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Convention Emergence in
Partially Observable Topologies

James Marchant and Nathan Griffiths

Department of Computer Science, University of Warwick
{james, nathan}@dcs.warwick.ac.uk

Abstract. In multi-agent systems it is often desirable for agents to ad-
here to standards of behaviour that minimise clashes and wasting of
(limited) resources. In situations where it is not possible or desirable
to dictate these standards globally or via centralised control, conven-
tion emergence offers a lightweight and rapid alternative. Placing fixed
strategy agents within a population, whose interactions are constrained
by an underlying network, has been shown to facilitate faster conven-
tion emergence with some degree of control. Placing these fixed strategy
agents at topologically influential locations (such as high-degree nodes)
increases their effectiveness. However, finding such influential locations
often assumes that the whole network is visible or that it is feasible to
inspect the whole network in a computationally practical time, a fact
not guaranteed in many real-world scenarios. We present an algorithm,
PO-Place, that finds influential nodes given a finite number of network
observations. We show that PO-Place finds sets of nodes with similar
reach and influence to the set of high-degree nodes and we then com-
pare the performance of PO-Place to degree placement for convention
emergence in several real-world topologies.

Keywords: Convention Emergence · Partial Observability · Local In-
formation

1 Introduction

Coordinating the actions of independent agents within a multi-agent system
(MAS) increases efficiency within the system. Incompatible action choices made
during interactions can cause clashes, which may incur resource costs and limit
the overall effectiveness of the system. Establishing protocols of interaction, such
as which action to choose in a given situation, minimises such clashes and helps
to maximise the potential of the system.

However, it is not always possible to dictate such rules and protocols in a top-
down manner. In multi-agent systems, with agents controlled by multiple parties
or systems which lack a centralised control mechanism, it is often infeasible to
establish this level of a priori coordination. Additionally, for systems where the
range of choices available to agents is large or has no evident optimal selection,
it may be undesirable to enforce rules of this nature.



Convention emergence allows a system to deal with these problems in a de-
centralised, online manner. A convention represents a socially-adopted expected
behaviour amongst agents, for instance the correct course of action in a given
scenario. Convention emergence has been shown to be possible in both static
and dynamic networks with minimal requirements, needing only rational agents
that are able to learn [6, 13, 22].

Fixed strategy (FS) agents are those that continue to choose the same action
regardless of the behaviour of others around them or the results of their actions.
Placing such agents within a system has been shown to affect the direction and
speed of convention emergence, with small numbers of FS agents eliciting change
in much larger populations [19]. In systems constrained by an underlying network
topology, placing such agents by heuristics based on network features such as
degree magnifies this effect [8, 9].

Previous work on convention emergence often assumes that the topology con-
straining agent interactions is fully observable, allowing highly influential loca-
tions to be found easily [11, 17, 19, 21]. However, in many real-world applications
such information is not always readily available. This can be due to factors such
as the problem size or external limitations such as restricted access to network
information or a network’s API as is the case with Twitter or Facebook.

In this paper we explore the effect of the restrictions placed on FS agent
placement in partially observable topologies. We propose an algorithm, PO-
Place, to find influential locations within such topologies given a highly limited
number of network queries. We show the effectiveness of PO-Place at finding
approximations of the highest degree locations for several real-world topologies
under a number of restrictions on available information. We then apply PO-
Place to select FS agents within these networks and examine the effect on
convention emergence compared to placing with full topological knowledge. This
approach allows an interested third party, with limited access to the system, to
find the appropriate locations to target their influence efforts.

The remainder of this paper is arranged as follows. In Section 2 we explore re-
lated work on convention emergence and local information strategies for finding
influential nodes. Section 3 describes the algorithm and its design, whilst Sec-
tion 4 describes the network datasets and experimental setup. Section 5 contains
the analysis and discussion of the results and Section 6 concludes the paper.

2 Related Work

Ensuring coordination in MAS allows increased system efficiency and conven-
tions are a lightweight method of doing so. Conventions place ‘soft constraints’
on agent choices by encouraging mutually beneficial behaviour by adherence to
the convention. Unlike norms there is no explicit punishment for going against
the convention but doing so is likely to incur a cost to the agent due to increased
clashes often represented as a negative interaction payoff [10, 18]. Conventions
can thus be described as “an equilibrium everyone expects in interactions that
have more than one equilibrium” [24]. Agents adhering to the convention expect



others to behave in a certain way and, because of this, can act efficiently when
this expectation is met. Conventions have been shown to emerge unaided from
local agent interactions in systems [6, 11, 20, 22] and require no additional or
assumed agent capabilities to enable punishment (as is the case for norms). The
only assumptions necessary for conventions to emerge are that agents are rational
and have the capability to learn from their interactions. Numerous works have
shown that rapid and robust convention emergence occurs with these minimal
assumptions [9, 19, 22].

‘Social learning’ has been proposed as a way for agents to converge on a
convention where agents monitor payoffs they receive from their choices when
interacting with others and use a simplified Q-Learning algorithm to inform
future decisions [19]. The payoffs directly quantify the notion of an action clash
costing resources and convention emergence can occur without explicit memory
of the interaction. However, the work does not consider a connecting topology
that limits agent interactions. In many application domains such a topology is
likely, whether it be a social network or a more explicit communication network
and can have a large effect on the nature of convention emergence [5, 21].

Despite lacking a connecting topology, Sen and Airiau’s work introduces the
concept of fixed strategy (FS) agents, those agents which always choose the same
action regardless of the current situation or convention, as a way to influence
convention emergence. They show that a small number of such agents is able to
manipulate the convention emergence within a much larger population. Griffiths
and Anand [9] expand on this by considering FS agents in a network topology. In
their model, all agents are situated as nodes within the network and interactions
are limited to neighbours. They showed that where FS agents are placed is a
key factor in their effectiveness. Placing the FS agents at influential locations
such as nodes of high degree or betweenness centrality offers substantially better
performance than random placement. This was explored further by Franks et
al. [7, 8] who included more advanced placement metrics such as eigencentrality.

This previous work assumes full visibility of the network topology to inform
FS placement. Indeed, little work on partial observability for convention emer-
gence has been done. This paper expands the state of the art by considering the
effect of restricted observations on the ability to robustly and efficiently place
FS agents in static, real-world topologies. Convention destabilisation [14] and
dynamic topologies [13] will be investigated in future work.

Related work exists in the fields of graph algorithms and influence spread, the
latter sharing many qualities with convention emergence. For instance, Brautbar
and Kearns present a novel model [2], Jump and Crawl, motivated by operations
commonly available in networks such as Facebook. Their model consists of two
aspects: Jump which moves to a randomly selected node in the network and
Crawl which searches all neighbours of the selected node for high-degree nodes.
They provide bounds for many different types of network but, for an arbitrary
network, finding the highest degree node approaches O(n log n), a large factor
for even medium-sized networks.



The influence maximisation problem [3, 4] attempts to find a selection of
nodes such that the spread of influence (often modelled as single chance ‘cas-
cades’) from them is maximised. As in this paper, Mihara et al. [15] assume the
network is initially unknown and show that influence maximisation effectiveness
of 60-90% with 1-10% network observation is achievable. This work also uses a
‘growing fringe’ approach with priority based on degree estimation. As influence
maximisation and convention emergence are similar in aim, this indicates that
results are achievable under partial observability constraints.

Whilst many of these approaches are similar in application they differ in
that our investigation focuses on the often encountered scenario of limited, finite
observations. Making optimal use of these is paramount and so necessitates a
different set of considerations.

3 Placement Strategy

In this paper, the partial observability problem for networks can be described
as any scenario where a network’s topology is initially unknown and is revealed
incrementally within a local neighbourhood of nodes already explored [1]. As a
solution to the partial observability problem for FS agent selection we propose
a heuristic algorithm, PO-Place. This section describes the function of the
algorithm as well as the justification for the design choices.

3.1 Partial Observability Algorithm

The placement strategy is presented in Algorithms 1 and 2 and has the following
aim: Given a network, G = (V,E), a desired number of locations, n, and a limited
number of observations, o, find a selection of nodes {v1, ..., vn} ⊂ V such that deg-
sum = deg(v1)+ ...+deg(vn) is maximised. We define an observation as a query
that retrieves the list of neighbours, N(u) for a given node, u. This functionality
is frequently available in real-world network APIs (such as Twitter or Facebook)
and so we assume that such information is available. This assumption is later
relaxed to allow the algorithm to explore situations with only limited neighbour
information. We assume that the set of nodes, V , is known but the set of edges, E,
(and hence neighbours and degree of a node) is not. Finding the highest degree
nodes is desirable since fixed strategy agent placement by degree consistently
produces effective convention emergence [8, 9, 13, 14] but without requiring
computationally expensive metrics such as betweenness centrality. The degree of
nodes can be entirely derived from local information and, as such, is an applicable
heuristic within partially observable networks.

The algorithm begins by creating an empty set, S, to monitor which nodes
have already been explored and an empty mapping, N , that maps a node v to
N(v), its set of neighbours. As we only consider static topologies in this paper,
by storing this information we can avoid using observations redundantly.

Many of the other approaches [1, 15] to finding high-degree nodes select a
random starting node and then ‘grow’ outwards, selecting the highest degree



Algorithm 1 Partial Observability Placement
1: procedure PO-Place(G, n, o, s, p, f)
2: Create empty node set, S
3: Create empty mapping, N
4: orem ← o

5: while orem > 0 ∧ |S| < |V | do
6: Select v u.a.r from {V \ S}
7: if orem mod s 6= 0 then
8: olocal ← min(do/se, orem)
9: else
10: olocal ← min(bo/sc, orem)
11: end if
12: orem ← orem − olocal

13: ounused ← Traverse(G, olocal, v, p, f , S, N)
14: orem ← orem + ounused

15: end while

16: return n highest-degree nodes in S
17: end procedure

nodes from the neighbourhood surrounding those already explored. However,
this is not desirable in FS agent placement since, with limited observations, it
is likely to produce a single cluster of well-explored nodes. Selecting from this
cluster will then mean that all FS agents are close together, making some of their
influence redundant. Instead, we build on the notion of Jump and Crawl [2]. We
explore a local area up to a defined amount and then ‘jump’ to another location
and explore around this new point. This helps to minimise the risk of overlap
between high-degree nodes, as well as ensuring that a bad initial random selection
does not hinder the final selection.

To facilitate this, we introduce a parameter, s, which dictates the minimum
number of separate local area explorations that will take place. The observations
are split, as evenly as possible, between each of these explorations with the earlier
ones receiving any spare observations (this is achieved between Lines 7 and 11
of Algorithm 1). This subset of observations is then passed to the local area
traversal which is presented in Algorithm 2. If any observations are unused by
the local area traversal (for instance if it finds a local maxima) they are returned
to the pool of available observations and used in later, additional local traversals.

Algorithm 2, Traverse, describes the local area traversals. It is passed both
S and N , to avoid redundant exploration, as well as the initial start node of
the local area, v. It is also passed its own local limit of observations and two
parameters from outside, p and f , which are explained below. It maintains a
max-priority queue to determine which node(s) it should next explore by highest
degree and begins by adding v to this queue. Throughout Algorithm 2, obser-
vation of a node’s neighbour list is stored in N to avoid additional queries. The
algorithm then performs the following, until either the queue is empty or all
assigned observations have been used up:

1. Take the top f nodes from the queue (or all elements, if fewer).
2. For each of these nodes, find the set of unexplored nodes in its neighbours.



Algorithm 2 Local area traversal algorithm
1: procedure Traverse(G, o, v, p, f , S, N)
2: Create max-priority queue, Q
3: count← 0
4: if v not in N then
5: N [v]← N(v)
6: Add v to S
7: count← count + 1
8: end if
9: Add (v, |N [v]|) to Q

10: while |Q| > 0 ∧ count < o do
11: Fringe← top min(f, |Q|) elements of Q
12: for all u in Fringe do
13: Avail← {N [u] \ S}
14: num← min(|Avail|,max(f, bp× |Avail|c))
15: Chosen← u.a.r select num members of Avail
16: for all w in Chosen do
17: N [w]← N(w)
18: Add w to S
19: count← count + 1
20: if count = o then
21: return 0
22: end if
23: Add (w, |N [w]|) to Q
24: end for
25: end for
26: end while

27: return o− count
28: end procedure

3. Choose a proportion, p, of these (or up to f if this proportion would be less
than f).

4. Add these nodes to the queue after finding their neighbours.

Parameter f is the ‘fringe size’, the number of nodes that are expanded
simultaneously before their neighbours are queued. This acts as a control over
how ‘breadth-first’ or ‘depth-first’ the local traversal approach will be. Parameter
p is the proportion of the node’s neighbours that should be queried. This allows
the algorithm to simulate situations where a node’s full neighbour list is either
not fully available (for instance, an API that only returns a subset) or where
doing so incurs additional cost. In the latter case we seek to explore the effect
that only querying p proportion of neighbours has on the performance of PO-
Place. Whilst it will reduce the effectiveness, establishing the extent of this
reduction, and whether the results are still close enough to degree placement,
allows PO-Place to be effective over a wider range of scenarios.

4 Experimental Setup

This section defines the real-world topologies and the experimental setup used
for analysis of PO-Place . We then describe the model of convention emergence
used to study the efficacy of PO-Place for FS placement selection.



4.1 Networks

We make use of three real-world networks from the Stanford SNAP datasets [12].
These datasets represent a number of different methods of social interaction
and, as such, each have different features allowing a wide-ranging look at the
effectiveness of PO-Place. The three datasets chosen are: CA-CondMat, the
collaboration network of the arXiv COND-MAT (Condensed Matter Physics)
category; Email-Enron, the email communications between workers at Enron;
and Ego-Twitter, a crawl of Twitter follow relationships from public sources (for
our purposes we ignore the directed nature of the edges). These datasets are
used frequently in both convention emergence and influence spread research [3,
7, 16, 23] as performance benchmarks.

Table 1. Original and Modified Network Sizes
Network Largest WCC

|V | |E| |V | |E|

CA-CondMat 23,133 93,497 21,363 91,286
Enron-Email 36,692 183,831 33,696 180,811

Twitter 81,306 1,768,149 81,306 1,342,296

For the purposes of moni-
toring convention emergence in
these networks, we only want
to examine a single, connected
component. As such, all 3 net-
works were reduced to their
largest weakly connected com-
ponent (WCC). Additionally,
any self-loops (edges from a node to itself) were removed as such edges artifi-
cially inflate a node’s degree whilst not increasing its ability to influence others.
Table 1 shows the number of nodes and edges in each network and the number
of nodes and edges (without self-loops) in their largest WCC.

4.2 Experimental Setup

We performed simulations of PO-Place on the real-world networks described
above. We varied both the number of nodes (n = 5 to n = 30) being requested
as well as the number of observations provided (o = 500 to o = 5000 [o =
3500 for CondMat]). To establish an upper bound and allow comparison a full-
observability degree placement was also performed for each of the networks with
the same range of values. Each set of parameters was averaged over 30 runs.

For convention emergence, a population of agents is situated in the topologies.
Each timestep, each agent chooses one of its neighbours u.a.r to play the 10-
action coordination game [19] receiving positive or negative payoffs depending
on whether their choices match. Agents use a simplified Q-Learning algorithm
to learn the most beneficial choice. We utilise the 10-action game as used by [14]
to avoid the issues of small convention spaces raised in Section 2 and to allow
comparison to previous work. They have a chance to randomly choose their
action (pexplore = 0.25) or else choose the most beneficial one. FS agents replace
the agents at the chosen locations and always choose their predetermined action.

5 Results & Discussion

In this section we present the analysis of PO-Place and compare it to the upper
bound from degree placement. We explore the effects of the various parameters
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Fig. 1. Pdeg-sum and deg-sum performance of PO-Place for varying n (# of locations)
and o (# of observations) in the real-world networks.

on PO-Place at different levels of observation. We then use these findings
as insight to compare the performance of PO-Place to degree for convention
emergence when used to place FS agents into the chosen networks.

5.1 PO-Place Output

We begin by looking at the isolated algorithm output, comparing it to the out-
put generated by a degree placement scheme. As the aim of PO-Place is to
maximise deg-sum this is our primary metric by which to evaluate PO-Place.
The highest deg-sum possible in each network is that of the set of highest degree
nodes. Establishing this as an upper bound allows evaluating the performance
of PO-Place by comparing the deg-sum of its output as a proportion of that
of the pure degree network. We denote this as Pdeg-sum.

Whilst deg-sum describes the maximum reach of the nodes selected, another
useful metric is the size of the 1-hop neighbourhood of those nodes. This can be
defined as: 1-Hop(L,G) = {v ∈ {V \L}|∃(u, v) ∈ E∧u ∈ L} where L is the set of
nodes selected for placement and G = (V,E) is the network. That is, the 1-Hop
neighbourhood is the set of nodes that are connected to a member of S but are
not in S themselves. The 1-Hop neighbourhood offers a slightly different measure
of influence by discounting nodes that are connected to multiple members of S.
Whilst normally tied closely to deg-sum a noticeable disparity indicates that the
selected nodes are likely to be clustered close to one another, which is undesir-



able. As with deg-sum we concern ourselves with the proportionate behaviour of
1-Hop size, P|1-Hop|.

The final metric we use to evaluate the performance is based on the Jaccard
Index which measures similarity between two sets. The Jaccard Index is defined
as J(A,B) = |A ∩B|/|A ∪B|. However, in our instance, one of the sets is static.
We are trying to approximate that set with the other (i.e. a one-way similarity),
whilst the Jaccard Index is looking at the two-way similarity between them.
Instead we want to measure how close the selection of PO-Place is to the
baseline, and so we define a distance measure, DBase, thus: DBase(L,Base) =
|L ∩Base|/|Base|. That is, the fraction that elements of L make up of the
baseline set, Base. This metric enables evaluation of how close the actual node
selection of PO-Place is to that of degree placement, whilst the previous two
measure the selection’s features.

These metrics offer insight into the influence and reach of the nodes selected
by PO-Place as well as allowing a direct comparison to degree-based placement
with full observability. Thus they should be good predictors of the performance
of PO-Place in the convention emergence setting.

Varying Observations We begin by considering the base case of the algorithm
where s = p = f = 1. This allows us to study the effect of varying the number
of observations and provides a lower bound on the expected performance of
PO-Place. With these settings, PO-Place closely resembles the algorithms
presented by Borgs et al. [1] and Mihara et al. [15].

We examine the effects of varying both the number of observations available
(o) as well as the number of locations requested (n) in all three networks. For all
networks, n was varied between 5 and 30 in increments of 5 and o was varied from
500 observations up to 3500 (for CondMat) or 5000 (for Enron and Twitter). The
results are presented in Figure 1.

As can be seen in Figure 1, all networks respond well, even with minimal
numbers of observations. Even at o = 500, the degree sum of the nodes selected
by PO-Place is often a substantial proportion of the optimal one. The per-
formance varies across the three networks, with placement in CondMat doing
best where it varies from 90% (±5%) at n = 5 to 83% (±5%) at n = 30. The
algorithm similarly performs well in Enron, though to a lesser extent. The per-
formance in Twitter is noticeably worse, varying from 61% to 48% with larger
standard deviations for both. This is to be expected, as 500 observations rep-
resents a substantially smaller proportion of the population in Twitter than it
does in CondMat or Enron (0.61%, 2.34% and 1.48% respectively). Even with
this, the percentage achieved in Twitter with such limitations substantially out-
performs the naïve solution of using all observations at random locations (16%
(±6%) for n = 5, o = 500, averaged over 100 runs).

Performance rapidly increases with the number of observations. For n = 30,
the worst performing value of n, in both CondMat and Twitter Pdeg-sum exceeds
90% at round 5% network observation (o = 1000 for CondMat and o = 5000
for Twitter) and Enron exceeds 90% at around 10% observation (o = 3500).
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Figure 1 also shows that the relationship between Pdeg-sum and increasing o is one
of diminishing returns, with improvements in Pdeg-sum most noticeable at lower
values of o. This is to be expected, the relative increase in o is smaller at higher
values, but dictates that increasing the effectiveness of PO-Place at low values
of o will have the most benefit. Additionally, in each network, the difference in
performance across the values of n becomes less noticeable at higher o. Thus,
any increased performance from PO-Place will be most noticeable early on.

The other metrics we use to evaluate PO-Place show similar behaviour to
Pdeg-sum, increasing rapidly with the number of observations. Figure 2 shows
a representative example of the three metrics’ variation with o for the Twitter
network when requesting 20 locations. The shaded regions represent the standard
deviations. As can be seen, both the deg-sum and 1-Hop proportions increase
rapidly up until o = 2000 and then any further gains occur over longer spans.
The standard deviations for each of these decrease as well, from approximately
15% at o = 500 down to around 5% at o = 5000. This indicates that, not only is
PO-Place finding sets of nodes with higher degree, it is doing so consistently
at higher numbers of observations, a finding that is repeated across all networks
and values of n. P|1-Hop| is consistently at the same level, if not better than,
Pdeg-sum. Whilst the two should be well-correlated, this shows that PO-Place
is not simply choosing nodes close to one another and, indeed, is often choosing
nodes that have a better neighbourhood size than the deg-sum would indicate.

The performance of PO-Place when evaluated by DBase is noticeably dif-
ferent than the other two metrics and offers an interesting insight. The same
pattern of diminishing returns is not present and DBase continues to increase
with additional observations. Note that, although both the degree sum and neigh-
bourhood size are comparable to that of pure degree placement, the low values
of DBase indicate that the nodes selected are not the same as the actual highest
degree nodes. Section 5.2 evaluates whether this difference has a noticeable effect
on convention emergence or if the reach and influence indicated by high deg-sum
and 1-Hop scores is the best indicator of success as hypothesised.



Varying Concurrent Searches Having established a baseline for PO-Place
and explored the effects of limited observations we now explore the variants
of the algorithm. As noted in the prior section, at low values of o the deg-sum
performance of PO-Place is consistently lower, with performance in the Twitter
network as low as 48%. With very limited observations, making the best use of
them is paramount. In Section 3 we hypothesised that splitting the available
observations between multiple locations in the network and exploring them in
parallel may offer improvements over crawling from a singular location.

To test this hypothesis, we varied s from 1 to 9 to determine the effect that
these concurrent searches would have. Figure 3 shows a typical case in the En-
ron network for n = 30. Shaded areas represent the errors of each plot. The
left-hand graph shows the effect on Pdeg-sum of varying the number of concur-
rent searches, splitting the observations between them. As can be seen, adding
concurrent starting points has an immediate and noticeable effect, especially at
low numbers of observations. At o = 500 the proportion achieved by deg-sum
is 10% higher when additional starting locations are introduced and this differ-
ence becomes even more noticeable as o increases. Indeed, for most values of o,
adding additional starting locations had significant benefits in both the Enron
and Twitter networks, with the benefits become less marked at high o where
Pdeg-sum approaches 1.0 unaided. Whilst there is a noticeable drop-off in effec-
tiveness after initial parallelisation (s = 5 and s = 7, not included in the results
to aid readability, offer little improvement over s = 3 for example) the effect at
low values of s is substantial as can be seen. Concurrent starting points enable
saturation of the algorithm’s effectiveness at much lower values of o and not only
increase Pdeg-sum and P|1-Hop| (not pictured) but, as shown in Figure 3, cause
marked improvement in DBase as well, indicating that this change facilitates
much better approximation of the degree placement.

However, it should be noted that this pattern is not consistent. In the Cond-
Mat network, increasing s had little effect and in a few settings was actually
detrimental. This indicates that there is perhaps an underlying feature of the
CondMat topology that benefits from localised crawling and will be an area of
future study. The results of CondMat in Figure 1a lend additional weight to
this hypothesis, with behaviour that is substantially different than the other two
topologies despite being of comparable size to Enron. Overall though, increasing
s by even a small amount is likely to benefit the performance of PO-Place.

Partial Neighbour Lists In many settings, retrieving the whole of an agent’s
neighbour list may also be impossible. Whether this is due to a technical limita-
tion (only being able to retrieve a certain percentage of information) or because
such information is not publicly available and is instead reserved for ‘premium’
or ‘subscribed’ users of such a network, ensuring that PO-Place is robust to
such issues is a necessity to make it widely viable.

To simulate these restrictions, and measure their effect on the performance of
PO-Place, the parameter, p, controls the proportion of an agent’s neighbours
that may be explored. Results until this point have assumed that the full neigh-
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Pdeg-sum. Enron network, n = 30.

bour list for any agent is available upon request (i.e. p = 1.0). p is varied between
0.3 and 0.9 to determine the impact of this limitation. Representative results are
shown in Figure 4 for the Twitter network and n = 5 but are applicable across
all networks and values of o and n.

The results in Figure 4 show that different values of p have minimal effect
on the performance of PO-Place. For all values of p, Pdeg-sum is comparable.
Performing a 95% confidence interval Welch’s t-test against the p = 1.0 results at
each point, only p = 0.3 (o = 1500, 2000, 3500) and p = 0.5 (o = 1500, 3500) are
significantly worse. This pattern of minimal difference is repeated in all networks,
with none seemingly more susceptible or affected by partial neighbour lists. We
conclude that PO-Place is robust to receiving only partial information of this
nature and is primarily unaffected by such limitations.

Breadth-First vs Depth-First Expansion Finally, we turn our attention
to the concept of breadth-first vs depth-first expansion in PO-Place. That
is, when crawling the local area, should additional current area expansion be
performed before considering new additions (breadth-first) or purely iteratively
(depth-first). Where there is locally a clearly defined degree gradient we expect
the latter to perform better. However, depth-first expansion also risks expending
all the observations whilst exploring a suboptimal, locally maximal path.

Parameter f allows study of this by controlling how many of the current
highest degree nodes that PO-Place is aware of are expanded concurrently.
Experiments up until now have had f = 1 (depth-first). We now vary f from
1 to 9. Figure 5 presents these findings in the Enron network for n = 30. As
with the previous results, it is our finding that the patterns here are replicated
throughout the different topologies and values of n.

Similar to the findings when varying p, varying f has little absolute impact on
the capabilities of PO-Place. However, using a 95% confidence interval Welch’s
t-test, all but f = 9 are statistically significantly worse at o = 500. This is likely
due to the limited observations being focused too locally. All are significantly
better between o = 2000 and o = 3000 but there is little gain in selecting values
of f beyond 3 as the performance of PO-Place is almost identical. Overall,
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Fig. 6. Comparison of PO-Place and Degree FS agent placement for convention emer-
gence in real-world topologies. The y-axis indicates the proportion of runs where the
desired strategy emerged as the convention.

PO-Place seems to gain little from considering the local area more thoroughly
before further expansion. Whether this is intrinsic in the design or a facet of the
topologies being explored is ongoing work.

5.2 Convention Emergence under Partial Observability

Having explored the performance of PO-Place under different topologies and
types of partially observability, we now examine how PO-Place compares to de-
gree placement for FS agents in convention emergence in static networks. Having
established ranges of parameters that offer the best performance improvements
for each topology, these will be utilised to compare the algorithm to degree place-
ment. Additionally, basic settings (small numbers of observations, no concurrent
placements) provide a baseline comparison of PO-Place.

A convention has emerged when the population has converged to have one
action as the dominant choice of agents in the network. Most work considers this
to be the case when the convention reaches 90% dominance [9, 13, 19]. However,
much of this work utilises synthetic networks rather than real-world topologies
and populations that are substantially smaller than those we consider. Prelimi-
nary experiments show that the topologies are relatively resistant to convention
emergence, requiring both high numbers of FS agents as well as substantial
time. As we are concerned with a comparison of the performance of PO-Place
against pure degree placement we wish to find settings that are guaranteed to
repeatably experience convention emergence. As such, we consider a convention
to have emerged when the 80% Kittock criteria is met, K80% [11]. That is, a
convention has emerged when 80% of the population, when not exploring, would
choose the same action. This indicates a high level of dominance of the desired
action and allows more robust comparisons. We find that such a threshold is
reliably reached, if it is likely to be reached at all, within 10000 iterations for
the CondMat and Twitter networks and within 15000 iterations for the Enron



network. As such, we measure the proportion of runs that have converged to the
desired strategy within these time-frames across all networks.

The results are presented in Figure 6. We utilise PO-Place and Degree
Placement to allocate FS agents across a range found to exhibits noticeable
changes in convention emergence rates with the parameters indicated. The values
of o chosen within each topology are such that the number of observations is,
at most, approximately 5% of the agent population. All runs are performed 50
times and the proportion of runs that produce the desired convention (strategy
chosen u.a.r at time t = 0 and assigned to all FS agents) is measured.

Figure 6a shows the results for the CondMat topology. As was expected,
due to the behaviour of CondMat in the PO-Place experimentation, all of the
chosen parameters produce comparable results to the pure degree placement.
Even at the worst performing parameters (o = 500, s = 1) there is no discernible
difference between the performance of degree placement and PO-Place, whilst
at higher number of observations (where PO-Place was entirely approximating
the highest-degree nodes as seen in Figure 1a) the performance is as expected.
Of note is the fact that, whilst it resulted in worse output of PO-Place in the
prior section, increasing s does not noticeably affect the performance here.

Within the other networks the difference in performance is more noticeable
but still indicates that PO-Place is generating close approximation of the de-
gree placement. In both Enron and Twitter (Figures 6b and 6c) the minimal
observation situation performs substantially worse than degree placement, par-
ticularly in the Twitter network. However, when given observations of 5% of the
network, PO-Place performs noticeably better. Whilst it still falls behind the
performance of degree placement in both networks the difference is substantially
smaller with PO-Place performing around 50-70% as effectively on average as
degree placement in both networks (0.52±0.08 in Enron, 0.69±0.18 in Twitter).
However, when we increase s, as was found in Section 5.1, it improves this sub-
stantially to 0.82 ± 0.15 average effectiveness compared to degree placement in
Enron and, less substantially, to 0.79± 0.3 in the Twitter network. We quantify
these values by comparing the emergence proportions of PO-Place and degree
at each value of n and calculating the ratio between them which we then average.
We discount values where either placement is achieving less than a 0.1 emergence
proportion to avoid noisy results influencing the measure. As 0.1 is the expected
emergence proportion of our desired strategy in a convention emergence we do
not influence, we believe discounting values below this allows a more accurate
comparison between the two algorithms. In the Twitter network, we also con-
sider o = 2500 as the effect of increased s was more pronounced for this value
during Section 5.1. Whilst there is a noticeable improvement at higher n the
average compared effectiveness differs only marginally: 0.24± 0.06 for s = 1 and
0.3± 0.11 for s = 9. In the Twitter network, o is the dominant factor.

Overall, we have shown that even when only observing a small portion of
the underlying topology, and strategically using these observations to maximise
their effect, it is possible to achieve comparable performance to degree placement
with full network visibility using PO-Place.



6 Conclusion

Finding influential positions within a network topology to maximise the effec-
tiveness of fixed strategy agents is an ongoing area of research in convention
emergence. The problem has many facets and variations that make it difficult to
find an optimal yet general approach. In many cases, placing the fixed strategy
agents at high degree nodes provides effective convention emergence with little
computational overhead. Finding high-degree nodes in a network is trivial when
the network is fully observable. In many domains, this may not always be possi-
ble. Technical limitations such as memory constraints or incomplete information
and usage limitations such as finite API calls mean that often a network topol-
ogy may only be partially observable. Finding effective placement for FS agents
with these restrictions adds another level of complexity.

In this paper we presented a placement algorithm, PO-Place, that is de-
signed for use in partially observable topologies. It uses finite observations to
find sets of high-degree nodes and approximates the set of nodes that would be
selected given full observability.

With small proportions of the network being observable, PO-Place can
locate nodes with similar reach and influence as degree placement. We evaluate
the performance in three real-world topologies and show that the addition of
concurrent searches and splitting of observations improves the performance of
the algorithm across all metrics. With 1-10% observation the algorithm is able
to find sets of nodes with >90% of the reach and influence of degree placement.

Finally, we showed that PO-Place performs comparably to degree place-
ment when used to facilitate convention emergence using fixed strategy agents
whilst only observing 5% of a network topology. We found that the additional
aspects of PO-Place benefit the placement mechanism and demonstrated that
convention emergence is easily facilitated in partially observable networks.
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