahlander and Olay 2011). This understanding is not resisted by
other community members because their belief isttigacentral core knows the project best and has
worked hard to earn their reputation and leadenshi@s. This authority structure also reveals thens

of the community that allow less influential actorghe community the choice and ability to work to
wards becoming more relevant through serious amaolvisitive code contributions over time (Dahlander
and O'Mahony 2011).

Second]|ibertarian authorityposits that individual level freedom is imperatiaed that all mem-
bers should be able to act autonomously and vbie dpinion freely as equals (de Laat 2007; DeiNon
et al. 2011; De Noni et al. 2013; Feller and Fitagg2002; Fitzgerald 2006; Gallivan 2001; Howison
and Crowston 2014; Kuwabara 2000; Raymond 1999).BibhDesk project offers conceptual clarity on
how numerous individual developers work to builclity software in a layered approach (Howison and
Crowston 2014). Software is built feature by featoy distinct developers with little focus on theger
project but rather what is evident is a micro pecspe on the code and work at hand. This indiviidtia
layering approach relies on what has been codedom®y rather than attempting grand new designs
(Howison and Crowston 2014).

Callective authority, our third and final category, suggestseav where the needs of the many out-
weigh those of the few, so individual freedom maychrtailed if it is seen to be the right thingitmfor
the common good (Fielding 1999; Hemetsberger amdhaedt 2009; Markus 2007; O'Mahony and
Ferraro 2007; Sharma et al. 2002). A significastance of collective authority has been provided by
O'Mahony and Ferarro (2007). Their study of the iBrelproject observes how the governance model in
different phases of an open source project is siewaluated and evolves to accommodate the changing
nature of the community and its needs. The neegdtiate the authority structure in their study was
driven by the collective need and recognition thatcurrent governance form was inadequate in some

5

manner. The belief system did not provide a goottimaith how work was being governed so the rules
of negotiation with management were questioneduated and re-built to reveal a neallective order.

Duality of Governance and Coordination
As outlined above, the open source governanceditex can be divided into three categories de-

pending on their view on authority: centralizetiglitarian, and collective. However, consistent with
Etzioni's (1959) point that any organization catydrave one seat of authority, existing studiesl ten
presume a singularity in each governance modeh Eveases where hybrid governance is discussed, th
premise of the work is that a new singular autlasitucture emerges through the process of hylaridiz
tion (De Noni et al. 2013; Markus 2007; O'Mahon¥200'Mahony and Ferraro 2007; Shah 2006; Tullio
and Staples 2014). This rich literature also tgliirtends to conflate governance with coordination
(Alexy et al. 2013; Dahlander and O'Mahony 201 1lefFet al. 2008). Arguably, similar concerns have
been raised previously, especially in the CSCWditee (Malone 1987; Olson et al. 2001; Olson and
Olson 2000; Schmidt and Simonee 1996). In CSCW luglartefact, for the most part, is seen as apolit
cal and simply as a tool of coordination (Malon82;9Schmidt and Bannon 1992; Schmidt and Simonee

1996). At the same time this work tends to emukaiger, management studies of governance where sin-

gular authority is understood to be the norm.

Table 2: Conceptual Constructs

Concept Definition
Authoritative structure A coherent arrangement of qualities that provide legitimacy for a particular coordination
process.
Coordination process The common sets of rules, guidelines, and activities that operationalize a specific author-

itative structure.

Governance process A configuration of multiple authoritative structures (each embedded in a coordination pro-
cess) that guide and steer activities, tasks, motivations and effort towards a collective,
and mutually understood goal.

As we will outline in this paper, the link betwegovernance and coordination is important in order
to accommodate the dynamically changing governaheegrowing and evolving open source commu-
nity, and allowing multiple forms of coordinatingwernance processes to co-exist. We draw on tlee ide
of governance and coordination as a duality ratheen dualism (Farjoun 2010). A dualism often com-
pares and relates two antithetical, or competiegsdvhere they work in contradiction to the other
(Farjoun 2010). Such ideas are evident in liteeaaurd practice on open source governance, yetudy s
of the Linux Kernel case suggests a duality of goa&ece and coordination. A duality, as opposed to a
dualism, draws a relationship between two conciwaiisare distinct yet in their unfolding over timverk
together to strengthen, corroborate, and refind etteer. Armed with this perspective we craft aed
of coordination processes and provide empirical@wvie to explain how these separate yet interdepend
ent processes are entangled and work to reinface ether rather than only pull in opposition.

The concept of coordination process helps us &hésh how governance unfolds in open source
development in every day work processes. We defioedination processas the common sets of rules,
guidelines, and activities that operationalize a specific authoritative structure. Such processes consist of
rules that provide explicit and implicit guidelinfes the coordinated activity. For instance, tharsd and
openly accessible FAQ pages for all projects sefarmal guidelines for working on, and contribugin
to, an open source project. There are often wigepahat offer input into the learning process néa
open source developer. Also, there are informalajiries, typically accessible through the ideolsedf.
Barrett et al. 2013) underpinning the authoritystiire of an open source development project. #lesh
ologies may be communicated and appreciated iprdnetice of coordinating in the open source commu-
nity, and they typically define what are seen asgyful contributions to the software. In this redjahe
common sets of rules are sanctioned in a partieulderstanding of how the community should function
(see Table 2).

Returning to our main research questioma coordination processes with different authoritative
structures come together in the governance of open sour ce software, we embarked on a case study of the

Linux Kernel project.

RESEARCH DESIGN AND METHODS

To address the research question related to howdioation processes with different authoritative
structures come together in open source governarcepnducted an in-depth case study (Hargadon and
Douglas 2001; Kieser 1994; Mason et al. 1997a; Ma&t@l. 1997b) of version control use and adoption
in the development of the Linux Kernel. Version tohis software used for coordinating softwareelev
opment. It supports the development process bkitrg@nd archiving revisions to the software over
time. Version control software ensures that codegritautions will be handled effectively. There aai-
ous version control options on the market, andif@sion to adopt any one is often based on both te
nical as well as political reasons because eadtoffers different types of governance.

Case Setting and Selection
The Linux Kernel is an ongoing, high-profile opeusce development project. Its success is rated

not simply by the number of developers it is ablattract, the persistence of the project (consider

how many open source projects simply die withieva months), but the fact that it has been takebyup
so many other communities and companies wherereliftanutations of it have emerged. For instance,
Ubuntu, a very successful Debian based Linux opgratystem has been created and established by the
company called Canonical.

There were a number of reasons why we selectetuaerantrol for the Linux Kernel as our em-
pirical focus. First, the setting offers the conxitie needed for studying coordination processesgd
ernance over time. This enables generation ofreatcount of dynamics related to coordination pro-
cesses. Second, it offers valuable and longitudiatd related to the evolution of governance. LiKax-
nel development began in 1991. There is publicieatlaccess to the entire email communication edrri
out between the Linux Kernel developers from 198ards to present. Like many, if not all open seurc
projects, the distributed nature of collaboratinggéds a greater dependence on such coordinat@s to
such as email and version control software. Thdimgdist in particular is accessible to the puldied is
a rich and solid source of decisions, discussioisdebates held by the community over time. Thisge

one of the earliest cases of open source governamdiered an abundance of data related to teasaof

coordination tools, management style, as well aggmnce models for coordinating software contribu-
tions of developers. And finally, the Linux kerreglse involved a multitude of events when paratier€
dination processes marked with different authaviéastructures co-existed. The issue of versiorirobn
software was especially relevant then since thécetaf version control to be adopted by the comyuni

was contested and offers a useful setting for stigdynteraction of coordination processes.

Data Collection
The primary data for this research was gathered fhe Linux Kernel mailing list archive

[LKML]. This site is kept up to date by the Univiysof Indiana and claims to include every emailsme
sage passed between Linux kernel developers. QKL sites were also used to refine searches and
points of reference. Each site offered some unigciéities, which proved helpful when crosschecking
the completeness of the collected data material.

The data collection covered all the threads andsages related to version control from June 1995
to June 2003. The data was collected in chroncddgialer to reduce the likelihood of missing arlgvant
threads. Often one thread evolved into anothendttea different title, and unless the researchesealy
immersed herself into the data material and itsiseges of events (Langley 1999), important exchange
could have been missed. Each link on the LKML-Indiavebsite was searched by keywords. Eight years’
worth of data yielded a massive amount of infororatiword count: around 1,200,000), which covered th
most critical period of time in terms of versionntm| and coordination. Prior to June 1995, theukin
kernel project was not large enough to requireiiggmt version control. After June 2003, the versi
control software question was less contested. Hewedw ensure that relevant data was not neglettted,
first author examined the list archive on this tojoir some five years after.

The LKML website allows the messages on each padetsorted in three different ways, date,
subject, and author-wise. In particular, Hubject sort was helpful as it broke all the messages daten
their respective threads, thus making it possibleldwnload each message related to every identified

thread. All the messages were copied and pasted iteixt document in readiness for analysis wighhtslp

of content analysis software, Atlas.ti. The firsther continued this process for all the messag#tei time
period of June 1995 — June 2003. The URLs weredstaveesach email to ensure the ability to returthio
original text should the need arise.

The search keywords were regularly adapted astding @nfolded. As the researcher became more
acquainted with the story and various threads siwable to adapt the search terms. This necesearily
tailed reading a number of threads that potentailyld have been of use, but were later discardiethé&ir
lack of direct contribution to this study. Over @msaturation was achieved “whereby no additiontd da
could be found where the researcher could develme mproperties” (Glaser and Strauss 1967, p61).

Still, it was an organizational narrative (Pentlai#99) and if a gap was felt and the developers
seemed to discuss something that had not beenveadldy the researcher, a number of steps wereedarri
out to retrace messages to ensure that valuakdehdat not been missed. These steps included egsurin
that all the relevant threads and messages wdeetsl including simple repeated searches with kegsy
the use of derivative keywords, cross-searchingsasonther LKML archive sites because their searethm
ods offered specific facilities, and following umamber of emails from the key protagonists eveth wi
seemingly unrelated thread titles just to confimatthey did not refer back to other themes ofidison.

Data Analysis
Table 3 depicts the process by which the data walyzed. It broadly followed four steps. The

sheer size of the data dictated that we conductedadler focused data analysis before headingl@o
entire text. In order to make this scaled-down datalysis less biased in terms of the sort of aueles
that might emerge, the first step included a sigeaif 100 sample email messages (they were in se-
guence, but were not the earliest emails chroncddig). The first author then developed descriptioa-
cepts through open coding of these chosen 100 &nfié initial coding was done in line with the ibas
rules of Glaser and Strauss (1967). This was ussftdr as generating ideas was concerned bubther ¢
found that at the end of this one hundred emaihawding there were multiple and overlapping codes
These were then evaluated by both authors andatresised against the entire code book bringing the

tally to about 100 mutually exclusive open codes tte could all agree upon. Having built the codébo

the first author then applied it to code the réghe data. This stage took a fairly lengthy tinue &t its
end there were over 150 mutually exclusive dededptoncepts.

In Step 2, both authors created a timeline togdthbreak down coordination into events as we saw
it shift and change at different moments of timgd&ss and Corbin 1998). In all cases in our stegy
found such events to be centered on controversgiegich version control software to adopt, anty
(Strauss 1987; Strauss and Corbin 1998). Each exssnheither something that transpired (occurreace)
an event that was supposed to happen and was edpgcthe developers, but for some reason did not
occur. In both cases it led to debate and discnsgiere a serious flurry of emails moving back forth
could be followed. The timeline was constructed #mh crosschecked against the mailing list reposit
for accuracy and discrepancies. The first authcs mare familiar with the data but the second author
forced the first one to remain objective by constprestioning of each event, and if it did indeedldy
to be included. Twelve main events were found betfirst and the last did not technically fall withihe
period of our study so we focused on the ten ircérder to demarcate the main coordination events.

To qualify as an event, the following conditionsltia apply:

a) An occurrence/non-occurrence that is considerett@egrsial by the developers in relation to co-
ordination,

b) Creates a sudden and increased flurry in emaibresgs and discussion, and,

c) Something that has causal implications for the pgght — i.e. is seen to be an input or catalyst fo
the next event.

Step 3 involved the identification of coordinatipocesses. This entailed a process of clustering
and identifying different types of relationshipgween the open codes — creating axial codes (Glaser
1992; Strauss and Corbin 1998). The first authatenase of the memo facility in Atlas.ti to captaon-
ceptual notes throughout this process of axialmmpdConceptual notes that were created built oreour
literature in coordination and drew upon dynamiordination ideas (Harrison and Rouse 2014;
Jarzabkowski et al. 2012; Kotlarsky et al. 201/ dlay et al. 2013). The data analysis gave ristage
to 30 theoretical memos on the issue of coordingtimcesses and dynamics. It was through periods of

11

intense discussion between the authors that thesgoswere refined. They were not reduced by number
but each memao took on fuller shape with the seeanldor guiding the process of looking for linkdite
erature in the same area. This led us to the ifldgnamics of coordination because our data nudged
sharply to notice how fluidly coordination movedcattain points of the Linux Kernel development.
However, this was partly made possible by the tgtiiti discern more than one coordination proceks. T
process of coordination was fluid and dynamic botits movement but also in its shape and ess&ee.
turning to the literature on coordination and atitigestructures both authors looked for particudharac-
teristics that set one type of coordination pro@gsst from others. Open source literature emphagtze
existence of the meritocratic coordination prod€apra et al. 2011; Demil and Lecocq 2006; O'Mahony
and Ferraro 2007; von Krogh and von Hippel 200&he®forms of coordination processes such as auto-
cratic, which are found in more traditional orgaianal settings (Eisenhardt 1985; Ouchi 1980) nate
often cited in open source literature. Our work boras both to provide a more complete understanding
of different coordination processes made possibliigital settings that abound today. Another rezthde
difference in coordination processes was our disigogf a more nuanced breakdown in coordination
types than is evident in literature. Our memos aidl codes coalesced around four coordination pro-
cesses; autocratic clearing house, oligarchic stony federated self-governance and meritocraéa id
testing.

Our final step, Step 4, urged both authors to tthegourney of each coordination process over
the eight year period of our data. The processsafindjaging one coordination process from another wa
not straightforward. It led to a discussion betwt#anauthors and a change in data analysis streBedly
authors decided to work side by side but with tbain computers. Focusing on the same data secton w
began to note the point at which any one singuardination process was obvious. We approached the
data through analytical time-slices to narrow dawrthe dynamics of coordination. It was during this

stage of data analysis that we noted the existefheltiple coordination process swapping in and out of

focus at the same time. Coordination behaved verghntike a fluid where intertwined coordination pro

cesses moved, changed, were fleetingly visiblesanaetimes disappeared completely. We mapped these

movements across different event periods of o ttaimake sense of digital coordination.

Table 3. Data analysis

Steps Tasks Outputs
1: Open coding a. Develop early descriptive concepts by cod- There were close to 100 mutu-
ing 100 messages from data ally exclusive descriptive con-
b. Re-evaluate and reduce the number of de- cepts created from the pilot
scriptive concepts by eliminating duplicates Ended with over 150 open
and merging closely related ones. codes when open coding of the
c. Use this code book to analyze the entire entire data material was com-
data material plete
2: Timeline of key events a. Establish a timeline of coordination events, A chronology of key events
version control changes, and points of con- (see Table 4)
tention raised about each VCS Process of coordination analyti-
b. Cross-check timeline with mailing reposi- cally decomposed into different
tory, and each link processes evident in the data
3: Identify coordination processes a. Clustered open codes and laid bare rela- Built close to 30 theoretical
(CP) tionships between them to build axial memos! related to coordination
codes. This involved examining, categoriz- processes
ing, and clustering concepts. New coordination processes
b. Memos emerged naturally during the such as autocratic clearing, oli-
course of coding. Conceptual ideas related garchic recursion, federated
to the data (and linked directly/indirectly self-governance and merito-
with literature) were noted in some detail cratic idea testing. Codes and
c. Elements of overlap and difference with ex- memos coalesced around each
tant literature on coordination processes CP indicating the defining char-
gave rise to recognition of already known acteristics of each.
coordination processes but also the ability
to discriminate new ones
d. Our four coordination processes were cate-
gorized and named
4: Distinguish concurrent coordination a. When establishing the time-specific appear- Identification of moments
processes ance of coordination processes proved where the existence of multiple
frustrating due to a ‘moving target’ phenom- coordination processes were
enon the analysis was reversed to seek lim- evident
inal coordination processes The liminal nature of coordina-
b. We used the notion of analytically slicing tion where different coordina-
the data into time-frames to slow down the tion processes were made visi-
process of coordination movements ble
c. This lead to the identification of a new dy-

namic of coordination where multiplicity of
coordination was evident — strands of differ-
ent coordination processes were followed in
the emails to re-experience their separate
moments, their intertwining, moments of
liminality to disappearance even

! The theoretical memos that arose from the datlysiaovered the main themes of the data, inclyithat of co-
ordination processes. They were deep and yet lmwoadgh to span the entire theoretical apparatuswel in our

rich data.

FINDINGS: THE LINUX KERNEL DEVELOPMENT
In 1991, Linus Torvalds started what is now tydicaken as the most significant open source de-

velopment project: the Linux Kerrfelln the first couple of years, the project was lbmad essentially
managed by Torvalds, using simple tools such asriigrsity email account. However, the versionstke
changing and the number of developers and conimitmitgrew. For instance, between December 1991
(version 0.11) and July 1995 (version 1.2), the Inenof contributors grew from three to more thajdQ6
(Moon and Sproull 2000), making the open sourcgeptpand its outputs in the form of software code,
increasingly complex to coordinate.

From the outset, Torvalds managed to create andisws deep respect within the community of
developers, in which he had been described ad#reVolent dictator the whole community trustsrtia
Augustin, 2001). Yet, over time, the sheer compyegf managing the rapidly scaling software offered
many occasions where this ownership was conteatetishowcased a range of coordination options that
were explored with mixed success. In what follows, narrate the eight-year evolution in coordination
dynamics in the development of Linux Kernel softevly zooming in on the main version control events
between 1995 and early 2004 (see Table 4). Thereeamain events that we focus on and they aaglgle
laid out in Table 4. After a brief historical naive that provides background to our study we tiievelop
the coordination processes at play within the LiKxnel project.

The Early Years (1991-1998): Early on, coordinating Linux was seemingly simpidthough a
software tool for version control called Concurrgetsions Systems (CVS) was in use by UNIX develop-
ers, the Linux project did not really merit suctoal, since it still lacked the critical mass oldpers. In
fact, Torvalds was on top of much of the coordmmatincluding making pre-patches and/or releases. |

creasingly, however, trusted individuals, refertechs maintainers in the community were appointed t

2 The kernel is a computer program that is the cbseammputer's operating system, with completerobotver
everything in the system (Wikipedia, 2017).

serve as gatekeepers. This helped to protect Léode and maintain “his tre€in the manner that was
closer to the liking of Torvalds.

Even though the group of maintainers had grown keest a few hundrédin 1996, the sheer volume
of patches made coordination problematic. A nunabesenior maintainers therefore voiced the need of
version control tool. One of the most trusted namdrs, David Miller, even started to maintain ssian
of kernel code, which he labelled VGER (pronountéolyager”), to support version control. Apparently,
this was significantly needed, since many developtarted to use it as a point of reference im tadtware
development work.

However, Torvalds’ influence served as counterdoas he refused to synchronize Linux code
through VGER (Torvalds, #8Sept 1998). His refusal was met with resistanoefa section of the com-
munity that was led by Miller, who in turn statdéarly that he was not going to disable VGER opsto
using it for Linux development (Miller, 29Sept 1998). This was a striking example of howntaaners,
using version control software, began to take onemnesponsibility than originally intended. Alsbek-
emplified how new and more fine-tuned forms of climation began to emerge. This was necessary be-
cause both software patches and the developer coitymeere increasing in size. However, so was the
complexity of the Linux Kernel code, making newrfar of coordination yet more critical that wouldhel
to cope with the growing complexity.

While showing interest in the idea of version cohsoftware in general, Torvalds was decidedly
against the use of CVS in particular. CVS was used subset of Linux developers but Torvalds regct
its use for his own work on the kernel. This resise provoked a small but persistent outcry incthra-
munity: The developers wanted Torvalds to pay &tiarto their patches and to provide them with one

definitive tree of source code to pull from. It wassimple coordination issue, they argued, which an

3 In open source development only the patches yowasgldwned by you (under the GPL and other OShéies)
but Torvalds was known to call Linux his projectsttree’ refers more specifically to the actuahbech of Linux
that he maintained and controlled.

version control tool could ameliorate. Coordinatioals such as version control software could dftbe
entire community more transparency and awarenegsogfess on any version and releases.

Roughly at this time, in late 1998, a number ofothersion control solutions were proposed. Each
of the tools promoted by one or many developerewigcussed with regard to the functionality offere
and the needs of Linux development. Still, it waklifierent version control software, BitKeeper (Btkat
would soon become a point of both controversy atetést. Its creator, Larry McVoy had often thrown
some minor comments seeking feedback from Linuelkbpers as to what would be acceptable to them in
version control software. The developers were galyeaware about his closed, and proprietary towlax
development, and showed their hesitancy about ktetse mixing. McVoy was still eager to please the
developers because he needed them to test theasefand even offered to bring BK under an opencgou

license if the parent company got bought.

Table 4: Summary of Events

Events Event Description

1: June 1995 Single leader/coordinator

Growing community of developers

Use of simple, but multiple tools for coordination

Torvalds unable to cope with all the submissions

More newbies than experienced developers joining so a greater need for guidance

Growing need for more sophisticated control and coordination

Email coordina-
tion of community
work

Team of trusted lieutenants

Some use of a branch of CVS, renamed VGER, by a sub-section of the community
Bug fixes rising in number and complexity

Conflict and overwrite caused the use of disparate tools to update the Kernel

2: September 1997

Introduction of
VGER use

3: July 1998 Torvalds begins search for comprehensive tool
Strong body of developers emerging as a community

CVS coordination Yet patches being ignored

refused CVS use dismissed by Torvalds
Deepening impatience of the community with Torvalds
4: February 1999 . Closed source version control software introduced to the Linux Kernel community
]] » Passionate resistance evident at the thought of a closed source tool adopted for coordination
g'tKedePe" intro- » The alternative of NO version control was just as untenable so other options explored
uce

5: September 2000 Linux Kernel Patch Penguin considered

Threats of forking

Linus not scaling to corral agreement on a singular solution

Torvalds dropping patches and enraging the community

Some senior developers rallying to find a singular, efficient solution proving difficult due to disa-
greements

Linux Kernel
Patch Penguin

6: February 2002 . Torvalds makes the bold decision to adopt BitKeeper
. Unease as the developers come to terms with decision to adopt a closed source tool

BitKeeper adopted

16

BitKeeper’s introduction creates almost two clear factions in the community — so though Bit-
Keeper makes coordination more efficient, it at the same time slows momentum through gener-
ating discord

7: April 2002

Change in Bit-
Keeper license

Linux Kernel community dismayed to see a regressive change in BitKeeper's license
Change in BitKeeper's license brought the realization to even the more sanguine developers
that circumstances may well deteriorate

A change in BitKeeper's license rouses the community. Their mutual, and vociferous indigna-

tion begins to unnerve even McVoy
. Many voices suggesting that the time for a replacement for BitKkeeper has come and needs to
be acted upon

8: February 2003 . An open source copy of BitKeeper called BitBucket announced

. Questions of copyright and ethicality of a BitKeeper clone debated to make sense of the tool
BitBucket an- needs for the Linux community
nounced . The Linux Kernel community is a good testing ground for BK so McVoy is loath to make a dras-

tic move BitBucket forces him to make threats.
. McVoy determined to keep the community without changing the license conditions of BK looks
for another solution.

9: March 2003 . Anxious over possibility of BitKeeper replacement McVoy announces a technical gateway be-
tween CVS and his own tool BK

Bitkeeper to CVS » Generally the community acknowledges that a tool is VERY necessary for coordination and

gateway an- control of the Kernel's work

nounced « Creation of the gateway eyed very suspiciously by the community

. Community is not convinced that it can access 100% of the Linux Kernel material through the
gateway thus bringing its integrity, existence and motivation into question

. When discussion does not prove to change McVoy's ability to provide full access to the Linux
code then the community turn to resistance.

10: July 2004 . Mistrust of McVoy and his company spreads to the gateway he has created for CVS users to
access updates on Kernel development

BK->CVS gateway . Few, if any developers use the gateway after harsh criticism of its integrity and providing full

breakdown access and control to all the community

. The community not only resists BK control through a lack of use, it also begins multiple proac-
tive changes (which are only known to a few at first)

. BK is reverse engineered by some members of the Linux Kernel community compelling McVoy
to remove BK from community use. This breaks the relationship between BK and Linux.

. Torvalds recognizes that a good tool is even more pertinent now decides to abide by the open
source way — and scratches ‘his own itch’ by initiating GIT.

BitK eeper (1999-2002): In early 1999, the need of version control softwaas widely recognized,
but the more crucial discussions flowed from thetamversies around which tool to adopt. There veere
number of unofficial trees growing, which addedtHe coordination problems already faced by the deve
opers. Developers were no longer sure as to whackian control tool had the most up-to-date versibn
the Linux Kernel, and which branches had been abdiagd where. Developers saw a duplication of con-
tribution as a real waste and there was growingtifation among the community with Torvalds. Indeed,
there were clear signs of Torvalds’ incapacity tanage version control. First, there were fewer new

patches being submitted for peer review. In additihere were many more resends. Developers were

forced to send the same patch for peer review numseimes before it was acknowledged, let alone re-
viewed. As a result, the community of developergapeto fracture with a growing number of dissenting
voices. Linux Kernel development was at a critjcaicture, and in great need of a good version obntr
tool. McVoy sensing discord and opportunity broughtew version control tool, BitKeeper, to the com-
munity’s attention.

Although Torvalds was aware of the risk that hisedeper community would take their code and
talent to another project, he was still not keemdoept BitKeeper without stronger persuasion. édge
while considering BitKeeper use, Torvalds was dasy working on his own solution called the Linux
Kernel Patch Management System, launched as acpmjgposal on September 13, 2000. Despite much
initial interest, however, discussion amongst theeibpers steered off into a comparison of CVSRitd
Keeper rather than showing any genuine interetitér_inux Kernel Patch Management System. It was
now obvious that if the Linux Kernel project wasrtamain sustainable, Torvalds needed to appreciate
developer discontent and go with another soluttatordingly, in February 2002, Torvalds declaret Bi
Keeper the official version tool for the kernel.

However, many in the community did not appreciat&&:per adoption due to its non-GPL license.
In early October 2002, the situation grew worsease developers noticed that the BitKeeper licénase
been changed to include a new clause, ...thisriseds not available to You if You...develop, produce
sell, and/or resell a product which contains sutisthy similar capabilities of the BitKeeper Sofive’.

The substance of concern about BitKeeper not b@iRfy was expressed by another developer, Molnar
who clarified how the Linux Kernel code was botb fource code and the developer comments (metadata)
and though the source code was under an open soonggliant license (GPL), the metadata was not
(Molnar 2002 - Sun 6th Oct). The use of more thia@ wersion control tool at the same time by thaukin
community offered the ability to hide, hold, withipand manage both the developers and their caale —
essence, it was increasingly difficult to distirgfua clear locus of coordination in the Linux Kepreject.

The multiple version control tools in use madeifficllt to distinguish where coordination actiés orig-

inated.

BitBucket (2003-2005): While BitKeeper slowly began to gain ground, this momentwwas
partly broken when Pavel Machek (another Linux ttgser), in February 2003, started a project called
BitBucket. The project was framed as ‘fidkeeper clone’ (Machek 2003 - Wed 26th Feb). Not surpris-
ingly Larry McVoy retaliated by telling Machek attte Linux community more generally that BitKeeper
was a trademark (McVoy 2003 - Sat 1st March). Theoancement of BitBucket generated opposing
views. On the one hand, BitBucket was seen as resai fragmentation in coordination. On the other,
certain developers argued that competition was ssacg and that such competing coordination tools
should emulate the current tool being used in cmmensure a smooth changeover.

Torvalds believed that the key feature of BitKeepas distribution rather than the repository format
He explained that if two people, or more, wouldegiie same name to their similar or different fitben
merging becomes very tricky. Distributed reposéerimply that any developer that pulls code from th
tree in effect creates his own version, which carrdnamed, and changed in other ways. Pushing the
changed version back into the tree can createusedomplications because there will now be multiple
versions and no way to decide which one is bettenare useful. With a version control tool whichshea
central repository, like CVS, this is not a probleetause conflicts in file naming and multiple coibsm
needs to be resolved before the final commit isenmatie same was not true for BitKeeper, a disteithut
version control software.

However, perhaps McVoy felt that he had made It#adway with the community at large. Less
than a month later, he surprised developers byingean interfacing gateway between CVS and Bitkeep
(McVoy, 2003 — Tue 1. March). While gateways in software are seen ag wseful ways to access ex-
ternal code, at the same time they provide litieentive to any developer to create a competingymto
The BK to CVS gateway provided indirect accessit&&eper to all the community, making working on
a competing tool unnecessary. However it did al®WS users more access into what was happening in
Linux development.

The slender trust between the open source devsl@et the proprietary BitKeeper, in spite of
McVoy's move to create the gateway, was challenggdagain. Ben Collins expressed the main concern

19

in terms of not gaining access to all Linux datadmly about 90% of it, a fact that made the comityun
very uneasy (Collins 2003 - Tue 11th March). LavigVoy insisted that nothing was missing from the
data and that some of the developers were jusglpeiranoid and mistrustful.

In March 2003, Larry announced that the BK to CVSwatehad gone live and could be accessed
and used but the gateway was not maintained fay dime to disuse and security problems’ (Anvin 2004
- Thu 22nd July). A certain momentum had been ngldlowly but compellingly that indicated multiple
concerns with BK functions, form and use. The Litietnel developers were a strong community of cre-
ative and skilled programmers who believed thaojen source way was to always try and find a solu-
tion to their own problem. They did not apprecigt€ adoption despite its strength as a version obntr
software. In April of 2005 McVoy accused some merlod the Linux community of attempting to re-
verse engineer BK. He pulled BK use from the Lilietnel collective. In response, Torvalds decided to

create his own version control software, which hmed GIT.

ANALYSIS: COORDINATION PROCESSES IN THE LINUX KERNE

The story of Linux Kernel development shows a diéavand sustained growth in developer numbers
and their contributions. Growth of such proportimecessitated version control that both preserved th
Linux Kernel's installed base from being fragmentedi effectuating new contributions by developers.
The struggle over eight years shows a journeyiafand error with different tools for ensuring tipatches
were managed, problems were flagged, multiple @essivere possible, and large amounts of time-stdmpe
data were held and archived. What is evident framstory is that each tool was actually sampledhey
community for accomplishing specific forms of cdoation. Such coordination forms were then amended
and tweaked to become a better fit for the ambstiofithis growing open source project. In most satfe
tweaks proved insufficient and the tool was evditudropped. The adoption, tweaks and dismissal of

tools were revealing of the changing and dynamfanezof coordination needs of such a large andctcle

20

community. Our results indicate four unique cooadiion processes prominent in the Linux Kernel devel
opment project. In what follows, we discuss autticrelearing; oligarchic recursion; federated sgif-
ernance; and meritocratic idea-testing.

Autocratic Clearing
Our data analysis (see Figure 1) showed that a goMEsis for coordinating the development of

the Linux Kernel involved what we refer to @astocratic clearing. Autocratic clearing is a system of man-
agement with singular coordinating points that gdsi other actors to channel all work and decisions
through a central ‘clearing house’ before accorhplisnt. First, this coordination process involvesna
gular point of entry and exit for access to significant resources for coordamatirhis means that the actor
who controls this point of entry will gain signifint influence over the development work. In ourecés
was clear that what attracted Torvalds to any wersbntrol software, be it simple use of e-maihwre
sophisticated tools such as BitKeeper, was theigioovof such a singular point of entry. For instane-
mail was eminently controllable by Torvalds, aswas the only one privy to his account. Secondsih a
involved centralized decision-making where significant decisions for the future of guodtware were con-
centrated to a single actor. In the Linux Kernedg;al orvalds made many of the important decisibiosia
patch acceptance and version releases. Finallj, decision-making was supported through a technical
infrastructure that served as intermediary betwweposed contributions and new releases of thevaodt
Suchclearing exhibits market-like qualities where patches athanged and valued (and evaluated) by
developers. In our case, Torvalds was the regulatthis clearing-house, and could step in to effec

decision, thus governing this marketplace of ideas.

<< Insert Figure 1 about here >>
Autocratic clearing appeared early in Linux histbry its effect was felt throughout the study pe-
riod, and beyond. Centralized decision-making reeaia strong idea in Linux development, and the
choice of version control coordination tool largdlpended on the level of centrality and ownershkip
fered to the leader. Consider how the decisioritt@eadopt CVS or BitKeeper essentially was one of

sustaining a single entry and exit point for akhebes to Linux code. While CVS had created multiple

21

versions that were worked on in parallel, Bitkeemaresented a way to accomplish a singular pdint o
entry and exist in the context of a much larger womity of developers. Viewed from an autocratic
clearing perspective, parallel versions are esagné sign of disorganization. Distributed versamtrol
requires that all the developers that have writess should possess a degree of expertise big tios
easy to engineer.

Whereas single point of entry and exit was a qué#fiat could be designed into a digital tool, keep-
ing all decisions to be made centrally and as nascpossible by Torvalds was increasingly diffiadt
the open source project grew. Clearly, more effeciind new coordination techniques emerged in view
of the need of a resilient project.

The use of BitKeeper restored autocratic clearBggeially compared to the e-mail system used as
the early version control of Linux Kernel. WhiletBeeper seemingly gave multiple entry and exit fmin
in practice however, multiple access and centrailstn-making rights were not given to any one dleve
oper at the same time. If a developer was ablefiapntent and create a personal clone of Linax, a
make changes to his cloned version, this new hadged cloned version could not automatically be
pushed back into the main build of Linux. This isese BitKeeper supported centralized decision-ntpkin
and served as a technical clearing-house in coatidnopen source development contributions.

Oligarchic Recursion
The second coordination process generated througiada analysis was that of oligarchic recur-

sion (see Figure 2). We define oligarchic recursisra system of management where decision-making is
stratified and the aim is to strengthen the curcentrolling structures through recursive handliigode
peer evaluation. For a long time effective cooatlon meant reliance on a group of tools and actors
working together cooperatively to manage Linux diemeent effectively. This involvesratified deci-
sion-making enabled by extra layers of design embedded intditital tools to make coordination frac-
tionally more diffused yet still cordoned off intiee control of a few actors. These actors werenaftese
allies and shared the same mental models of caidimor design specification. For instance, P&eh-

guin, considered as version control software in020¢as supposed to embody a two-tiered development

22

style provoking parallel versions, where differamintainers could oversee each one. This stratifeied
velopment, the key decisions-makers, and how tiaéifséd versions would be brought together. The tw
branches of similar code were worked on simultaslydout handled by different coordinating maintain-
ers. Yet, at some point, there was convergence®boanch towards another where both versions were
either (a) merged or (b) assessed for differenvaee and broken off to fulfill completely differe
functions. Both the convergence and ability to wankmultiple branches concurrently was made passibl

by digital coordination tools like version contsaftware.

<< Insert Figure 2 about here >>

Second, patches submitted by open source projenbers went through farmalized form of
evaluation before acceptance/rejection. Since the Linux ptajeew larger in code base size, developer
numbers, and complexity, evaluation of patchesireduifferent forms of scrutiny to avoid the dange
of having software updates overwritten or ignoiéarious extra layers of management were therefore
introduced into Linux evaluation to ensure the kaéping of code updates. The stratified naturesof-d
sion-making embedded into technology offered a celmnsive and rule-based process of evaluation.
With a set of routines and rules in place, the mad@mers could help make decision-making more effiti
Each maintainer, through privileged access to trasin the version control software, evaluateddmsd
cided on different segments of code. The processafiating software, though always a key part of
open source development, had now been made farforonalized with distinct stages and routines to be
followed by both the maintainers and the devel@eenmunity.

And finally, there were mutually cooperative stuuets, practices, rules, and tools purposefully
built to reinforce authority recursively. Designing coordinating power into technology was as compli-
cated as keeping it from obvious view of the comityuiTechnology is often embedded with rules and
structures that are seen as part of good desigregpitements, yet in practice users are lesstabie-

tice such rules unless they face them as a pogsifiiection in use. Oligarchic recursion estaldigihe

23

powerful actors, and further entrenched them inéoltinux project through instituting nested andurec
sive practices for code approval, shortlisting atiches or developers for different roles, or theia of
new maintainers. The fact that BitKeeper only alldvprivileged actors to “cherry pick” patches frtma
main tree to accept/reject was not a facility ateto the rest of the community of contributorg] &ur-
thered the needs of the already established elite.

Federated Self-Governance
We refer to the third coordination process in pecactvithin the Linux project afederated self-gov-

ernance (see Figure 3). We define federated self-governas@ management structure that establishes
semi-autonomous governing bodies that work togethaking sovereign decisions until a re-merge is
made necessary. In the Linux Kernel case, fedsl-governance emerged in response to patchies no
being updated and accepted fast enough. One mahaehieving this was to break future code inte dif
ferent branches to creatami-autonomous governing bodies. We saw a benign and internal forking of
Linux into three different branches, all done ttec#o the diverse needs of companies and develofer
stable, beta and alpha branch of Linux emergedhdaderated form of coordination to match. Each
branch was developed at a different pace and figltlg different code. Maintainers, with a group o
dedicated developers, governed each branch obtte ®ecision-making for each branch was semi-au-
tonomous because each branch would be left alogete and change according to the needs of the de-
velopers working on it, and the maintainer who Weasharge with little or no interference from Tolds

and other maintainers.

<< Insert Figure 3 about here >>
The creation of self-governing structures was irapree to maintain growth in Linux. However, to
periodically draw the branches togethendmerge, was equally important. The version control sofeva
was used to update the stable branch, differerdiadeunpack the needs for the beta one, and résbtab
the tested (alpha) into the stable or beta braacteaeessary. This was done to ensure compatiailitly
sometimes to introduce elements into the stabledhrérom the beta or alpha that no longer requived

tensive testing (and thus fell more naturally itite stable category). Seen as an essential momr i

24

various cycles of Linux such coordination oftenumbt about a new release and version of the
Linux/GNU operating system. This is an example sb#iware driven need to reassess the underlying de
sign norms and code. The branches are usuallyeifféout not completely unique, and thus can be
merged to make certain functionality more effective

Meritocratic Idea-Testing
The final coordination process evident in our datalysis was that aferitocratic idea-testing

(see Figure 4). Meritocratic idea-testing embodistyle of management where mutually agreed deci-
sions able to accommodate multiple divergent viakesnegotiated in a transparent manner so as 0 ena
ble open questioning and testing of ideas in oi@@nake them strong. The salient categories thestear
pointed to firstly a moreommunitarian decision making amongst equal actors that technology facilitated
and made possible. Secondly, the aim of this dev@ray of making decision wasdchieve an accom-
modation of multiple views between different developers. Thirdly, meritocratordination entails the
need for technology to reinforéeansparency into coordinating work so that all the developeaa see

the most current changes, the process of workphiet versions to check for potential problems. And
finally, stresstesting of ideas is a crucial element of meritocratic coordinatimere multiple “eyeballs”
(developers) can be put to any patch and problemcmgnize the problem quickly. This allows good
code to emerge efficiently as finding a solutioratproblem becomes that much easier when the pnoble

is clear and known.

<< Insert Figure 4 about here >>
Communitarian decision-making was clearly manifeéstethe use and adoption of CVS by the
Linux community. CVS gave cloning access to alj ahthe same time it offered all developers arakqu
chance to submit their changed code back into LiB@cisions at the point of conflict between two or
more patches sent to resolve the same issue weutthde by the last developer to upload his/her
change. Version control software such as CVS eddghat all developers were equal in its eyes —tmeri
cratic coordination structures were embedded istoery design making it possible for all develapter

feel included and their code valued.

25

An accommodation was necessary in meritocraticstras because all the voices had to be heard
but of course could not be acted upon at the sam@e The Linux story is littered with examples of a
commodations found between different viewpointdgied each requirement in an open source project is
a consequence of communitarian deliberation andnacmdation. The development of the BitKeeper to
CVS gateway is an example of how certain actosgited to find an accommodation between the Bit-
Keeper and CVS users. If a developer was not aldweise BitKeeper or did not want to then he could
still work on Linux development so long as he hadess to the code. The most updated versions of
Linux were held and controlled by BitKeeper so #ssmportant to access this software. The gateway
was created after long negotiations amongst thexaomty and made operable as an accommodation to
hold the community together over Linux code.

The creation of Linux Kernel Patch Penguin reprastan attempt to establish meritocratic idea-
testing. The aim was to rebuild transparency imt@@en source project that had been dissipateddhro
a use of non-open source software for coordinafibie. very design of this version control tool wasnlg
planned to reinforce transparency and to make carmitarian decision making possible. This tool may
never have actually materialized yet a discussfats possibility was central to the debate of whaitt of
version control software the Linux community pregek. It was indicative of their needs but alsorthei
preferences. And though it eventually turned inthsgussion and comparison of CVS and BK, it dil cr
ate a much needed awareness of the strengths akdegses of both these tools. The debate wasfpart o
the process of true meritocratic coordination wietress testing of ideas is carried out througlatiein
a transparent and inclusive manner.

Stress testing of ideas is a basic premise of eparce development. Linux development was no
exception, and it is evident in numerous examplesre individual patches were scrutinized to evaluat
strength, functionality, and elegance. But it wasanly the code that was stress-tested in Linine T

very process of software development as routiniziétin the development practices of version control

26

software are also tested for their ability to cegh different issues such as the growing numbesodi-
ware commits being made at one point of time, oo hdesignated as the final stress tester of jdewas
has the power to make a decision between two oe patiches submitted to solve the same problem.
Coordination Processes Coming Together

We distinguished four coordination processes (aatimcclearing, oligarchic recursion, federated
self-governance, and meritocratic idea-testingdhahsplaying common sets of rules, guidelines, asd
tivities that operationalize a specific authoritaetstructure. However, as our case story unfolds,dlear
that the coordination processes were not standabbotted in a sequence replacing each other.ddste
they co-existed at certain moments in the evolubibtihe Linux kernel. Two or more coordination pro-
cesses were typically active at any moment, sonestioffering complementary support by addressing
different coordination needs in the developmenhefsoftware. Other times the co-existence spuerd
sion as the coordination processes collided. Ierotfords, in addition to the direction unfoldinghmn
each of the coordination processes over time, tsmeexisted a dynamics as coordination processes
were coming together in the governance of the Likasnel. Table 5 summarizes the four configurations

that we highlight here as representative ‘momeatsi each one is explained in the following section

Table 5: The Configuring of Governance

nfiguration o . :
Co‘Mc?r;:nt? Coordination Processes Complementary Support Opposing Tensions
At the same time, federated self-govern-
Autocratic clearing (A) and meri- | ance (F) emerged through developers
.)) tocratic idea-testing (M) gave enacting their persistent use of VGER as
A-M-F Autocratic clearing (A) complementary support to each their choice of version control software.

(VGER Shutdown)

Federated self-governance (F)
Meritocratic idea-testing (M)

other to help create transpar-
ency — much needed in open
source development processes.

This reduced transparency overall but at
the same time allowed voicing of self-ex-
pression and actual progress in develop-
ment work.

BitKeeper succeeded in institut-
ing subtle emergence of oligar-

A-O-M « Autocratic clearing (A) chic recursion (O) alongside au-
duction of « Oligarchic recursion (O) tocrgtl_c clearlng (A) and merito-
<'”“9 uc . Merit tic idea-testing (M cratic idea-testing (M) where all
BitKeeper) eritocratic idea-testing (M) these forms of processes even-
tually worked in tandem to man-
age synchronized work.
A-O-M « Autocratic clearing (A) The complementary support of The license change for BitKeeper cre-
(BitKeeper License « Oligarchic recursion (O) autocratic clearing (A) and oli- ated barriers for certain Linux develop-
Change) « Meritocratic idea-testing (M) garchic recursion (O) was an ef- | ers because they were no longer al-

fective way to manage different

lowed to use tool. The relative harmony

27

factions of the community, some | of autocratic clearing and oligarchic re-
of which were not happy with the | cursion at work through BitKeeper was

use of BitKeeper. However, a then disrupted by a substantial number

change in BitKeeper’s license of developers who decided through meri-

disrupted smooth coordination. tocratic idea-testing (M) that a new tool
was needed.

BitBucket managed to establish
complementary support between

E-M federated self-governance (F)

. * Federated self-governance (F) | and meritocratic idea-testing (M)

(The Introduction * Meritocratic idea-testing (M) because it could encase and ca-
of BitBucket) pacitate multiple forms of syn-

chronization within and across
coordination processes.

Configuration 1 (VGER Shutdown): In 1995, autocratic clearing, federated self-gosaoe, and
meritocratic idea-testing came together in the guaece of the Linux Kernel. This was the time when
Torvalds demanded that VGER be shutdown. In a@sigemi-autonomous governing bodies (federated
self-governance), groups of developers chose ta useiety of version control tools, among which B/&
was the dominant choice. This enactment of fedémsdd-governance caused friction, since Torvalds w
still keen to exercise his moral ownership overltimix Kernel project. VGER was a threat to thes st
rules, guidelines, and activities that operatia®ali autocratic clearing, especially the aspecirgfusar
point of entry and exit, which was essential fottipg clearing in the hands of Torvalds. Yet, Tdd&
demand was vested in a mix of autocratic and nwdt® structures. Albeit adjudicated by an authcra
meritocracy offered complementary support as trargry was concurrently relevant, and Torvalds felt
that VGER, and the developers’ enactment of settiremmous governance hindered such transparency.
This is evident from the exasperation expressed@dsyalds when he could no longer account for which
version was the most updated in Linux as varioandites had been given different updates so that the
community was left with no coherent coordinatingtrol. In the time that followed the interactiortiveen
the three coordination processes (autocratic clgameritocratic idea-testing, and federated selfegn-
ance), in which VGER’s role in the Linux projectsweontested, we found that the complementary stippor
of autocracy and meritocracy helped discontinuetrabis use but this left a vacuum in efficienbedi-
nation. The community reverted to the use of midtipols to manage work but this was not efficiemigl

led to more discussion about a possible custont tmail for the entire community. The three coordima

28

processes had operated as both complementary andoasce of tension as they were intertwined én th
VGER shutdown. The vacuum was felt due to an iitghitt decide on which form of version control and
coordination process would work for governing tidire community. This is not surprising considering
the diverse actors involved in the project.

Configuration 2 (Introduction of BitK eeper): As BitKeeper was introduced in 1999, autocratic
clearing, oligarchic recursion, and meritocratiedetesting were active and intertwined in theislkeigor
supremacy. BitKeeper offered a singular point afyeautocratic clearing), and Torvalds’ eventugdgort
of the version control software can be seen asigoolof autocratic clearing in the context of thereasing
amounts of developers and updates to manage. ieileommunity of developers both recognized Tor-
valds as a leader and had called for a properarecsintrol tool for a long time, however, there \geswing
discontent with BitKeeper. This was not primarityomly related to the fact that BitKeeper coordétbithe
Linux community on Torvalds’s behalf in its instaion of rules and practices approved by Torvalds.
Rooted in meritocratic ideals, developers rathacted to how BitKeeper reinforced authority reotebi.

For instance, as BitKeeper supported oligarchialgley only allowing privileged actors to cherrglpi
patches, and as it become increasingly clearliateta-data generated was not owned by whoewaedre
it, many developers rooted in meritocratic ideats ribt accept the adoption of BitKeeper and turteed
proxy tools to coordinate their work. Sometimesthmols were as simple as the use of email, wltilers
looked to other version control software. Howewgiren autocratic clearing and oligarchic recursiome
plemented each other and worked together then tiegern our narrative how on occasion this combarat
was able to subdue the emergence of meritocragiz-ielsting. It can be surmised that as certaindiomr
tion processes worked in unison and compoundedfthets of the other, they were better able to drow
out opposing coordination processes that brougisida to the situation.

Configuration 3 (BitK eeper License Change): In the beginning of 2002, the new BitKeeper license
accentuated the discontent with the coordinatigpsrtted by BitKeeper, resulting in various typesof
ordination breakdowns such as more time spent @ggthian sharing code, fewer decisions being made
even in relation to the new license so that thgm@ss of the Linux Kernel became hampered, andrfewe

29

updates of Linux were released. Torvalds had maietizan autocratic clearing coordination processchv

he had balanced with an oligarchic style of goveceahrough the stratified decision-making of Bigiger.
However, this was severely challenged as the pmorenli recursively structured authority (oligarchee r
cursion) of the version control software becamardirough the change in BitKeeper's license. Wies
also becoming evident was how singular coordinafimtesses were unable to cope with the growing
complexity and size of the community and numbesaafe patches being added and scrutinized.

The Linux project was a growing mix of differentéds of expertise in developers, various branches,
differences in code and coding practices and ofsgoa diversity in ideology. Such growing complexit
online community work requires both a sophisticaiiotools and flexibility in authoritative managent.
What is noticeable in the Linux Kernel project @ahdecisions about the adoption of tools such esioe
control software embody sophistication and flextipibf holding multiple authoritative processeshial-
ance. Some tools were sophisticated enough to gmtmaddination processes that at first glance coeld
seen as opposites or contradictory. BitKeeper ¢h sin example as it supported multiple coordination
processes. BitKeeper had to appeal in functionality sophistication to actors aligned with coortiara
processes with different authoritative structutebad a sophisticated push/pull method of makowal
copies of Linux, making changes and then attemmipgish of the amendments back to the community.
The method reflected its subtle capacity to jugglerdination structures simultaneously while emsyri
the single point of entry and decision-making fagbby Torvalds. BitKeeper embedded meritocratie val
ues in that it made possible multiple copies ofukino be pulled by all the community members. But
privileged access and specified roles of develogetsrmined the level of pushing code back intaikin
In the latter functionality, BitKeeper gave prigrib autocratic and oligarchic coordination struetu How-
ever, BitKeeper's suitability was eventually questd as the actors in the community began to uhrave
different coordination processes made availabli¢ laynd some developers of the open source projget

to find an alternative that was closer to meritbcraoordination ideals.

30

Configuration 4 (Introduction of BitBucket): Finally, in March 2003, the emergence of BitBucket
involved an encounter between federated self-g@avex® and meritocratic idea-testing. The moment, cre
ated in the wake of the never resolved divide eeldb the license changes in BitKeeper, was ripe fo
presenting BitBucket as a version control softwaased on federated self-governance ideals. BitBucke
was supposed to offer the same coordination funatity as BitkKeeper, but would come with the adaget
of being an open source tool. In effect, this imglihat semi-autonomous governing bodies (fedesziéd
governance) could emerge where decisions wouldkEsome more self-governed, albeit later accommo-
dated within the alliance. This was a call being foemore transparent development practices wiere
Linux community would return to open source rodts@mmunitarian decision-making. Meritocratic idea-
testing was concurrently present and actionablewithout community backing, Machek’s BitBucket
would not be sent any patches to coordinate anfdl tben never become part of Linux coordination-pro
cesses. Finding the delicate balance of transpgrealid functionality, and ability to cope withmoplexity
was not straightforward. Machek was aware thatingl a rival to BitKeeper, a tool that had seerryed
work and good testing ground with the Linux comntymiould not be easy. He needed to play upon the
ideology of meritocratic idea-testing to bring t@mmunity around to his new tool so that they waddl
only be willing to accept the possible breakdowns during its teething days but also help hinat¢tually
build it. What could be counted on in the case ibBEcket was that this tool, as it was being bfiim
scratch would probably be designed to suit thedioation processes most appealing in effect arml odg
for this community. Both federated self-governaand meritocratic coordination processes were eviden
because digital technology could encase and capaaitultiple forms of synchronization within andass

coordination processes.

DISCUSSION
Our research set out to examine how coordinationgeses come together in governing open

source software. Drawing on an in-depth, longitatistudy of the Linux kernel, we found autocratic

31

clearing, oligarchic recursion, federated self-gog@ce, and meritocratic idea-testing as fourmisico-
ordination processes. Each coordination processdeo a common set of rules, instructions, andsacti
ties that operationalized a specific authoritatitreicture. We also found how these coordination pro
cesses co-existed in a way that provided compleangstipport in the governance of the self-selected
contributors to the Linux project. In addition, yhao-existed in a way that triggered tension ame:weal.
Authoritative structures reveal themselves in cotibn processes when questions of authority ager
cess are raised and decided (Boudreau 2010; Felin andget 2014), when decisions amter dependent

and cannot be resolved by the powers that be withffecting other aspects of open source developmen
(Ben-Menahem et al. 2016; Crowston and Scozzi 2G0%) when matters suchtask breakdown (and
re-mergence) are settled by the established orttericon and Crowston 2014; Venters et al. 2014).
Each coordination process is predicated on a speeithority structure that provides the foundagion
legitimacy for action. Such a connection is import® establish how coordination processes embady a

thoritarian structures, manifested in forms of cadeess, decision interdependence, and task breakdo

Table 6: Implications for Open Source Governance

Open Source Governance Implications for Theory Implications for Practice
Characteristic

Governance as a manifesta- Literature on open source governance (de Laat Offers insight to companies that are en-

tion of multiple authoritative 2007; De Noni et al. 2011; De Noni et al. 2013; gaged with open source communities to

structures in open source pro- | Markus 2007; O'Mahony and Ferraro 2007; look to technology to embed governance

jects Tullio and Staples 2014) builds largely on a sin- rules into tools. Tools and software are
gular authority idea (Etzioni 1959). Our study better able to manage multiplicity of gov-
contests this idea and substantiates our claim of | ernance and coordination simultaneously,
multiplicity as one clear mechanism to make and can lead to more effective manage-
such diverse projects develop into successful ment of diverse motivations of open
communities over time. source developers overall.

Governance and coordination Prior studies of open source governance Managers in companies that are tasked

as a relationship of duality ra- | (O'Mahony and Ferraro 2007; Tullio and Staples | with open source community engagement

ther than opposite forces 2014) and coordination (Ben-Menahem et al. often suffer when the community takes
2016; Crowston and Scozzi 2004; Howison and umbrage at being directed and orches-
Crowston 2014; Koch and Schneider 2002; trated too much. Embedding both vertical
Lindberg et al. 2016) treated each phenomenon governance processes as well as hori-
separately yet we challenge this separation and zontal coordination rules into ‘objective’
opposition of forces because our study shows technology can allow the company to bet-
how governance and coordination work together | ter negotiate its relationship without suf-
to reinforce each other. The horizontal workings fering from ideological prejudice from the
of coordination constantly look to the more verti- | community.
cal governance for rules and norms that make
the former executable.

32

We offer two main contributions to open source goaace (see Table 6). First, we enhance litera-
ture on open source governance through the develoipoh a novel theoretical perspective in which-gov
ernance is seen as configurations of coordinationgsses, thus making governance multiple. Second,
we conceptualize the relationship between govemand coordination as a duality. In what follows, w
detail each contribution, and discuss its implmasi for our research.

Multiplicity of Governancein Open Sour ce Projects

We extend open source governance literature (de20f; De Noni et al. 2011; De Noni et al.
2013; Markus 2007; O'Mahony and Ferraro 2007) wittovel perspective on governance. In particular,
we show how coordination processes coexist, eamimged in a particular authoritative structure. M/hi
existing governance literature assumes governamated in a singular authority structure (e.g. Bizio
1959) or views co-existing forms of governanceemsporary (O'Mahony and Ferraro 2007), our perspec-
tive holds that multiplicity of authority structués an important inherent feature of open soucseign-
ance. Multiplicity is important because large-scdistributed open source projects attract diffesemts
of developers that bring with them diverse motimasi. These developers self-select to perform tasks
(Hemetsberger and Reinhardt 2009; Lanzara and M@G@8; Lee and Cole 2003) where it becomes
necessary to have multiple ways to organize anédmothem across distributed locations. This hdiés t
open source community together by providing completary support for different stakeholders
(Aaltonen and Lanzara 2015; Eseryel and Eserye3;28&metsberger and Reinhardt 2009; Moon and
Sproull 2000). At the same time, our findings digghlight that configuring coordination processe® ia
peaceful collective is not possible indefinitelydadisruption is common. Ideological differencestia
authoritative structures eventually surface, amdesas an important initiator of change in the goirg
of open source software. The success of distribptejgcts partly relies on balancing different, and
sometimes conflicting authoritative structures dtameously.

This contribution has significant implications. @psource literature to date has centered on singu-
lar authoritative structures regardless if thedtre in question is centralized (Crowston and Haowi
2005; Dahlander and O'Mahony 2011; Koch and Sclen&@@d02; Tullio and Staples 2014), libertarian (de

33

Laat 2007; De Noni et al. 2011; De Noni et al. 20&38llivan 2001; Howison and Crowston 2014;
Raymond 1999), or collective (e.g. HemetsbergerReidhardt 2009; Markus 2007; Mockus et al. 2002;
O'Mahony and Ferraro 2007; Shah 2006; Sharma 20@R). This body of work is largely in line with
Etzioni's (1959) assertion that only one form dhauty structure can exist in a given time. Evertases
where at least two authority structures have bésemwed (see e.g., O'Mahony and Ferraro 2007), this
has been understood as a liminal event with an agiglon how the authority structures soon converged
into a singular, new form of governance. In ourgrapre explain how different authority structures c
co-exist as they serve complementary purposessadifisrent coordination processes, and we empaasiz
that such co-existence is one of the crucial remfmmmaking complex coordination possible when the
community sees different actors and technologgaiitnate.

Second, we offer a perspective on how open souwreergance undergoes change. Our results sug-
gest that understandably, complexity does indee@se with growth in community size (Kuwabara
2000; Stanko 2016) yet where we differ from pri@rk(O'Mahony and Ferraro 2007; Tullio and Staples
2014) is in our finding that Linux revealed mulgptoordination processes even when it was a fairly
small, and simple project. We look to the crisekiimux development to explain the emergence of new
orders of governance, coordination processes, diieletht configurations of governance. Some praject
manage with a small, core team of developers (Keasturthy 2002) and never grow too big over time,
yet they are vulnerable to various crisis poingt ps much as the large projects. And, while coatthn
processes, each with their own specific ways ofineing and constraining software development activ
ity, can complement the other in a harmonized wayalso highlight moments when they disintegrate
and reunite in new configurations that represatiffarent form of governance. Studies of open seurc
governance (De Noni et al. 2013) have paid lessitidin to this aspect. We believe our perspectiag m
serve as powerful basis for developing process mad@®pen source governance as it offers a vocabu-
lary that can be used in empirical studies designe&kamine governance evolution.

And third, we show that digital technology (Lanzaral Morner 2005) plays an important role in
allowing multiplicity in the authoritative basis gbvernance. Part of this is embedded in the dexigme

34

technology and tools used by open source develdpgnse are also able to show through our Linux
study just how such embedding occurs, with a jigstifon of why, and to what effect. This is in a@st

to a large body of the CSCW work where technol@ggeien as an unproblematic tool (Schmidt and
Bannon 1992; Schmidt and Simonee 1996) ratherdhaartefact that is used politically by different a
tors to manoeuvre the community and the productgokiilt. Our case illustrates how coordination-pro
cesses were embedded in the software used foorarsitrol (cf. Cornford et al. 2010), and, intri-
guingly, that multiple coordination processes waneultaneously supported by the same software. We
suggest the notion of multiple instantiation ofagbe coordination processes to capture this ifldayio

tal artifacts embodying multiple, distinct setscofnmon rules and instructions with capacity to clehn
and constrain activity.

Our study also has implications for practice. Conypengagement with open source projects over
the last decade has grown substantially. Howeveh £ngagement has been fraught with discord and
challenges on either side (Dahlander and Magnu2668; Dahlander and Magnusson 2005; Dahlander
and Wallin 2006; Germonprez et al. forthcoming)rivias managerial strategies have been employed by
companies to build a healthier relationship withjgcts but it is less common to see them use téobno
to negotiate authority over the community-led pebjdhis study offers valuable insight into how Isuc
technological tools can be designed and built toaaga multiple ideological factions, and govern paro
source project effectively.

Governance and Coordination as a Duality

Our second contribution offers a dualistic underdiiag (cf. Farjoun 2010) of governance and coor-
dination in open source communities. Governancecaonddination are separate yet at the same time the
are deeply related processes that work togethanoduce change in open source communities. Ptegr li
ature has paid relatively little attention to these relationship between the vertical dimensiogmfern-
ance (De Noni et al. 2011; Markus 2007; O'Mahon®73@nd the horizontal implementation of coordina-
tion (Crowston and Scozzi 2004; Howison and Crow&014; Koch and Schneider 2002; Lindberg et al.
2016). We can see this duality play out in every pieactices and work in open source development. Fo

35

instance, vertical authority over access levelsietsberger and Reinhardt 2009) indicates the oalsttip
between what needs to be done and coordinatedamdhiis is vertically delegated through accesstsigh
by the larger authority in a community. Authorityes interdependence of decisions (Lindberg etGil62
reflects another aspect of where coordination ngeternance through authority structures. Thecelis-
plexity that emerges from decisions being interdeleat on decisions made by others (and the stétus o
authority that they carry). And lastly, authorityen task breakdown (Dalle and David 2005) and fdessi
reemergence of functions also necessitates a stomglinating element of action and ‘doing’ butsthi
action is always mitigated by the vertical auttaiiite capacity delegated by the more senior. Oparce
governance gives strong indication of vertical @ as horizontal movementIhese are not examples of
processes working in opposition, but rather theingrtogether of two distinct mechanisms that toggth
effectively orchestrate an open source community.

Our study has implications for governance and doatgbn studies because we propose how these
two constructs can effectively be used togethexmain open source governance. The link between co
ordination and governance is more than hinted #térmanagement (Bruns 2013; Gulati and Singh 1998;
Kellogg et al. 2006) and IS literatures (Markus &uil 2012; Ribes et al. 2013; Scarbrough et al4201
but here we explore it in some depth and offertailgel dualistic account of a longitudinal case rehie
is possible to reflect on the relationship betweeordination and governance and their entangled rel
tionship. While studies on open source governaocesfon vertical authority (Felin and Zenger 2014),
leadership (Conlon 2007; O'Mahony and Ferraro 2@0vet al. 2016) and other governance related
ideas, the work on open source coordination netgatimore horizontal synchronization (Strode et al.
2012; Venters et al. 2014) and interdependencemo{Ben-Menahem et al. 2016; Howison and
Crowston 2014; Lindberg et al. 2016) — but botkréitures expand their contribution in siloed spaces
Our conceptualization abordination processes personifies the deeply implicated relationshipazsn

‘who is able to tell others what to do’ along witthat needs to be done, and how'. In effect, wenvditze

5 We are grateful to a reviewer on this paper famdng this to our attention.

36

two disparate open source literatures togethexptam how these concepts work with each other in
every day open source development.

The relationship of duality between governance @mtdination also has implications for practice.
Open source projects need to consider the todlsttep appropriate more deeply (Shaikh and Vaas6R0
because the use of such technology is more thaslysarquestion of either open or proprietary. Theid
sion is far more complex because version contrbivene can be used to build a community structare (
change it). Any and all tools appropriated to caumte work have at the same time, serious impboati
for governance. The latter is not always understvambnsidered deeply and can have ramificationthfo
sustainability of an open source project.

Limitations
This study is not without limitations. First, weeketo offer an ideographic research explanation,

viewing the findings as causal tendencies (TsoGk&9). This means that our research offers a perspe
tive with which to examine the causal tendenciethefevolution and coming together of coordination
processes in the governance of open source. Howtbigreliance on ideographic research explanation
comes with the limitation that the study has alsisgtting and technology focus. Obviously, thelgtu
could benefit from comparative case analysis whéferent contexts of coordination processes ard-st
ied and compared to help theorization.

Second, in-depth interviews would have helped itdlayven richer accounts of the dynamics play-
ing out in this governance setting. In particutawould have been useful to collect interview daiteut
how actors perceive forms of legitimacy manifestethe coordination processes.

Finally, our focus on a so-called "extreme casegr(lag 2007) helps theorization to be "prototypi-
cal or paradigmatic of some phenomena of intefgst101). However, this means that it may not be as
representative of all open source projects at largere are numerous open source projects tha e
fail within a few months. Coordination processestch cases would no doubt take a different shape.
Also, we cannot rule out that less comprehensivepablic cases may be characterized by more stable,

and perhaps singular, coordination processes.

37

CONCLUSION

Coordination processes and their multiplicity mapen source project are a significant and novel
abstraction of how communities are governed. Tka itiat multiple coordination processes exist and
work in tandem to effectuate a project over timeggbeyond current literature to complement our unde
standing of coordination and open source commumégagement. Drawing these processes together and
orchestrating their multiplicity is the subtle litk governance. We put forward our thesis of theego-
ance of open source software as a changing coafigarof multiple and different coordination proses
over time. Some processes fade away while othkesttald more strongly. Digital technology used by
open source communities, such as version contflaie, makes the multiplicity of coordination pro-
cesses more possible. The technology that is atd#ectively channel and effectuate multiple caoad
tion processes becomes more acceptable and thuepapped. We offer the research documented in this
paper as a first step to further understand th&ugwo of governance in open source where multioler-

dination processes are likely to co-exist.

38

REFERENCES

Aaltonen, A., and Lanzara, G. F. 2015. "Building Governance Capability in Online Social Production:
Insights from Wikipedia," Organization Studies (36:12), pp. 1649-1673.

Adler, P. S., and Borys, B. 1996. "Two Types of Bureaucracy: Enabling and Coercive," Administrative
Science Quarterly (41), pp. 61-89.

Alexy, O., George, G., and Salter, A. J. 2013. "Cui Bono? The Selective Revealing of Knowledge and Its
Implications for Innovative Activity," Academy of Management Review (38:2), pp. 270-291.

Anvin, H. P. 2004 - Thu 22nd July. "Re: Linux-Kernel Cvs Gateway?", 2004, from
http://www.uwsg.indiana.edu/hypermail/linux/kernel/0407.2/0490.html

Barrett, M., Heracleous, L., and Walsham, G. 2013. "A Rhetorical Approach to It Diffusion:
Reconceptualizing the Ideology-Framing Relationship in Computerization Movements," MIS
Quarterly (37:1), pp. 201-220.

Ben-Menahem, S. M., von Krogh, G., Erden, Z., and Schneider, A. 2016. "Coordinating Knowledge Creation
in Multidisciplinary Teams: Evidence from Early-Stage Drug Discovery," Academy of Management
Journal (59:4), pp. 1308-1338.

Bezroukov, N. 1999. "Open Source Software Development as a Special Type of Academic Research (Critique
of Vulgar Raymondism)," FirstMonday: Peer Reviewed Journal on the Internet (4:10), pp. 1-23.

Boudreau, K. 2010. "Open Platform Strategies and Innovation: Granting Access Vs. Devolving Control,"
Management Science (56:10), pp. 1849-1872.

Bruns, H. C. 2013. "Working Alone Together: Coordination in Collaboration across Domains of Expertise,"
Academy of Management Journal (56:1), pp. 62-83.

Bryson, J. M., Crosby, B. C., and Bloomberg, L. 2014. "Public Value Governance: Moving Beyond
Traditional Public Administration and the New Public Management," Public Administration
Review (74:4), pp. 445-456.

Capra, E., Francalanci, C., Merlo, F., and Lamastra, C. R. 2011. "Firms' Involvement in Open Source
Projects: A Trade-Off between Software Structural Quality and Popularity," Journal of Systems and
Software (84), pp. 144-161.

Collins, B. 2003 - Tue 11th March. "Re: [Announce] Bk->Cvs (Real Time Mirror)." 2004, from
http://www.ussg.iu.edu/hypermail /linux/kernel/0303.1/0894.html

Conlon, M. P. 2007. "An Examination of Initiation, Organization, Participation, Leadership, and Control of
Successful Open Source Software Development Projects," Information Systems Education Journal
(5:38), pp. 1-13.

Cornford, T., Shaikh, M., and Ciborra, C. 2010. "Hierarchy, Laboratory and Collective: Unveiling Linux as
Innovation, Machination and Constitution," Journal of the Association for Information Systems
(11:11).

Crowston, K., and Howison, J. 2005. "The Social Structure of Free and Open Source Software
Development.," First Monday).

Crowston, K., Howison, J., Masango, C., and Eseryel, U. Y. 2007. "The Role of Face-to-Face Meetings in
Technology-Supported Self-Organizing Distributed Teams," Professional Communication, IEEE
Transactions on (50:3), pp. 185-203.

Crowston, K., and Scozzi, B. 2002. "Open Source Software Projects as Virtual Organizations: Competency
Rallying for Software Development,” IEE Proceedings - Software (149:1), pp. 3-17.

Crowston, K., and Scozzi, B. 2004. "Coordination Practices for Bug Fixing within Floss Development
Teams," First International Workshop on Computer Supported Activity Coordination (CSAC
2004).

Crozier, M. 1964. The Bureaucratic Phenomenon. Chicago University Press.

Dafermos, G. 2001. "Management and Virtual Decentralized Networks: The Linux Project," First Monday
(11:6).

Dahlander, L., and Frederiksen, L. 2012. "The Core and Cosmopolitans: A Relational View of Innovation in
User Communities," Organization Science (23:4), pp. 988-1007.

Dahlander, L., and Magnusson, M. 2008. "How Do Firms Make Use of Open Source Communities?," Long
Range Planning (41:6), pp. 629-649.

Dahlander, L., and Magnusson, M. G. 2005. "Relationships between Open Source Software Companies and
Communities: Observations from Nordic Firms," Research Policy (34), pp. 481-493.

39

Dahlander, L., and O'Mahony, S. 2011. "Progressing to the Center: Coordinating Project Work,"
Organization Science (22:4), pp. 961-979.

Dahlander, L., and Wallin, M. W. 2006. "A Man on the Inside: Unlocking Communities as Complementary
Assets," Research Policy (35), pp. 1243-1259.

Daily, C. M., Dalton, D. R., and Rajagopalan, N. 2003. "Governance through Ownership: Centuries of
Practice, Decades of Research," Academy of Management Journal (46:2), pp. 151-158.

Dalle, M., and David, P. A. 2005. "The Allocation of Software Development Resources in ‘Open Source’
Production Mode," in Perspectives on Open Source and Free Software, J. Feller, B. Fitzgerald, S.
Hissam and K. Lakhani (eds.). Sebastapol, CA: O’Reilly Associates.

Davis, J. P., and Eisenhardt, K. M. 2011. "Rotating Leadership and Collaborative Innovation:
Recombination Processes in Symbiotic Relationships," Administrative Science Quarterly (56:2),
Pp. 159-201.

de Laat, P. B. 2007. "Governance of Open Source Software: State of the Art," Journal of Management and
Governance (11:2), pp. 165-177.

De Noni, I., Ganzaroli, A., and Orsi, L. 2011. "The Governance of Open Source Software Communities: An
Exploratory Analysis," Journal of Business Systems, Governance and Ethics (6:1), pp. 1-18.

De Noni, I., Ganzaroli, A., and Orsi, L. 2013. "The Evolution of Oss Governance: A Dimensional
Comparative Analysis," Scandinavian Journal of Management (29:3), pp. 247-263.

Demil, B., and Lecocq, X. 2006. "Neither Market nor Hierarchy nor Network: The Emergence of Bazaar
Governance," Organization Studies (27:10), pp. 1447-1466.

Eisenhardt, K. M. 1985. "Control: Organizational and Economic Approaches " Management Science (31:2),
pp. 134-149.

Eseryel, U. Y., and Eseryel, D. 2013. "Action-Embedded Transformational Leadership in Self-Managing
Global Information Systems Development Teams," The Journal of Strategic Information Systems
(22:2), pp. 103-120.

Etzioni, A. 1959. "Authority Structure and Organizational Effectiveness," Administrative Science Quarterly
(4), pp- 43-67.

Faems, D., Janssens, M., Madhok, A., and Looy, B. V. 2008. "Toward an Integrative Perspective on Alliance
Governance: Connecting Contract Design, Trust Dynamics, and Contract Application," Academy of
Management Journal (51:6), pp. 1053-1078.

Farjoun, M. 2010. "Beyond Dualism: Stability and Change as a Duality," The Academy of Management
Review (35:2), pp. 202-225.

Felin, T., and Zenger, T. R. 2014. "Closed or Open Innovation? Problem Solving and the Governance
Choice," Research Policy (43:5), pp. 914-925.

Feller, J., Finnegan, P., Fitzgerald, B., and Hayes, J. 2008. "Bazaar by Design: Managing Interfirm
Exchanges in an Open Source Service Network," Information Technology in the Service Economy:
Challenges and Possibilities for the 21st Century (267), pp. 173-188.

Feller, J., and Fitzgerald, B. 2002. Understanding Open Source Software Development. London, UK:
Addison-Wesley.

Fielding, R. T. 1999. "Shared Leadership in the Apache Project,” Communications of the ACM (42:4).

Fitzgerald, B. 2006. "The Transformation of Open Source Software," MIS Quarterly (30:3), pp. 587-598.

Fogel, K. 1999. Open Source Development with Cus. Scottsdale, AZ: Coriolis Open Press.

Fogel, K. 2005. Producing Open Source Software: How to Run a Successful Free Software Project.
Sebastopol, CA: O'Reilly.

Gallivan, M. J. 2001. "Striking a Balance between Trust and Control in a Virtual Organization: A Content
Analysis of Open Source Software Case Studies," Information Systems Journal (11), pp. 277-304-.

Garud, R., Kumaraswamy, A., and Sambamurthy, V. 2006. "Emergent by Design: Performance and
Transformation at Infosys Technologies,"” Organization Science (17:2), pp. 277-286.

Germonprez, M., Kendall, J. E., Kendall, K. E., Mathiassen, L., Young, B., and Warner, B. forthcoming. "A
Theory of Responsive Design: A Field Study of Corporate Engagement with Open Source
Communities," Information Systems Research).

Gerring, J. 2007. Case Study Research: Principles and Practices. Cambridge: Cambridge University Press.

Glaser, B. 1992. Basics of Grounded Theory Analysis. Mill Valley, California: Sociology Press.

Glaser, B. G., and Strauss, A. 1967. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Chicago: Aldine.

Gulati, R. 1998. "Alliances and Networks," Strategic Management Journal (19:4), pp. 293-317.

40

Gulati, R., and Singh, H. 1998. "The Architecture of Cooperation: Managing Coordination Costs and
Appropriation Concerns in Strategic Alliances," Administrative science quarterly (43), pp. 781-
814.

Han, K., Oh, W., Im, K. S., Chang, R. M., Oh, H., and Pinsonneault, A. 2012. "Value Cocreation and Wealth
Spillover in Open Innovation Alliances," MIS Quarterly (36:1), pp. 291-325.

Hargadon, A. B., and Douglas, Y. 2001. "When Innovations Meet Institutions: Edison and the Design of the
Electric Light," Administrative Science Quarterly (46:3), pp. 476-501.

Harrison, P. M. 1960. "Weber's Categories of Authority and Voluntary Associations," American Sociological
Review (25:2), pp. 232-237.

Harrison, S., and Rouse, E. 2014. "Let's Dance! Elastic Coordination in Creative Group Work: A Qualitative
Study of Modern Dancers," Academy of Management Journal (57:5), pp. 1256-1283.

Hemetsberger, A., and Reinhardt, C. 2009. "Collective Development in Open-Source Communities: An
Activity Theoretical Perspective on Successful Online Collaboration," Organization Studies (30:9),
pp- 987-1008.

Howison, J., and Crowston, K. 2014. "Collaboration through Open Superposition: A Theory of the Open
Source Way," MIS Quarterly (38:1), pp. 29-50.

Ingram, P., and Torfason, M. T. 2010. "Organizing the in-Between: The Population Dynamics of Network-
Weaving Organizations in the Global Interstate Network," Administrative Science Quarterly
(55:4), pp. 577-605.

Jarzabkowski, P., Le, J. K., and Feldman, M. 2012. "Toward a Theory of Coordinating: Creating
Coordinating Mechanisms in Practice," Organization Science (23:4), pp. 907-927.

Kallinikos, J. 2004. "The Social Foundations of the Bureaucratic Order," Organization (11:1), pp. 13-36.

Kellogg, K. C., Orlikowski, W. J., and Yates, J. 2006. "Life in the Trading Zone: Structuring Coordination
across Boundaries in Postbureaucratic Organizations," Organization Science (17:1), pp. 22-44.

Kieser, A. 1994. "Why Organization Theory Needs Historical Analyses-and How This Should Be
Performed," Organization Science (5:4), pp. 608-620.

Koch, S., and Schneider, G. 2002. "Effort, Cooperation and Coordination in an Open Source Software
Project: Gnome," Information Systems Journal (12:1), pp. 27-42.

Kogut, B., and Metiu, A. 2001. "Open-Source Software Development and Distributed Innovation," Oxford
Review of Economic Policy (17:2), pp. 248-264.

Kotlarsky, J., Scarbrough, H., and Oshri, I. 2014. "Coordinating Expertise across Knowledge Boundaries in
Offshore-Outsourcing Projects: The Role of Codification," MIS Quarterly (38:2), pp. 607-627.

Krishnamurthy, S. 2002. "Cave or Community? An Empirical Examination of 100 Mature Open Source
Projects," First Monday
(http://www.firstmonday.dk/issues/issue7 6/krishnamurthy/index.html).

Kuwabara, K. 2000. "Linux: A Bazaar at the Edge of Chaos," First Monday (5:3).

Langley, A. 1999. "Strategies for Theorizing from Process Data," Academy of Management review (24), pp.
691-710.

Langley, A., Smallman, C., Tsoukas, H., and Van de Ven, A. H. 2013. "Process Studies of Change in
Organization and Management: Unveiling Temporality, Activity, and Flow," Academy of
Management Journal (56:1), pp. 1-13.

Lanzara, G. F., and Morner, M. 2003. "The Knowledge Ecology of Open Source Software Projects,"
European Group of Organizational Studies (EGOS Collogquium), Copenhagen.

Lanzara, G. F., and Morner, M. 2005. "Artifacts Rule! How Organizing Happens in Open Source Projects,"
in Actor-Network Theory and Organizing, B. Czarniawska and T. Hernes (eds.). Copenhagen,
Denmark: Copenhagen Business School Press.

Lee, G. K., and Cole, R. E. 2003. "From a Firm-Based to a Community-Based Model of Knowledge Creation:
The Case of the Linux Kernel Development,” Organization Science (14:6), pp. 633-649.

Lindberg, A., Berente, N., Gaskin, J., and Lyytinen, K. 2016. "Coordinating Interdependencies in Online
Communities: A Study of an Open Source Software Project," Information Systems Research (27:4),
pp. 751-772.

Machek, P. 2003 - Wed 26th Feb. "Bitbucket: Gpl-Ed Bitkeeper Clone." 2004, from
http://www.uwsg.indiana.edu/hypermail/linux/kernel/0302.3/0931.html

Malone, T. W. 1987. "Modeling Coordination in Organizations and Markets," Management Science (33:10

(October)), pp. 1317-1332.

41

Markus, M. L. 2007. "The Governance of Free/Open Source Software Projects: Monolithic,
Multidimensional, or Configurational?," Journal of Management and Governance (11:2), pp. 151-
163.

Markus, M. L., and Bui, Q. N. 2012. "Going Concerns: The Governance of Interorganizational Coordination
Hubs," Journal of Management Information Systems (28:4), pp. 163-198.

Mason, R. O., McKenney, J. L., and Copeland, D. G. 1997a. "Developing an Historical Tradition in Mis
Research," MIS Quarterly (21:3), pp. 257-276.

Mason, R. O., McKenney, J. L., and Copeland, D. G. 1997b. "An Historical Method for Mis Research: Steps
and Assumptions," MIS Quarterly (21:3), pp. 307-320.

McVoy, L. 2003 - Sat 1st March. "Re: Bitbucket: Gpl-Ed Bitkeeper Clone." 2004, from
http://www.uwsg.indiana.edu/hypermail/linux/kernel/0303.0/0052.html

Meyer, M., and Montagne, F. 2007. "Open Source Software and the Self-Governed Community," Revue D
Economie Politique (117:3), pp. 387-405.

Meyer, M. W. 1968. "The Two Authority Structures of Bureaucratic Organizatino," Administrative Science
Quarterly (13:2), pp. 211-228.

Midha, V., and Bhattacherjee, A. 2012. "Governance Practices and Software Maintenance: A Study of Open
Source Projects," Decision Support Systems (54:1), pp. 23-32.

Miller, D. 1987. "The Genesis of Configuration," The Academy of Management Review (12:4), pp. 686-701.

Miller, D. 1990. "Organizational Configurations: Cohesion, Change, and Prediction," Human Relations
(43:8), pp. 771-789.

Mintzberg, H. 1980. "Structure in 5's: A Synthesis of the Research on Organization Design," Management
Science (26:3), pp. 322-341.

Mintzberg, H., and McHugh, A. 1985. "Strategy Formation in an Adhocracy," Administrative Science
Quarterly (30:2), pp. 160-197.

Mockus, A., Fielding, R. T., and Herbsleb, J. 2002. "Two Case Studies of Open Source Software
Development: Apache and Mozilla," ACM Transactions on Software Engineering and
Methodology (TOSEM) (11:3), pp. 309 - 346.

Molnar, I. 2002 - Sun 6th Oct. "Bk Metadata License Problem?", 2004, from
http://www.uwsg.indiana.edu/hypermail/linux/kernel/0210.0/1918.html

Moon, J. Y., and Sproull, L. 2000. "Essence of Distributed Work: The Case of the Linux Kernel," First
Monday (5:11).

O'Mahony, S. 2007. "The Governance of Open Source Initiatives: What Does It Mean to Be Community
Managed?," Journal of Management & Governance (11:2), pp. 139-150.

O'Mahony, S., and Ferraro, F. 2007. "The Emergence of Governance in an Open Source Community,"
Academy of Management Journal (50), pp. 1079-1106.

Oh, W., Moon, J. Y., Hahn, J., and Kim, T. 2016. "Research Note—Leader Influence on Sustained
Participation in Online Collaborative Work Communities: A Simulation-Based Approach,"”
Information Systems Research (27:2), pp. 383-402.

Olson, G. M., Malone, T. W., and Smith, J. B. 2001. Coordination Theory and Collaboration Technology.
Psychology Press.

Olson, G. M., and Olson, J. S. 2000. "Distance Matters," Human-computer interaction (15:2), pp. 139-178.

Orek, S., and Nov, O. 2008. "Exploring Motivations for Contributing to Open Source Initiatives: The Roles
of Contribution Context and Personal Values," Computers in Human Behavior (24), pp. 2055-
2073.

Osborn, R. N., and Hagedoorn, J. 1997. "The Institutionalization and Evolutionary Dynamics of
Interorganizational Alliances and Networks," Academy of Management Journal (40:2), pp. 261-
278.

Ouchi, W. 1980. "Markets, Bureaucracies and Clans," Administrative Science Quarterly (25), pp. 120-142.

Peng, G., Wan, Y., and Woodlock, P. 2013. "Network Ties and the Success of Open Source Software
Development," The Journal of Strategic Information Systems (22:4), pp. 269-281.

Pentland, B. T. 1999. "Building Process Theory with Narrative: From Description to Explanation," Academy
of Management Review (24:4), pp. 711-724.

Raymond, E. 1999. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary. Sebastopol, California: O'Reilly & Associates.

Ribes, D., Jackson, S., Geiger, S., Burton, M., and Finholt, T. 2013. "Artifacts That Organize: Delegation in
the Distributed Organization," Information and Organization (23:1), pp. 1-14.

42

Riccucci, N. M., Van Ryzin, G. G., and Li, H. 2016. "Representative Bureaucracy and the Willingness to
Coproduce: An Experimental Study," Public Administration Review (76:1), pp. 121-130.

Ring, P. S., and van de Ven, A. H. 1992. "Structuring Cooperative Relationships between Organizations,"
Strategic Management Journal (13:7), pp. 483-498.

Roberts, J., Hann, I.-H., and Slaughter, S. 2006. "Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A Longitudinal Study of the Apache Projects,"
Management Science (52:7), pp- 984-999.

Scarbrough, H., Panourgias, N. S., and Nandhakumar, J. 2014. "Developing a Relational View of the
Organizing Role of Objects: A Study of the Innovation Process in Computer Games," Organization
Studies).

Schmidt, K., and Bannon, L. 1992. "Taking Cscw Seriously," Computer supported cooperative work
(CSCW) (1:1), pp. 7-40.

Schmidt, K., and Simonee, C. 1996. "Coordination Mechanisms: Towards a Conceptual Foundation of Cscw
Systems Design," Computer supported cooperative work (CSCW) (5:2), pp. 155-200.

Shah, S. K. 2006. "Motivation, Governance, and the Viability of Hybrid Forms in Open Source Software
Development," Management Science (52:7), pp. 1000-1014.

Shaikh, M., and Vaast, E. 2016. "Folding and Unfolding: Balancing Openness and Transparency in Open
Source Communities," Information Systems Research (27:4), pp. 813-833.

Sharma, S., Sugumaran, V., and Rajagopalan, B. 2002. "A Framework for Creating Hybrid-Open Source
Software Communities," Information Systems Journal (12:1), pp. 7-26.

Spaeth, S., von Krogh, G., and He, F. 2015. "Research Note—Perceived Firm Attributes and Intrinsic
Motivation in Sponsored Open Source Software Projects," Information Systems Research (26:1),
pp. 224-237.

Stanko, M. A. 2016. "Toward a Theory of Remixing in Online Innovation Communities," Information
Systems Research (27:4), pp. 773-791.

Strauss, A. 1987. Qualitative Analysis for Social Scientists. Cambridge: Cambridge University Press.

Strauss, A., and Corbin, J. 1998. Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. Thousand Oaks, CA: Sage Publications.

Strode, D. E., Huff, S. L., Hope, B., and Link, S. 2012. "Coordination in Co-Located Agile Software
Development Projects," Journal of Systems and Software (85:6), pp. 1222-1238.

Sundararajan, A., Provost, F., Oestreicher-Singer, G., and Aral, S. 2013. "Research Commentary—
Information in Digital, Economic, and Social Networks," Information Systems Research (24:4),
pp. 883-905.

Tsoukas, H. 1989. "The Validity of Idiographic Research Explanations," Academy of Management Review
(14:4), pp. 551-561.

Tullio, D. D., and Staples, D. S. 2014. "The Governance and Control of Open Source Software Projects "
Journal of Management Information Systems (30:3), pp. 49-80

Venters, W., Oborn, E., and Barrett, M. 2014. "A Trichordal Temporal Approach to Digital Coordination:
The Sociomaterial Mangling of the Cern Grid," MIS Quarterly (38:3), pp. 927-A918.

von Hippel, E. 2001. "Innovation by User Communities: Learning from Open-Source Software," MIT Sloan
Management Review (42:4), pp. 82-86.

von Krogh, G., Haefliger, S., Spaeth, S., and Wallin, W. 2012. "Carrots and Rainbows: Motivation and Social
Practice in Open Source Software Development,” MIS Quarterly (36:2), pp. 649-676.

von Krogh, G., Spaeth, S., and Haefliger, S. 2005. "Knowledge Reuse in Open Source Software: An
Exploratory Study of 15 Open Source Projects," HICSS, Hawaii.

von Krogh, G., and von Hippel, E. 2006. "The Promise of Research on Open Source Software," Management
Science (52:7), pp- 975-983.

Weber, M. 1946. Bureaucracy. From Max Weber: Essays in Sociology. New York: Oxford University Press

Weber, S. 2005. "Patterns of Governance in Open Source," in Open Sources 2.0: The Continuing Evolution,
C. DiBona, M. Stone and D. Cooper (eds.). Sebastopol, CA: O'Reilly, pp. 361-372.

43

Data Examples Descriptive Categories Coordination
coding process

Linus would still have veto power. He gets to reject any patch he doesn't like, and can
ask for the integration lieutenant to back that patch out of the patch penguin tree. Singular point of

1 entry and exit

David, when | come back, | expect a public apology from you. Others, look yourself in
the mirror, and ask yourself whether you feel confident that you could do a better job
maintaining this. If you can, get back to me, and maybe we can work something out

Also, we have a relative simply dispute resolution mechanism -—Linus decides.
Richard and Larry and others may argue about scheduling changes, or Richardand | [
may argue about the appropriateness of devfs. but ultimately Linus gets to make the
final decision. This all boils down to the old saying that the benevolent dictator is the
best form of government --- there's only one problem: finding the

benevolent dictator.

Thi I'm di inted is that i rticular_has b ting "buffer" Gentralized
e reason |'m disappointed is that vger in particular has been acting as a "buffe feinn. .
between me and bug-fixes, so that now we're in the situation that there are obviously [] decision makmg
bugs, and there are obviously bug-fixes, but | don't see it as such, | only see this
humongous patch_ | don't know what it fixes. because vger has kept me out of the
loop. and quite frankly | don't have the time to look at several hundred kilobytes of
compressed patches by hand. And | refuse to apply patches that | don't feel
comfortable with. ...This is exactly the same thing that made me hate vger when it
came to networking patches. And I'm going to ask David once again to just shut vger

down, because these problems keep on happening S Autocratic Clearing

Suppose you had several named branches like so:
alan - Alan Cox's work and work that he accepts
davem -ditto for Dave Miller etc.

linus - Linus's branch where he merges

linux - The Linux release branch Technical clearing
Then have a mechanism to bring work from one branch to another. possibly skipping house

some stuff. So Dave might have a good week and Linus accepts all of his patches. so
the linus branch has everything that the davem branch has. But Alan had a bad

week, some butthead managed to slip something into the alan branch, so his branch
looks like

good.1 - good.2 - bad.1 - good.3

Linus, being the smart guy that he is. reads the unified diffs which he insisted be at
the front of each BK patch. and notices that there is a bad patch in there. So he
whips up the gui tool, finds that part of the patch. and says "OK. I'll take the three
good ones but exclude the bad one". And the system does.

The really cool part is that BK has a sort of #include facility which works across
branches - the data for each patch enters the revision control system exactly once.
Even if it has been included into 27 other branches, the file doesn't get bigger (well,
not much, each include costs about 100 bytes or so of overhead in order to record
the fact that the data was included in another branch). You simply can't do that in
RCS - each include would be another copy of the data, making the revision history
explode in size.

g

Figure 1: Autocratic Clearing

Data Examples Descriptive
coding

An integration maintainer would NOT be making any major architectural decisions,
they would be integrating the code from the maintainers, collecting the patches for
the unmaintained areas of code, and resolving issues between maintainers that
are purely implementation details. Torvalds - The factis, we've had "patch
penguins” pretty much forever, and they are called subsystem maintainers. They
maintain their own subsystem, ie people like David Miller (networking). Kai
Germaschewski (ISDN), Greg KH (USB). Ben Collins (firewire), Al Viro (VFS)
Andrew Morton (ext3). Ingo Molnar (scheduler), Jeff Garzik (network drivers) etc

Linus has argued that maintainers are his patch penqguins; whereas you favor a
single integration point between the maintainers and Linus. This has advantages

subsystem maintainers. To the extent that Linux is modular, there is little need for
the extra layer (so it is just overhead). And when there is a real conflict between
subsystems --that's probably just the time when Linus and the maintainers need to
be collaborating directly!

CVS can't do what you want, BK can. People can't have write access in CVS for

filtered. But in BK, because each workspace is a repository. people inherently
have write access to *their* repository

I'l go on record saying that good patches are not ignored, even these days when
the number of active kernel hackers has multiplied. People might have to go
through several layers first, and finding some kernel hacker who is not as loaded
as Linus to review your patch might be necessary as well (especially if the patch is
complex). but if you go through the right layers then you can be sure that nothing
worthwhile gets rejected arbitrarily.

BK only moves the data it needs to move. That means if you have a 100GB file in
which you have changed one byte, BK will move on the order of 1 byte to update
that file. And that's it - it doesn't compare the two files, or read the two files, or in
any way look at the two files to figure out that they need to be updated. It knows.
That's a benefit of having changesets, | only need to compare the ChangeSet file
to know that 4 files were updated 2 were moved, and 5 were created, then | move
those *portions* of those files across the wire. Other than the initial repository
create (aka cvs checkout), BK *never* moves an entire file across the wire. Never

means never and includes the process of deciding what to do. CVS moves whole

Bitkeeper will somehow need to let Linus cherry-pick patches from the bitkeeper
trees under him and reject others.

OK, I've spent about a week trying to change my working habits and scripting
bitkeeper enough to (a) import a good revision controlled tree into it from the 2.4.x
and 2.5.x patch-archives and (b) try to actually accept patches directly into
bitkeeper. The long-range plan, and the real payoff, comes if main developers
start using bk too, which should make syncing a lot easier.

Figure 2: Oligarchic Recursion

Categories

and disadvantages. but on the whole, | think it is better if Linus works directly with ~ [——

Stratified decision-
making

the obvious reasons, the tree becomes a chaotic mess of stuff that hasn't been ——

Formalized
evaluation

Coordination
process

Oligarchic Recursion

files just to discover there is nothing to do —

Recursively
structured authority

Data Examples Descriptive Categories Coordination
coding process

A "commit/rollback" transaction model on the kernel itself? Think how Alan
Cox's tree used to work. Just because Alan accepted a patch didn't
guarantee Linus wasn't going to come up with a reason to shoot it down. It s
just meant the patch wasn't going to be ignored. and if it WAS dropped
there would probably going to be some kind of explanation. Whether the
patch penguin wants to use some kind of tool to maintain their tree (like
CVS) with a "commit/rollback” model is a separate issue. Linus isn't going
to use it, and linus isn't going to have to see it. Linus gets the kind of
patches he likes, which have already had merge clashes and the really
obvious things resolved before he sees them, and have probably even
been tested by the foolhardy individuals currently downloading the -ac, -dj, Semi-autonomous
and -aa trees. . .
Right now, Alan's tree is in the process of going back into circulation. He governing bodies
tells me that his tree is basically a delta against marcello (2.4). and DJ is
doing a delta against linus (2.5). Over time, the need for a 2.4 delta will
probably diminish as new development shifts over to 2.5 Right now, the
patch constipation we've been seeing is, in my opinion, directing
development to occuragainst 2.4 that should at the very least be eyeing
2.5. (Alan is probably NOT interested in integrating patches that Marcelo
has no intention of eventually integrating into 2.5. So he's not taking the Federated Self-
new development integration pressure off, that's DJ's job.) —— Governance

The main thing is that the CVS server and the tarball of the CVS repository
are *not* under our control. That's the only way some people are going to =
believe that we're not out to screw them and it would oh-so-nice to have
people think that, it really would.

Now think three trees. Each merging back and forth between each other. \
Or, in the case of something like the Linux kernel tree, where you don't
have two or three trees. You've got at least 20 actively developed
concurrent trees with branches at different points. Trust me. CVS simple
CANNOT do this. You need the full information. Give it up. BitKeeper is
simply superior to CVS/SVN, and will stay that way indefinitely since most
people don't seem to even understand why it is superior.

Remerging

We've been working on a gateway between BitKeeper and CVS to provide
the revision history in a form which makes the |BK people happy (or
happier). We have the first pass of this completed and have a linux 2.5 tree
on kernel.bkbits.net and you can check out the tree...The payoff for you is
that you have the data in a format that is not locked into some tool which
could be taken away. The payoff for us is that we can evolve our tool as we
see fit.

Figure 3: Federated Self -Governance

Data Examples Descriptive coding

And to avoid yet-another-BK-flamewar, I'm not saying Linus will or will not use
BitKeeper. all I'm saying is that we're making changes he wants and then he'll see
if it is good enough for him. | will say that he has eased slightly off of his original
position of "Il use BitKeeper when it is the best" because | asked him if that meant
what | think both he and | would mean. i.e.. "it is not physically possible for it to be
better" as opposed to "it's better than all the other crap out there". | think we agreed
we have to be well past #2 but not necessarily to #1 (which is a good thing, at the
rate we're going we'll hit the best sometime this century but that's as close as |
want to call it :-)

Categories

Communitarian
decision-making

The patch penguin tree can act as a buffer between Linus and the flood of patches
from the field. When Linus is not ready for a patch yet, he can hold off on taking it
into his tree, and doesn't have to worry about the patch being lost or out of date by
the time he's ready to accept it. When Linus is focusing on something like the new
block 1/0 code, the backlog of other patches naturally feeds into the patch penguin
tree until Linus is ready to look at them. People won't have to complain about
dropped patches, and Linus doesn't have to worry that patches haven't been tested
enough before being submitted to him. Users who want to live on the really
bleeding edge have a place to go for a kernel that's likely to break. Testers can find
bugs enmasse without having to do integration work (which is in and of itself a
source of potential bugs).

Accommodating
multiple views

You are giving us approximately 90% of our data in exchange for the one thing that
made using bitkeeper not a total sellout; the fact that the revision history of the repo
was still accessible without proprietary software. | honestly appreciate the work
that you and BitMover do for the kernel. but not giving us access to 100% of our
data is unacceptable to me.

Coordination
process

Meritocratic Idea-
Testing

Patches FROM MAINTAINERS are getting dropped on the floor on a reqular basis.
This is burning out maintainers and is increasing the number of different kernel
trees (not yet @ major fork, but a lot of cracks and fragmentation are showing under
the stress). Linus needs an integration lieutenant, and he needs one NOW. We
need to create the office of "patch penguin”, whose job would be to make Linus's
life easier by doing what Alan Cox used to do, and what Dave Jones is unofficially
doing right now. (In fact, I'd like to nominate Dave Jones for the office, although it's
Linus's decision and it would be nice if Dave got Alan Cox's blessing as well.)

Transparency in
development

- How do | contextually eyeball its effects on the current repository? This is clearly
something the kernel maintainers wish to do quickly and easily.

- Is there support for forward branching? (right term?). Where a patch to a
branched earlier release can be fed forward into the current. The Linux kernel isn't
big/complex enough to need this, but it's nice for other stuff.

- If a change set has been committed to the main repository is it possible (easy) to
see each of the individual changes which made up that changeset? If so, can a
single one of those be backed out?

Stress-testing of
ideas

Figure 4: Meritocratic ldea-Testing

