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Abstract 

Tensile fabric structures are efficient and cost effective structural systems for covering large 

areas. The performance of such structures is highly dependent on their geometry, and for this 

reason they must be doubly curved. However, doubly curved surfaces may not be formed from 

flat fabric without incurring distortions. The process of patterning is employed to determine the 

planar configuration of panels, such that after assembly, these distortions are minimised. 

However, patterning is sensitive to the numerical models and processes employed. Shear of the 

fabric is required for it to adopt a doubly curved shape, but this has been overlooked in the 

numerical models used currently for the patterning of tensile fabric structures. 

On this basis, a discrete element model for numerical representation of the fabric, during the 

patterning process, is proposed and examined in this thesis. Further to this, the computational 

process of patterning is examined thoroughly, and improvements to sub-processes within 

patterning form part of a proposed patterning method. 

This thesis reviews the literature relating to tensile fabric structures, patterning, and numerical 

modelling. The discrete model is described, along with its implementation in the proposed 

patterning method. Comparison with published results is included to evaluate the suitability of 

the proposed model and patterning method. 

It is shown that the proposed discrete element model offers an alternative model for 

architectural fabrics at the patterning stage. Conditions for successful use of the model are 

stated and explored. In addition to this, the proposed improvements to the patterning process 

are examined.  
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1 Introduction 

1.1 Introduction to tensile fabric structures 

Tensile fabric structures comprise a fabric membrane, tensioned within a boundary comprising 

rigid structural elements and/or flexible cables. The tension in the fabric may be introduced 

through installation of the fabric in the boundary, or by the additional use of air pressure. Fabric 

structures supported by air pressure are referred to as pneumatic tensile fabric structures. 

Figure 1.1 shows an example of a tensile fabric structure: 

 

Figure 1.1 – Example of a tensile fabric structure. Santa Fe Opera Cantina, California1 

Tensioned fabrics have in-plane stiffness only, thus out-of-plane loads must necessarily result in 

large displacements and a consequent change in the surface stress field. This change is then 

resisted by tension in flexible cables, in turn transferred to rigid supports, or through 

compression and/or bending in supporting rigid beam elements. Large out-of-plane 

displacements are the main contributor to geometrically nonlinear behaviour. 

                                                           
1 Source: http://www.fabritecstructures.com/sites/default/files/styles/juicebox_medium/public/ 
SantaFeOperaCantina_MastSppt_PTFESFIIHT_1_CC.jpg?itok=Kv1APi4L 
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To prevent excessive deformation, that is to give sufficient stiffness to the membrane, the 

surface curvature should be high [1]. In particular, pneumatic tensile structures should be 

synclastic (dome-shaped), and non-pneumatic structures should be anticlastic (saddle-shaped) 

(Figure 1.2).  Pre-stressing is employed, with the intention of ensuring the fabric remains in 

tension under external loads over the life span of the structure. 

 

Figure 1.2 - Surfaces with anticlastic and synclastic curvature 

The shape of the membrane surface cannot be defined by the design engineer [2], because fabric 

will adopt its own shape within a given boundary under pre-stress. Consequently, fabric 

structures require form-finding [2,3], a process, historically conducted using physical models [4], 

but now most commonly conducted computationally, that finds the equilibrium geometry of a 

structure within a prescribed boundary and for a given stress state. Form-finding is the first 

phase in the design process of tensile fabric structures. 

Both synclastic and anticlastic shapes are doubly curved – they have non-zero principal 

curvature in both directions. Doubly curved surfaces cannot be flattened into the plane without 

distorting [5], that is, they are not developable [6], but fabrics are flat in their unstressed state, 

prior to the construction of the 3D surface. Architectural fabrics have a typical width of 2-3m [5], 

and a maximum width of 5m [7].  
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Such constraints are imposed by the size of the manufacturing apparatuses, and this leads to 

larger structures requiring multiple fabric panels to make up the 3D membrane surface. The 

configuration of the panels that are assembled into the final structure affects the membrane 

form and stress distribution. The effects of pattern shape on structural performance necessitate 

a further process in the design of fabric structures, Patterning, be conducted to define the planar 

shape of the panels which form the final surface. 

1.1.1 Design process 

The design process incorporates the two processes of form-finding and patterning, in addition 

to analysis of the structure under load. Historically, in the design process the analyses were 

conducted in the following order: 

1. Form-finding – finding the 3D shape of the membrane surface under pre-stress 

2. Load Analysis – finding the stresses and deflections of the form-found structure, due to 

environmental loading such as rain or snow 

3. Patterning – determining the shape of the planar panels, which will be cut from the 

fabric and assembled to form the final membrane surface 

However, given the effect of the cutting pattern on the membrane surface stress field, as 

demonstrated through this work, it is advisable to conduct patterning before load analysis. In 

this way, the assembled cutting pattern is analysed for performance under load, accommodating 

variations in the surface stress field due to the patterning process. Consequently, the design 

process should be conducted in the following order: 

1. Form-finding 

2. Patterning 

3. Load Analysis 



Page 4 
 

Form-finding and patterning are now discussed briefly. A more detailed discussion of patterning 

is presented in chapter 2. 

1.2 Form-finding 

As mentioned, fabrics sustained by a boundary will adopt their own unique shape in response 

to load. In the case of tensile fabric structures, the boundary is defined at the design stage, but 

the fabric membrane shape cannot be specified simply. 

In the design of structures composed of traditional materials such as steel or concrete, the 

engineer specifies the geometry of a structural component and evaluates its maximum stress 

capacity. The capacity of the component is compared with the expected stress state to indicate 

its suitability. In this manner, the geometry of the structural component is a free choice variable, 

and the capacity is a calculated value. 

In the process of form-finding, however, the nature of these quantities is reversed, and the 

intended stress state is specified. Form-finding is then used to generate the geometry of the 

structure - for a certain boundary - that has the prescribed stress state. It then remains only to 

specify the correct material to ensure the structure’s capacity to cope with the prescribed stress 

and further imposed loads, such as those arising from wind or snow. For tensile fabric structures, 

the prescribed stress state is the pre-stress desired in the membrane. (Typical pre-stresses are 

specified in section 1.4). 

Hence, the exact objective of form-finding is to determine the form of a membrane structure, 

with specified boundary conditions and pre-stress, such that that resulting form is in equilibrium 

[6] under the prescribed pre-stress. The nature of membrane structures provides the 

opportunity to generate efficient structural forms, in particular, those of minimal surfaces. 

Where a uniform membrane stress is specified during the form-finding process, the structure 

adopts a form close to that of a stable minimal surface, or soap film [2]. 
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1.2.1 Minimal surfaces 

Minimal surfaces are defined as surfaces with zero mean curvature at every point [8], and are 

well documented in the field of mathematical geometry [9]. Of specific interest, however, is the 

property that when considering the area functional of a surface, the extremals correspond to 

minimal surfaces [9]. In particular, the minima of the area functional correspond to stable 

minimal surfaces – surfaces that minimise their surface area. 

Where membrane surfaces adopt the form of a stable minimal surface, they can be considered 

to represent optimal structures. The prescription of a uniform stress field during form-finding 

results in a structure of minimal area [10] – in this structure, stress concentrations are eliminated 

(no portion of the structure is under-utilised), and the quantity of material used to achieve this 

is minimal. The physical realisation of these structures is however a challenge, necessitating 

careful patterning. 

1.3 Patterning 

The mathematical condition of non-developability for membrane surfaces necessitates the 

process of patterning (see section 2.1.1). Patterning is now conducted using computational 

methods, and comprises the following 4-5 steps: 

1. Subdivision of the membrane to define the panels which will make up the final 

structure. The panels are defined by the position of the seams on the surface. These 

seams are present in the final, built structure, and comprise an overlap of fabric 

between adjacent panels, which is then sewn or welded [11]. 

2. Flattening of the resulting panels from 3D to 2D. Flattening incurs distortions on account 

of the non-developability of the surface. 

3. Stress reduction, applied to the flattened panels, to reduce as much as possible the 

stresses from flattening. Owing to the non-developability of the doubly curved 
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membrane surface, complete nullification of the stresses induced by flattening is not 

possible. Stress reduction methods tend to be iterative. 

4. Compensation to reduce the 2D panel in size, to account for pre-stressing. The 

membrane surface represents a stressed geometry, and the fabric from which the 

planar panels will be cut is not stressed. Because of this, the panels are reduced in size, 

such that the act of installing the panels in the boundary of the final, built structure gives 

rise to the intended pre-stress. Steps 3 & 4 may be performed in one process [6]. 

An additional fifth step is included in some, but not all, analyses: 

5. Panel assembly to evaluate the cutting pattern, by comparison with the intended stress 

state and geometry. Because stress reduction cannot give completely stress-free panels, 

residual stresses will be present in the final membrane. Thus, the cutting pattern 

determined by steps 1 – 4 may be evaluated by finding the equilibrium geometry of the 

assembled panels – stresses after erection are thus calculated.  

1.4 Architectural fabrics, types and composition 

Architectural fabrics comprise woven fibres with a polymer topcoat (Figure 1.3). The two most 

commonly used fabrics are PVC coated polyester, and PTFE coated glass fibre [12,13]. PVC 

coated polyester is the more common of the two, and has a lifespan of around 15 years, 

compared with PTFE coated glass fibre, which can have a lifespan of 30+ years, though 

manufacturers guarantee only 15 years [12]. The fibres in the fabric run in two directions, the 

stiffer warp direction, and the weft (or in North America, the fill) direction. The fibres are 

approximately orthogonal in planar fabrics, in either a plain weave (as in Figure 1.3) or Panama 

bond configuration. Panama bond is similar to that of plain weave, but multiple fibres are 

interwoven, rather than single fibres [12]. 
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Figure 1.3 – Woven fabric structure2 

Fabrics come in a variety of weights and strengths, and are classified as such, though no 

standardised classifications are available. The classifications for PVC were proposed by the 

working group (WG) for architecture at Messe Frankfurt, and a French design guide, as stated in 

[13]. PVC coated polyester fabrics are grouped within the classifications Type 1 to Type 5, and 

PTFE coated glass fabrics are categorised as Type G1 to G7 [12]. Tables 1.1 and 1.2 show these 

classifications, and relevant material properties. It is seen in tables 1.1 and 1.2 that the material 

properties relating to stress are given in units of kN/m, not kN/m2. The same applies to elastic 

properties (e.g. modulus of elasticity). This is because the small thickness of architectural fabrics 

can magnify errors when dividing the force per width by this small thickness [12]. The tensile 

strength of the fabric is measured using a strip tensile test, and the tear strength of the fabric 

through a trapezoidal test [12]. 

                                                           
2 Source: https://armijos.files.wordpress.com/2011/02/fabric-close-up-001.jpg 
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Table 1.1 – PVC coated polyester fabric classifications and relevant material properties – 
adapted from [12] (originally [13,14]) 

 

Table 1.2 - PTFE coated glass fabric classifications and relevant material properties – adapted 
from [12] (originally [13,14]) 

 

Typical pre-stresses for the two materials are 0.7 kN/m to 2.0 kN/m for PVC coated polyester 

[12,14], and 2.0 kN/m to 5.0 kN/m for PTFE coated glass fibre [14]. Alternatively, the following 

heuristics may be used: for PVC coated polyester, the pre-stress should be greater than 1.3% of 

the average tensile strip capacity in both directions [14]; for PTFE coated glass fibre, the pre-

stress should be between 2.5% and 6% of the average tensile strip capacity in both directions 

[12,14]. 

1.4.1 Numerical modelling 
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 Architectural fabrics resist external forces through increased tension in the fibres, and shear 

stresses in the polymer topcoat. The main load carrying directions of the fabric are defined by 

the weave [15], which is approximately orthogonal when the fabric is in an unstressed 

configuration. For a flat fabric to adopt a doubly curved shape (required for suitable 

performance under load), this weave must shear [15–18], becoming non-orthogonal. The 

stiffness properties of architectural fabrics thus change through the assembly of the cutting 

patterns, but this phenomenon is not currently accounted for. As will be explored in later 

sections, numerical modelling that accounts for this behaviour is required. Further to this, since 

the shear stiffness of architectural fabric is low in comparison with the tensile modulus [19], it 

is frequently ignored [20]. 

1.5 Problem statement and scope 

Whilst methods for patterning have been developed, the focus of these methods has been to 

reduce distortions between the plane and doubly curved shapes, based on orthogonal 

mechanical models. That shear of the weave is necessary for the fabric to adopt a doubly curved 

shape has been mostly ignored, yet it affects the ultimate accuracy of the generated cutting 

patterns. Such shear dependent mechanical behaviour has the greatest impact on membranes 

of higher curvature. Thus to analyse and design structures of increasingly complex shape 

requires a mechanical model that accommodates this behaviour of architectural fabrics. 

Further to this, a thorough examination of patterning, and its individual sub-processes, has not 

been previously presented. There remains to be made some improvements to individual sub-

processes, and these are discussed further in chapter 2. Additionally, the inclusion or exclusion 

of the shear stiffness throughout patterning merits investigation. 

1.6 Scope, research objectives and contributions 
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In light of the problem stated above (which is further elaborated in chapter 2), the research 

presented in this thesis was undertaken to fulfil the following aim and research objectives (ROs): 

Aim: The investigation and advancement of the computational process of patterning 

RO 1: The development, application and examination of a discrete model 

(a) To develop and implement a discrete model for patterning 

(b) To examine the model’s suitability for patterning 

(c) To identify conditions and guidance for the successful use of discrete models in 

patterning 

RO 2: The advancement of the computational process of patterning 

(a) To develop improved flattening methods and investigate their application 

(b) To investigate the effect, on the cutting pattern shape and final stress 

distribution, of including shear stiffness throughout patterning 

The main contribution of this work is thus the development and application of a discrete element 

model for patterning of tensile fabric structures, and the examination of this model. The 

proposed model reflects the nature of the fabric weave, and thus accounts for the phenomenon 

of weave shear highlighted previously. The development of such a model is timely and relevant 

on the basis of sections 1.3 to 1.5 above. It is shown, through comparison with published work, 

that the proposed model is simple in application and gives results within the expected range of 

stress deviation. Conditions for the successful use of discrete models, elaborated through the 

research, are detailed in chapters 5 & 6. 

In addition to the development and application of the discrete model, further contributions 

were made through the development of geometric flattening methods, aimed at  reducing 

distortions prior to iterative stress reduction and compensation processes. The relevance of 



Page 11 
 

these is discussed in chapter 2, and the developed methods and their application are detailed in 

chapters 4 & 5. 

1.7 Structure of Thesis 

In presenting the research outlined above, this thesis is structured in the following way: 

In chapter 2, a review of the literature and key concepts pertaining to the numerical modelling 

and patterning of tensile fabric structures is presented. Form-finding, and the consequent 

doubly curved surface shapes are briefly discussed as the basis for patterning. Patterning is then 

explored in detail, starting with the mathematical basis of patterning, before each phase of the 

computational process is examined. Numerical modelling is then explored. The behaviour of 

architectural fabrics, and the use of finite element and discrete element models are discussed. 

The use of discrete models is advocated, based on the challenges identified, and provides the 

basis for the proposed discrete model. 

Chapter 3 presents the proposed discrete model, and solution by the dynamic relaxation 

method with kinetic damping. The modelling of tensile behaviour is presented, including 

methods for overcoming limitations in models proposed by other authors. Modelling of the 

shear resistance of the fabric is shown next. A brief review of the dynamic relaxation method is 

presented, to illustrate the solution of problems posed for various stages of the proposed 

patterning method. The computational implementation of the discrete model within the 

dynamic relaxation method is explained, with the inclusion of pseudocode. 

Chapter 4 details the proposed patterning method. The method employs the discrete model 

together with the solution by the dynamic relaxation method presented in chapter 3. In the first 

part of chapter 4, the proposed method for determining the cutting pattern is presented, 

including methods for each of the patterning steps identified in chapters 1 & 2. The proposed 

method for assembling the generated patterns is shown, including the additional step of re-
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meshing the panel with an orthogonal mesh, and final equilibrium finding by dynamic relaxation 

is mentioned. 

Chapter 5 presents results from the application of the proposed patterning method using the 

discrete element model. Cutting patterns generated using the methods outlined in chapter 4 are 

shown for two examples taken from the literature. Comparisons of cutting patterns generated 

with different methods, including the one proposed in this thesis, are presented and discussed. 

The assembly of the generated cutting patterns is shown, facilitating comparison with published 

work. It is shown that the discrete element model gives results within the expected ranges 

quoted in literature. Conditions for successful use of the discrete model are presented using the 

examples. 

Chapter 6 presents the summary and conclusions drawn from the work, including conditions for 

successful use of the discrete model, together with reflections on the effectiveness of the 

developed patterning method. Suggested further work is then presented. 

1.8 Publications arising from the research 

This research resulted in two publications: 

1. Journal paper: “Patterning of tensile fabric structures with a discrete element model using 

dynamic relaxation”, in Computers & Structures 2016 [21]. 

2. Conference paper: “Computational patterning methods for tensioned fabric structures. Use 

of a discrete element model.”, IASS Symposium on Future Visions 2015 [22]. 
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2 Literature review 

This chapter presents in depth explorations of patterning and numerical modelling, and the 

literature relating to these topics. The general design process and form-finding were explored 

in sufficient detail in chapter 1 and are not explored further.  The key points of the review are 

presented in the summary of this chapter. 

2.1 Patterning 

As mentioned, suitable shapes for tensile fabric structures are doubly curved. Such doubly 

curved surfaces cannot be formed from planar fabric panels without incurring distortions. The 

magnitude and distribution of these distortions, and their consequent stresses across the 

membrane surface, are dependent on the method by which the planar panels were determined. 

Patterning was historically conducted with the aid of physical models [4]. Now it is mainly 

conducted as a computational process. The general computational process comprises a number 

of distinct sub-processes. These are discussed below, after a brief review of the mathematical 

conditions necessitating patterning. 

2.1.1 Mathematical basis of patterning 

It is relevant at this point to discuss the necessity of patterning from a mathematical point of 

view. One surface may be mapped to another isometrically, that is, in such a way that preserves 

all lengths on the surface, if and only if they have identical first fundamental forms [23]. Such a 

requirement equates to the two surfaces having equal Gaussian curvature at corresponding 

points. Since tensile fabric structures should be doubly curved to resist external loads, they have 

non-zero Gaussian curvature ( G ). Gaussian curvature is defined as the product of the two 

principal curvatures at a point on the surface [8]: 

 1 2G     (2.1) 
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Where 
1  &

2 are the first and second principal curvatures respectively.  For pneumatic tensile 

fabric structures, 0G   and for non-pneumatic tensile fabric structures, 0G  . Plane 

surfaces have 0G  . Positive Gaussian curvature indicates a synclastic surface, negative 

Gaussian curvature indicates an anticlastic surface. Zero Gaussian curvature indicates a flat 

surface. 

Isometric mappings are mappings that preserve all lengths between the original and mapped 

geometry, giving rise to no stresses, and are equivalent to the combination of conformal and 

equiareal mappings [23]. These mappings are in turn defined thusly: conformal mappings confer 

no changes in angles between the original and mapped geometry; equiareal mappings confer 

no changes in areas between the original and mapped geometry [23]. In an engineering context, 

conformal mappings result in zero shear stress as a result of the mapping. 

It is not possible to fully nullify the stresses induced by non-developability – an isometric 

mapping is not possible, as explained above. Thus, in defining the cutting pattern for tensile 

fabric structures, the mapping between the doubly curved form-found surface, and the plane, 

must accommodate a trade-off between shear stresses and tensile stresses. 

2.1.2 Computational pattering – the 5-step process 

The mathematical condition of non-developability for membrane surfaces necessitates the 

process of patterning. Patterning is now conducted using computational methods, and 

comprises the following 4-5 steps, as previously mentioned in chapter 1, section 1.3. The 5-step 

process is presented in short here: 

1. Subdivision of the membrane by defining seams on the form-found surface 

2. Flattening of the resulting panels from 3D to 2D 

3. Stress reduction to reduce the stresses induced by flattening 
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4. Compensation to scale the 2D panel to account for pre-stressing 

An additional fifth step is included in some, but not all, analyses: 

5. Panel assembly to visualise the final 3D form and calculate stresses 

Steps 1-4 concern the method of determining the cutting pattern. Step 5 concerns the simulation 

of the assembly of the cutting pattern to determine its suitability. 

The above five steps are discussed separately, in detail, in the following sections. 

2.1.3 Subdivision of the membrane 

The form-found shape represents an idealised surface geometry for the given boundary 

conditions. This surface must be divided into a series of sub-surfaces representing the panels 

from which the structure will be fabricated. This sub-division is achieved by defining the 

positions of the seams that will be present in the assembled structure. Seams in the physical 

structure are constructed from overlapping, and welding (or less commonly sewing), the edges 

of adjacent panels [11]. 

When defining the positions of the seams on the surface, it is generally accepted that the seams 

should follow geodesics [5,15,24]. Geodesics represent the path that a cable adopts when 

stretched across the surface with constant stress [25]. Errors, such as wrinkling in the fabric, may 

be introduced during the welding of the seams, when fabricating and assembling the membrane. 

For this reason, seams should run through the regions of lowest curvature. 

The seams dictate the size of the individual panels, and consequently the curvatures across each 

panel. The subdivision of the membrane by seams thus affects the subsequent processes of 

flattening, stress reduction and compensation, and the suitability of the final cutting pattern. 

2.1.4 Flattening 
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The form-found surface, and its constituent panels after subdivision, are doubly curved. To 

produce a pattern suitable for cutting from planar cloth, the planar configuration of the 

constituent panels must be found, and the first step is to flatten the 3D panels into the plane. 

Historically, so called “cloth unfolding” [26] (Figure 2.1) was employed to flatten the membrane. 

Individual panels were represented by a developable polyhedral strip which was unfolded into 

the plane [4,20,26] in a procedural manner. The polyhedral representation tended to use only a 

single row of elements for each panel, representing a significant misrepresentation of the 

original panel geometry, and non-seam panel edges [26]. It has similarly been noted, owing to 

this use of a single row of elements, that a triangular polyhedral representation of a panel does 

not offer an accurate representation for smaller structures [20]. For two structures of similar 

geometry, but different size, where the maximum panel width is the same for both structures, 

the smaller structure requires fewer panels. Thus, the panels in the smaller structure represent 

surfaces of higher curvature, and the error in the approximation of the surface by a single row 

of elements is particularly acute. 

 

Figure 2.1 - Unfolding of a panel to the plane. Note that across the width, the panel is 
represented by just a single triangular element 
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Cloth unfolding was, in the past, the sole method used to account for the distortions due to 

double curvature, when determining the planar cutting patterns. Cloth unfolding was 

accompanied only by compensation, to reduce the cutting pattern in size, in light of the pre-

stress. In view of the drawbacks highlighted above, recent methods of patterning employ further 

computational methods to reduce the stresses from flattening [20], as discussed in the following 

section. An adaptation of cloth unfolding does, however, offer a computationally efficient 

method of minimising the stresses due to flattening, before computationally intensive iterative 

methods are employed. Use of such a method in the flattening process is often overlooked, and 

simple projection of the panel to the plane is used. Methods for flattening, that minimise 

distortions through simple geometrical algorithms, are presented in chapter 4. 

2.1.5 Stress reduction 

Flattening, whether using cloth unfolding or not, results in distorted patterns. Distortions in the 

pattern must be reduced. The problem of reducing distortions in the mapping of a doubly curved 

surface to a planar surface is a mathematical one, having been explored in a number of other 

fields, including cartography [23]. The equivalent engineering problem is formulated by 

considering the reduction of the stresses that these distortions incur. 

The reduction of stresses in the determination of the cutting pattern is approached both as a 

mathematical problem and an engineering one. In this thesis, formulation of the problem as a 

reduction of the distortions is termed the geometrical problem formulation, and formulation of 

the problem as a stress reduction problem is termed the mechanical problem formulation. These 

two problem formulations are in essence separated by the exclusion or inclusion of the material 

properties. It has been mentioned in [27] that excluding material properties results in a purely 

geometrical problem. 
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A number of solutions to these problem formulations have been proposed, and these solutions 

can be further categorised. Two main solution methods are used; the more common, termed 

the ‘minimisation solution’, formulates the reduction of the distortions, or stresses, as an 

optimisation problem. In the case of the geometrical problem formulation, the description of 

the distortions constitutes an objective function. In the case of the mechanical problem 

formulation, the description of the stresses, or the deviation of the stresses from the intended 

design pre-stress, constitute an objective function. Solution by the minimisation solution has 

been achieved by methods such as least squares, applied to geometrical [28], and mechanical 

[3,26] problem formulations. 

The second solution is termed the ‘structural solution’. The distorted, flattened geometry 

represents a configuration of the subsurface which is not in equilibrium, in the absence of 

sufficient restraints. With careful selection of the restraints, the panel can be equilibrated using 

a solution method, such as dynamic relaxation [5] or Newton-Raphson [6]. This equilibration 

process has the effect of releasing the stresses, and yields a subsurface geometry with reduced 

stresses (Figure 2.2): 
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Figure 2.2 - Reduction of stresses using the structural solution - adapted from Linhard et al. [6] 

In Figure 2.2 (a), the 3D surface is flattened into the plane. The method of flattening incurs 

distortions, such that under relaxation (Figure 2.2 (b)), the left hand pinned support remains 

stationary, and the right hand roller support, and other nodes on the 2D surface, move in plane. 

This movement is what permits the release of the stresses, providing sufficient restraints are 

employed to prevent rigid body transformations. 

Because the structural solution models a physical process, material properties are required. 

Thus, the structural solution is applicable only to the mechanical problem formulation. Figure 

2.3 shows the relationship between the problem formulations and solution methods. 
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Figure 2.3 - Stress reduction problem formulations, solution methods and the relationship 
between them 

2.1.6 Compensating for pre-stress 

Following the flattening of the panel, and reduction of the stresses induced by this flattening, 

the planar panel geometry must be further altered to account for the intended pre-stress in the 

assembled membrane shape. 

The 3D membrane geometry generated by form-finding represents a configuration of the 

surface that is in equilibrium under its own pre-stress. Since the fabric from which the panels 

will be cut is unstressed in its planar form, the pre-stress must be accounted for in the generation 

of the cutting pattern. In particular, the planar panel must have smaller width and length, and 

consequently area, than the form-found panel [18]. This process is known as compensation, and 

can be achieved by simple scaling of the panel, or by the application of the same structural  

solution methods [5] described in the previous section, with a prescribed pre-stress. At this point 

in the patterning process, the material properties must be considered. 
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It is possible to integrate the processes of stress reduction and compensation, and conduct them 

as one process [6]. The comparative benefit of conducting the two processes as one, or 

distinctly, is an issue of contention. In [28] it is stated that it is preferable to conduct the 

processes separately, whereas in [5,6] the processes are conducted simultaneously. Owing to 

the necessity for material parameters during compensation, integrated stress reduction and 

compensation is achievable only when using the mechanical problem formulation, though the 

method of the solution does not affect the possibility of integration. Figure 2.4 highlights the 

difference between integrated and distinct methods. 

 

Figure 2.4 – Distinct vs integrated methods for stress reduction and compensation 

2.1.7 Assembly of cutting patterns 

Flattening, stress reduction, and compensation wholly define the cutting pattern, providing 

sufficient data for the manufacture of the membrane from planar fabric. To evaluate the 

suitability of the cutting pattern, patterning processes can include modelling of the assembly of 

the cutting pattern [4]. The aim in such a process is not to model the physical construction 

process, but rather to see how the combination of panels, which are generated independently 

by the flattening, stress reduction, and compensation processes, behave together. Additional 

conditions can be applied to model the effect of the seams. Where the fabric overlaps, the 



Page 22 
 

stiffness of the surface is increased, and has, in terms of mechanical behaviour, the effect of 

acting like a stiff cable in the surface. 

Owing to the mathematical considerations presented in section 2.1.1, the stress reduction 

process cannot completely nullify the stresses due to non-developability. Thus, it is expected 

that the stresses in the surface following pattern assembly will resemble the combination of the 

intended pre-stress, and the residual stresses resulting from the stress reduction procedure. It 

is not, however, sufficient to say that the stress deviation will simply be the reverse of the 

residual stresses – how the panels behave as an assembly cannot be defined without further 

analyses. 

2.1.8 Integrated approaches, optimisation and genetic algorithms 

Given the consideration outlined above, that the assembled structure cannot adopt exactly the 

stress distribution dictated during form-finding, and there will be residual stresses, some 

methods employ multiple adjustments of the planar pattern [3,6,26,29,30]. These methods 

repeatedly conduct flattening, stress reduction and compensation, using the resultant assembly 

from the previous iteration to inform the current iteration of these processes. 

Adjustments are made based on the residual stresses in the assembled form. The method 

presented in [29] employed manual adjustment of the pattern, adding or removing material in 

areas of higher or lower stress respectively. In [26] the stress difference between the assembly 

of the cutting pattern for the previous iteration and the design stress was used to adjust the 

cutting pattern for the current iteration. In [3,6] the patterns were similarly adjusted by 

comparison with the assembled shape of the previous pattern in the iteration, through the 

formulation of the mechanical process is different. In [30] genetic algorithms were used to 

optimise the cutting patterns. 

2.1.9 Patterning – research objectives identified  
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As mentioned above, stress reduction is necessary to reduce the stresses in the cutting pattern, 

which are generated during flattening. Stress reduction methods, whether employed in the 

geometrical or mechanical problem formulations, are iterative. The stress reduction problem in 

[3] was reported to be sensitive to the initial configuration when solving the iterations using the 

Newton-Raphson method. Difficulties with convergence of the Newton-Raphson iteration are 

well known [3], and have been stated previously [31]. The Newton-Raphson method, and its 

sensitivity to the initial configuration, is representative of the requirement for suitable initial 

conditions when using iterative methods. This is a more general problem, and particularly 

pertinent for flattening and stress reduction in the context of cutting pattern generation. 

It was mentioned in [6], where Newton-Raphson iterations are repeatedly used as part of a 

larger iterative process, that the computational efficiency is improved by using an initial 

geometry that is close to the solution. Convergence issues become more acute as the mesh is 

made finer [31], effectively limiting the mesh size for specific initial configurations. As accuracy 

is related to the fineness of the mesh, initial configurations that are far from the eventual 

solution lead to low accuracy. Methods of mapping the 3D panel to the plane which reduce 

distortions, and are fast, non-iterative, and relatively predictable in their outcome, are desirable. 

To this author’s knowledge, no investigation or comparison of different flattening methods, in 

the context of tensile fabric structures, has been conducted. Some existing flattening methods 

have been described, and these include, but are not limited to: direct projection of the panel to 

the plane [6]; projection of surface points to the tangent plane of the surface at these points 

(projection along the surface normal vector) [28]; and mapping of the panel to a singly curved 

surface (the surface is based on the 3D panel geometry) which is unrolled to give the planar 

geometry [5]. It is possible to extend cloth unfolding to meshes with more than one row of 

elements across the width, for topologically rectilinear meshes of discrete elements. 
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Additionally, map projection theories have been explored as a method of reducing distortions 

[27]. Outside of tensile fabric structures research, methods for arraying equidistant meshes on 

surfaces have been investigated [32–34], and these methods can be applied to improve 

flattening, as shown in chapter 4. 

It is on this basis research objective RO 2 (a) was suggested in chapter 1. This research seeks to 

develop straightforward geometric flattening methods, investigate their application, and 

examine the effect of such flattening methods on the resulting cutting patterns. New flattening 

methods are proposed in chapter 4, and a comparison of these different flattening methods, 

applied to the same geometry, is presented in chapter 5. 

Because the shear stiffness is low (see sections 1.4.1 & 2.2.1), it has been suggested that it may 

be, and frequently is, ignored [20]. However, this is an issue of contention in tensile structure 

design. The inclusion or exclusion of the shear stiffness, during stress reduction and 

compensation, and when simulating the assembly of the panels, will have an effect on the 

configuration and suitability of the cutting pattern. For this reason, the effect of including or 

excluding the shear stiffness, throughout patterning, merits further study. It is on this basis that 

research objective RO 2 (b) was suggested in chapter 1. 

2.2 Numerical modelling 

The mechanical behaviour of architectural fabrics is complex, and the numerical modelling of 

fabrics in general has received considerable attention. Material behaviour and numerical 

modelling are discussed in this section. 

2.2.1 Behaviour of architectural fabrics 

As stated in chapter 1, architectural fabrics comprise a bidirectional weave of fibres, treated 

with a polymer topcoat to provide protection against moisture (Figure 1.3). Typical compositions 

are polyester fibres with a PVC topcoat, and glass fibres coated with PTFE. Such woven fabrics 
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are heterogeneous and exhibit nonlinear anisotropic material behaviour. The woven fibres make 

the principal contribution to tensile stiffness [18], and the coating provides resistance against 

shearing loads [17]. The warp direction of the fabric runs along the length of the fabric, while 

the weft (or, as named in North America, the fill) direction of the fabric runs across the width. 

Whilst coated fabrics exhibit shear stiffness, in relation to the tensile stiffness it is much lower 

than that exhibited by typical, stiff materials. As a rule of thumb, the shear stiffness of fabrics 

can be estimated at 1/20 of the tensile stiffness [15,35], compared with ≈ 3/8 of the tensile 

stiffness for traditional materials [36]. The fibres make a negligible contribution to the shear 

stiffness of the fabric, and similarly the coating makes a negligible contribution to the tensile 

stiffness.  As explained in chapter 1, the stress in architectural fabrics is measured in units of 

kN/m – the stress per width, rather than stress over a cross sectional area [35]. 

Due to their heterogeneous nature, architectural fabrics exhibit complex material behaviour. 

Woven fabrics experience crimp interchange at low strain – tension in one direction of the fabric 

causes the fibres to straighten, in turn shortening the fibres in the other direction [37]. This 

amounts to a complex relationship between transverse strains and longitudinal strains. In 

homogeneous, isotropic, linear materials, a single Poisson’s ratio relates longitudinal and 

transverse strains. For fabrics, a single value of Poisson’s ratio cannot be defined [20], and the 

ratio of loading in the warp and weft directions leads to non-static values of Poisson’s ratio [37]. 

Two Poisson’s ratios are often used, one relating longitudinal warp strain to transverse weft 

strain, and vice-versa. 

Crimp interchange similarly leads to material nonlinearity in terms of the stress-strain behaviour 

[37]. Not only is the behaviour nonlinear and anisotropic, but stress-strain relationships vary for 

different ratios of stress. The relationships between elastic moduli, shear modulus and Poisson’s 
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ratio are not restricted to those of isotropic materials [17], as exemplified by the comparatively 

low shear stiffness. 

Architectural fabrics exhibit hysteretic or path-dependent behaviour [37], and so a distinction 

between the behaviour of virgin fabrics and those subjected to load cycling, or environmental 

loading, must be made. The stress-strain behaviour of virgin fabric is noticeably different from 

that observed after several cycles of loading. For this reason, samples of fabric are subjected to 

load-cycling when determining material properties.  

It has been suggested that in patterning, initial stress-strain relationships should be used in 

determining compensation parameters [37]. Initial behaviour is distinct from the behaviour of 

virgin fabric, and refers to the behaviour of the fabric after it has been subjected to load-cycling 

under stresses of approximately 150% of the pre-stress. This is intended to model the fact that 

to tension the membrane to the desired pre-stress, it is sometimes necessary to over-tension 

the fabric during installation, before the stress distributes across the surface [7] - in effect pre-

cycling the fabric. Alternatively, contractors may employ pre-cycling of the fabric before 

installation. However, industrial practice is not standardised, and the extent of pre-cycling is not 

known. 

The material properties determined for compensation do not equate to the material properties 

that develop in the structure over the long term. These long-term properties arise because 

environmental loads have the effect of mechanically conditioning the fabric [37]. 

Given that long term fabric properties are not known, the initial stress-strain relationships are 

used for evaluating cutting patterns by simulation of the assembly, and when performing stress 

reduction analyses after flattening. This is important when considering crimp-interchange. Since 

crimp-interchange occurs in uncycled fabrics at low strains, it is not necessary, or correct, to 
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include modelling of crimp-interchange in the model used for compensation, or for evaluating 

cutting patterns by simulation of the assembly. 

Material testing makes use of load-cycling by subjecting fabric samples to repeated loading and 

unloading. The stress-strain curve used for design, which results from these tests, is based on an 

idealisation of the recorded stress-strain behaviour from the last cycle. In numerical modelling 

this is often simplified further by linearising the behaviour for each portion of the stress-strain 

curve. 

The shear behaviour of fabrics is similarly nonlinear and hysteretic [37], though often modelled 

as linear [17], with elastic isotropic modelling being considered adequate [15]. Though the shear 

stiffness of the fabric mostly derives from the coating, at certain large values of shear angle, the 

fibres rotate sufficiently for the warp fibres to bear against the weft fibres [18]. This shear locking 

manifests itself as an increase in the shear stiffness of fabrics [19]. Tensile fabric structures 

should be designed in such a way as to avoid this issue. 

In unstressed, planar fabric, such as that used for the cutting pattern, the fibres are generally 

orthogonal, though angular deviations of up to 5o have been observed [37]. However, for the 

fabric to adopt a doubly curved geometry, the fibres must rotate about their crossing points – 

the weave must shear [15–18]. Thus, in assembling the 2D planar cutting pattern into the 3D 

form, shear deformation must necessarily be introduced (Figure 2.5). The extent to which the 

weave must shear is dependent on curvature, so the resulting directions of the fibres vary across 

the surface. The mechanical behaviour of the fabric is thus locally defined, introducing 

uncertainty into the mechanical modelling of the structure. 
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Figure 2.5 - Illustration of shear deformation resulting from the tensioning of a planar net into 
doubly curved geometry – adapted from Wagner [18] 

This shear-dependent mechanical behaviour of the fabric, and the low shear stiffness of the 

fabric, indicate the need for a suitable mechanical description of the surface. That the fabric 

must shear to adopt a doubly curved geometry highlights the fact that a suitable mechanical 

description is particularly necessary for modelling patterning. In terms of what might be 

considered a suitable mechanical description, the description must account for the shear-

dependent directions of the fibres when translating strains into stresses. 

Which model is most appropriate for fabric modelling, in the context of tensile structures, 

remains an issue of contention [20]. Fabric modelling has seen considerable investigation in the 

fields of both tensile structures and non-structural textiles and computer graphics, and concepts 

devised therein are relevant to fabric modelling for tensile structures. Across disciplines, fabric 

models can be divided into two broad categories, continuum and discrete models. These are 

now discussed and contrasted. 

2.2.2 Continuum models and Finite Elements 

2.2.2.1 Continuum models 

Continuum models are the more popular choice for fabric modelling in the context of tensile 

fabric structures. As with traditional continuum mechanics, the fabric is homogenised and 

analysed using appropriate finite element methods. 
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Although tensile fabric structures are geometrically nonlinear, the stress-strain relationship for 

the material is typically assumed to be linear. Thus, linear elastic constitutive relationships for 

the material are employed, coupled with nonlinear displacement-strain relationships. In 

formulating the displacement-strain relationship for geometrically linear structures, higher 

order terms can be ignored [38], as the magnitude of such terms is negligible when 

displacements are small. In the case of tensile structures however, large displacements are 

required if the structure is to resist loading [39,40], and for the translation of the cutting pattern 

to the assembled configuration [3]. Thus higher order terms in the strain formulation cannot be 

neglected. 

Tabarrok and Qin [39,40] included higher order terms in their strain measure literally, extending 

the linear measure by including quadratic terms in the displacement-stain relation. Kim and Lee 

[26] formulated the strain as the summation of linear and nonlinear strain components, each 

calculated from their respective displacements and displacement-strain matrices. More recent 

work [6,29,30,41] makes use of Green’s strain [42,43] to account for geometric nonlinearity. 

Green’s strain is the change in square length of each material vector, with respect to the 

reference configuration [42]. Comparing Green’s strain as presented in [43] to the strain 

measure of Tabarrok and Qin [39,40], it can be seen that they are similar – similar higher order 

terms appear in both definitions, with different notation. 

The constitutive relations between strain and stress incur further nonlinearities. Here it is 

important to consider whether the displacement-strain relations are formulated as large 

displacements resulting in small strains, or large displacements resulting in large strains. 

Tabarrok and Qin [39,40] argued that for small strains, linear elastic plane stress constitutive 

relations were appropriate.  The model presented in [40], did not account for anisotropy, 
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material nonlinearity or hysteresis, nor the irregular relationships between tensile moduli, shear 

modulus and Poisson’s ratios. 

Tabarrok and Qin’s [39,40] constitutive model is, in implementation, similar to that of simple 

hyperelasticity, for example, the Saint-Venant Kirchoff model, which is applied to membrane 

structures in [6,30,44,45]. The Saint-Venant Kirchoff model is distinct from linear elasticity in 

that the Green’s strain replaces the engineering strain, and the Second Piola-Kirchoff stress 

replaces the engineering stress [42]. The second Piola-Kirchoff stress is a symmetric stress 

tensor, with its components aligned with the vectors of the reference configuration. Saint-

Venant Kirchoff models complement the use of Green’s strain to account for geometric 

nonlinearity. It has been reported that such an implementation leads to a simple linear 

relationship between Green’s strain and Second Piola-Kirchoff stresses [44,45]. Additionally, it 

has been suggested that such a material model is suitable for small strains only [43], but can 

readily account for anisotropy [42]. 

Alternative material models have been formulated based on a unit cell approach [46,47]. Such 

methods considered the underlying microstructure of the fabric, and used these to derive 

constitutive relations that were then employed in finite element schemes [29,46]. Pargana’s 

model [29] was, similar to Saint-Venant Kirchoff models, limited to small strains. 

A further alternative is that suggested by Wakefield [48]. Here, the combination of natural 

element stiffnesses, and a convected coordinate system were used to account for geometric 

nonlinearity. 

2.2.2.2 Implementation by Finite Elements 

The aforementioned material models have been applied to a variety of finite elements, such as: 

3-node triangular elements; with constant strain [30,48], or constant stress [39,40]; linear 

isoparametric triangular elements [44,45]; 4-node isoparametric quadrilateral elements [6], or 
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higher order elements, for example: 6-node quadratic finite elements, with linear strain 

descriptions and quadratic descriptions of the element side geometry. Whilst higher order 

elements have been used, historically it has been suggested that sufficiently dense meshes of 

simple elements are superior to coarser meshes of complicated elements [4,39,40]. 

Solution of the numerical schemes have been achieved with the Newton-Raphson method 

[6,26,30,40,44,45], and Dynamic Relaxation [48]. 

2.2.2.3 Drawbacks of continuum modelling 

Most of the work on nonlinear continuum formulations, implemented using FEM for tensile 

fabric structures, has focused on accounting for the geometric nonlinearity of such structures. 

Continuum mechanics offers a readily applicable model through appropriate nonlinear strain 

measures, but these are not specific to fabrics, and rely on several concepts: (i) the fabric, which 

comprises discrete yarns with a continuous but irregular coating, is homogenised and 

considered to be continuous; (ii) the geometric nonlinearity arises as a result of large out-of-

plane displacements, resulting in a change in the structure’s geometry, and consequently 

stiffness, such that the assembly of the global stiffness matrix is no longer accurate. 

As mentioned, the fabric of the cutting pattern must undergo shear deformation during 

assembly of the panels, for them to adopt the appropriate doubly curved shape. Since the tensile 

stiffness of fabrics is derived from the fibres, when the fabric shears, the principal directions of 

stiffness of the fabric change. This is not reflected in continuum modelling, because the material 

stiffness vectors do not change according to the deformation. Thus, the main drawback of 

continuum models is that they do not easily accommodate changes in the material properties 

of the fabric. For patterning, this is particularly important owing to the necessity for shearing. 

Similarly, the treatment of geometric nonlinearity can be achieved with a formulation of the 
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element strain and stresses in natural coordinates, as proposed in [48], negating the need for 

complex strain measures such as Green’s strain. 

2.2.3 Discrete models 

Discrete element models are distinct from continuum finite elements, in that they represent 

materials by a grid of nodes, with interconnecting elements. In this way, they are designed to 

reflect the fact that fabric tends to behave as a structural mechanism, as postulated by Breen et 

al. [49], not as a homogeneous isotropic plate. The mass of the system is lumped to the nodes, 

unlike finite element methods, where the mass is continuous across the subdivided surface, and 

equilibrium is enforced locally at the nodes, rather than globally [50]. Discrete element models 

comprise many forms of varying complexity. Figure 2.6 shows the relation between the physical 

fabric configuration, and the discrete models used to model it. Various names are attributed to 

discrete models such as composite crimp, particle-spring systems, spring-mass systems, coupled 

particle systems, etc. In the context of fabric modelling, discrete element models have received 

attention in the fields of garment textile modelling [51,52], visualisation and animation 

[49,50,53–55], the mapping of textiles to 3D surfaces [56,57], and engineering fabrics [58]. 
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Figure 2.6 - Numerical models and their relation to base fabric 

The discrete models that have been developed are, however, wide-ranging in their objectives, 

implementation and suitability for architectural fabric modelling. Models developed for use in 

visualisation [49,53–55] for example, naturally have focused on establishing the appearance of 

the deformed fabric correctly, rather than evaluating fabric stresses, and did not use real 

material properties to derive force-displacement relations. The model proposed in [50] 

incorporated material properties, indicating the potential for discrete elements to model real 
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physical behaviour, but the focus remained on visualisation. Work has been conducted to 

formulate discrete models from continuum mechanics, using real material parameters [51,52], 

such that stresses may be evaluated [51]. 

2.2.3.1 Deformation modes in discrete models 

Multiple deformation modes are captured in discrete models, such as tensile, shear, yarn 

crimp/Poisson’s ratio, bending/flexure, and twisting. In visualisation and garment fabric 

modelling, forces due to self-weight characterise the physical behaviour, due to the absence of 

external loading. In such cases, out-of-plane deformations arise due to, for example, buckling of 

the fabric under shear. In tensile structures, forces due to the self-weight of the fabric are 

negligible compared to the pre-stress and applied loads – self-weight has been reported to result 

in a change in the surface stress field of around 1% [24]. For this reason, the bending and twisting 

resistance of fabrics is negligible in the context of tensile fabric structures, and out-of-plane 

deformation due to buckling is of no interest – it is sufficient (and necessary) to simply 

incorporate the fabric’s inability to resist compression loads. 

For modelling tensile forces, discrete models that employ traditional material properties, such 

as Young’s Modulus, derive the forces acting on the nodes from the stress-strain response of 

the surrounding fabric [51,52].  In [50] an additional fractional scaling factor  was used to reduce 

the resistance of the fabric under negative straining. The method presented in [58] employed a 

variety of stiffnesses for each of the components of the model, having fitted these to 

experimental data. Other models that are not concerned with stresses, as noted above, either 

define tensile element stiffnesses for the specific visualisation [54], or derive the tensile 

resistance from energy functions [49,53]. 

Physical fabrics resist shear through friction between warp and weft fibres, and if coated, 

through stresses in the coating. In the context of tensile fabric structures, the friction between 
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fibres is negligible, and the shear response is dominated by the coating, as mentioned 

previously. The resistance of the fabric to shear deformation has been modelled in a number of 

ways. The simplest method is the addition of springs along the diagonal between nodes 

[54,56,57]. As noted in [55], introducing diagonal springs has the effect of causing transverse 

contraction of the fabric under uniaxial tensile load; in principle acting similar to Poisson’s ratio. 

Since the shear resistance of architectural fabrics derives principally from the coating material, 

and the Poisson’s ratio derives from the crimp effects of the fibres, it is advisable for these 

mechanisms to be decoupled in fabric modelling, and thus the use of diagonal springs is 

problematic. However, such an implementation of shear resistance in the context of the 

mapping textiles to 3D surfaces is of interest. In this context, deformation of the fabric during 

mapping is controlled by the ratio of stiffnesses between tensile and shear springs [57], 

highlighting the shear-dependent behaviour of the mapping. Stresses were, however, not 

calculated in [57]. 

Alternatively, the shear stiffness of the fabric may be modelled as a resistance to angular 

deformation between the warp and weft fibres at a node.  This can be realised by introducing a 

rotational spring element between fibres at a node, calculating the in-plane moment of this 

spring, and deriving the equivalent restoring forces at nodes away from the spring [51,58]. 

Forces applied away from the location of angular deformation have also been derived from 

shear of the continuum [52] or from the energy functions for trellising [49,53]; in the case of 

energy functions, material properties were not considered. A further alternative is to reverse 

the shear forces required to produce angular deformation at a node, and apply these as a 

resultant force along the direction of the diagonal bisecting warp and weft fibres, as proposed 

in [50]. 
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Several models are particularly relevant for the development of a discrete model for patterning. 

These are summarised here: 

 Ballhause et al. [58] employed fibre tensile elements, fibre shear elements, fibre crimp 

elements, coating tensile elements and coating shear elements. 

 Dai et al. [51] employed extension springs, rotational springs for resisting shear, bending 

springs and twisting springs.  

 Etzmuss et al. [52] employed tension stress elements and shear stress elements, and a 

further calculation to model bending of the material. 

 Eischen & Bigliani [50] employed square ‘cells’ comprising four tensile springs. Shear 

was modelled using an additional function derived for the square cell, and out-of-plane 

bending was modelled considering lines of three nodes.  

Discrete element models are sensitive to the topology of their elements. In particular, 

triangulated meshes of discrete elements have been mentioned to be unsuitable [52] (originally 

[59]), not offering accurate simulation. It is stated in [60] that the issues in [59] stem from 

incorrect prescription of the Poisson’s ratio. However, this discussion takes place in the context 

of modelling of isotropic solids with spring-meshes that are topologically identical to FEM 

meshes. Such an approach to modelling does not account for the fact that fabrics are anisotropic 

and heterogeneous. Fabrics comprise woven fibres that are arranged with a grid-like topology, 

and discrete models that reflect this topology are suitable [52]. 

2.2.4 Numerical modelling for patterning - research objectives identified 

As mentioned, there remains controversy over which fabric model is most suitable for tensile 

fabric structures. The suitability of various models for patterning is a particular sub-problem of 

this larger discussion. Most models have been developed for application to all stages of the 

design process. Patterning, and in particular the assembly of the cutting patterns into the final 
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shape to evaluate the patterning procedure, encompasses specific material behaviour not found 

during, for example, load analysis. The material behaviour in patterning is characterised by: 

1. A dependence on the shear deformation of the fabric. The fabric must shear to adopt its 

3D form, and with this, changes in the principal stiffness directions of the fabric are present. 

This behaviour, and its effect in the computational process, must be accounted for in the 

mechanical model. 

2. An absence of hysteresis and crimp-interchange. As mentioned in section 2.2.1, 

compensation parameters should be determined based on the behaviour of fabric subjected 

to load-cycling. Similarly, the evaluation of the cutting pattern, through simulation of the 

pattern assembly, should use material properties based on cycled fabric. For this reason, 

hysteretic behaviour and crimp-interchange effects need not be modelled. 

Of the above characterisations, the necessity for the fabric to shear, and the effect of this on the 

fabric behaviour is most important. Since the shearing of the fabric is dependent on curvature, 

higher curvatures lead to greater differences in the behaviour of the fabric compared with planar 

fabrics. For structures of more complex geometry, accounting for changes in the fibre direction, 

and the consequent changes in the material response, becomes particularly important. It is on 

this basis that research objective RO 1 was suggested in chapter 1. 

2.3 Summary 

This chapter has presented a review of tensile fabric structures and the appropriate literature 

relating to their design and analysis. This review of the literature drew attention to two areas 

which merit further research: (i) patterning, and (ii) numerical modelling of fabric behaviour. It 

is against this background that the research objectives from chapter 1 were proposed. 

Numerical models for, and processes within, patterning, the focuses of this thesis, have been 

discussed in detail. The main points from this chapter are now summarised: 
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Patterning 

 Appropriate form-found shapes for tensile membranes should be doubly curved. Such 

double curvature, along with pre-stress, allows the membrane to sustain imposed loads 

through non-excessive deformation of the surface. 

 Doubly curved shapes are, however, not developable. Non-developability, and 

manufacturing constraints on the size of fabric panels necessitate a specialist design 

process be conducted. Patterning is thus used to determine the panels, which cut from 

planar fabric, will form the final membrane shape. 

 Patterning comprises four sub-processes: (i) subdivision of the membrane; (ii) flattening 

of the panels; (iii) reduction of the planar panel stresses; and (iv) compensation of the 

panels to account for pre-stress. A further process is usually included to evaluate the 

performance of the final cutting pattern: (v) simulation of the assembly of the cutting 

patterns. 

Numerical modelling 

 Architectural fabrics exhibit complex material behaviour, such as nonlinearity, 

anisotropy and hysteresis, though these complexities are often reduced to linear 

constitutive relationships, and tensile fabric structures are geometrically nonlinear. 

 Numerical modelling for fabrics has been explored outside of the field of tensile fabric 

structures. Here discrete models are more prevalent. Such discrete models offer 

promising methods for modelling tensile fabric structures, in particular for 

accommodating weave shear. 

2.4 Identified gaps in knowledge 

In addition to the points outlined in section 2.3, several gaps in knowledge were identified: 
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Patterning 

 Much attention has been given to stress reduction, but few investigations have looked 

at improving computational efficiency through advanced flattening methods. 

 For the cutting pattern to adopt a doubly curved shape, shear deformation is necessary. 

Shear deformation is a critical component of the problem of cutting pattern definition. 

Numerical Modelling 

 Little attention has been given to the effect of the weave shear on the fabric mechanical 

response. Numerical models for tensile fabric structures have either focussed on 

accounting for geometric nonlinearity in the structure, or modelling complex material 

behaviour on a small scale, e.g. fabric specimens under testing, rather than full scale 

tensile structures. 

 Material behaviour during patterning is dominated by shear-dependency, and crimp 

interchange effects are less pronounced. A numerical model for patterning which 

reflects these characteristics is therefore desirable. 

2.5 Research objectives and consequent direction of this thesis 

In light of the identified gaps in knowledge, several research objectives were identified, as 

summarised in section 1.6. How the objectives relate to the identified gaps in knowledge, arising 

from the literature review, is elaborated below: 

 The behaviour of the fabric during patterning is heavily dependent on shear 

deformation, yet little work has been conducted to address this. Discrete models offer 

a straightforward solution for modelling this behaviour, but have not been applied to 

tensile fabric structures.  Thus, developing a discrete model that fully incorporates 
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material parameters and accounts for weave shear, and applying this to the problem of 

membrane patterning, would be desirable. This is the focus of RO1. 

 Flattening methods have not been widely investigated, but where simple methods 

reduce distortions, they can be used to improve computational processes and the 

eventual cutting patterns. Developing novel flattening methods would be desirable. This 

is the focus of RO2 (a). 

 The effect of including or excluding the shear stiffness of the fabric, throughout 

patterning, has not been examined. Since the shear stiffness may be ignored, this is an 

important point of investigation. This is the focus of RO 2 (b). 

2.6 Research methodology 

To address the research objectives, the following the following research methodology was 

employed: 

1. Identification of the gaps in knowledge 

1.1. A full literature review was conducted, and gaps in the existing knowledge base were 

identified. This step was presented in this chapter. 

2. Development of a numerical model and patterning method to address gaps in knowledge 

2.1. A discrete element model was developed to model the fabric membrane during 

patterning. The discrete model, and solution by the dynamic relaxation method, was 

implemented by programming in VB.Net. This is detailed in chapter 3. 

2.2. A patterning method was proposed, including advanced flattening methods, and 

implemented by programming in VB.Net. This is detailed in chapter 4. 

3. Comparison with previous work, to evaluate the developed numerical model and patterning 

method. 
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3.1. With the discrete model and patterning method implemented in a software package, 

analyses using the geometry from existing work were conducted. 

3.2. These analyses facilitated evaluation of the suitability of the proposed model, and 

definition of conditions for the successful use of the proposed discrete model. 

2.7 Contributions to knowledge 

The principal contributions to knowledge were made by addressing the identified gaps in 

knowledge, through the methodology outlined above. The contributions to knowledge of this 

thesis are: 

 The development of a numerical model capable of accommodating weave shear, which 

is suitable for the modelling of tensile fabric structures. 

 The evaluation of the numerical model and identification of conditions for its successful 

use. 

 The development of advanced flattening methods, and evaluation of their suitability. 

 The investigation of the effect of including the shear stiffness of the fabric in patterning 

analyses. 

The discrete model and patterning method developed in pursuit of these contributions to 

knowledge are detailed in the following chapters. 
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3 Development of discrete element model 

This chapter describes the fabric mechanical model and solution method, and how these are 

implemented in the numerical model. Given the considerations outlined previously, research 

objective RO 1 – the development of a discrete model for patterning – was suggested. In 

fulfilment of this research objective, the discrete model presented in this chapter was 

developed. 

In developing a mechanical model for architectural fabrics and patterning, there are several 

relevant points to be considered: 

1. Architectural fabrics behave more like a structural mechanism than a continuum (as 

originally postulated by Breen et al. [49]). 

2. Shearing of the weave is a critical component of the fabric deformation when assembling 

cutting patterns from planar fabric. Formulation of the mechanical model must reflect the 

effect this has on the stiffness and consequent response of the fabric to deformation and 

load. 

3. Material behaviour at the patterning stage assumes some pre-cycling of the fabric. Thus 

crimp interchange effects need not be modelled. 

Discrete models can encapsulate the above characteristics, and on this basis a discrete model is 

proposed by the author in this chapter. Several discrete models were discussed in the previous 

chapter (section 2.3.3), and particular emphasis was given to those presented by Ballhause et 

al. [58], Dai et al. [51], Etzmuss et al. [52], and Eischen & Bigliani [50]. These existing models are 

of varying suitability for modelling architectural fabrics in the context of the patterning of tensile 

fabric structures. Thus a new model is proposed. 
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Critical characteristics for the model 

In light of architectural fabric behaviour at the patterning stage, some critical characteristics are 

suggested: 

1. The principal deformation modes in architectural fabrics are tension, resisted by the 

fibres, and shear of the weave, occurring in the local plane of the fabric, resisted by the 

coating. The bending resistance of fabrics is negligible and should be excluded from the 

model. Similarly the twisting resistance of fabrics is negligible and should be ignored. 

2. For straightforward implementation and comparison with finite elements, typical 

material properties such as (i) elastic moduli in the warp and weft directions, and (ii) 

shear modulus, should be used. Some models, e.g. Ballhause et al. [58] use properties 

specific to the model, precluding straightforward implementation of typical material 

properties. 

3. The geometries of the fabric panels, during all stages of patterning, are not rectilinear. 

Irregular spacing of nodes and elements is required to describe this geometry, and the 

model should accommodate this requirement. 

4. It is impractical to model every fibre of the fabric with a corresponding element in the 

computational model. Whilst the directions of fibres are shear dependent across the 

whole surface, the difference in the fibre directions across small widths is negligible. For 

this reason, the fibres are assumed to be parallel for the width of fabric represented by 

one tensile element. 

3.1 Proposed discrete element model 

It is against the characteristics stated above that a moment-less discrete model is proposed, in 

which tensile elements in the two directions of warp and weft are employed to describe the 

fabric (Figure 3.1). Individual elements represent a width of fabric defined by the spacing of the 
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mesh, and consequently represent the approximate direction of fibres across this width. 

Stiffnesses are attributed to these elements depending on whether they represent warp or weft 

directions. These elements are assumed orthogonal in the planar cutting pattern, and as will be 

seen in later sections, can be assumed to follow geodesic paths over the 3D form-found surface. 

The shear response of the fabric is modelled by evaluating the rotation between warp and weft 

elements at the nodes, and considering the forces required to produce this shear deformation. 

A detailed description of the model is presented in the following sections. 

 

Figure 3.1 – Proposed discrete element mesh, comprising tensile elements, shear elements, and 
nodes 

A feature of the discrete model is that to describe non-rectilinear geometries, elements that do 

not follow the direction of warp or weft are required. These elements contribute to the 

geometric description of the surface and its edges, but do not to contribute to the calculation of 

forces or evaluation of stresses during the mechanical simulation. 

 

3.1.1 Treatment of tensile deformation 
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Modelling the resistance of the fabric to tensile deformation is handled by line elements in the 

two principal directions of the fabric, the warp and weft directions. The following sections 

describe the calculations for these elements. 

3.1.1.1 Strain calculation 

Strain in an element is calculated from the scalar reference length of the element
0L , and the 

scalar current length of the element L (Figure 3.2), where lengths are calculated from the 

position vectors of the nodes in the appropriate configuration. Such a strain calculation can be 

thought of as the prescription of a 1-Dimensional co-rotational basis, with its axis defined along 

the vector between node A and node B. In this way, the strain calculation for tensile elements 

accommodates large rigid body translations and rotations of the element, thus overcoming 

issues associated with geometric nonlinearity. 

 

Figure 3.2 - Deformation of a single tensile element in 3D space 
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The strain is given by: 

 
0

1
L

L
     (3.1) 

Where: 

 

0 00

B A

B A

L r r

L r r

 

 
  (3.2) 

Where 
Ar  and 

Br  (Figure 3.2) are the position vectors, in the current configuration, of nodes A 

and B respectively, and
0Ar and

0Br are the position vectors, in the original configuration, of nodes 

A and B respectively. 

3.1.1.2 Stress calculation 

A linear constitutive relationship is used for calculating the tensile stress. Elements represent 

either the warp or weft direction of the fabric.  

Thus for an element the stress ( )  is calculated from: 

 
( / ) ( / )w f P w fE      (3.3) 

Where 
( / )w fE  is the tensile modulus of the fabric in either the warp ( )w  or weft ( )f  direction,

  is the element longitudinal strain, and 
( / )P w f  is the prescribed pre-stress in either the warp 

( )w  or weft ( )f direction. For warp elements, the tensile modulus and pre-stress in the warp 

direction are used, for weft elements, the tensile modulus and pre-stress in the weft direction 

are used. 

The combination of warp and weft elements describe the state of stress in the fabric in both the 

warp and weft directions. 
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3.1.1.3 Element width calculation 

Each tensile element within the discrete model represents a patch of the fabric adjacent to it. 

For calculation of the forces, the width of the fabric that the element represents is required. This 

is instead of the cross sectional area, since material properties and stresses for architectural 

fabrics are given in units of force/width rather than force/area. 

The width is calculated by equating the relevant surface area of the fabric surrounding the 

element, to a rectangular strip of fabric with area and length equal to that of the element (Figure 

3.3). In this way the width calculation for the element can accommodate initial configurations 

of the elements which are irregular and not orthogonal. This is particularly useful for the 

flattening stage of patterning, where a mesh on the 3D surface must be constructed (section 

4.1.2.1), and calculating the widths of the elements is not trivial. 

 

Figure 3.3 - Area of fabric represented by a given element 

Elements are bounded by either one or two areas – elements that lie on the boundary have one 

adjacent area, internal elements have two adjacent areas. For example, the element A-B shown 

in Figure 3.3 has two areas, A1 and A2 adjacent to it (Figure 3.4): 
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Figure 3.4 – Areas bound by other elements, adjacent to the element for which the width is 
being calculated 

The total surface area that the element A-B represents is the sum of the halves of each adjacent 

bounding area. The width is therefore calculated from: 

 1 2 1 21

2 2 2

A A A A
w

L L

 
   
 

  (3.4) 

Where w is the width of the element, 1A is the first adjacent area,
2A is the second adjacent area, 

and L  is the length of the element. 

When meshing non planar geometries, such as when creating a mesh for flattening on the form-

found surface, where an adjacent area is formed by a quadrilateral, this quadrilateral will not 

necessarily lie in a plane. To circumvent this issue, the centre of the quadrilateral is found from 

the intersection of the lines from opposing midpoints, and split into 4 triangles (Figure 3.5). The 

areas of these triangles are calculated and summed to give the area of the quadrilateral. 
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Figure 3.5 - Calculation of area by splitting a quadrilateral into four triangles 

3.1.1.4 Non-rectangular edge geometries 

Further complications arise when meshing geometries with non-rectangular boundaries. Since 

the tensile elements represent either the warp or weft directions of the fabric, boundary 

elements that do not lie in either direction are excluded from the calculation. Thus when 

calculating the area which an element represents, taking half of the area from either side of the 

element results in part of the fabric being unattributed to any element e.g. the green triangular 

patch in Figure 3.6. Referring to Figure 3.6, calculating the width for element A-B requires that 

the whole adjacent area A-B-C, not half, should be apportioned to the element (Figure 3.7). 

 

Figure 3.6 - Omission of part of the fabric from the material response, if only half of the area is 
used to define the width for elements adjacent to non-parallel boundaries 
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Figure 3.7 – Relevant areas when calculating width for element A-B 

Thus, referring to the areas in Figure 3.7, the calculation of the width for element A-B is adjusted 

to: 

 1 2

2

A A
w

L L
    (3.5) 

Where w is the width of the element, 1A is the first adjacent area,
2A is the second adjacent area,

L  is the length of the element. 

 

3.1.1.5 Force from stress and width 

The force is simply calculated by multiplying the stress by the width. This includes both the stress 

due to straining, and the pre-stress. The tensile force F  in an element is thus calculated from 

equation 3.6: 

 F w   (3.6) 

Where  is the stress in the element, and w  is the width of the element, calculated using the 

methods outlined in 3.1.1.3 & 3.1.1.4. 

3.1.1.6 Forces applied to nodes 
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The force calculated from equation 3.6 is a scalar, so to drive the dynamic relaxation algorithm, 

it must be resolved into global components. This is achieved by multiplying the scalar force in 

the element, by the element direction unit vector, which is defined as: 

 
B A

B A

r r
d

r r





  (3.7) 

Where 
Ar  and 

Br are the position vectors in the current configuration of nodes A and B (Figure 

3.2). This vector is reversed, depending on whether the force is being apportioned to node A or 

B. 

3.1.2 Treatment of shear deformation 

3.1.2.1 Remarks on methods of modelling shear in discrete models 

Numerous methods for modelling the shear response of the fabric were identified in the 

literature review. The method, adopted in the proposed model, of modelling the shear response 

of the fabric is similar to that presented in [50], but differs in several ways. 

Consider the following pure shear deformation of an initially orthogonal quadrilateral piece of 

fabric (Figure 3.8): 
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Figure 3.8 - Shear forces producing shear strain on quadrilateral piece of fabric 

The shear forces uF  and vF   can be resolved into single forces applied at the corners. The model 

in [50] took the shear strain  , calculated the shear stress, and formulated the resolved forces 

1F  and 2F  as forces acting along the diagonals of the fabric patch. Implicit in this calculation 

was the requirement that shear strains of the same magnitude be present at each of the four 

corners. It is important to note that changes in the edge lengths, due to straining in the tensile 

elements, mean that the shear strain will not necessarily be constant across a given 

quadrilateral. Furthermore, the diagonal of the unstrained quadrilateral was used to derive the 

forces [50], limiting the formulation to small displacements and thus geometrically linear 

behaviour. 

The model in [50] was also limited to square patches – square patches give 
1 2F F . In the 

discrete model this corresponds to an equal spacing of nodes. Furthermore, the shearing forces 

were calculated for a square patch on the assumption that the patch remains within its own 

plane [50]. Since out of plane deformation is necessary for the 2D cutting pattern to adopt a 3D 

doubly curved shape, there is no guarantee that a given square patch will remain in plane. 
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A formulation not restricted to equally spaced planar quadrilaterals, but retaining the simple 

relation between shear strain and forces apportioned to nodes, is proposed and implemented 

by the author. The model presented here formulates the shear response by considering the 

change in angle between two tensile elements, and apportions forces to their common node. 

Additionally, the vectors of the deformed configuration are used to establish the direction of the 

forces, accommodating larger displacements and rigid body transformations. 

The model proposed by the author is subject to the following limitations; (i) the effect of out-of-

plane deformation is ignored, and (ii) the constitutive relationship is modelled as linear. 

Limitation (i) is considered acceptable because the out-of-plane bending and twisting resistance 

of architectural fabrics is negligible. Additionally, the shearing formulation considers angle 

changes between two elements (which by definition are within their own plane), meaning that 

no spurious shear strain is introduced by out-of-plane deformations. Limitation (ii) is considered 

acceptable because the model is developed for patterning analyses, and for the comparatively 

low stresses occurring during patterning, the fabric behaviour may be idealised as linear. 

The shear model proposed by the author is now presented in detail. 

3.1.2.2 Shear strain between elements 

The shear strain is measured as the change in the angle between warp and weft elements at a 

node, from an initial rest angle 0   (Figure 3.9): 

 0      (3.8) 

Where  is the shear strain, measured in radians, and   is the angle between the warp and weft 

elements in the current configuration. 
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Figure 3.9 - Shear strain represented as angle change between warp and weft elements 

The angle   is calculated from the dot product of the relevant position vectors  , &A B Cr r r  

of the nodes A, B & C respectively: 

 
   

1
.

cos
C A B A

C A B A

r r r r

r r r r
 

  
 
  
 

  (3.9) 

In this way, the shear strain is calculated in the plane defined locally by the vectors of the two 

elements. Equation 3.8 indicates that a reduction in the angle between two elements gives a 

positive shear strain. 

3.1.2.3 Shear stress 

Shear stress   is calculated from the shear strain defined in equation 3.8, and the shear modulus 

G (measured in kN/m), through a linear constitutive relationship: 

 G    (3.10) 

3.1.2.4 Shear forces and fabric response 

To drive the solution method, the stresses must be related to forces at the nodes. The shear 

forces required to produce the deformation shown in Figure 3.9, are shown on the deformed 

configuration, in Figure 3.10. 
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Figure 3.10 - Shear forces, resolved shear force, and resistance force for shear deformation in 
Figure 3.9 

The two shear forces,
ABF and 

ACF , acting along sides
BA A Bv r r   and

CA A Cv r r  , can be 

resolved into one force acting at node A. The magnitude of each shear force may be calculated 

from the shear stress, and the appropriate length, which is the magnitude of the vector 
BAv or

CAv , depending on which shear force is being calculated: 

 
AC CAF v   (3.11) 

 
AB BAF v   (3.12) 

Where 
ACF  and

ABF are the magnitudes of forces
ACF  and 

ABF  respectively. 

To calculate the vector expressions of forces 
ACF  and 

ABF , their magnitudes are multiplied by 

their directions. The directions are given by the relevant unit vectors: 

  AC CA CAF v v   (3.13) 

  AB BA BAF v v   (3.14) 
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Where the bracketed parts of equations 3.13 and 3.14 are the magnitudes of the shear forces, 

and 
CAv  and 

BAv  are the unit vector directions of the respective forces. 

Each force is thus the shear stress, multiplied by the magnitude of the appropriate vector, 

multiplied by the appropriate unitised vector. However, the relationship between a vector, its 

magnitude and its corresponding unit vector is the following (for an arbitrary vectoru ): 

 u u u   (3.15) 

Thus forces 
ABF  and 

ACF  may be simplified: 

       AC CA CA CA CA CAF v v v v v       (3.16) 

       AB BA BA BA BA BAF v v v v v       (3.17) 

Force F in Figure 3.10 is the vector sum of the two vector shear forces: 

  AC AB CA BAF F F v v      (3.18) 

Force F  is the force required to produce a shear strain of   at node A. Thus, given a shear strain

 , the force generated by the fabric to resist this deformation is the vector opposite of F , and 

is given as R : 

  AC ABR F v v      (3.19) 

The shear force is defined in the plane defined locally by the two element vectors, but is 

expressed in terms of global coordinates. It can thus be apportioned to the nodes directly. 

3.1.3 Examination of the proposed shear model - shear forces for a simple square 
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The method outlined above is now demonstrated. A simple square of fabric, subjected to a small 

shearing strain, is modelled using two methods. The forces acting at the corners are first 

calculated by treating the patch as a continuum and resolving the edge forces. Second, the patch 

of fabric is replaced by an equivalent representation comprising the discrete elements proposed 

above, and the forces at the corners are calculated using the equations in section 3.1.2. 

3.1.3.1 Calculation of corner forces by treating the patch as a continuum 

In this sub-section, calculation of the restoring forces at the corners, by treating the patch of 

fabric as a continuum, is shown. 

The square of fabric, dimensions L x L, in Figure 3.11 undergoes a small shearing strain

consistent with pure shear. The shear forces required to produce such a deformation are uF and

vF . 

 

Figure 3.11 - Square of fabric, dimensions L x L, with shear action forces, and corner reactions 

 

By symmetry &u vF F have equal magnitude but different direction, and the magnitudes of 

these shear forces acting along the edges of the square are given by: 
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u vF F G L    (3.20) 

For small displacements, the difference between the reference configuration and the deformed 

configuration is negligible. Thus the unit direction vectors of the edge shearing forces are: 

  1,0uF    (3.21) 

  0,1vF    (3.22) 

The forces , , &A B C DF F F F , at nodes A, B, C, & D respectively, can be simply computed by the 

vector sum of the appropriate forces: 

           1,0 0, 1 1, 1A u u v vF F F F F G L G L                (3.23) 

           1,0 0,1 1,1B u u v vF F F F F G L G L            (3.24) 

           1,0 0,1 1,1C u u v vF F F F F G L G L        (3.25) 

           1,0 0, 1 1, 1D u u v vF F F F F G L G L            (3.26) 

 

 

The resistance of the fabric to these shearing forces, and therefore the forces , , &A B C DR R R R  

that should be generated at the corners to restore equilibrium, are the vector opposite of those 

calculated above: 

  1,1AR G L   (3.27) 
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  1, 1BR G L    (3.28) 

  1, 1CR G L     (3.29) 

  1,1DR G L    (3.30) 

3.1.3.2 Calculation of the corner forces using the proposed discrete model 

Now the same patch of fabric is replaced with an equivalent representation of the proposed 

discrete elements and nodes. The restoring forces acting at the corners (now represented by the 

nodes) are calculated using the equations from section 3.1.2, as in the proposed discrete model. 

By calculating the forces acting on the nodes using the proposed discrete model, it is shown that 

the method converges to the same result as that found by treating the patch as a continuum 

(section 3.1.3.1). 

Figure 3.12 shows the square of fabric replaced with 4 nodes and 4 elements. 

 

Figure 3.12 - Equivalent representation with proposed discrete elements 

The position vectors of the nodes in the deformed configuration are calculated, taking A as the 

origin, as: 

  0,0Ar    (3.31) 
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  L,0Br    (3.32) 

  (1 sin ), cosCr L L     (3.33) 

  sin , cosDr L L    (3.34) 

To find the forces at node A, a free body diagram is drawn (Figure 3.13). 

 

Figure 3.13 - Free body diagram of node A 

Equation 3.19 is used to calculate the force AR  acting on the node. 

  A AB ADR v v    (3.35) 

      L,0 0,0 ,0AB B Av r r L       (3.36) 

      sin , cos 0,0 sin , cosAD D Av r r L L L L          (3.37) 

Since G  , AR  from Eq. 3.35 becomes: 

    ,0 sin , cosAR G L L L        (3.38) 
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   1 sin , cosAR G L L      (3.39) 

Since   is small, the small angle assumption may be used: 

 
sin

cos 1

 






  (3.40) 

 

This gives AR  as: 

   1 ,AR G L L     (3.41) 

Factorising gives: 

  2 ,AR G L G L G L      (3.42) 

Similarly, since   is small, higher order terms, and specifically the 
2  term, are negligible, 

reducing AR  to: 

    , 1,1AR G L G L G L      (3.43) 

BR  is calculated in the same way (Figure 3.14): 
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Figure 3.14 - Free body diagram of node B 

  B BC BAR v v    (3.44) 

    sin , cos 0 0 ,0 0BR L L L L L             (3.45) 

 

In this case  G   , giving, after simplification: 

  sin 1,cosBR G L         (3.46) 

Employing the small angle approximation and ignoring higher order terms reduces this to: 

  1, 1BR G L    (3.47) 

CR  is similarly calculated (Figure 3.15): 

  C CD CBR v v    (3.48) 
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Figure 3.15 - Free body diagram of node C 

This is equal to: 

 
  

  

sin 1 sin , cos cos

1 sin ,0 cos
C

L L L L
R G

L L L

   


 

   
 
     

  (3.49) 

Simplifying and ignoring higher order terms reduces this to: 

  1, 1CR G L     (3.50) 

Finally DR is calculated in the same way (Figure 3.16): 

  D DA DCR v v    (3.51) 
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Figure 3.16 - Free body diagram of node D 

Which is equal to: 

    0 sin ,0 cos 1 sin sin ,Lcos cosDR L L L L L              
  (3.52) 

Again in this case  G   , giving, after simplification: 

  sin , cosDR G L L L        (3.53) 

Employing the small angle approximation and ignoring higher order terms reduces this to: 

  1,1DR G L    (3.54) 
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3.1.3.3 Comparison of approaches 

The values calculated by treating the fabric patch as a continuum (section 3.1.3.1) are 

reproduced in equations 3.55 to 3.58: 

    1,1AR continuum G L   (3.55) 

    1, 1BR continuum G L    (3.56) 

    1, 1CR continuum G L     (3.57) 

    1,1DR continuum G L    (3.58) 

The values calculated from the equivalent representation by the proposed discrete elements 

(section 3.1.3.2) are reproduced in equations 3.59 to 3.62: 

    1,1AR discrete G L   (3.59) 

    1, 1BR discrete G L    (3.60) 

    1, 1CR discrete G L     (3.61) 

    1,1DR discrete G L    (3.62) 

Comparing the results, it can be seen that the two methods give the same forces at the corners. 

This simple comparison indicates that the shear modelling implemented in the proposed 

discrete model converges to the same solution as that found by evaluating the shear of a 

continuum for the case of small strain. 
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3.2 Analysis by Dynamic Relaxation 

This section discusses the solution of the discrete element model by the Dynamic Relaxation 

(DR) method [24,61]. DR is an iterative method that employs a pseudo-dynamic model of the 

structure over time. It is contingent on the structure being discretised in such a way that the 

mass and stiffness of the structure is concentrated at the nodes. The discrete element model 

uses exactly this discretisation, and so DR is chosen as the solution method employed by this 

author. 

In the pseudo-dynamic model used by DR, the structure oscillates, and comes to rest in its 

equilibrium position under the influence of damping. This damping can be achieve in one of two 

ways; viscous or kinetic. In the case of viscous damping, a fictitious damping coefficient is 

supplied to the model. Kinetic damping employs the observation that the equilibrium position 

of a structure corresponds to the position of minimum potential energy, and consequently, the 

position of maximum kinetic energy. Kinetic damping is used in this work. 

3.2.1  Dynamic relaxation with kinetic damping 

3.2.1.1 Governing equation of motion and iterative procedure 

Dynamic relaxation is achieved by the repetitive use of several equations, constructed from the 

centred finite difference form of the equation of motion. The governing equation, for a 

discretised system, is adapted from [24] as: 

 ji ji ji jiN m a Cv    (3.63) 

Where jim  is the lumped mass, C is the damping coefficient, jiv  & jia  are the first and second 

derivatives of the displacement with respect to time, i.e. the velocities and accelerations of 

individual nodes, and jiN  is the residual force. The first subscript j  refers to the node, and the 
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second subscript i  refers to the direction. The residual force jiN is calculated from the 

difference of the external and internal forces, applied to the node by the loads and the attached 

elements, respectively: 

 
ji ji EL ji

N P K        (3.64) 

Where jiP  is the external force from applied loads, with the same subscript convention as above, 

and 
EL ji

K    is the sum of internal forces from the elements. ELK  refers to the stiffness of 

an element connecting to the node, and   is the nodal displacement. 

Kinetic damping renders the damping coefficient unnecessary, reducing equation 3.63 to: 

 ji ji jiN m a   (3.65) 

Equation 3.65 represents the motion of the structure (discretised into nodes) due to out of 

balance forces. 

The governing equation for a single node, expressed using vector quantities is thus: 

 N ma   (3.66) 

Where N  is the residual force vector for the node, m  is the mass of the node, and a  is the 

acceleration vector for the node. 

Equation 3.66 is re-expressed in centred finite difference form, where the acceleration is 

represented by the change in velocity at discrete points in time, over the time interval: 

 

1 1

2 2
k k

v v
N m

t

 





  (3.67) 
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Where v  is the velocity vector for the node, the superscript k  corresponds to the iteration 

number, and t  is the time interval. 

Rearranging equation 3.67 yields a form which can be used to ‘push’ the analysis forward – 

starting from an initial configuration, the time is increased incrementally, yielding the velocity 

at the next time step: 

 
1 1

2 2
k k N t

v v
m

  
    (3.68) 

Velocities can then be used to calculate displacements: 

 
1

1
2

k k k
v t 

 
     (3.69) 

Where  is the displacement vector for the node. 

To increase the efficiency of the numerical implementation, the following convergence criterion 

has been established [24]: 

 2
m

t
K

    (3.70) 

Where, m  is the mass for a given node, and K  is the nodal stiffness for a given node, calculated 

from the sum of the stiffnesses of the elements adjoining the node. Setting 1t   and 

substituting for t  in equation 3.68, simplifies equations 3.68 and 3.69: 

 
1 1

2 2
2k k N

v v
K

 
    (3.71) 

 
1

1
2

k k k
v 

 
    (3.72) 

Again, in equations 3.70 & 3.71, K is the stiffness for the node, calculated from the sum of the 

stiffnesses of the elements adjoining the node. 
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Equation 3.72 gives the displacement from the original position of the node at time k+1. The 

new position of the node is thus calculated from: 

 
1 0 1k k

X X 
 
    (3.73) 

Where X is the position vector at the specified iteration, indicated by the superscript. 
0

X is the 

position vector of the node at 0k  , which is recorded once and used to calculate new positions 

for future iterations. 

Equations 3.71 to 3.73 can be used repeatedly in a loop to model the structure over time. 

However, in the absence of damping, this loop simply results in the oscillation of the structure. 

To achieve equilibrium, kinetic damping must be implemented. 

3.2.1.2 Kinetic damping by identification of kinetic energy peaks 

The theory of kinetic damping is derived from the observation that oscillating structures pass 

through their equilibrium position with maximum kinetic energy (KE). The algorithm uses this 

observation by iterating until a KE peak has been detected, and then stopping the iterative 

scheme at this approximated equilibrium position [24]. It is not possible, for complex systems 

with multiple nodes, to achieve the full equilibrium of the structure after only one KE peak. Thus 

the algorithm restarts the iterations from the approximated equilibrium position, with zero 

velocity. 

It is possible to detect when the structure has passed a peak, by recording the value of the kinetic 

energy at each interval of the time step. It is however only necessary to record the total kinetic 

energy of the structure for the current iteration and two previous iterations. It is not possible to 

calculate the exact time at which the KE peak occurs, because the iterative scheme records 

values only at discrete time intervals. However it is inferred that a kinetic energy peak has been 



Page 70 
 

passed, by comparing the value of kinetic energy at 
1

2
k   with that at

1

2
k  . If 

1 1

2 2
k k

KE KE
 

  , a peak has been passed. 

To estimate the point in time corresponding to the KE peak, the kinetic energy trace is 

approximated by a quadratic function, fitted through the three recorded values of the kinetic 

energy at 
1

2
k  , 

1

2
k   , and 

3

2
k  . An example kinetic energy trace is shown in Figure 3.17. 

For the derivation of the establishment of the KE peak, k is replaced by t . 

 

Figure 3.17 - Trace of kinetic energy around peak 

The specific point in time corresponding to the KE peak is estimated by finding the maximum of 

the quadratic function fitted through the three recorded values of KE. 

The quadratic function passing through the three values of kinetic energy is given by: 

 2KE at bt c     (3.74) 

Wherea , b & c  are typical coefficients for a quadratic function. 
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The maximum value of a quadratic function, and thus of the KE is found at time maxt : 

 max / 2t b a    (3.75) 

maxt  is measured from 
3

2
t  . 

The following equations for known values of KE, at intervals separated by time steps of t , can 

be expressed in terms of the quadratic function coefficients: 

 1(0)KE c KE    (3.76) 

 
2

2( )KE t a t b t c KE         (3.77) 

    
2

3(2 ) 2 2KE t a t b t c KE         (3.78) 

Substituting Eq. 3.76 into Eqs. 3.77 & 3.78 yields a pair of simultaneous equations with two 

unknowns, a  &b , which can be solved to give the following expressions: 

  3 2 12

1
2

2
a KE KE KE

t
  


  (3.79) 

  2 1 3

1
4 3

2
b KE KE KE

t
  


  (3.80) 

Taking 1t   (in respect of the convergence criterion established in equation 3.70), gives the 

following expression for maxt : 

 
 

3 2 1
max

3 2 1

4 3

2 2

KE KE KE
t

KE KE KE

 


 
  (3.81) 
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As can be seen in Figure 3.17, the kinetic energy peak occurs before the current iteration. For 

this reason, calculating the displacement for iteration t t   using equation 3.72 would lead to 

the algorithm overshooting the equilibrium position. 

The DR algorithm therefore iterates until a KE peak is detected, and then corrects the 

displacement calculated by equation 3.72 according to the location of the KE peak along the KE 

trace curve. 

In the method detailed in [24] for correcting displacements due to the passing of a KE peak, the 

displacements were corrected by calculation of an adjustment factor  .  

However, the equations can be simplified to the following (for one node with vector quantities): 

 
1

1
2

max

3

2

k k k

corrected vt 
  

   
 

  (3.82) 

Where
1k

corrected


is the corrected displacement for iteration 1k  . 

The calculation of the corrected new position for each node is thus: 

 
1 0 1k k

corrected correctedX X 
 

    (3.83) 

Where
1k

correctedX


is the corrected new position for iteration 1k  . 

The residual force vector for each node is then checked to see if it is sufficiently close to zero. 

Since the algorithm is unlikely to result in exactly zero residual force at all nodes, the force is 

compared with a prescribed maximum force, usually of the order of < 10-6 kN.  

If the residual force is lower than the specified maximum force for each node, equilibrium has 

been found, and the final structure position and stresses are known. 
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If the structure is not in equilibrium, the iterations are restarted from the adjusted position, with 

the node velocities and kinetic energies set to zero. Iterations continue until further KE peaks 

are detected, and eventual equilibrium found. 

3.3 Computational implementation 

The discrete element model, and numerical simulation using dynamic relaxation, has been 

implemented by the author in a plug-in for the existing program Rhino3D. Rhino3D is a 3D 

modelling program [62], complimented by the existing plug-in RhinoMembrane [63] that 

facilitates the form-finding of tensile surface structures. The plug-in for implementation of the 

discrete model was coded in VB.Net. 

The implementation of the discrete element model by the author was achieved using object 

oriented programming, employing in particular, several classes programmed by the author: 

 Element3D – an element class used to model the tensile deformation of the fabric. 

The element strain, stress, and force are calculated from equations 3.1 – 3.7, and 

apportioned to the end nodes of the element. 

 ShearTriangle – an element used to model shearing. ShearTriangles are used to record 

changes in angle between warp and weft elements, calculate the shear stress and 

force, and apportion the force to the appropriate node. 

 Node3D – a node class that displaces under the effect of out-of-balance forces in the 

simulation scheme. 

 AnalysisMesh3D – a container class that comprises Element3Ds, ShearTriangles, and 

Node3Ds for running the physical simulation scheme. Dynamic relaxation is run on the 

AnalysisMesh3D, and the structure kinetic energy is calculated by summing the kinetic 

energy of every Node3D contained by the AnalysisMesh3D class. 
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 DynamicRelaxationSolver – a class for running the dynamic relaxation algorithm on an 

AnalysisMesh3D. 

Figure 3.18 shows an AnalysisMesh3D with its constituent Element3Ds (tensile elements and 

boundary elements), ShearTriangles and Node3Ds (nodes) in the Rhino3D viewport. 

 

Figure 3.18 - Screenshot of the discrete element model implemented using VB.Net 

Boundary elements may be excluded from certain analyses, if for example, both nodes of an 

element are fixed, or its direction deviates from the warp or weft direction (as mentioned earlier 

when calculating widths). 

Nodes may be restrained in the three global coordinate directions, (x, y, z). Since the model is 

moment-less, no rotational restraints are implemented. 

Applying forces or displacements to a given discrete element mesh results in a configuration of 

the mesh that is not in equilibrium. To solve for the equilibrium position of the mesh, dynamic 

relaxation was implemented in VB.Net. How the dynamic relaxation algorithm operates on the 

discrete element mesh is illustrated through the pseudocode in Figures 3.19 to 3.21. 
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Figure 3.19 shows the set up process for running dynamic relaxation. The algorithm records the 

rest configuration of the mesh, calculates the widths for each element from this rest 

configuration, and assigns appropriate material parameters. 

 

Figure 3.19 - Pseudocode describing the set up process for running dynamic relaxation 

Following the setup of the mesh, iterations in the dynamic relaxation scheme are run (Figures 

3.20 & 3.21). 

// Set up the analysis 
 
// Record the position of each node in the rest configuration 
For each Node3D in AnalysisMesh3D 
 Record X0 position 
Next 
 
// Calculate the width for each element 
For each Element3D in AnalysisMesh3D 
 Calculate width 
Next 
 
// Assign the shear stiffness to each shear triangle 
For each ShearTriangle in AnalysisMesh3D 
 Assign Shear Stiffness 
Next 
 
// Assign tensile element stiffness (warp or weft dependent) 
// Assign tensile element pre-stress (warp or weft dependent) 
For each Element3D in AnalysisMesh3D 

Assign Element Stiffness 
Assign Element Pre-stress 

Next 
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Figure 3.20 – Dynamic Relaxation pseudocode 

// Run dynamic relaxation 
 
For i = 0 to n //Perform n iterations of DR 
 // Set new position for each node (no change when i = 0) 
 For each Node3D in AnalysisMesh3D  
  Set new position 
  Push back velocities, displacements, KEs  
 Loop 
  

// Calculate strains, stresses and forces for each element 
 For each Element3D in AnalysisMesh3D 
  Calculate strain 
  Calculate stress and force 
  Apportion force to Node3Ds 
 Loop 
  
 // Calculate strain, stress and force for each shear triangle 
 For each ShearTriangle in AnalysisMesh3D 
  Calculate current angle 
  Calculate shear strain 
  Calculate shear stress 
  Calculate force 
  Apportion force to Node3Ds 
 Loop 
  

// Sum tensile and shear forces at each node 
// Calculate residual force, velocity and displacement 

 For each Node3D in AnalysisMesh3D 
  Calculate residual force 
  If update geometric stiffness Then   
   Calculate geometric stiffness 
  End If 
  Calculate velocities 
  Calculate displacement 
  Calculate kinetic energy 
 Loop 
 

// If a KE peak was detected in the previous iteration 
// Check for equilibrium of each node 

 If last iteration was KE peak Then 
  For each Node3D in AnalysisMesh3D 
   Check residual force < max nodal force 
  Loop 
   
  If F < max force for all nodes in AnalysisMesh3D Then 
   Equilibrium found 
   Exit Loop 
  End If 
 End If 
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Figure 3.21 - Dynamic Relaxation pseudocode continued 

Figures 3.20 & 3.21 show the DR algorithm, which comprises the following general steps: 

1. Each node position is updated based on the displacements calculated in the previous 

iteration. 

2. Tensile and shear forces are calculated and apportioned to the nodes. 

3. Node residual forces, velocities, displacements and kinetic energies are calculated. 

4. If a KE peak was detected in the previous iteration, the structure is checked to see if it 

is in equilibrium, if so, the algorithm exits. 

5. If equilibrium was not found in step 4, the structure kinetic energy is computed. 

6. If a KE peak is detected, the displacements calculated in step 3 are corrected according 

to equation 3.82, and the velocities are set to zero. If not, no correction is made. 

7. The algorithm loops back to step 1, completing one iteration. 

3.4 Summary 

This chapter described the discrete element model proposed by the author, drawing on the 

conclusions from chapter 2. The proposed discrete model was developed to fulfil research 

objective RO 1 – the development of a discrete model for patterning. 

 // Sum Node KE 
 Structure KE = Sum of Node3D KE 
  

// If current KE < previous KE, a peak has been passed, 
// Correct node displacements, set velocity=0 and KE=0 

 If Structure KE at k+1/2 < Structure KE at k-1/2 Then 
  Calculate Tmax 
  For each Node3D in AnalysisMesh3D 
   Correct displacements using Tmax 
   Set velocity = 0 
   Set KE = 0 
  Loop 
 End If 
Loop 
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The conclusions from chapter 2 established the requirements for a discrete element model for 

modelling tensile fabric structures during patterning. The model was developed to meet these 

requirements. 

The proposed model was presented, and calculations for modelling the tensile deformation 

were described. The calculation of widths for tensile elements was described, along with the 

challenges incurred by geometries of non-rectangular boundary. Adjusted width calculations to 

overcome these challenges were presented. 

Shear deformation in the discrete model was presented, illustrating how the author’s proposed 

model overcomes the limitations of the method presented by Eischen & Bigliani [50]. It was 

shown that the proposed method for modelling shear gives the same result as that of continuum 

elasticity for small strains. 

The solution by dynamic relaxation was justified and described. Key equations for the algorithm 

were presented. 

The application of the dynamic relaxation method to the proposed discrete element model, 

programmed using VB.Net, was described. Pseudocode for the VB.Net algorithm was presented, 

to show how the elements programmed for modelling the tensile and shear response of the 

fabric, Element3D and ShearTriangle respectively, were incorporated in the dynamic relaxation 

scheme. 

The proposed patterning method, incorporating the discrete element model, is presented in the 

next chapter.  
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4 Proposed patterning method 

To demonstrate the proposed discrete model, it is implemented in a proposed patterning 

method. This chapter presents the proposed computational patterning method. The patterning 

method presented here follows the general structure of patterning outlined in chapter 2, section 

2.1.2, but improves upon certain processes, and adds new sub-processes, resulting in an 

alternative patterning method. 

In chapter 2, section 2.1.2, patterning as a general computational process was presented as a 4-

5 step process (where step 5 Panel Assembly is not always included): 

1. Subdivision of the membrane by defining seams on the form-found surface 

2. Flattening of the resulting panels from 3D to 2D 

3. Stress reduction to reduce the stresses induced by flattening 

4. Compensation to scale the 2D panel to account for pre-stressing 

5. Panel assembly to visualise the final 3D form and calculate stresses 

Steps 1-4 concern the method of determining the cutting pattern. Step 5 concerns the simulation 

of the assembly of the cutting pattern to determine its suitability, in terms of accurate 

representation of the 3D, form-found geometry. The proposed patterning method in this 

chapter is thus presented under these headings. The method comprises the following stages: 

Stage 1: Method of determining the cutting pattern 

1. Subdivision of the membrane by defining seams on the form-found surface 

2. Flattening of the resulting panels from 3D to 2D 

3. Integrated stress reduction and compensation to reduce the stresses induced by 

flattening and scale the 2D panel to account for pre-stressing 

Stage 2: Method of cutting pattern assembly and evaluation 
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4. Re-meshing of the cutting pattern panels with an orthogonal mesh, to better represent 

the fabric 

5. Assembly of the panels as a pre-process for equilibrium finding 

6. Equilibrium finding to visualise the final 3D form and calculate stresses 

The proposed patterning method differs from existing methods in the following ways: 

1. In step 2, flattening, simple methods of flattening that minimise stresses, with little 

additional computational effort, are included. The inclusion of simple flattening 

methods means that in step 3, integrated stress reduction and compensation, there is 

less computational ‘work’ to be done. Step 2 is included in the method to address RO 

2(b) – the development of improved flattening methods. 

2. In step 4, an additional process in the pattern assembly and equilibrium finding is 

included. The panels in the cutting pattern are re-meshed with an orthogonal mesh, to 

represent the directions of the fibres in the fabric. When the mesh is assembled, these 

fibres deform under shear, giving a more representative description of the final 

assembled shape and equilibrium geometry. 

3. The use of the discrete model (presented in chapter 3) accounts for the shear- 

dependent behaviour of the fabric throughout. This is included in light of RO 1 – the 

implementation and examination of a discrete model for patterning. 

Form-finding 

To explain the proposed patterning method, and in future chapters demonstrate its applications, 

form-found membrane shapes are necessary. Thus, form-finding precedes patterning and is 

achieved using the RhinoMembrane plug-in for Rhino3D. 

4.1 Method of determining the cutting pattern 
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The first stage in the proposed patterning method is the determination of the cutting pattern. 

This is the pattern that would be cut from an unstrained, woven fabric, which, when assembled 

and stressed  gives the final 3D membrane shape. This shape is intended to reproduce the form-

found surface. As mentioned previously, the three sub-processes conducted to determine the 

cutting pattern, in the proposed cutting pattern method, are (i) Subdivision of the membrane, 

(ii) Flattening of the resulting 3D panels, and (iii) Integrated stress reduction and compensation 

of the flattened panels. The processes for conducting these steps, in the proposed patterning 

method, are now presented in turn. 

4.1.1 Subdivision of the form-found membrane shape 

The first step in determining the cutting pattern is to divide the form-found surface into 

individual panels. This should be conducted in such a way that ensures the resulting panels have 

a width lower than the maximum (typically 2-3 m [5], though widths as large as 5 m have been 

reported [7]. As noted in chapter 1, section 1.2, the form-found surface represents an idealised 

surface geometry for the given boundary condition and pre-stress state. In the case of 

computational form-finding, this surface geometry is in the form of a mesh. In this work, form-

finding is conducted using RhinoMembrane [63], resulting in a mesh of quadrilaterals. To divide 

the surface into panels such that their seams follow geodesics, a surface description that 

facilitates the construction of geodesic curves is required. In the proposed patterning method, 

a spline surface, specifically a Non-Uniform Rational B-Spline (NURBS) surface, is interpolated 

over the mesh, to facilitate the use of Rhino’s in-built shortpath function. Rhino’s in-built 

functions were used for constructing the surface from the interpolation of the mesh nodes. The 

shortpath function finds the shortest curve between two points, over a given NURBS surface. 

Used correctly it can thus define geodesic curves.  

The procedure for defining panels bounded by geodesics is thus: 
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1. Define a NURBS surface by interpolating the mesh nodes from form-finding. 

2. Define an array of start and end points at suitable locations on the boundaries of the 

mesh. 

3. Construct geodesics over the surface, between start and end points on the boundaries, 

using the shortpath function. Manually check that the resulting panels have a width 

lower than the maximum. 

4. Use these geodesic curves to divide the surface into further sub-surfaces, which define 

the 3D shape of the panels, suitable for flattening. 

Figures 4.1 (a) through 4.1 (c) demonstrate the above process on a catenoid shape. Since a 

catenoid represents a surface of revolution, to interpolate a NURBS surface, a curve between 

the boundaries is defined and then revolved around the central axis. The curve is defined along 

the edges of the elements between the boundaries (the black line in Figure 4.1 (a)). The form-

found mesh is shown in green in Figure 4.1 (a). Points along the upper and lower circular 

boundaries are defined such that they are equally spaced (the green points in Figure 4.1 (b)). 

These points define the geodesics (the red lines in Figure 4.1 (b)), which ultimately allow the 

surface to be split into sub-surfaces that define the 3D panels (Figure 4.1 (c)). In the case of this 

catenoid, the panels are identical due to rotational symmetry. 
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Figure 4.1 (a) - Interpolation of a catenoid shape by revolving a radial line of element edges 
around the centre axis. The original mesh is shown in green. 

 

Figure 4.1 (b) - Interpolated surface with geodesic seams defined. 

 

Figure 4.1 (c) - Surface split into individual panels, which can now be flattened. 

Following subdivision of the membrane into panels, the panels are flattened into the plane. 
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4.1.2 Flattening 

Subdivision of the form-found membrane shape defines the 3D geometry of the panels used in 

patterning. The planar geometry corresponding to these panels must then be determined. To 

achieve this, the panels are flattened into the plane. It is at this stage that the proposed 

patterning method differs from that of existing methods, by attempting to minimise the 

distortions arising from flattening using some simple procedural methods of unfolding. To 

flatten the panels, a suitable mesh must first be constructed on the panels, and this is achieved 

using geodesic lines, as follows. 

4.1.2.1 Geodesic meshing of the 3D panels 

Unlike the later stage of orthogonal re-meshing (see section 4.2.1), the directions of the fabric 

fibres on the 3D surface are not known. The construction of the mesh is not trivial.  In the 

proposed patterning method, geodesics are used to define the elements on the 3D panel, on 

the following basis: the form-found shape represents a surface with an isotropic stress 

distribution, and this is the ideal shape for the membrane. A geodesic across this surface 

represents a direction along which tension force is uniform. Uniform tension in the fibres implies 

they should follow geodesics. Additionally, a mesh comprising geodesics across the 3D surface 

should inherently minimise element lengths, and thus give highest accuracy. 

However, the author’s investigation into the use of meshes constructed from geodesic curves in 

both directions found issues with numerical ill conditioning. In such meshes, longer elements 

occurs in some areas and not in others, resulting in inconsistent element widths (Figure 4.2). The 

disparity in widths results in an uneven distribution of stiffness across the surface. For this 

reason, in the proposed patterning method, geodesic curves are used for defining elements in 

the first direction, in particular, the direction of higher curvature, and then elements in the 
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second direction, that of lower curvature, are interpolated across the geodesic curves of the first 

direction. 

 

Figure 4.2 - Comparison of different mesh constructions. The red circle indicates the longer 
elements in mesh (a), not present in mesh (b) 

The methods for generating both fully and partially geodesic meshes are defined as follows. To 

generate a mesh in which all elements follow portions of geodesics, the following method is 

used (Figure 4.3). 
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Figure 4.3 - Meshing a panel by constructing geodesics in two directions 

To generate a mesh in which elements in one direction follow portions of geodesics, the 

following method is used (Figure 4.4): 

 

Figure 4.4- Meshing a panel using geodesics in one direction. These geodesics are then divided 
into equal segments that dictate the node positions. Elements in the second direction are then 

interpolated. 
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With the mesh defined on the 3D panel from either of the above methods, the next step in the 

proposed method is to flatten the panel into the plane. 

4.1.2.2 Flattening methods 

As mentioned, the proposed method attempts to improve on existing methods by seeking to 

reduce the distortions incurred by flattening, through the use of some simply defined flattening 

methods. The flattening methods were developed in response to RO 2 (a) – the development of 

improved flattening methods. 

Three methods of flattening implemented in the proposed patterning method are presented in 

the following subsections. The first method, direct projection, is a trivial method in current use 

by other researchers [6], but is included for future comparison. The second and third methods 

were developed by the author as an improvement over the method of direct projection. 

4.1.2.3 Flattening by direct projection 

The first flattening method is the direct projection of the mesh to a defined ‘target’ plane (Figure 

4.5). When projecting to the global x-y plane, this is equivalent to taking the global coordinate 

( , , )x y z of each node within the mesh, and setting the value to ( , ,0)x y for each node. This 

leads to a shortening of the element lengths – where the elements are aligned with the target 

plane, distortions are zero, and where the elements are perpendicular to the plane, the 

distortion is infinite. Thus the highest distortions incurred by mapping the surface occur in the 

higher curvature regions, where the deviation in the alignment between 3D elements and the 

plane is highest. 
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Figure 4.5 - Flattening of a panel by direct projection, showing projection of nodes to the plane 

Flattening by direct projection is computationally ‘cheapest’, and simple to implement. 

However, it can incur considerable distortion for surfaces with higher curvature, and is sensitive 

to the orientation of the mesh to the plane of projection. Such large distortions lead to numerical 

ill conditioning of the flattened mesh, when attempting to reduce stresses using dynamic 

relaxation. 

4.1.2.4 Flattening by unrolling with a single spine of elements 

An alternative method for flattening the mesh is to ‘unroll’ or ‘unfold’ the mesh. As mentioned, 

historically this method alone was used to generate the cutting pattern for individual panels in 

the membrane structure. 

Two methods of unrolling the mesh have been developed by the author. The first unrolls the 

mesh as follows, and is known as unrolling with one spine. Figures 4.6 (a) through 4.6 (d) 

illustrate the method diagrammatically. 
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1. Define a ‘spine’ – a line of elements near to the midline of the mesh. 

2. Unroll the spine to the plane. 

3. Using the unrolled spine, unroll lines of elements perpendicular to the spine. 

4. Unroll the boundary elements in the approximate direction of the lines unrolled in step 3. 

5. Interpolate elements in the direction approximately parallel to the spine. 

6. Interpolate the boundary elements in the approximate direction of the lines interpolated in 

step 5. 

 

Figure 4.6 (a) - Definition of the 'spine' of elements on the panel to be flattened 
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Figure 4.6 (b) - Unrolling of the spine of elements to the plane 

 

Figure 4.6 (c) - Unrolling of the elements (including boundary elements) approximately 
perpendicular to the spine 
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Figure 4.6 (d) - Interpolation of the elements (including boundary elements) approximately 
parallel to the spine, thus completing the unrolling of the mesh 

Since the spine elements, and elements in the direction approximately perpendicular to the 

spine are unrolled, no tensile distortion is incurred in these elements. Tensile distortion is 

incurred only in the remaining elements. Shear distortions are incurred throughout. The method 

thus effectively prioritises the reduction of tensile distortions over shear distortions. This is 

considered acceptable since the shear stiffness of architectural fabrics is low in comparison with 

the tensile stiffness. 

4.1.2.5  Flattening by unrolling with two spines of elements 

The second proposed un-roller method makes use of the rectilinear topology of the generated 

mesh to unroll the pattern with zero tensile distortion. The method is similar to that proposed 

by Aono et al. [33,34], but simplified to two dimensions. The method proposed by Aono et al. 

[33,34] concerned the mapping of an equidistant grid over a 3D surface. This was achieved by 

calculating the location of points on the surface from two other points, and the distances 

between them, by intersecting two spheres of appropriate radii and the surface on which the 

grid was being arrayed [33,34]. For example, given two points A and B on a surface S, to find the 

point C that is distance L1 from point A, and distance L2 from point B, two spheres P1 and P2 are 
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constructed, with origin A, radius L1, and origin B, radius L2 respectively. The intersections of P1, 

P2 and S correspond to points on the surface S which are both distance L1 from point A and L2 

from point B. This is shown in Figure 4.7. 

 

Figure 4.7 - Construction of a point C on a surface S that is distance L1 from a point A and 
distance L2 from a point B 

Applying this logic to the plane, given two points U and V on a plane P, a point W that is distance 

L1 from U and distance L2 from V, can be found from the intersections of two circles C1 and C2, 

in the plane P, with origin U, radius L1, and origin V, radius L2, respectively. The intersections of 

these two circles are positions of the point W such that the distances are as required. This 

method is suggested in [64], and is essentially the same as the ‘compass method’ originally 

attributed to Frei Otto in [65], but generalised to include grids that are irregularly spaced. 

The intersection of planar circles as just described is implemented in the second flattening 

method, unrolling with two spines, as follows. The method is illustrated diagrammatically 

through Figures 4.8 (a) to 4.8 (d). 

1. Two spines are defined along approximate midlines of the mesh (Figure 4.8 (a)). 
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2. These spines are unrolled to the plane as in the method “unrolling with one spine” (Figure 

4.8 (b)). 

3. The first row of nodes corresponding to the elements approximately in the direction of the 

first spine is unrolled to the plane by the intersection of appropriate planar circles, 

depending on the lengths of the elements (Figure 4.8 (c)). 

4. Further rows of nodes corresponding to the elements approximately in the direction of the 

first spine are unrolled to the plane in a similar manner, until all nodes have been mapped 

to the plane (Figure 4.8 (d)). 

 

Figure 4.8 (a) - Definition of two spines on the mesh 
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Figure 4.8 (b) - Mapping of the spines to the plane 

 

Figure 4.8 (c) - Mapping of the first line of nodes using the intersection of two circles in the 
plane 
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Figure 4.8 (d) – Mapping of the next line of nodes using the intersection of two circles in the 
plane 

This method of flattening with two spines confers no tensile distortion in any of the elements, 

as the method of intersecting circles preserves element lengths exactly. This method of 

flattening achieves zero tensile distortion at the cost of shear distortion. This is similarly 

considered acceptable given the shear stiffness of architectural fabrics is low in comparison with 

the tensile stiffness. 

Since none of the flattening methods give patterns with acceptably low distortions, the next step 

in the proposed patterning method is to perform stress reduction and compensation on the 

flattened panels. 

4.1.3 Integrated stress reduction and compensation by dynamic relaxation 

The flattening methods presented above produce planar patterns with varying degrees of 

distortion, comprising tensile and/or shear stress. To reduce these stresses further, and produce 

a pattern suitable for cutting from planar cloth, the proposed method employs dynamic 

relaxation to relax the panel into an equilibrium shape, to ‘release’ the stresses. The stresses 

induced through flattening, and the necessary reduction in panel size to account for pre-stress 
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are considered simultaneously in this analysis. Referring to the terms in chapter 2, sections 2.1.5 

& 2.1.6, the proposed method is thus an integrated stress reduction and compensation method, 

employing a structural solution method and the mechanical problem formulation. 

To measure the strains due to flattening, the 3D form-found geometry of the panel is taken as 

the reference geometry. Defining the strain as such means that the flattened elements produce 

zero residual force when their length (in 2D) is equal to their original length on the 3D form-

found surface. The planar element geometry resulting in zero force thus represents no distortion 

due to flattening. When the analysis is run, the stresses release as the elements tend towards 

their zero force configurations. The effect of pre-stress is then simply added to the force 

formulation. To give zero force in the element, with the pre-stress included, the element must 

have a negative strain such that the strain balances with the pre-stress (equation 3.3 in chapter 

3, section 3.1.1.2). 

As mentioned in chapter 2, section 2.1.5, careful selection of the restraints is required to ensure 

convergence to a solution. The flattened panel, with the strain convention described above, 

represents a stressed geometry. The panel must be restrained in the equilibrium analysis to 

prevent rigid body rotation and translation, but the restraints must be sufficiently ‘loose’ to 

allow convergence to an equilibrium position. In the proposed method, the panel is realigned 

such that the centrelines of the mesh approximately coincide with that of the global (x, y) axis. 

A node on each boundary intersecting the x centreline, is fixed in the y direction. A node on each 

boundary intersecting the y centreline, is fixed in the x direction. Since only planar deformation 

is desired, all nodes are additionally restrained in the z direction. Figure 4.9 shows a typical panel 

with such restraints: 
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Figure 4.9 - Typical restraints for a flattened panel. Nodes in red are restrained in the directions 
indicated by the arrows. All nodes are additionally restrained perpendicular to the plane of the 

panel 

With the panel restrained, dynamic relaxation is then performed as described in chapter 3, 

section 3.2. Under the effect of the flattening stresses, the nodes displace until they settle into 

equilibrium. The algorithm is run until the residual forces at the nodes are sufficiently small. 

Typically, a maximum nodal force of 10-6 kN is achievable. As mentioned in chapter 2, section 

2.1.7, it is not possible to fully nullify the stresses due to flattening. Consequently, residual 

stresses will be present in the panel even at the equilibrium position. The magnitude of these 

stresses is between 0 and ±100% of the pre-stress, as discussed in chapter 5. 

Once all panels have been meshed, flattened and undergone stress reduction and 

compensation, the cutting pattern for the structure is fully defined. To evaluate this cutting 

pattern, the next step in the proposed patterning method is to model the assembled pattern 

within the 3D boundary. 

4.2 Proposed method of cutting pattern assembly and evaluation 

With the cutting pattern determined by the methods shown throughout section 4.1, the next 

step is to evaluate the suitability of the cutting pattern. This is achieved by simulating the 

assembly of the cutting pattern, while omitting the residual stresses from flattening, stress 



Page 98 
 

reduction and compensation. Here the focus is not on replicating the exact erection procedure, 

but on finding the equilibrium shape of the assembled geometry. 

The equilibrium geometry of the assembled panels is the geometry that the fabric in the physical 

structure, after erection and tensioning has been completed, is intended to adopt. Since the 

flattening, and integrated stress reduction and compensation processes cannot produce 

completely stress-free geometries for the panels, there will be deviations from the intended pre-

stress in the assembled cutting pattern.  It is thus this equilibrium geometry that should be 

analysed for performance under external load, as this takes account of the varying pre-stress 

across the surface. 

In the proposed pattern assembly method, an additional step of re-meshing the cutting pattern 

panels with an orthogonal mesh is introduced, to give a model that is more representative of 

the fabric. This section describes the method of orthogonal mesh generation, and some 

conditions for its successful use. Furthermore, this section presents the processes for assembling 

the cutting patterns, and finding their equilibrium position. These three sub-processes of (i) 

orthogonal re-meshing, (ii) assembly of the re-meshed panels, and (iii) equilibrium finding of the 

assembled patterns, define the proposed method of cutting pattern assembly. The final 

equilibrium position of the assembled pattern facilitates the evaluation of the cutting pattern, 

as the deviation of the stress from the intended pre-stress is calculated. 

4.2.1  Orthogonal re-meshing of planar panels 

The first step in assembling the determined cutting patterns is to re-mesh the panel with an 

orthogonal mesh. This step is included on the following basis: 

As mentioned, the weave of the fabric must shear for it to adopt a doubly curved geometry. 

Fibre directions are unknown in the 3D geometry, so assumptions are made in the earlier 

processes (see section 4.1.2.1). This is not the case once the cutting pattern has been 
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determined by the methods outlined in section 4.1. In the determined cutting pattern, it is 

known that the fibre directions are broadly orthogonal (deviation of up to 5° [66] is possible), 

since this is the direction of the fibres in the fabric from which the pattern will be cut. 

By constructing an orthogonal mesh using the discrete element model, proposed in chapter 3, 

the warp and weft directions of the fabric are represented exactly. The elements representing 

the fibres undergo shear deformation during the assembly of the panels, and so the directions 

of the fibres change appropriately. By including this step of orthogonal re-meshing, the fabric 

behaviour is more accurately represented. 

4.2.1.1 Construction of the orthogonal mesh 

Construction of an orthogonal mesh on the generated cutting pattern panel boundary is 

straightforward. Two arrays of orthogonal grid lines, representing the warp and weft directions, 

are intersected with the panel boundary, shown on an example pattern in Figure 4.10: 

 

Figure 4.10 - Intersection of orthogonal lines with defined cutting panel boundary 

However, the positioning of the orthogonal grid lines in relation to the panel boundary affects 

the quality and suitability of the mesh. Thus the grid lines cannot be defined arbitrarily. 
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4.2.1.2 Factors affecting the suitability of the orthogonal mesh 

Two factors affect the condition of the mesh and its suitability for use in the modelling of the 

pattern assembly. These factors are (i) the location of the nodes along the boundary, and (ii) the 

triangulation of the mesh along the boundaries. 

(i) Node location along the boundary 

The location of the nodes along the boundary affects the accuracy of the re-meshing. The 

boundary of the generated cutting pattern is represented by a polyline. Intersecting the 

orthogonal grid lines with the boundary results in new nodes along the boundary, and thus the 

boundary is redefined by the elements between these nodes. 

Figure 4.11 shows a close up of an example boundary curve (black lines) from a generated 

cutting pattern. The original nodes are shown in red. This curve is intersected with several 

orthogonal grid lines (blue lines in Figure 4.11) to give new nodes (green points in Figure 4.11). 

Redefining the boundary curve based on these points, it can be seen that the length of the 

boundary between nodes is not necessarily preserved. Referring to Figure 4.11 again, the part 

of the new boundary, with length x, is not equal to that of the original boundary, comprising 

lengths a and b. 

 

Figure 4.11 - Misrepresentation of boundary due to poor choice of orthogonal grid lines 
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Though the disparity in this example is exaggerated, when the new nodes are mapped to the 3D 

panel boundary (necessary for the joining of panels, see section 4.2.2.2), fictitious straining is 

induced. For cable boundaries, and the seam edges of panels that are free to move in the 

equilibration scheme, these strains naturally dissipate as the structure finds equilibrium. 

However, if both ends of an element are fixed, such as along rigid boundaries, this fictitious 

straining is not dissipated. Since these nodes then represent the base points for other elements, 

erroneous positioning of the nodes results, affecting the analysis. 

This issue can be overcome by using a suitably fine mesh, but such a solution can result in 

excessive elements elsewhere in the mesh. A more appropriate solution is to use the boundary 

nodes, from the mesh used to determine the cutting pattern, as the base points for generating 

the orthogonal gridlines from which the mesh is then constructed. This ensures an accurate 

redefinition of the boundary, and the nodes may be mapped back to the 3D panel boundary 

with virtually no distortion. Using the original nodes to define the new mesh requires careful 

consideration, as for some cutting patterns, achieving a more consistent spacing of the mesh is 

of more importance. 

(ii) Triangulation of the mesh along the boundaries. 

For meshes on non-rectilinear geometry, such as that shown in Figure 4.10, the boundary will 

not align with either the warp or weft direction. Nodes along such boundaries should have a 

valency of 2 – i.e. one warp and one weft element should attach to each node. (The valency of 

a node, in this context, refers to the number of elements connected to the node). This results in 

triangulation of the mesh near the boundary, and is necessary to prevent numerical ill 

conditioning, and to ensure correct construction and apportioning of the fabric width to 

elements.  
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Throughout the remainder of this thesis, a ‘triangulated mesh’ refers to a mesh where the nodes 

along the boundaries have a valency of two, and as a result, where the elements along the 

boundary form triangles. 

Where boundaries between panels are merged (section 4.2.2) to give internal seam lines, 

triangulation will similarly result. It is most important to ensure triangulation when the boundary 

is unrestrained or partially restrained. Figure 4.12 shows a portion of a mesh near the boundary, 

both for triangulated and non-triangulated configurations: 

 

Figure 4.12 - Portions of triangulated and non-triangulated meshes 

In the triangulated mesh, nodes A & E have a valency of two – two elements attach to both 

nodes. As such, the elements along and near the boundary form triangles, e.g. A-B-C, and A-D-

E. In the non-triangulated mesh, node B and element A-B are missing, and thus node A has a 

valency of one, and triangles are not formed along the boundary. It is shown in chapter 5, that 

a node with a valency of one, such as node A in the non-triangulated mesh, will undergo gross 

deformations and result in failure of the numerical analysis.  



Page 103 
 

The triangulation condition is a finding of this research, and relates to RO 1 (c) – the 

identification of conditions and guidance for successful use of discrete models in patterning. As 

mentioned above, this condition for the configuration of the mesh is expanded upon in chapter 

5, section 5.4.3. 

Following the re-meshing of the panels, the next step is to assemble these panels. 

4.2.2 Assembly of orthogonally meshed panels 

To model the assembly of the panels, nodes and elements along the edges of adjacent panels 

are merged to create a new mesh. For this to be possible, along the common edges of adjacent 

panels, the boundary nodes that will be merged should be close together. 

Some deviation is acceptable, but to ensure the boundary nodes are sufficiently close, the 

pattern determination processes should produce a pattern such that; (i) the common edges 

shared between adjacent panels are near equal in length, (ii) the individual panel meshes have 

the same number of boundary nodes, and (iii) the boundary nodes of the two panels have 

approximately equal spacing, as shown in Figure 4.13: 
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Figure 4.13 - Conditions for joining of panels 

In the re-meshed cutting pattern, the 2D seam lines represent the common edges between 

adjacent panels. Even if the generated cutting pattern meets the criteria of length, number of 

nodes and spacing of nodes, as above, the 2D boundaries will still deviate significantly from each 

other in terms of geometry. 

For this reason, the boundary nodes of the planar meshes, for each panel, are mapped to the 

boundaries of the original 3D panels. The original 3D panels are those defined by the subdivision 

of the form-found membrane (section 4.1.1), which were flattened, and subjected to stress 

reduction and compensation (sections 4.1.2 & 4.1.3) to give the cutting pattern. 

Original panels that are adjacent have a common edge, the seam line, and so mapping the 

boundary nodes in this way ensures that the nodes along the boundaries of adjacent panels are 

sufficiently close to join the panels. 

4.2.2.1 Mapping the panels 

The procedure for mapping a panel is as follows, and is described diagrammatically in figures 

4.14 (a) through 4.14 (c): 
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1. Re-orient 3D boundary to reduce distortion from mapping (4.14 (b)). 

2. Map boundary nodes to re-oriented 3D panel boundary (4.14 (b)). 

3. Move 3D boundary back to original position (4.14 (c)). 

 

Figure 4.14 (a) - Planar pattern in relation to original 3D panel geometry 

 

Figure 4.14 (b) - Re-orientation of 3D panel geometry, and subsequent mapping of boundary 
nodes (steps 1 & 2) 
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Figure 4.14 (c) - Rotation and translation of mapped panel to appropriate location in assembled 
structure (step 3) 

This procedure is repeated until all panels are in their appropriate 3D position (Figure 4.15). In 

the case of a catenoid, due to rotational symmetry, it is acceptable to simply duplicate and rotate 

one mapped panel. 

 

Figure 4.15 - Multiple panels arranged appropriately, to allow joining of adjacent panels (due 
to symmetry one quarter of this structure is sufficient for performing analyses) 
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The next step in the proposed method of cutting pattern assembly is to join the constituent 

panels into one mesh that can be analysed. 

4.2.2.2 Joining the panels 

With the panels arranged into an appropriate position for joining, the individual meshes are 

converted to a single mesh. This is achieved by merging approximately coincident nodes along 

the seam lines, hence the requirement to ensure approximate coincidence of the resulting 3D 

nodes when meshing the panels. Merging of the nodes is achieved by simply averaging the global 

coordinates of the two nodes. 

Elements along the seam lines must similarly be merged. Since the seam lines of the mesh do 

not represent the warp or weft direction of the fabric, they are excluded in the equilibrium 

analysis (discussed in section 4.2.3). Elements along the seam lines therefore contribute only to 

the geometric description of the surface. For this reason it is sufficient to simply construct a new 

element between the positions of the new merged nodes. For example, consider the elements 

along the common seam edges highlighted (in red) in Figure 4.16: 
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Figure 4.16 – Elements along a common edge 

 

Figure 4.17 – Elements A-B and C-D become element P-Q 

As illustrated in Figure 4.17, Nodes A and C merge to become node P, and nodes B & D merge 

to become node Q. Thus, elements A-B and C-D must be discarded, and a new element, P-Q 

created. Because this element comes from two boundary elements, and represents part of a 
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seam line (not a warp or weft element), it does not contribute to the mechanical behaviour of 

the model. 

A new mesh is thus created comprising the original non-seam nodes and elements, and the new 

merged nodes and elements. Figure 4.18 shows the multiple meshes in Figure 4.15 merged into 

one mesh. The mesh at this stage is not in equilibrium, representing only the assembly of the 

panels as an intermediate step in the computational analysis. 

 

Figure 4.18 - Joined mesh representing portion of structure (due to symmetry one quarter of 
this structure is sufficient for performing analyses)  

To evaluate the suitability of the cutting pattern, the final step in the proposed method of cutting 

pattern assembly is to find the equilibrium position of the assembled pattern, so that final 

stresses are known. 
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4.2.3 Equilibrium finding of the assembled mesh by dynamic relaxation 

With a joined mesh representing the assembly of the cutting pattern, the proposed method 

again makes use of dynamic relaxation, to find the equilibrium position of the assembled cutting 

pattern within the 3D boundary. 

To measure the stress in the fabric, which arises due to displacement of the panel into the 

boundary, the analysis is formulated such that the 2D orthogonal mesh geometry is the 

reference geometry. As mentioned, since the elements along the seam lines of the panels do 

not represent either the warp or weft directions of the mesh, they are excluded in the analysis, 

contributing only to the geometric description of the surface. 

Restraints are applied appropriate to the boundary conditions. Effectively rigid boundaries such 

as beams or trusses, are represented by nodes restrained in all three global directions (fixed 

nodes). With the assembly appropriately restrained, dynamic relaxation is then performed as 

described in chapter 3, section 3.2. The algorithm is run until the residual forces at the nodes 

are sufficiently small. Typically, a maximum nodal force of 10-6 kN is achievable. 

Because the method of cutting pattern generation does not produce completely stress free 

cutting patterns, the assembly and equilibration of the cutting pattern will not result in exactly 

the intended pre-stress state. Thus, after equilibrium has been found, the deviation of the stress-

state from the intended pre-stress is known, giving a measure of the suitability of the cutting 

pattern. 

4.3 Summary 

This chapter presented the proposed patterning method, comprising two constituent stages: 

the method of cutting pattern determination, and cutting pattern assembly and evaluation. 
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The proposed method of cutting pattern determination was shown to comprise (i) subdivision 

of the form-found surface, (ii) subsequent flattening of the panels, and (iii) integrated stress 

reduction (reduction of stresses arising from flattening) and compensation (reduction in size to 

account for pre-stress). Constructing a discrete element mesh based on geodesics was explored 

and it was concluded that a mesh constructed from geodesics in one direction was most 

appropriate for flattening. Three flattening methods were described, two of which were 

developed by the author to reduce distortions in the planar panels, before integrated stress 

reduction and compensation. The presented flattening methods, based on unrolling of the 

panel, result in better initial configurations for stress reduction. This improvement over existing 

methods is supported through examples presented in chapter 5. Restraints and stress 

formulations for integrated stress reduction and compensation were discussed. 

The cutting pattern assembly and evaluation stage was shown to comprise (i) orthogonal re-

meshing of the planar panels, (ii) assembly of the re-meshed panels through mapping of the 

panels to their original 3D boundaries, and (iii) equilibrium finding of the assembled pattern by 

dynamic relaxation. 

Re-meshing of the panel with an orthogonal mesh is rarely included in patterning analyses. 

Coupled with the discrete element model, the fabric behaviour is more accurately represented 

by the proposed method. The method for assembly of the re-meshed panels was presented, 

including consideration of the coincidence of the boundary nodes, and mapping of the 2D panel 

boundaries to the 3D boundaries to provide an initial configuration from which equilibrium of 

the assembly is determined. The method for joining the constituent panel meshes into one mesh 

was described. The proposed method for equilibrium finding of the joined mesh, to give the final 

stresses in the membrane, and evaluate the cutting pattern was presented. 
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In the following chapter, results are presented to show the effectiveness of the proposed 

patterning method. 
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5 Application of the method to examples and results 

5.1 Introduction 

This chapter presents results for each stage of the patterning process proposed in chapter 4, 

employing the discrete model described in chapter 3. Cutting patterns and final stress 

distributions for two examples are presented, facilitating comparisons with results from 

published work, which are used to demonstrate the suitability of the model. The results 

presented demonstrate how the proposed discrete model and patterning method address the 

research objectives stated in chapter 1: 

RO 1: The development, application and examination of a discrete model 

RO 2: The advancement of the computational process of patterning 

The results are presented in the order in which the computational processes were conducted 

for each example. How the research objectives are fulfilled by the results is indicated throughout 

the chapter. 

In the first section, section 5.2, the methods for determining the cutting pattern are 

demonstrated. The stresses incurred by the different proposed flattening methods, their 

subsequent effect on residual cutting pattern stresses, and the resultant cutting patterns, are 

investigated in depth for the first comparison with the work of Linhard et al. [6]. These results 

address research objective RO 2 (a) – concerned with the improvement of flattening. Cutting 

patterns generated by excluding and including shear during the stress reduction and 

compensation are presented, and address research objective RO 2 (b).The cutting patterns 

generated for the second comparison, with the work of Moncrieff & Topping [4], are presented 

briefly, such that they may be compared with the final pattern assembly later in the chapter. 



Page 114 
 

In the second section, section 5.3, the assembly of the cutting patterns is presented. This 

facilitates comparison with the published work. It is shown that the final membrane stresses are 

within the ranges reported in the literature. These results are presented in relation to research 

objectives RO 1 (a) and RO 1 (b), concerned with implementation of the model and examination 

of its suitability for patterning. 

In the third section, section 5.4, critical factors affecting the analysis of the pattern assembly are 

explored. One intention of this research is to identify conditions for successful use of discrete 

models RO 1 (c). In addition to investigating (i) the effect of including shear in the analysis, two 

further factors were identified. These are (ii) the conditioning of shear elements, and (iii) the 

triangulation of the mesh near the boundary. The effects of these factors are discussed through 

the use of further analyses of the cutting pattern assembly. 

5.2 Flattening, stress reduction and compensation results 

In this first section, results relating to the proposed methods for determining the cutting pattern 

are demonstrated. The results in this section are presented to address research objectives RO 2 

(a), concerned with the investigation of flattening methods, and RO 2 (b) – the investigation of 

the effect of including shear on the cutting pattern. 

5.2.1 Specification for geometry from Linhard et al. [6] 

The first comparison is made with the work of Linhard et al. [6]. This example is used to: 

 Highlight the differences in incurred flattening stresses, for each of the three proposed 

flattening methods. 

 Show the effect of the flattening method on the subsequent stress reduction and 

compensation, and the resulting residual stresses and cutting pattern geometry. 

 Show the effect of including shear, during stress reduction and compensation, on the 

residual stresses and geometry of the final cutting pattern. 
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The assembly of the most suitable cutting pattern is shown later, in sections 5.3.1 and 5.4.1. 

5.2.1.1 Method used by Linhard et al. [6] 

Linhard et al. [6] made use of a continuum model, and employed an iterative procedure to 

incrementally improve the cutting pattern. This was achieved through the use of a mechanical 

problem formulation, as detailed in Chapter 2, section 2.1.5, and so material properties were 

used for generation of the cutting patterns. Residual stresses in the cutting pattern after 

flattening were reduced by using the Newton-Raphson iteration to relax the stressed panels into 

a reduced stress state. Compensation of the patterns to account for pre-stress was not included 

in the original analysis by Linhard et al. [6]. Figure 5.1 shows the catenoid geometry from Linhard 

et al. [6]. 

 

Figure 5.1 – Form-found Catenoid geometry from Linhard et al. [6] 

5.2.1.2 Patterning conducted by the author 

A catenoid with geometry taken from [6] was form-found using RhinoMembrane [63], and 

cutting patterns were generated using the methods outlined in chapters 3 & 4. The relevant 

dimensions specified in [6] were an upper ring diameter of 1.2 m, a lower ring diameter of 5.6 

m, and a ring separation of 1.0 m. The prescribed pre-stress was 2 kN/m, and the tensile stiffness 

modelled as isotropic, with a value of E = 220 kN/m. No shear stiffness was specified in [6], so 

the shear stiffness was estimated as 1/20 of the tensile stiffness, in accordance with the 

recommendation in  [15,35]. Applying this heuristic to the tensile stiffness of 220 kN/m gave a 
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shear stiffness of G = 11 kN/m. Consequently, the relevant material properties for stress 

reduction and compensation were: 

 Tensile stiffness: E = 220 kN/m 

 Shear stiffness: G = 11 kN/m 

 Prescribed pre-stress: σP = 2 kN/m 

Owing to symmetry, one quarter of the shape was form-found and analysed for patterning, with 

this ¼ surface divided into 3 panels, 12 panels having been used in the original analysis by 

Linhard et al. [6]. Since the surface is rotationally symmetric, only one panel must be flattened, 

and subjected to stress reduction and compensation to generate the cutting pattern. Thus one 

panel was extracted from the form-found shape, and the processes of flattening, stress 

reduction and compensation applied, as detailed in sections 5.2.2 to 5.2.4. 

5.2.2 Stresses incurred through flattening for geometry from Linhard et al. [6] 

The first step in the patterning process is to flatten the panel into the plane, to generate an initial 

cutting pattern. The stresses incurred during flattening depend on the method of flattening 

used. To investigate the effect of the flattening method on residual stresses in the initial cutting 

pattern, three flattening methods were used to generate the cutting pattern: 

1. Direct projection (chapter 4, section 4.1.2.3) 

2. Unrolling the panel with one spine (chapter 4, section 4.1.2.4) 

3. Unrolling the panel with two spines (chapter 4, section 4.1.2.5) 

As mentioned in chapter 4, the first case, direct projection, is the simplest method and offers a 

benchmark with which to compare methods 2 & 3. Methods 2 & 3 were proposed by the author 

in chapter 4, with the intention of improving on direct projection. To evaluate the effectiveness 

of these flattening methods, the initial cutting pattern for the panel extracted from the form-
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found shape was generated using each method. The stresses incurred by each flattening method 

are shown in the following section. 

5.2.2.1 Axial stresses incurred 

Figures 5.2 – 5.4 show the axial stresses incurred through the use of each method. It is relevant 

to consider the incurred stresses in comparison with the original panel curvatures. Figure 5.5 

shows the Gaussian curvature as it varies across the panel, for comparison with the residual 

stress distributions. 

 

Figure 5.2 – Axial stresses incurred by direct projection 
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Figure 5.3 – Axial stresses incurred through unrolling with one spine 

 

Figure 5.4 – Axial stresses incurred through unrolling with two spines 
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Figure 5.5 - Gaussian curvature across the panel for the geometry from Linhard et al. [6] 

It is important at this point to state that for the stress reduction and compensation analysis, the 

fabric is modelled as capable of sustaining compression. This is necessary to successfully 

generate the cutting pattern. In the assembly of the cutting patterns (section 5.3), the fabric is 

modelled as incapable of sustaining compression, giving zero stress and force for negative strain, 

and more realistically representing the fabric. 

Flattening the panel with direct projection (Figure 5.2), incurs high negative stresses in the warp 

direction towards the upper boundary, corresponding to the area of highest Gaussian curvature 

(see Figure 5.5). There is little stress incurred away from this region of high curvature or in the 

weft direction. This is expected, since the curvature is higher in the warp direction, and the 

deviation between the panel and the plane is greatest towards the upper boundary. 
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Flattening the panel by unrolling with one spine (Figure 5.3), incurs minor positive and negative 

stresses in the warp direction. These stresses are spread across the panel, rather than 

concentrating towards the upper boundary, though that is where the greatest distortion occurs. 

Very little stress is incurred in the weft direction, because the warp direction was used for 

defining the spine, meaning that the weft elements were mapped first, with zero distortion. 

Since the spine was located along the centre of the panel, the stresses accumulate towards the 

edges of the panel. 

Flattening the panel by unrolling with two spines (Figure 5.4), incurs negligible axial stresses 

across the panel, though noticeably different stresses occur in very local regions near the neck. 

This is expected, since the mapping is intended to achieve zero axial distortion, though this is 

not completely possible due to limitations of the accuracy of the algorithm. 

It should also be noted here that the Gaussian curvature across the panel shown in Figure 5.5 

indicates some areas of very flat fabric. This is in part due to the inaccuracy of the legend, and 

also due to the accumulation of various errors throughout the process of defining the panel. 

Inaccuracies during form-finding, and when converting the mesh to a spline surface contribute 

to this. 

5.2.2.2 Shear stresses incurred 

In addition to the axial stresses incurred by each flattening method, shear stresses are similarly 

incurred. Figures 5.6 – 5.8 show the shear stresses incurred by each flattening method. 
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Figure 5.6 – Shear stresses incurred through flattening by direct projection 

 

Figure 5.7 - Shear stresses incurred through unrolling with one spine 
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Figure 5.8 – Shear stresses incurred through unrolling with two spines 

The distribution of shear stresses is similar for all three flattening methods. However, flattening 

with direct projection (Figure 5.6) gives the least shear stress, followed by unrolling with one 

spine (Figure 5.7). Finally, unrolling with two spines (Figure 5.8) gives the greatest shear stress. 

5.2.2.3 Comparison of flattening methods 

Comparing the incurred axial and shear stresses together for all flattening methods yields some 

interesting insights. Table 5.1 summarises the incurred stresses for each flattening method. 

Table 5.1 – Maximum and minimum incurred stresses for all flattening methods 

 

The highest and lowest axial and shear stresses are highlighted in bold in Table 5.1. Considering 

the methods together yields the following insights: 
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 Direct projection gives minimal shear stress at the expense of high axial stresses.  

 Unrolling with two spines gives near-zero axial stress at the expense of high shear 

stresses. 

 Unrolling with one spine offers a compromise between the two, reducing the maximum 

and minimum axial stresses to acceptable values, whilst incurring only a marginal 

increase in shear stress when compared with direct projection.  

Since the initial cutting patterns generated through the flattening method are the initial 

condition for the subsequent stress reduction and compensation steps, the residual stresses 

shown in Figures 5.2 – 5.4 and 5.6 – 5.8 will affect the cutting pattern. The effect of these 

different stress distributions, incurred through different flattening methods, on the resulting 

cutting patterns is discussed in the following sections. 

5.2.3 Residual stresses after stress reduction and compensation for geometry from Linhard 

et al. [6] 

To generate patterns suitable for cutting from planar cloth, the stresses incurred by flattening 

must be removed, or reduced as much as possible. The proposed patterning method makes use 

of dynamic relaxation to achieve this, as detailed in chapter 4, section 4.2.3. The effectiveness 

of the proposed method is now demonstrated. With the initial cutting patterns defined by each 

flattening method, stress reduction and compensation were applied. To investigate the effect 

of including shear stiffness in the analysis, cutting patterns were generated both excluding and 

including the shear stiffness. 

Throughout all stress reduction and compensation processes, nodes at the midpoint of each 

edge were restrained approximately perpendicular to this edge, to prevent rigid body rotations 

and translations of the panel. This is as proposed in chapter 4, section 4.1.3. 

5.2.3.1 Residual stresses excluding the shear stiffness of the fabric 
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The first application of stress reduction and compensation by dynamic relaxation was made 

without including the shear stiffness in the analysis. Figures 5.9 – 5.11 show the residual axial 

stresses after stress reduction and compensation. 

 

Figure 5.9 – Residual stresses after stress reduction and compensation without including the 
shear stiffness of the fabric, after direct projection flattening 
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Figure 5.10 – Residual stresses after stress reduction and compensation without including the 
shear stiffness of the fabric, after flattening by unrolling with one spine 

 

Figure 5.11 – Residual stresses after stress reduction and compensation without including the 
shear stiffness of the fabric, after flattening by unrolling with two spines 
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The residual stresses after stress reduction and compensation, for all flattening methods are 

negligible. It is theoretically possible to achieve zero residual stress when excluding shear during 

stress reduction and compensation, but in practice this is limited by the accuracy of the 

numerical method used; in this case the dynamic relaxation algorithm (see section 3.2.1.2). The 

stresses are, however, negligibly low, and are acceptably close to the theoretically possible zero 

distortion. Whilst the residual stresses are negligible, some similarities and differences in the 

pattern of stresses can be seen across Figures 5.9 – 5.11. In the weft direction, there is a clear 

band of differing stress across the middle of the panel. The location of this band aligns with the 

edge nodes that were partially restrained, indicating that the restraints used have some effect 

on the stress distribution. The stresses along the edges are different from those in the body of 

the panel for all three methods, but between methods the distribution of these edge stresses 

differs. 

5.2.3.2 Residual stresses including the shear stiffness of the fabric 

The second application of stress reduction and compensation was made including the shear 

stiffness of 11 kN/m in the analysis. Figures 5.12 to 5.14 show the residual axial stresses, and 

Figures 5.15 – 5.17 show the residual shear stresses after stress reduction and compensation. 
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Figure 5.12 – Residual stresses after stress reduction and compensation, including the shear 
stiffness of the fabric, after direct projection flattening 

 

Figure 5.13 – Residual stresses after stress reduction and compensation, including the shear 
stiffness of the fabric, after flattening by unrolling with one spine 
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Figure 5.14 – Residual stresses after stress reduction and compensation, including the shear 
stiffness of the fabric, after flattening by unrolling with two spines 

 

Figure 5.15 – Residual shear stresses after stress reduction and compensation, including the 
shear stiffness of the fabric, after flattening by direction projection 
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Figure 5.16 – Residual shear stresses after stress reduction and compensation, including the 
shear stiffness of the fabric, after flattening by unrolling with a single spine 

 

Figure 5.17 – Residual shear stresses after stress reduction and compensation, including the 
shear stiffness of the fabric, for flattening by unrolling with two spines 

It can be seen through Figures 5.12 – 5.17 that when shear is included during stress reduction 

and compensation, that the dynamic relaxation analysis converges to virtually the same solution 

for all flattening methods. The residual axial and shear stresses are the same. In this way, for 

this particular example, the inclusion of shear had a stabilising effect on the analysis. 

With shear included in the analysis, it is not possible to completely remove the stresses incurred 

by flattening. Whether the reduction of flattening stresses, and resulting residual stresses, are 
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sufficient must be considered in the context of the intended pre-stress. As mentioned in chapter 

4, section 4.1.3, the 3D mesh is taken as the reference configuration for calculation of the 

element strains (and stresses), and the pre-stress is simply added to this.  Thus the residual stress 

in the elements is the summation of any residual flattening stresses and the defined pre-stress. 

To give zero stress in the element, once stress-reduction has been completed, the elements 

must be shorter in plane than on the 3D surface, and this negative straining must balance with 

the intended pre-stress. This is important when considering whether the residual stresses are 

acceptable. 

Positive residual axial stresses are observed in the warp direction, in the centre of the panel, 

towards the top of the panel. These stresses diminish away from the top of the panel. Positive 

residual stresses imply that these portions of the fabric are larger than required to give the 

intended pre-stress of 2 kN/m after assembly. If the residual stress is greater than the intended 

pre-stress, excess fabric in these areas will result in wrinkling. The greatest positive residual axial 

stress of 0.923 kN/m is sufficiently low, such that in comparison with the intended pre-stress of 

2 kN/m, wrinkling should not occur. 

Negative residual axial stresses are observed in the warp direction, along the edges of the panel, 

near, but not immediately adjacent to, the top of the panel. Some small areas of negative 

residual stress are also present in the weft direction, along the top edge of the panel. Negative 

residual stresses imply portions of the fabric are smaller than required to give the intended pre-

stress of 2 kN/m after assembly. Thus negative residual stresses correspond to areas of the panel 

that will have a higher than intended stress state after assembly. If the absolute value of greatest 

negative residual stress, in addition to the pre-stress, is too high, failure of the fabric may occur 

under loading. 
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However, the above consideration of the residual stresses assumes that the exact reverse of 

these residual stresses, in addition to the intended pre-stress, will be present in the final 

constructed membrane. Since the structural behaviour is nonlinear, this assumption of 

superposition is not acceptable. Considering the stresses as above gives an indication that the 

cutting pattern is suitable, but simulation of the assembly of the panels is required to fully 

appraise the cutting pattern, as detailed in section 5.3.1.  

5.2.4 Final cutting pattern shapes for the geometry from Linhard et al. [6] 

The ultimate aim of the design process is the 2D geometry of the resulting cutting patterns. The 

cutting patterns for each flattening method, generated through stress reduction and 

compensation both with and without shear, are compared in the following subsections. 

5.2.4.1 Cutting patterns generated without including the shear stiffness of the fabric 

The first patterns examined are those generated without the inclusion of shear during stress 

reduction and compensation, corresponding to the stress plots shown in Figures 5.9 – 5.11. 

Figure 5.18 shows a comparison of the cutting patterns resulting from stress reduction and 

compensation without shear, for the three flattening methods.  
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Figure 5.18 - Resultant cutting pattern boundaries for each flattening method, after stress 
reduction and compensation is conducted without shear 

The cutting patterns shown in Figure 5.18 appear initially to be the same. On closer inspection 

however, it can be seen that the boundary geometry of the cutting patterns differs towards the 

upper corners. In particular, the cutting pattern resulting from direct projection has a sharp 

change in tangent along the top edge, making the pattern less suitable for cutting from 

architectural fabric. Less pronounced is a similar discontinuity, in a similar location, in the 

boundary geometry from flattening by unrolling with two spines. The case of unrolling with one 

spine does not show such discontinuities along the boundary geometry, resulting in the most 

suitable pattern. 

5.2.4.2 Cutting patterns generated including the shear stiffness of the fabric 
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The second set of patterns examined are those resulting from stress reduction and 

compensation including shear, and correspond to the stress plots shown in Figures 5.12 – 5.17. 

Figure 5.19 shows a comparison of these cutting patterns for all three flattening methods. 

 

Figure 5.19 - Resultant cutting pattern boundaries for each flattening method when stress 
reduction and compensation is conducted with shear 

As with the residual stresses after stress reduction and compensation, the final cutting patterns 

are virtually identical. It is not possible to distinguish the patterns for each method, even when 

comparing magnified sections such as the upper corners. (It is for this reason that the results 

from unrolling with one spine (red) and unrolling with two spines (blue) are not visible in Figure 

5.19). Similar to the residual stresses, the inclusion of shear in this case has had a stabilising 

effect on the cutting pattern generation. Including shear during stress reduction and 

compensation in some ways corrects for the varying deformations incurred by different 

flattening methods. 
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5.2.4.3 Comparison of cutting patterns 

Of further interest is the effect on the cutting pattern of the inclusion or exclusion of shear in 

the analysis, irrespective of which flattening method is used. Since unrolling with one spine gave 

the most suitable pattern for the analysis without shear, the cutting patterns for this method of 

flattening, after stress reduction and compensation with and without shear, are compared. 

Figure 5.20 shows the comparison between the cutting patterns generated with and without 

shear, for the case of unrolling with one spine. 

 

Figure 5.20 - Comparison of cutting patterns resulting from unrolling with one spine, after 
stress reduction and compensation is conducted with and without shear 

Upon initial examination, the patterns generated with and without shear are marginally 

different. On closer inspection, the most important difference is the boundary geometry in the 

upper corners of the panel. A noticeable difference in the length of the panel in the warp 

direction is present. For the pattern generated including shear, less fabric is present in the upper 
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corners of the panel. The effect of these differences is examined further in the later sections of 

this chapter, when the cutting pattern is assembled. 

5.2.5 Specification for the geometry from Moncrieff & Topping [4] 

The second comparison is made with Moncrieff & Topping [4]. The residual stresses and cutting 

patterns are shown for one flattening method only. The stress reduction and compensation 

analyses were performed with and without shear, in fulfilment of the research objective RO 2 

(b). The residual stresses and cutting patterns are included for comparison with the analysis of 

the assembled cutting patterns later in the chapter, in sections 5.3.2 and 5.4.2. 

5.2.5.1 Method used by Moncrieff & Topping [4] 

The methods presented in [4] used a mixture of mechanical models. Three examples of cutting 

patterns were generated using three procedures: cloth unfolding, dynamic relaxation and least 

squares minimisation. The results presented here are done so in comparison with the third 

example from [4], which employed a continuum model to generate the cutting pattern, before 

converting the surface to tension links to perform the pattern assembly. In the third example 

from [4], the flattening method used geodesic lines to define the panels on the form-found 

surface. These panels were subsequently flattened, and the residual flattening stresses were 

reduced through the use of least squares minimisation. The cutting patterns generated from 

these steps were then re-meshed with an orthogonal mesh of line elements, and this re-meshed 

geometry was assembled into the final structure, and relaxed to find the final stresses and 

geometry. 

5.2.5.2 Patterning conducted by the author 

The catenoid specified in [4] had the following dimensions: upper and lower ring diameters of 

3.2m and 12m respectively, and a ring separation of 2.0m. A uniform pre-stress of 3.0 kN/m was 

prescribed, along with a tensile stiffness of 1000 kN/m. Since no shear stiffness was given in [4], 
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the heuristic of G = E/20 was again used to estimate the shear stiffness. With a tensile stiffness 

of 1000 kN/m, the shear stiffness was evaluated as G = 50 kN/m. 

The catenoid specified above was form-found and patterned using the methods outlined in 

chapters 3 & 4. Orthogonal re-meshing of the generated cutting patterns was included. Since 

the surface is rotationally symmetric, ¼ of the surface was analysed. 24 panels were used in [4], 

resulting in 6 panels for the ¼ surface. 

For comparison with the pattern assembly results later in this chapter, a brief presentation of 

the residual stresses after stress reduction and compensation, and cutting patterns generated 

by the author for the geometry from [4] are shown in the following sections. 

5.2.6 Residual stresses after stress reduction and compensation, and final cutting pattern 

shapes for Moncrieff & Topping [4] 

Unrolling with one spine proved most suitable for the generation of the cutting patterns for the 

example from Linhard et al. [6]. In light of this, when generating the patterns for the example 

from Moncrieff & Topping [4], unrolling with one spine was used to flatten the panels before 

stress reduction and compensation. 

Cutting patterns were generated without including shear, for direct comparison with Moncrieff 

& Topping [4]. Additionally, cutting patterns were generated including shear to (i) investigate 

the effect of including shear throughout patterning, and (ii) illustrate some conditioning factors 

that affect the analysis, as will be seen later in section 5.4.2. 

5.2.6.1 Residual stresses without including the shear stiffness of the fabric 

In the first instance, the initial cutting pattern generated through unrolling with one spine was 

subjected to stress reduction and compensation without including the shear stiffness of the 
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fabric. Figure 5.21 shows the residual axial stresses, after flattening, stress reduction and 

compensation, without shear, for the panel geometry from Moncrieff & Topping [4]. 

 

Figure 5.21 – Residual stresses after stress reduction and compensation, without including the 
shear stiffness of the fabric, for the geometry from Moncrieff & Topping [4] 

Similar to the example based on the geometry from Linhard et al. [6] (Figures 5.9 – 5.11), the 

residual stresses are negligible. As mentioned in section 5.2.3.1, whilst zero residual stress is 

theoretically possible, it is not achievable by a numerical approach. 

5.2.6.2 Residual stresses including the shear stiffness of the fabric 

In the second instance, stress reduction and compensation was conducted including the shear 

stiffness of the fabric. Figure 5.22 shows the residual axial stresses, after flattening, stress 

reduction and compensation, with shear for the panel geometry from Moncrieff & Topping [4]. 

Figure 5.23 shows the residual shear stresses. 
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Figure 5.22 – Residual stresses after stress reduction and compensation, including the shear 
stiffness of the fabric, for the geometry from Moncrieff & Topping [4] 

 

Figure 5.23 – Residual shear stresses after stress reduction and compensation, including the 
shear stiffness of the fabric, for the geometry from Moncrieff & Topping [4] 

The pattern of residual stresses observed in Figures 5.22 & 5.23 is similar to that of the example 

based on the geometry from Linhard et al. [6] (Figures 5.12 – 5.17). There is an area of positive 

residual axial stress in the warp direction, in the centre of the panel, towards the top of the 

panel. These stresses diminish away from the top of the panel. Negative residual axial stresses 

are found at the edges of the panel, towards, but not at, the top of the panel. 
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Once again, since it is not possible to completely remove all flattening stresses, the suitability of 

the pattern must be evaluated by comparing the residual stresses to the desired pre-stress. The 

maximum positive residual axial stress of 1.14 kN/m, and the maximum negative residual axial 

stress of -2.17 kN/m are considered acceptable when compared with the intended pre-stress of 

3.0 kN/m – it is not expected wrinkling or excessive overstressing will occur. 

5.2.6.3 Comparison of cutting patterns 

Of further interest are the cutting patterns corresponding to the above plots of stress. Figure 

5.24 shows the final cutting patterns, with and without shear. 

Similar to the final cutting patterns for the geometry from Linhard et al. [6], shown in Figure 

5.20, the cutting patterns in Figure 5.24 are distinguishable only on closer inspection. As in Figure 

5.20, the cutting pattern generated including shear is shorter in the warp direction, towards the 

top corners of the panel. 

 

Figure 5.24 - Comparison of cutting patterns for the geometry from Moncrieff & Topping [4] 

5.3 Pattern assembly results 
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The final step in the patterning process is the evaluation of the generated cutting patterns, and 

the determination of the final stress deviations. This section presents results relating to the 

process of cutting pattern assembly, and comparison with the examples from Linhard et al. [6], 

and Moncrieff & Topping [4]. These results are presented to show how the proposed model 

meets objectives RO 1 (a) & RO 1 (b) – the application of the discrete model, and the 

examination of its suitability for patterning. It is shown that the stresses resulting from the 

patterns achieved using the proposed patterning methodology are within the ranges reported 

in the original studies, indicating the suitability of the proposed discrete element model. 

5.3.1 Comparison with pattern assembly results from Linhard et al. [6] 

The first comparison is made with the work of Linhard et al. [6], excluding the shear stiffness of 

the fabric throughout the patterning process. Taking the final cutting pattern (section 5.2.4.1, 

for the case of unrolling with one spine) the panel was re-meshed with an orthogonal mesh, and 

three panels were assembled to model ¼ of the structure. The relevant material properties 

were: 

 Tensile stiffness: E = 220 kN/m 

 Intended pre-stress: σP = 2 kN/m 

When modelling ¼ of the structure, the boundary comprises one quarter of the upper and lower 

ring boundaries, and two seam edges. The assembly of the three panels was oriented such that 

these two seam edges lie in the global XZ and YZ planes. Nodes along these seam edges were 

fixed in the direction perpendicular to the relevant plane. For the seam edge in the XZ plane, the 

nodes were fixed in the Y direction, and for the seam edge in the YZ plane, the nodes were fixed 

in the X direction (Figure 5.25). Nodes along the upper and lower rings were fixed in all 

directions. 
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Figure 5.25 - Plan view of node restraints for the analysis of ¼ of the geometry from Linhard et 
al. [6] 

Figures 5.26 & 5.27 show the final stress deviations for the geometry from Linhard et al. [6], 

after assembly and analysis, excluding shear throughout the analyses. For ease of comparison, 

the results from Linhard et al. [6] are reproduced in Figure 5.28. 

 

Figure 5.26 - Warp stress deviation after assembly of the cutting patterns for the geometry 
from Linhard et al. [6], without including shear in the analysis 
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Figure 5.27 - Weft stress deviation after assembly of the cutting patterns for the geometry from 
Linhard et al. [6], without including shear in the analysis 

 

Figure 5.28 – Principal stresses after pattern assembly – reproduced from Linhard et al. [6] 

The highest positive stress deviation is +0.964 kN/m, and occurs in the weft elements near the 

lower boundary, adjacent to the seams. There are also concentrations of higher stresses in (i) 

the weft elements at the intersections between the seams and the upper boundary, in (ii) the 

warp elements near the seams and upper boundary, but not immediately adjacent to the upper 

boundary, and in (iii) the warp elements near the upper boundary in the centre of the panel. 

The highest negative stress deviation is -1.84 kN/m, and occurs over a very small area where the 

seams intersect with the upper boundary, and imply an excess of fabric in this area. Lower 
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stresses are also present in the weft elements next to the lower boundary, towards the centres 

of the panels. 

With the exception of the small area of very low stress, the stress deviations are lower than in 

the analysis presented by Linhard et al. [6] (Figure 5.28). The greatest positive stress deviation 

of +0.964 kN/m corresponds to a deviation of +48.2% from the intended pre-stress. The greatest 

negative stress deviation of -1.84 kN/m corresponds to a deviation of -92.0% from the intended 

pre-stress. Principal stresses are given by Linhard et al. [6] (Figure 5.28), and the maximum and 

minimum deviations are +2.08 kN/m (+104%) and -0.83 kN/m (-41.5%) respectively. In Figure 

5.28, higher stresses are observed towards the seams, near the upper boundary. This is a 

similarity in results from the two methods, and corresponds somewhat to areas of higher 

curvature. Lower stresses occur towards the upper boundary, in the centre of the panel. 

Low stress deviations are expected for this cutting pattern, since excluding the shear stiffness of 

the fabric allows for an almost complete reduction of the residual stresses due to flattening for 

each panel. It is evident here that, as mentioned in section 5.2.3, the residual stresses after stress 

reduction and compensation do not manifest in the assembled geometry as their opposite 

stresses – i.e. a residual stress of -1 kN/m in the cutting pattern does not result in a deviation of 

+1 kN/m in the assembled geometry. 

5.3.2 Comparison with pattern assembly results from Moncrieff & Topping [4] 

The second comparison is made with the work of Moncrieff & Topping [4]. Since no shear 

stiffness was given in [4], the comparison is made with a shear stiffness of zero throughout the 

patterning processes. Taking the relevant cutting pattern from section 5.2.6, an orthogonal 

mesh was constructed on the panel, 6 panels were assembled, and this assembly was analysed 

using dynamic relaxation to give the final equilibrium position. 



Page 144 
 

The deviations of the stresses from the intended pre-stress of 3.0 kN/m after re-assembly of the 

patterns for these geometry and material properties are shown for the warp and weft directions 

in Figures 5.29 and 5.30. For ease of comparison, the original results presented in [4] are 

included in Figure 5.31. 

 

Figure 5.29 - Warp stress deviation after assembly of the cutting patterns for the geometry 
from Moncrieff & Topping [4], without including shear in the analysis 
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Figure 5.30 - Weft stress deviation after assembly of the cutting patterns for the geometry from 
Moncrieff & Topping [4], without including shear in the analysis 

 

Figure 5.31 – Stress deviation after pattern assembly – original results from Moncrieff & 
Topping [4] 
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With reference to Figures 5.29 & 5.30, the greatest positive stress deviation is +0.43 kN/m, and 

occurs in the warp elements near the seams, towards, but not immediately adjacent to the 

upper boundary. The greatest negative stress deviation is -0.846 kN/m, and occurs in the weft 

elements adjacent to the upper boundary, away from the seams. 

These maximum and minimum stress deviations represent deviations of +14.3% and -28.2% 

respectively. In [4], the maximum and minimum stress deviations were presented graphically, 

and thus could only be estimated. Estimating from the graphs in Figure 5.31, the maximum and 

minimum stress deviations were +20.0% and -18.0% respectively. Whilst the ranges of stresses 

are similar, in the analysis by Moncrieff & Topping [4] (Figure 5.31), greater stress deviations are 

seen in the main body of the panels, and not towards the boundaries, unlike in Figures 5.29 & 

5.30. 

The above results show that the final stresses, obtained using the proposed discrete model, for 

the generated cutting patterns, fall within the range of stresses quoted in published work, 

indicating the suitability of the discrete model and patterning method. 

5.4 Conditions affecting the analyses of the pattern assembly 

Further to successful implementation of the proposed discrete model, insights into patterning 

analyses employing discrete models were gained. The insights presented in this section are: 

(i) Including the shear stiffness of the fabric in the analysis affects both the cutting pattern 

(see section 5.2.4.3) and the stresses in the assembled configuration. 

(ii) To model shear in discrete models, it is necessary to include shear elements as described 

in chapter 3, section 3.1.2. The use of such elements requires care, due to ill-

conditioning issues associated with the geometry and spacing of the mesh. 

(iii) The mesh topology has an effect on the analysis results; in particular, it is necessary to 

triangulate the mesh along the boundaries. 
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Insight (i) relates to research objective RO 2 (b), and is not specific to discrete models. 

Insights (ii) & (iii) relate to the successful implementation of the discrete model, and thus to 

research objective RO 1 (c) – the identification of conditions and guidance for successful use of 

discrete models. 

The above insights are now demonstrated using the example catenoids from Linhard et al. [6] 

(section 5.2.1) and Moncrieff & Topping [4]  (Section 5.2.5): 

1) In the first analysis, the geometry from Linhard et al. [6] is revisited, and the effect of 

including shear throughout patterning is demonstrated. 

2) In the second analysis, the conditioning of shear elements is explored. A re-analysis of 

the geometry from Moncrieff & Topping [4], this time including shear, is used to explore 

these conditioning issues. 

3) In the third analysis, triangulated vs non-triangulated meshes are explored. The 

geometry from Linhard et al. [6] is revisited for a third time, and a non-triangulated 

orthogonal mesh is employed before the cutting patterns are assembled. 

5.4.1 The effect of including the shear stiffness of the fabric throughout patterning 

In this first analysis, the effect of including the shear stiffness of the fabric is investigated by 

revisiting the geometry from Linhard et al. [6]. The results presented here provide further 

indication that the research addresses objective RO 2 (b). 

As mentioned,  no shear stiffness was specified in [6], so the shear stiffness was estimated as 

1/20 of the tensile stiffness, in accordance with the recommendation in [15,35], giving G = 11 

kN/m. This value of shear stiffness was used throughout flattening, stress reduction and 

compensation to generate the cutting pattern (see section 5.2.4.2). The shear stiffness was 

similarly included when re-assembling the cutting patterns, and the results are presented here. 
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The deviations of stresses from the intended pre-stress of 2 kN/m, after re-assembly of the 

patterns for these geometry and material properties, are shown for the warp and weft directions 

in Figures 5.32 and 5.33. The resultant shear stresses after re-assembly of the patterns are 

shown in Figure 5.34. 

 

Figure 5.32 - Warp stress deviation after assembly of the cutting patterns for the geometry 
from Linhard et al. [6], including shear in the analysis 

 

Figure 5.33 - Weft stress deviation after assembly of the cutting patterns for the geometry from 
Linhard et al. [6], including shear in the analysis 
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Figure 5.34 – Shear stresses after assembly of the cutting patterns for the geometry from 
Linhard et al. [6], including shear in the analysis 

The highest positive stress deviation is +2.06 kN/m, and occurs in the warp elements near the 

seams, near the upper boundary. Positive stress deviations also occur in the weft elements 

where the seams meet the upper and lower boundaries. The highest negative stress deviation 

is -0.395 kN/m, and occurs in the warp elements in the panel centres. Negative stress deviations 

also occur in the weft elements towards the boundaries, along the centrelines of the panels. 

Comparing once again with the reproduced results from Linhard et al. [6] (Figure 5.28). 

Similarities between the stress distributions presented in Figures 5.32 & 5.33, and Figure 5.28, 

can be identified. In Figure 5.28, there are concentrations of higher stresses near the seams, 

towards the upper boundary. These are approximately in the longer direction of the panel. In 

Figure 5.32, higher stresses also concentrate near the seams, towards the upper ring. In this case 

they are in the warp direction of the fabric, which is approximately in the longer direction of the 

panel. In both Figure 5.32 and 5.28, these positive stress deviations diminish away from the 

upper ring. In Figure 5.28, a patch of low stress is seen towards the upper boundary, in the centre 

of the panel. These stresses are again approximately in the longer direction of the panel. A patch 

of low stress is similarly seen in Figure 5.32, towards the upper boundary, though not as close 
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to the boundary as in Figure 5.28. These negative stress deviations occur in the warp direction, 

approximately in the longer direction of the panel. 

Comparing the maximum and minimum deviations from Figures 5.32 & 5.33 with those of Figure 

5.28 is also of interest. For Linhard et al. [6], the maximum and minimum deviations from the 

intended pre-stress were +2.08 kN/m (+104%) and -0.83 kN/m (-41.5%) respectively. For the 

analysis presented in this work, the maximum and minimum stress deviations were +2.06 kN/m 

(+103.00%) and -0.395 kN/m (-19.80%) respectively. 

It is immediately evident from comparison between the two analyses, (excluding shear; Figures 

5.26 & 5.27, and including shear; Figures 5.32 – 5.34) that including the shear stiffness of the 

fabric has a profound impact on the final stress distribution. In the analysis of the geometry from 

Linhard et al. [6], where shear was excluded (Figures 5.26 & 5.27), patches of very low stress 

occurred in the upper corners of the panel. These are not present in the analysis including shear 

(Figures 5.32 – 5.34). Looking at the comparison of the cutting patterns for these two 

configurations (Figure 5.20), the cutting pattern with shear has less fabric in the upper corners, 

supporting the implication that, in the cutting pattern without shear, there is an excess of fabric 

that causes the small area of very low stress after assembly. Whilst the greatest negative stress 

deviation is lower in the case with the shear stiffness included, the greatest positive stress 

deviation is higher, and these deviating stresses occur over larger areas. Whether shear is 

included or not, the maximum and minimum stresses in the membrane are within the range 

reported by Linhard et al. [6]. 

Of further interest in Figure 5.32 are the varying stresses in the warp elements adjacent to the 

bottom boundary. This variation arises due to the relative size of the shear elements either side 

of the row of weft elements near the bottom boundary. This effect is particularly acute in other 

analyses, and is discussed in detail in the next section. 
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5.4.2 Ill conditioning of shear elements 

In the previous section, attention was drawn to the distribution of stresses in the warp elements 

near the bottom boundary, shown in Figure 5.32. This stress distribution results from the 

conditioning of the shear elements, which in turn results from the construction of the mesh. This 

issue relates to the successful use of the proposed discrete model, and thus contributes to the 

fulfilment of research objective RO 2 (c). To highlight this issue, the cutting pattern for the 

catenoid geometry of Moncrieff & Topping [4] is re-analysed, this time including the estimated 

shear stiffness of G = 50 kN/m throughout the process. The final geometry, axial stress deviations 

and shear stresses after the analysis including shear are shown in Figures 5.35 – 5.37. 

 

Figure 5.35 - Warp stress deviation after assembly of the cutting patterns for the geometry 
from Moncrieff & Topping [4], including shear in the analysis 
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Figure 5.36 - Weft stress deviation after assembly of the cutting patterns for the geometry from 
Moncrieff & Topping [4], including shear in the analysis 

 

Figure 5.37 – Shear stresses after assembly of the cutting patterns for the geometry from 
Moncrieff & Topping [4], including shear in the analysis 

It is immediately seen that the stress deviations are greater than those presented in 5.1.2. The 

highest positive stress deviation of +4.37 kN/m corresponds to a percentage deviation of 

+145.67%, and the highest negative stress deviation of -3 kN/m corresponds to a percentage 

deviation of -100%. 

Of most interest is the location of these high negative stress deviations. They occur over very 

small areas, in the warp elements adjacent to the lower boundary. The distribution of stresses 
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in the warp elements near the boundary is similar to that seen in the analysis of the geometry 

from Linhard et al. [6], shown in Figure 5.32. A close up of the warp stresses in one of the panels, 

near the lower boundary, is shown in Figure 5.38. 

 

Figure 5.38 - Close up of warp stresses near lower boundary for results shown in Figures 5.35 – 
5.37 

The stresses in the warp elements nearest the lower boundary vary alternately across the panel 

– areas of higher stress occur adjacent to areas of lower stress. In the next row of warp elements, 

this varying stress distribution is also observed, but to a lesser extent. In the warp elements away 

from the lower boundary, this variation of stresses does not occur. Examining the shear stresses 

near these warp elements offers an explanation. A close up of the shear stresses in the panel, 

towards the lower boundary, is shown in Figure 5.39. 
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Figure 5.39 - Close up of shear stresses near lower boundary for results shown in Figures 5.35 – 
5.37 

Similar to the tensile stresses in the warp direction, the shear stresses vary alternately across 

the width of the panel. Higher shear stresses are seen adjacent to lower shear stresses. 

The cause of the alternating stresses across the panel is the relative size of elements, between 

those elements immediately adjacent to the boundary, and those elements in the next row up 

from the boundary. The disparity in the length of the tensile elements can be accounted for in 

the calculation of element widths, and mostly affects the stresses in the other direction, i.e. a 

disparity in the length of warp elements affects the widths of the weft elements. However, the 

disparity in the size and shape of the shear elements is not so readily accounted for. 

Where the geometries of different shear elements contributing to forces at the same node differ 

considerably, an imbalance of forces at the node results, since for a given shear stress the shape 

and size of the shear element affects the magnitude and direction of the calculated shear force. 

This concept of force imbalance is shown in Figure 5.40. 
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Figure 5.40 – Differing shear triangle sizes around a node and their effect on the forces 
apportioned to that node 

In Figure 5.40, forces due to shearing will be apportioned to the central node from four shear 

elements. These shear elements are positioned between the tensile elements A & B, B & C, C & 

D and D & A, and the shear forces are calculated using the methods outlined in Chapter 3, section 

3.1.2. Figure 5.40 shows the shear forces and their relative size for each shear element 

individually, and the cumulative effect on the central node. The forces are representative for the 

purposes of this example, rather than exact calculations. Because the shear elements between 

elements A & B and D & A are much larger than the shear elements between B & C and C & D, 

much larger forces are generated by these shear elements. Since element A is much larger than 

elements B and D, the direction of the shear forces AB and DA is affected. An imbalance of forces 

results. 
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Such an imbalance occurs for multiple nodes near the boundary, as shown in Figures 5.38 & 

5.39, and means that the nodes displace disproportionately in one direction. These larger 

displacements result in stresses in the tensile elements around the node, affecting the forces 

generated in the shear elements. This can result in an accumulation of errors as a cycle of large 

force imbalance, and consequent changes in the tensile elements ensues. 

Ensuring that the differences in shape and size of the shear elements, between different regions 

of the fabric, are minimised reduces the effect of this ill conditioning. It is for this reason that 

this ill conditioning is most noticeable when analysing the geometry from Moncrieff & Topping 

[4]. Employing a triangulated mesh on the slenderer panels for this analysis results in a greater 

difference in shear triangle sizes near the boundary. 

5.4.3 Necessity for the triangulation of the mesh at the boundary 

As indicated in the literature, discrete models are sensitive to their topology. The structure of 

the mesh has an impact on the results. The existing use of discrete models for modelling flexible 

materials, such as textiles, has often been restricted to rectilinear geometry. One of the 

contributions of the proposed discrete model, is the attempt made to model non-rectilinear 

shapes. This is critical for patterning, given that few structures will have cutting patterns 

comprising straightforward, rectilinear shapes. 

As mentioned in chapter 4, section 4.2.1.2, along the boundaries of non-rectilinear shapes, the 

discrete mesh must be triangulated. This necessity for triangulation is an important insight into 

the behaviour and application of discrete models. This insight is presented in fulfilment of the 

research objective RO 1 (c) – the identification of conditions for successful use of discrete models 

in patterning. 

To demonstrate the necessity for triangulation of the boundaries, the geometry from Linhard et 

al. [6] was re-analysed, this time, with a non-triangulated mesh. All steps were the same as in 
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section 5.4.1, with the exception of the orthogonal mesh, which was constructed without 

triangulation of the elements near the boundaries. The triangulated mesh from section 5.4.1, 

and the non-triangulated mesh from this analysis, are shown on the 2D cutting pattern in Figure 

5.41. 

 

Figure 5.41 - Triangulated and non-triangulated mesh configurations for cutting patterns 
generated for the geometry from Linhard et al. [6], with shear included in the analysis 

It is important to remember that the triangulated mesh is triangulated only at the boundaries, 

and through assembly of the panels, at the internal seam lines. Figures 5.42 & 5.43 show the 

final geometry and stress deviations after relaxation of the non-triangulated mesh. 
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Figure 5.42 - Warp stress deviation after assembly of a non-triangulated mesh, for the 
geometry from Linhard et al. [6], including shear in the analysis 

 

Figure 5.43 - Weft stress deviation after assembly of a non-triangulated mesh at the seam 
lines, for the geometry from Linhard et al. [6], including shear in the analysis 

It is immediately obvious that the stress deviations are drastically higher than desired. The 

maximum stress deviation of + 15.3 kN/m represents a percentage deviation of +765%. The 

minimum stress deviation of - 2 kN/m represents a percentage deviation of -100%. This 

minimum stress deviation corresponds to wrinkling of the fabric due to its inability to sustain 
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stresses below 0. Approximately, the upper ¼ of the panel has a stress deviation of -2 kN/m (a 

stress of 0 kN/m). 

Figures 5.42 & 5.43 illustrate that the re-meshing of the cutting pattern with a non-triangulated 

orthogonal mesh results in final analysis values that suggest the original cutting pattern is 

unsuitable. Figure 5.44 confirms further this unsuitability. In Figure 5.44, it can be seen that the 

final position of the seam line diverges considerably from its position in the form-found mesh 

(indicated by the grey line). 

 

Figure 5.44 - Deviation of the boundary from its expected position, after assembly of a non-
triangulated mesh, for the geometry from Linhard et al. [6], including shear in the analysis 

Examining the behaviour of the mesh near the boundaries yields some insights into why non-

triangulation causes issues with the convergence and final result of the analysis. Figures 5.45 & 

5.46 show the reaction forces along the edge of the mesh, for both the triangulated mesh from 

Figures 5.32 & 5.33, and for the non-triangulated mesh from Figures 5.42 – 5.44. 
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Figure 5.45 – Boundary forces after assembly of the triangulated mesh, for the geometry from Linhard et al. [6], including shear in the analysis 
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Figure 5.46 – Boundary forces after assembly of the non-triangulated mesh, for the geometry from Linhard et al. [6], including shear in the analysis 
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Since ¼ of the surface is modelled, the edge shown in Figures 5.45 & 5.46 corresponds to 

the seam line between the panels that are modelled and those that are excluded. This 

edge is partially restrained such that it may move only in the relevant plane – nodes are 

fixed in the X or Y directions (Figure 5.25), correspondingly, these nodes move only in the 

YZ or XZ planes respectively. The reactions forces are in the direction perpendicular to the 

relevant plane. Since the analysis is intended to result in a surface with a stress state near 

to that of the prescribed pre-stress, the reaction forces along this boundary should be 

near uniform, and on average over the length of the boundary, approximately equate to 

the prescribed pre-stress. 

It is seen in Figure 5.45 that the reaction forces are mostly uniform along the partially 

restrained edge. In Figure 5.46 however, the edge forces are highly non-uniform. Defining 

the average stress perpendicular to the boundary as the average reaction force along the 

boundary, divided by the average edge length between nodes along the boundary, 

confirms the non-uniformity. For the triangulated mesh (Figure 5.45), the average 

reaction force is 0.21 kN, and the average edge length 0.1 m. This gives an average stress 

perpendicular to the boundary of 2.1 kN/m – very close to the intended pre-stress of 2 

kN/m. For the non-triangulated mesh (Figure 5.46), the average reaction force is 0.032 

kN, and the average edge length is 0.048 m. This gives an average stress perpendicular to 

the boundary of 0.67 kN/m – a greater deviation from the intended pre-stress of 2 kN/m. 

This indicates that the non-triangulated mesh is unsuitable. Modelling the whole surface 

hides this condition of the mesh, since it is not possible to examine the interaction of 

forces along the seam lines. When modelling ¼ of the surface, examining the reactions 

along the edges (seam lines) offers an insight into how the stresses are transferred from 

one panel to the next. 
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Examining the final position of the elements near to the boundary facilitates further 

explanation of the issue. Figure 5.47 shows a close up view of the individual elements, 

near the bottom boundary of the non-triangulated mesh. 
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Figure 5.47 – Gross shear deformations after assembly of the non-triangulated mesh, for the geometry from Linhard et al. [6], including shear in the 
analysis 
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In Figure 5.47, the elements away from the boundary have experienced only minor shear 

deformation, but there are gross shear deformations between the near-boundary elements, and 

elements within the panel. This is corroborated when looking at the shear stresses across the 

surface. Figure 5.48 shows the shear stress distribution across the surface, and high shear 

stresses along the edges and seams can be seen. 

 

Figure 5.48 – Shear stresses after assembly of the triangulated mesh, for the geometry from 
Linhard et al. [6], including shear in the analysis 

Referring back to Figure 5.47, the gross shear deformations can be explained by looking at the 

nodes along the boundary. Some of the reaction forces are approximately the same value as 

those in the results from the triangulated mesh, for example 0.17 kN in the non-triangulated 

mesh compares well with approximately 0.2 kN in the triangulated mesh. Where the reaction 

forces at the nodes compare well, two elements, one warp and one weft, connect to the node 

– the nodes have a valency of two as discussed in section 4.2.1.2. The reaction forces are not 

appropriate where the nodes are attached to only one element, and along this boundary they 

are attached to a weft element only. Whether one or two elements attach to a boundary node 

affects how the node displaces. 
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Figure 5.49 shows an example boundary node, in a triangulated and non-triangulated mesh. 

 

Figure 5.49 - Restriction of node movement due to connectivity of elements, and resulting 
control of shear deformations 

In the triangulated mesh, the displacement of node A (from A0 to A1) is restricted by the element 

between nodes A and B. This has the effect of ensuring the shear strain φ, further into the 

membrane, is not excessive. In the non-triangulated mesh, node A may undergo large 

displacements, since element AB is not present. This results in a gross shear strain φ, further 

into the membrane. This gross shear deformation then affects the equilibrium of the internal 

nodes. This combination of unrestricted displacement and resulting shear deformation 

contributes to overall instability of the analysis, when the mesh is not triangulated along the 

boundary. The necessity for the mesh to be triangulated near the boundary is important for 

correct utilisation of discrete models, and has not been discussed in previous work. 

 

5.5 Summary 
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This chapter presented results from the application of the patterning process proposed in 

chapter 4 and discrete model proposed in chapter 3. Results for both the determination of the 

cutting pattern, and for evaluating its suitability through pattern assembly were shown. 

Comparisons with published work showed the suitability of the proposed patterning method 

and discrete model, as the final stresses after pattern assembly were within the ranges reported 

in literature. The results presented in this chapter thus addressed both main research objectives: 

RO 1: the development, application and examination of a discrete model, and RO 2: the 

advancement of the computational process of patterning. 

For pattern assembly, it was first shown that the patterning method is suitable, by comparison 

with the work of Linhard et al. [6], and Moncrieff & Topping [4]. Further to this, it was shown 

that the assembly of the cutting patterns and subsequent equilibrium analysis is dependent on 

a number of factors: (i) the inclusion of shear stiffness throughout the analysis, (ii) the 

conditioning of shear elements, and (iii) the triangulation of the mesh at the panel boundaries. 

These factors were explored through further analyses based on the geometries from Linhard et 

al. [6] and Moncrieff & Topping [4]. 
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6 Summary, conclusions and future work 

6.1 Summary of thesis 

The work presented in chapters 2 – 5 was undertaken to address the research objectives: RO 1 

– the development, application and examination of a discrete model, and RO 2 – the 

advancement of the computational process of patterning, as stated in chapter 1. 

The literature review presented in chapter 2 examined the process of patterning of tensile fabric 

structures, and highlighted the criticality of weave shear. Various numerical models were 

discussed, which included continuum and discrete approaches. The continuum approaches 

included expressions of geometric nonlinearity through the inclusion of higher order terms or 

the use of Green’s strain, and constitutive relationships such as Saint-Venant Kirchoff models or 

those derived from a unit cell approach. These continuum models were variously implemented 

using finite element methods. The discrete approaches included particle-spring and spring-mass 

systems from fields such as cloth animation and non-architectural textiles, and discrete element 

models used to model engineering fabrics. The specific nature of patterning was shown to justify 

the need for a discrete model. 

A discrete model was proposed, and detailed in chapter 3. The proposed model was developed 

to accommodate large displacements, both axial and in shear, and irregular, non-rectilinear 

geometries. Solution by the dynamic relaxation method was presented. 

The proposed patterning method, presented in chapter 4, expanded on the majority of existing 

methods with the introduction of geometric flattening methods and orthogonal re-meshing of 

the panel, prior to assembly of the cutting pattern. 

Chapter 5 presented the application of the proposed discrete model to patterning. Comparisons 

with two published works were included for the proposed patterning method. It was shown that 
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the proposed discrete model and patterning method give results within the expected range of 

stress deviation (deviation from the assumed design pre-stress), indicating the suitability of the 

discrete model, and that geometric flattening methods can be used to reduce distortions in the 

planar cutting pattern before stress reduction and compensation. 

6.2 Conclusions 

Through successful completion of the research, a number of conclusions, pertaining to the 

numerical analysis of tensile fabric structures at the patterning stage, were reached: 

1. Shear of the weave is an important phenomenon in the design of tensile fabric structures, 

and is particularly relevant at the patterning stage.  The existing numerical models, derived 

from continuum assumptions, and which ignore this phenomenon, are potentially 

inaccurate because of this. The effect of weave shear is most important for structures with 

higher curvature. Thus to design structures of increasing complexity and architectural 

ambition, this effect must be modelled. 

2. Discrete models offer an excellent alternative to existing numerical models, but none of the 

discrete models available at present are individually suitable for the modelling of tensile 

fabric structures. 

3. The previously ignored area of advanced flattening methods has an effect on the cutting 

patterns generated through flattening, stress reduction and compensation. 

4. The shear stiffness of the fabric is important and should be included in analyses. 

The proposed discrete model for patterning accommodates these important features of the 

numerical modelling of tensile fabric structures. The results presented in chapter 5 show that 

the model is suitable for modelling the fabric during patterning, and offers advantages over the 

existing models, none of which offer all of the following: 
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1. The proposed model accommodates weave shear for irregular geometries. Modelling of 

complex surface shapes without omission of such important mechanical behaviour is thus 

possible. 

2. Geometric nonlinearity is handled in a straightforward manner through the use of dynamic 

relaxation and formulation of the fabric mechanical response in local coordinates. 

3. The model uses common material properties such as Young’s modulus and Shear modulus, 

rather than properties specific to fabrics, allowing straightforward integration into, and 

comparison with, existing methods of analysis. 

The successful implementation of the discrete model shows the discrete models can 

accommodate the phenomenon of weave shear, and the conclusions outlined previously 

illustrate that doing so is critical for successful analysis of tensile fabric structures. 

Further elaboration of the conclusions presented above, is now provided through conclusions 

specific to the research objectives. 

The development and application of a discrete model for patterning (RO 1) represents the main 

contribution of this work, and has led to the following conclusions: 

1. The proposed discrete model is suitable for patterning, giving, for the assembly of the 

cutting pattern, residual stresses within the ranges reported in literature. The proposed 

model reflects the directions of the fabric warp and weft, and thus accommodates weave 

shear, offering an advantage over traditional continuum models [RO 1 (a) & RO 1 (b)]. 

2. Use of the discrete model when assembling the generated cutting patterns offers a more 

representative description of the surface via orthogonal re-meshing. 

3. The shear elements proposed by the author in chapter 3 are a necessary inclusion to model 

the shear stiffness of the fabric in a discrete model environment; they are capable of 
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accommodating irregular geometry, something not attempted in previously published work 

[RO 1 & RO 2 (b)]. 

Successful use of the proposed discrete model is dependent on the topology and geometry of 

the constructed mesh. Some further conclusions of this research are therefore related to the 

use of the discrete model: 

4. Careful construction of the mesh is required when modelling irregular geometry with shear 

elements. Otherwise, ill conditioning can occur due to disparities in the size and shape of 

the shear elements [RO 1 (c)]. 

5. Triangulation of the mesh at the boundary must be enforced to model non-rectilinear 

geometries; otherwise, ill conditioning will occur. This is a necessity for fabric structures 

patterning since the cutting pattern edges are not rectilinear [RO 1 (c)]. 

Further to the development and application of the discrete model, conclusions pertaining to 

patterning as a computational process were drawn from this research (RO 2). In the context of 

generating the cutting pattern, the methods presented in chapter 4, and explored in chapter 5, 

gave rise to the following conclusions: 

6. The proposed patterning method results in cutting patterns that, when assembled, give 

stresses within the expected ranges, as reported in literature [RO 2]. 

7. The method of flattening can have an effect on the ultimate cutting pattern, though only for 

the case where the shear stiffness of the fabric is not considered. It was shown that different 

flattening methods ‘favour’ axial or shear deformation more than others. Unrolling with one 

spine offered the best compromise for minimising axial distortions without incurring 

excessive shear deformation [RO 2 (a)]. 

8. Exclusion of the shear stiffness of the fabric during stress reduction and compensation 

facilitates the generation of effectively zero-distortion patterns, since without the shear 
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stiffness, only axial stresses affect the stress reduction and compensation, and it is possible 

to achieve negligibly low axial stresses.  In this case different patterns are achieved 

depending on the flattening method used – the shear distortions incurred by each flattening 

method differ, and the stress reduction and compensation process does not reduce these 

distortions directly [RO 2 (a) & (b)]. 

9. Inclusion of the shear stiffness of the fabric during stress reduction and compensation gives 

patterns with the same residual stresses, whichever flattening method is used. In this way, 

the shear stiffness ‘corrects’ for the differing distortions incurred by different flattening 

methods, and has a stabilising effect on the stress reduction and compensation process [RO 

2 (b)]. 

10. Inclusion of the shear stiffness during the analysis has a marked effect on the cutting pattern 

and final stress distribution in the assembled membrane. This is particularly relevant when 

considering that the shear stiffness of architectural fabrics is low, and thus frequently 

ignored. On this basis, the author of this work advocates the inclusion of shear stiffness 

throughout the analysis and design of tensile fabric structures [RO 2 (b)]. 

6.2.1 Limitations of the work 

It is at this point relevant to state the limitations of the work detailed in this thesis. 

Limitations of the proposed discrete element model 

1. Out-of-plane deformation is ignored in the proposed discrete model. This is consistent with 

the expected behaviour of architectural fabrics and tensile fabric membranes. This is 

however an important limitation in the context of shear modelling, where it more difficult 

to differentiate between in-plane and out-of-plane deformations. The proposed model 

ignores the effects of bending and twisting of the fabric, and this is considered acceptable 

since the resistance of fabrics to these types of deformations is very low. Shear strains are 
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measured between two elements (which by default lie in their own plane), which is intended 

to ensure that inadvertent and incorrect shear strains, due to out-of-plane deformations, 

are not introduced.  

2. Constitutive relationships are limited to a linear relationship between stress and strain. This 

is considered acceptable given that the stresses during patterning are low, and low stresses 

for architectural fabrics correspond to portions of the stress-strain behaviour which may be 

idealised as linear. 

3. To ensure an accurate analysis, careful construction of the mesh is required. Re-meshing, 

based on the criteria outlined in chapters 4 & 5, for example ensuring triangulation of the 

boundary, may be required to obtain an accurate solution. Re-meshing may increase 

computation times. Accurate modelling of the boundary conditions where triangulation 

occurs may also be challenging. 

Limitations of the research overall 

4. Comparison of the discrete model and patterning method was limited to tensile fabric 

structures which are the shape of a Catenoid. The model has not been tested on structures 

supported by cables. 

5. Validation of the discrete model is limited to comparison with published work and existing 

numerical methods. 

6.3 Future work and implications for engineering practice 

This work has presented the use of a discrete model for patterning that includes axial and shear 

forces in the fabric. Further testing is required to validate the proposed discrete element model, 

and where necessary improve it by, for example, overcoming errors associated with shear 

element conditioning. In addition to this, elements of the patterning method may yet be 

improved. A number of suggestions for future work are thus made: 
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1. Further validation of the discrete model is required. Comparison with additional 

computational results, and where possible, experimental results, merits further study. 

2. The proposed shear elements are simple, but suffer from ill conditioning when the mesh 

is not carefully constructed, particularly when the geometry of potential cutting 

patterns becomes more complex. Developing the shear model further, and expanding 

on the conditions for successful analyses would be valuable. 

3. The existing model is limited to the use of a linear constitutive relationship. Expanding 

the model to include nonlinear material behaviour would be of value. This could be 

achieved through formulating the constitutive response as a function of the element 

strain, and through the use of nonlinear stress-strain curves available in literature. 

Achieving modelling of nonlinear material behaviour would allow large strain analysis to 

be conducted. 

4. Use of the discrete model when generating the cutting pattern is limited by assumptions 

concerning the topology and direction of the mesh on the form-found surface. 

Orthogonal meshing of the planar cutting pattern was included to give a more accurate 

representation of the fibre directions. The topology of an orthogonally meshed panel 

(Figure 6.1 (b)) differs from the topology of the mesh used for flattening (Figure 6.1 (a)). 

The ‘correct’ mesh topology on the form-found panel should represent that of the 

orthogonally meshed panel. The proposed meshing, flattening and stress reduction 

algorithms (chapter 4) are limited to meshes which are, topologically, a rectilinear grid 

(Figure 6.1 (a)). However, to construct an orthogonal mesh on the planar cutting 

pattern, the mesh must have a non-rectilinear topology (Figure 6.1 (b)).  It is this non-

rectilinear topology that should be reflected in the mesh used to conduct flattening and 

stress reduction in the first place. Figure 6.1 compares the two mesh topologies. 
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Figure 6.1 - 3D form-found panel with two different meshes – (a) current, rectilinear mesh, (b) 
suggested, non-rectilinear mesh 

Methods for achieving successful cutting pattern generation with meshes of such 

topology merits further study. 

5. For successful use of the discrete model, the condition of triangulation of the mesh near 

the boundary may limit the scope of the analysis, dependent on the structure being 

modelled, or cause issues for users when it is not enforced. Improving the model such 

that the quality of the mesh has less of an effect on the analysis would be valuable. 

6. On the basis of conclusions 7, 8 & 9, a flattening method that gives the engineer control 

over the trade-off between axial and shear deformation would be desirable, and would 

allow direct manipulation of the cutting pattern in view of the residual stresses. 

In addition to the recommendations for further work, the implications of the research for 

engineering practice are now discussed. Existing methods of analysis do not incorporate shear 

of the weave, as this phenomenon has not, until now, been explored.  
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In light of this new knowledge, engineering judgement must be used when designing tensile 

structures – is a proposed structure of sufficiently low curvature that weave shear is not 

significant, or is further, detailed analysis required? Would a less conservative, and therefore 

more economic design, be achieved by a more detailed analysis that includes modelling of 

weave shear?  

For structures where the architectural ambition leads to greater geometric complexity, a 

discrete model, such as the one proposed, should be considered when conducting the structural 

analysis and design. Careful use of the discrete model, including awareness of the conditions 

highlighted in this research, and good engineering judgment, must be exercised throughout. 
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