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Abstract 

Organometallic complexes offer the prospect of targeting multiple pathways that are 

important in cancer biology. Here, the preclinical activity and mechanism(s) of action of a 

silver-bis(N-heterocyclic carbine) complex (Ag8) were evaluated. Ag8 induced DNA damage 

via several mechanisms including topoisomerase I/II and thioredoxin reductase inhibition and 

induction of reactive oxygen species. DNA damage induction was consistent with 

cytotoxicity observed against proliferating cells and Ag8 induced cell death by apoptosis. 

Ag8 also inhibited DNA repair enzyme PARP1, showed preferential activity against cisplatin 

resistant A2780 cells and potentiated the activity of temozolomide. Ag8 was substantially 

less active against non-proliferating non-cancer cells and selectively inhibited glycolysis in 

cancer cells. Ag8 also induced significant anti-tumour effects against cells implanted 

intraperitoneally in hollow fibres but lacked activity against hollow fibres implanted 

subcutaneously. Thus, Ag8 targets multiple pathways of importance in cancer biology, is less 

active against non-cancer cells and shows activity in vivo in a loco-regional setting.  
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1. Introduction 

An increased understanding of the molecular and cellular biology of cancer has led to an 

explosion of research into targeted therapies. For certain cancers harbouring particular 

genetic lesions, targeted therapies have led to significant improvements in outcomes but their 

use is not without significant limitations. Resistance to treatment remains a significant 

problem [1] and novel strategies are required to tackle the challenges of tumour plasticity and 

heterogeneity that promote the development of resistance [2]. One such strategy that is 

particularly applicable to complex diseases such as cancer is the development of a single drug 

that targets multiple pathways, an approach known as polypharmacology [3, 4]. This 

approach has the potential to target biologically important networks thereby reducing the 

impact of plasticity and heterogeneity but it carries the inherent risk of widespread toxicity. 

The challenge is to identify multi-targeted agents that exhibit selectivity for cancer cells over 

normal cells [5].  

Within this context, there is resurging interest in organometallic complexes following the 

demonstration that they can target multiple biochemical pathways with cytotoxic activity that 

is independent of binding to nucleic acids [6]. Metal complexes with N-heterocyclic carbene 

(NHC) ligands have emerged as an interesting class of organometallic compounds that have 

anti-microbial and anti-cancer activity [7]. Gold-NHC complexes have been the focus of 

research into new anti-cancer drugs but these have shown undesirable toxicity in vivo 

including oxidative damage to the heart and reproductive toxicity in rats [8]. In contrast to 

gold-NHC complexes, silver-NHC complexes have the potential advantage of reduced 

toxicity as silver inherently lacks toxicity. This together with the increased stability of silver-

NHC complexes make this class of compound particularly attractive as potential anti-cancer 

drugs [9]. We recently reported the synthesis and initial evaluation of a series of novel silver-

NHC complexes that demonstrated cytotoxic activity against MCF7 (human breast 

carcinoma) and DLD-1 (human colo-rectal carcinoma) cell lines in vitro [10]. Of these 

compounds, Ag(NHC)2AgBr2 (Ag8, Figure 1) was identified as suitable for further 

evaluation. The purpose of this study was to determine the mechanism(s) of action of Ag8 in 

the context of identifying a multi-targeted agent that retained selectivity for cancer as 

opposed to non-cancer cells.  
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2. Material and Methods 

2.1 Compounds: Ag8 was synthesised as described previously [10]. Cisplatin, etoposide, 

temozolomide (TMZ) and NU1025 were obtained from Sigma Aldrich (Poole, Dorset, UK). 

 

2.2 Cell Lines: A panel of 16 human cancer and 3 human non-cancer cells was selected for 

this study, details of which are presented in Table S1. Cells were cultured in complete 

medium with appropriate supplements as recommended by ATCC or ECACC.  

 

2.3 Chemosensitivity studies: Cell lines were seeded in 96-well plates at 2000 cells/well and 

allowed to adhere overnight. Cells were exposed to a range of drug concentrations for 96 h 

after which cell survival was determined using the MTT assay [11]. The selectivity index (SI) 

was defined as the IC50 for non-cancer cells divided by the IC50 for cancer cells (values >1 

indicating selectivity for cancer cells). Ag8 was also submitted to the National Cancer 

Institute (Bethesda, USA) for evaluation in the NCI60 cell line panel (NSC 767019).  

 

2.4 Inhibition of Thioredoxin Reductase 1 (Trx-R): The effect of Ag8 on Trx-R activity 

was determined using the substrate 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) as described 

elsewhere [12, 13]. Inhibition of Trx-R activity in Ag8 treated samples was calculated as a 

percentage of enzyme activity of vehicle treated controls. 

 

2.5 Detection of Reactive Oxygen Species (ROS): Cells were seeded at a density of 3x106 

in 10cm2 tissue culture dishes and allowed to adhere overnight. Cells were then treated for 30 

minutes with cisplatin (10µM), Ag8 (10µM) or appropriate vehicle controls, washed twice 

with PBS, and labelled with H2-DCFDA (4µM) (Life Technologies) at 37 C in PBS for 30 

minutes. Cells were then washed with ice-cold with PBS before trypsinisation and 

resuspension in ice-cold PBS for immediate analysis for ROS levels by flow cytometry. 

 

2.6 Effect of the anti-oxidant N-acetyl-cysteine (NAC) on the cytotoxic activity of Ag8: 

Ovarian cancer cells were pre-treated for 1 h with NAC (1 mM) followed by cisplatin or Ag8 

in 1mM NAC for a further 72 h. Total cell biomass was assessed using the colorimetric 

CellTiter 96® AQueous One Solution Cell proliferation assay (Promega).  
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2.7 Detection of stress-activated protein kinases: Cells were treated for 0, 1.5, 3 and 6 

hours with either cisplatin (10µM) or Ag8 (10µM), lysed and processed for SDS-PAGE and 

immunoblotting using antibodies for p-JNK, pSAPK/JNK, p-38, p-38 MAPK and β-actin as 

previously described [14].  

 

2.8 Induction of apoptosis: Apoptosis was detected using the Annexin-V-FLUOS Staining 

Kit (Roche) as previously described [15]. Briefly, A2780 and A2780cis/CP70 cells were 

seeded at 1x105 cells/well in 6 well plates, incubated overnight at 37 C and exposed to Ag8 

(10µM), cisplatin (10µM) or etoposide (10µM) for 24 h at 37 C. Cells were labelled with 

Annexin and propidium iodide as described by the manufacturer and analysed by flow 

cytometry.  

 

2.9 DNA UV Thermal Melting Studies: These were performed as previously described 

[16]. Calf thymus DNA (ctDNA) (Sigma Aldrich, Poole, UK) was exposed to Ag8 and DNA 

thermal melting curves were determined using a Varian-Cary 400 Bio UV/Vis 

spectrophotometer, equipped with a Peltier temperature controller.  Heating runs were 

performed between 25 and 99 C, heating at a rate of 1 C min–1, while continuously 

monitoring the absorbance at 260 nm. Melting temperatures (Tm) were determined graphically 

from the primary data using the method of Wilson et al [17].  

 

2.10 Induction of DNA damage in cell free assays: The ability of Ag8 to directly damage 

supercoiled plasmid DNA was assessed as described in detail previously [18]. Briefly, 

supercoiled plasmid DNA was exposed to a range of Ag8 concentrations for 1 h at 37 C, 

separated on a 1% agarose gel prior to staining with ethidium bromide. Images were captured 

on a FX phosphoimager using Image Q software (Biorad).  

 

2.11 Induction of DNA damage in cells: The induction of DNA damage in A2780 and 

A2780cis/CP70 cells was performed using the alkaline and neutral comet assay as previously 

described [19, 20]. Comets were visualised using an epifluorescent microscope (Nikon 

Eclipse E800, Japan) with images captured and tail moments determined for 50 randomly 

selected comets using Comet assay III software (Perceptive Instruments, UK).  
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2.12 Inhibition of topoisomerase I and II: The effect of Ag8 on topoisomerase activity was 

determined using human topoisomerase I and II relaxation assays (Inspiralis, Norwich, UK). 

Reaction conditions were as specified by the manufacturer with the topoisomerase reaction 

mix incubated with Ag8 (various concentrations) for 5 min prior to the addition of 

supercoiled plasmid DNA. The bioreductive prodrug EO9 was used as a positive control for 

the induction of single strand breaks in DNA [11]. Following a 30 min incubation at 37 C, 

supercoiled and relaxed plasmid DNA was separated on a 1% agarose gel, stained with 

ethidium bromide and visualised using Molecular Imager FX (Biorad, Hemel Hempsted, 

UK).  

 

2.13 Inhibition of PARP-1: The effect of Ag8 and NU1025 on purified PARP-1 activity was 

determined using the PARP-1 activity assay from Trevigen (Gaithersburg, USA). To assay 

whether Ag8 inhibits PARP activity in cultured cells, HCT116 colorectal cancer cells were 

treated with TMZ (1mM) for 2 h to induce SSBs. Cells were washed twice with PBS before a 

further 15h ‘repair’ incubation in fresh cell culture medium in the presence or absence of Ag8 

(16µM) or NU1025 (100µM). Cells were then stained for S139P γH2AX expression 

according to the manufacturer’s instructions (Cell Signalling Technology) and images were 

acquired using a Leica fluorescent microscope. As inhibition of PARP has been shown to 

potentiate TMZ activity [21], HCT116 cells were treated with TMZ (500µM) in the presence 

or absence of Ag8 or NU1025 and cell survival determined as described above.  

 

2.14 Effects on glycolysis: Glycolysis stress tests (extracellular flux analysis [XF]) were 

performed using an XFe96 Analyzer (Seahorse Bioscience) according to the manufacturer’s 

instructions. Briefly, A2780 and OVCAR cells were seeded at 1.5x104 and non-cancer 

ARPE-19 cells were seeded at 3x104 cells per well. A range of Ag8 concentrations were 

added to cells just prior to (acute) or 0.5 h and 1 h before assaying glycolytic activity. Three 

sequential measurements were used to calculate glycolytic parameters for each test condition. 

To normalize data, cells were stained with sulforhodamine B (SRB) to determine cellular 

protein content.  

 

2.15 In vivo activity of Ag8 in the hollow fibre (HF) assay: All animal procedures were 

carried out under a project licence issued by the UK Home Office and UK National Cancer 

Research Institute Guidelines for the Welfare of Animals [22] were followed throughout. 
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A2780, A2780cis/CP70 or OVCAR-3 cells were loaded into sterilised colour-coded PVDF 

Spectra/Por hollow fibres (Spectrum Medical Inc, Houston, TX, USA) as described 

previously [23].  Hollow fibres were implanted intraperitoneally (ip) or subcutaneously (sc) 

and groups of 5 mice were treated with 10 mgkg-1 Ag8 in 10% DMSO: 90% arachis oil 

administered ip daily on days 3, 4, 5 and 6 post-implantation. Cell survival was assessed as 

described previously [23].  

 

 

3.0 Results  

3.1 Chemosensitivity studies: As expected, the cisplatin resistant A2780cis/CP70 cell line 

was significantly (p < 0.01) less responsive to cisplatin than A2780 cells with IC50 values of 

6.07 ± 1.78 and 0.73 ± 0.30 μM respectively (Figure 2A). In contrast, Ag8 was significantly 

(p < 0.001) more active against the cisplatin resistant A2780cis/CP70 cell line compared to 

cisplatin sensitive A2780 cells (IC50 values of 0.09 ± 0.01 and 0.44 ± 0.15 μM respectively). 

Against other cancer cells, a broad range of responses to cisplatin was observed with IC50 

values ranging from 0.56 ± 0.32 μM (MDA-MB-468) to 9.33 ± 2.26 μM (MDA-MB-231). 

Ag8 showed promising low micromolar activity against all cancer cell lines tested but, with 

the exception of A2780 and A2780cis/CP70 cells, the range of responses was narrower (6.27 

± 0.39 to 13.34 ± 2.16 μM) than for cisplatin.  

The activity of Ag8 and cisplatin against ARPE-19, WI38 and PNT2 non-cancer cells is 

presented in Table S2 and these IC50 values were used to determine the selectivity index 

presented in Figure 2B. Ag8 exhibited superior selectivity in vitro towards the A2780 and 

A2780cis/CP70 cells over cisplatin for all three non-cancer cells tested (Figure 2B). Similar 

results were obtained in other cell lines where Ag8 exhibited superior or comparative 

selectivity to cisplatin (Figure S1). Against the NCI60 tumour cell line panel (Figure S2) no 

obvious disease specific activity was observed and COMPARE analysis demonstrated that 

Ag8 does not share a mechanism of action with established anti-cancer drugs including 

cisplatin. Using the All Synthetic Compounds database however, a correlation coefficient of 

0.785 was obtained with Pleurotin, a known inhibitor of Trx-R.  

3.2 Induction of Oxidative Stress: In a cell free assay, Ag8 is a potent inhibitor of purified 

human Trx-R with an IC50 of 2.39 ± 0.59nM (Figure 3A). In cells, Trx-R decreases levels of 

ROS, reducing cellular oxidative stress. The effects of Ag8 on cellular ROS were therefore 

analysed. Treatment with Ag8 (10 μM , 30 min) caused a ~35% increase in ROS compared 
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with a 6% increase with cisplatin (10µM) (Figure 3B). Moreover, the anti-oxidant N-acetyl 

cysteine (NAC) significantly attenuated Ag8 cytotoxicity suggesting that its activity may be 

partially attributed to Trx-R inhibition and increased ROS production (Figure 3C). Ag8 also 

caused significant and sustained induction of both p-p38 and p-JNK in both A2780 and 

A2780cis/CP70 cells (Figure 3D) whereas the effects of cisplatin on p-p38 and p-JNK were 

transient or markedly smaller, consistent with the observed weaker ROS induction. 

Significantly, prolonged p-p38 and JNK activation can induce downstream signalling 

pathways leading to cellular apoptosis and as shown in Figure 4, Ag8 induced significant 

levels of apoptosis (but not autophagy, Figure S3) in both A2780 and A2780cis/CP70 cells. 

Ag8 had no effect on HIF1 expression or activity (Figure S4). 

 

3.3 Interaction of Ag8 with DNA: UV thermal melting profiles for ctDNA in the absence 

and presence of Ag8 revealed a concentration dependent shift of Tm indicating that Ag8 

stabilises genomic DNA (Figure 5A). The melting profile at higher temperatures shifted 

disproportionately to the right indicating a preference for stabilisation of GC- over AT-rich 

sequences (Figures 5A and S5). Whilst Ag8 can bind to DNA, it did not directly cause DNA 

damage in the form of single (SSB) or double strand breaks (DSB) in supercoiled plasmid 

DNA in cell-free assays (Figure 5B).  In contrast, extensive SSB and DSB DNA damage was 

observed in A2780 and A2780cis/CP70 cells exposed to Ag8 as determined by the alkaline 

and neutral comet assays (Figures 5C and D). In contrast to cisplatin, no DNA cross linking 

was detected in either cell line (Figures 5E and S6). In addition to increased ROS (Figure 3B) 

which can result in DNA damage, Ag8 also proved to be a potent inhibitor of topoisomerases 

in cell-free assays (Figure 5F). Ag8 caused a significant dose-dependent inhibition of both 

human topoisomerase I and II with preferential inhibition of topoisomerase I (complete 

inhibition at 0.16 μM) over topoisomerase II (Figure 5F).  

 

3.4 Inhibition of PARP-1 by Ag8: Ag8 is a very potent inhibitor of purified human PARP-1 

with a nanomolar IC50 (32 ± 7.6 nM, Figure 6A). Under identical experimental conditions, 

NU1025 was ~75-fold less potent (IC50 of 2.4 ± 0.27 μM). To determine the effect of Ag8 on 

PARP-mediated DNA repair in cultured cells, the effects of Ag8 on SSB repair, which is 

PARP-dependent, were determined following treatment with TMZ (Figure 6B). As expected, 

HCT116 cells treated with TMZ alone showed little or no phosphorylated H2AX (Figure 

6C, negative control). In contrast, for ‘repairing’ cells incubated in the presence of NU1025, 
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a clear increase in S139P H2AX positive cells was visible, consistent with inhibition of 

PARP (Figure 6D). Ag8 treatment alone induced some increase in phosphorylated H2AX 

levels (Figure 6E) which is consistent with induction of DSBs as was detected by the neutral 

comet assay (Figure 5D). However, levels of phosphorylated H2AX (S139P) were 

substantially enhanced in cells treated with TMZ plus Ag8 (Figure 6F). Consistent with this, 

both NU1025 and Ag8 increased the activity of TMZ in drug combination studies (Figure 

6G). 

3.5 Inhibition of glycolysis by Ag8: Ag8 significantly reduced glycolysis and glycolytic 

reserve in a dose and time dependent manner in A2780 and OVCAR3 cells (Figures 7A and 

B). In contrast, 1µM Ag8 had no inhibitory effect on glycolysis and glycolytic reserve in 

confluent, non-replicating ARPE-19 cells (Figures 7A and B). A small increase in EACR was 

however observed in ARPE-19 cells (Figure 7A) but this effect was transient and did not 

reach statistical significance. The effects of Ag8 glycolysis and glycolytic reserve were 

concentration and exposure time with no acute effects on cell number observed (Figure S7 

and S8).  

3.6 Anti-tumour activity of Ag8 against ovarian cancers in hollow fibres in vivo:  A 

single dose of up to 20 mgkg-1 given i.p. or 10 mgkg-1 administered i.p. (daily for 4 days) was 

well tolerated with no loss in body weight or obvious behavioural signs of distress (Figure 

8B). A single dose of 25 mgkg-1 (i.p.) was toxic to animals with signs of acute toxicity 

observed immediately after drug administration. Using the split dose schedule (10 mgkg-1 

administered i.p. once per day over 4 days), significant anti-tumour effects were observed 

against A2780cis/CP70 (p < 0.01), A2780 (p = 0.01) and OVCAR-3 (p < 0.05) fibres 

implanted intraperitoneally. Using the same schedule however, the response of fibres 

implanted s.c. did not reach statistical significance (Figure 8A).  

 

4.0 Discussion: 

In the search for multi-targeted anti-cancer drugs, identifying compounds that are both potent 

and selective towards cancer cells remains a significant challenge. A key finding of this study 

is that Ag8 has greater or equivalent selectivity to cisplatin in vitro (Figures 2, Figure S1). An 

enhanced level of selectivity can be obtained using non-proliferating, confluent non-cancer 

cells both in terms of chemosensitivity (Figure 2, Table S2) and inhibition of glycolysis 

(Figure 7). Moreover, that Ag8 was also well tolerated in vivo (Figure 8) suggests that it has a 



 10 

more favourable toxicological profile than other gold-NHC complexes that have shown 

toxicity in in vivo models at comparable doses [8]. Ag8 therefore demonstrates selectivity 

towards cancer cells in vitro (particularly cisplatin resistant A2780cis/CP70 cells) and is well 

tolerated in vivo, especially when a split-dosing schedule is employed. Its mechanism of 

action is distinctly different from cisplatin (targeting multiple pathways as opposed to DNA 

alkylation) and this is likely to account for its ability to induce cytotoxicity in cisplatin 

resistant A2780 cells.   

 

Ag8 was not tailored to a specific target and therefore a target deconvolution strategy to 

uncover its mechanism(s) of action was employed. The COMPARE algorithm has an 

established record of identifying potential mechanisms of action [24] and the 

chemosensitivity profile of Ag8 correlated well (r2 = 0.785) with that of pleurotin, a known 

inhibitor of Trx-R [25].  In cell free assays, Ag8 was a very potent inhibitor of Trx-R with an 

IC50 value of 2.39 ± 0.59 nM (Figure 3). Organometallic compounds are amongst the most 

potent of Trx-R inhibitors and our results are consistent with these [26-29]. Mechanistically, 

the basis for Trx-R inhibition remains undefined but it is known that a seleno-cysteine residue 

at the C-terminal active site of TrxR constitutes a high affinity binding site for metal ions 

[30]. Trx-R is an established target for anti-cancer drug discovery [31-33] and its inhibition 

impacts upon multiple processes including an increase in reactive oxygen species (ROS), 

accumulation of the oxidised form of thioredoxin (Trx) and induction of apoptosis [34]. The 

results presented in Figure 3 are consistent with the inhibition of Trx-R and the induction of 

apoptosis via the JNK and p38 pathways [35]. It should be noted however that silver-NHC 

complexes have been shown to induce apoptosis via alternative pathways [36]. In contrast to 

other Trx-R inhibitors [25, 37], Ag8 did not alter HIF1 stability or HIF1 function (Figure 

S4).  

 

The induction of ROS could contribute to the DNA damage observed in cells treated with 

Ag8 although an additional explanation is the ability of Ag8 to inhibit topoisomerases, 

particularly topoisomerase I (Figure 5). Topoisomerase enzymes are major targets for anti-

cancer drugs [38, 39] and topoisomerase I inhibitors are comparatively rare. Whilst other 

organometallic complexes have been shown to inhibit topoisomerases [40-44], this is the first 

report documenting the preferential inhibition of topoisomerase I by a silver-NHC complex. 

The relative contribution of ROS or inhibition of topoisomerase to DNA damage induction is 
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not known but the induction of DNA damage by at least two different mechanisms may 

reduce the efficiency of DNA repair. Within the context of DNA repair, this study has 

demonstrated that Ag8 is a potent inhibitor of PARP-1 in vitro and can potentiate the activity 

of TMZ (Figure 6). Further studies are required to determine if the potentiation of TMZ 

activity is cancer selective in vivo and whether Ag8 can induce synthetic lethality in cells that 

harbour mutations in the BRCA genes.  

 

Finally, metabolic reprogramming is an emerging hallmark of cancer [45] and this study has 

demonstrated that Ag8 can rapidly and selectively modulate aerobic glycolysis. Ag8 showed 

inhibitory effects on glycolysis in cancer cells but had no effect on non-proliferating ARPE-

19 cells (Figure 7). Metal-based glycoconjugates including NHC carbene gold(I) complexes 

are of interest as glycolytic inhibitors [46, 47] but this is the first report describing a silver-

NHC complex acting as a glycolytic inhibitor. The precise mechanism(s) by which Ag8 

inhibits glycolysis requires further elucidation but the rapid and selective inhibition of the 

glycolytic phenotype in cancer in preference to non-cancer cells in vitro is promising.  

 

In conclusion, the data presented herein demonstrates that Ag8 has multiple mechanisms of 

action involving (i) inhibition of Trx-R leading to increased ROS production and 

subsequently apoptosis (ii) inhibition of topoisomerase I (and to a lesser extent II) leading to 

DNA damage (iii) inhibition of PARP-1 leading to the potentiation of TMZ activity in vitro 

and (iv) rapid and selective inhibition of glycolysis in cancer cells. Ag8 is therefore a 

promising lead compound with (i) multiple mechanisms of action (ii) exhibits a degree of 

selectivity for cancer over normal cells that is in many instances superior to cisplatin in vitro, 

(iii) has a mechanism of action that’s different from cisplatin and (iv) is well tolerated in vivo 

and has significant anti-tumour effects in vivo against hollow fibres implanted 

intraperitoneally (Figure 8). The lack of activity against fibres implanted subcutaneaously is 

likely to be due to the high reactivity of metal NHC complexes with biological thiols and 

further studies are required to address this issue [48, 49]. In a loco-regional setting however 

where the aim is to treat tumours that arise in a third compartment, compounds with poor 

systemic pharmacokinetics may paradoxically be advantageous [50].  
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Figure legends: 

Figure 1.  Chemical Structure of Ag8. The synthesis and chemical characterisation is 

described elsewhere [10]. 

Figure 2. Response of cancer and non-cancer cell lines to Ag8 and cisplatin. (A) The 

response of a panel of cancer cells following continuous exposure to cisplatin or Ag8. Data 

are mean ± standard deviation for 3 independent experiments. (B) The selectivity index was 

determined as the IC50 for sub-confluent (sc) or confluent (c) non-cancer cells (ARPE-19, 

WI38 or PNT2) divided by the IC50 for either A2780 or A2780cis/CP70 cells. Confluent non-

cancer cells were included to reflect the fact that the majority of normal cells are non-

proliferating. Cisplatin was tested against confluent PNT2 cells only. The legend embedded 

in the figure is common to all three data sets. Values > 1 denote preferential activity against 

cancer compared to non-cancer cells whereas values  1 denote equitoxic or reduced activity 

against cancer cells compared to non-cancer cells.    

Figure 3. Induction of oxidative stress by Ag8. (A) Dose dependent inhibition of purified 

rat thioredoxin reductase by Ag8. Data are mean ± standard deviation for  3 independent 

experiments. (B) Induction of ROS in A2780 cells following exposure (1 h) to Ag8 (10µM) 

or cisplatin (10µM) as determined by H2-DCFDA labelling and flow cytometry. The panel is 

an overlay histogram of representative fluorescence measurements (from 3 independent 

experiments). MFI, Mean Fluorescent Intensity. (C) The effect of the anti-oxidant NAC on 

the activity of Ag8 and cisplatin against A2780 and A2780cis/CP70 cells is presented in 
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panel C. The bars show mean % survival values ± SD (n = 3) at the doses specified. (D) 

Following treatment of the A2780cis/CP70 and A2780 cell lines with Cisplatin and Ag8 

(10µM) at the indicated time points, the relative levels of phospho-p38 (Thr180/Tyr182) and 

phospho-JNK (Thr183/Try185) were determined by immunoblotting. Equal loading was 

determined by assessing the levels of β-actin. 

Figure 4: Induction of apoptosis by Ag8. Induction of apoptosis (open bars) or late 

apoptosis/necrosis (shaded bars) was measured in A2780 (A) and A2780cis/CP70 (B) cells 

following exposure to etoposide, cisplatin and Ag8. Cells were exposed to drug (10 μM, 24 

h) and apoptosis and late apoptosis/necrosis were determined by FACS analysis using 

annexin-V and propidium iodide staining respectively. Results show the mean percentage of 

cells ± SD (n = 3).   

Figure 5. DNA Interaction and damage induction in cell-free and cell-based assays. (A) 

Thermal melting profiles of calf thymus DNA in the absence and presence of Ag8 (from l to 

r, [Ag8] = 0, 1, 2, 3, 5, 7 μM). Variation in ΔTm and ΔTm
80 and ΔTm

20 with ligand:bp ratio is 

presented in Figure S5. (B) the induction of DNA strand breaks by measuring the conversion 

of supercoiled (SC) to open circular (OC) plasmid DNA in the presence of increasing doses 

of EO9 (positive control) and Ag8. For EO9, lane 1 is control, lanes 2 to 10 contain 2-fold 

incremental increases in EO9 concentration (from 39 nM in lane 2 to 10 µM in lane 10); lane 

11 contains EO9 (10 µM ) in the presence of the NQO1 inhibitor dicoumarol (2 mM). For 

Ag8, lane 1 is control, lanes 2 to 11 contain 2-fold incremental increases in Ag8 (from 200 

nM in lane 2 to 100 µM in lane 11. (C, D, E) Results of comet assays in A2780 (open bars) 

and A2780 CP70 (solid bars) cells. The inset images show comets for control (C) and treated 

(T) cells. The induction of single strand breaks (SSB, panel C), SSB and double strand breaks 

(DSB, panel D) and DNA cross-links (panel E) at various doses of Ag8 were quantified using 

Comet Assay III software. Panels A and C are results of the alkaline comet assay whereas 

panel B is the results of the neutral comet assay. Each value represents the mean ± SD (n=3). 

(F) the ability of Ag8 to inhibit human topoisomerase I and II in a cell free assay. Controls 1 

and 2 represent assays run without and with either topoisomerases I or II respectively. No 

Ag8 was included in these controls and the final DMSO concentration was 0.1% (v/v) in all 

samples. R and SC denote relaxed and supercoiled forms of the plasmid respectively.  

Figure 6. Inhibition of PARP activity by Ag8. (A) Dose-dependent inhibition of 

recombinant PARP1 activity by Ag8 as determined by levels of histone PARylation in a cell-
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free ELISA. Inhibition of recombinant PARP1 by PARP inhibitor NU1025 is shown for 

comparison. PARP activity is expressed as a % relative to recombinant PARP1 activity in the 

absence of Ag8 or NU1025, mean ± SD (n=3). (B) Scheme outlining the experimental design 

used to assay whether Ag8 can affect PARP DNA repair activity in cultured cells. (C-F) Cells 

were seeded on coverslips and after 24h exposed to TMZ (1mM, 2 h) to induce single-strand 

DNA breaks (SSBs). TMZ was then removed and cells washed and incubated in fresh cell 

culture medium in the presence or absence of Ag8 or NU1025 for a further 15h to allow time 

for DNA repair of SSBs. Inhibition of PARP prevents SSB repair resulting in collapsed 

replication forks and the generation of double strand breaks (DSBs). DSBs were specifically 

detected via cell staining for γH2AX phosphorylation at S139. Representative 

immunofluorescent images of cells after 15h ‘repair’ time in fresh medium ± Ag8 or PARP 

inhibitor NU1025. Left hand panels, DAPI staining to visualise cell nuclei; centre panels, 

cells immunostained for phosphorylated S139 γH2AX (marker of DSBs); right hand panels, 

merged images showing both DAPI and S139P γH2AX staining. (G) The potentiation of 

TMZ activity by Ag8 or the PARP inhibitor NU1025. Cells were treated with TMZ (500µM) 

or solvent control and incubated in the presence or absence of the indicated concentrations of 

Ag8 or NU1025 (100µM) for 4 days. Effects on cell survival were determined by the MTT 

assay. 

 

Figure 7. Ag8 selectively inhibits glycolysis and reduces glycolytic capacity in tumour 

cells. Effects on glycolytic parameters in A2780 and OVCAR3 tumour cells and the non-

cancer cell line ARPE-19 following exposure to Ag8 (1 μM, given to cells immediately prior 

to (acute), 30 min or 60 min before the Seahorse assay). The assay measures changes in 

extracellular pH as an indicator of glycolytic activity. Basal extracellular acidification is 

measured during a 20 min equilibration in glucose free media, then glucose is the added to 

induce glycolysis, and changes in pH are measured for a further 25 minutes. Glycolysis is 

assessed as the difference in pH prior to and after the addition of glucose. The next step in the 

assay is to add oligomycin, which forces cells to utilize glucose as their energy source. 

Measurements of pH are then made for a further 25 minutes. Glycolytic capacity is assessed 

as the difference in pH seen following oligomycin treatment compared to the basal 

measurement (Panel B). All results are the mean ± SEM for at least three independent 

experiments and all three exposure times to Ag8 were carried out on the same day using the 

same passage number of cells. Statistical comparisons were performed using students t-test 

and *, + and $ represent p values of <0.05, <0.005 and <0.0001 respectively.     
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Figure 8. Activity of Ag8 against a panel of ovarian cancer cells in vivo in the hollow 

fibre assay. Each cell line was implanted either intraperitoneally (i.p.) or subcutaneously 

(s.c.) in mice and treated with Ag8 (10 mgkg-1) administered i.p. on days 3,4,5 and 6 after 

implantation. The open and solid bars (panel A) represent control and treated fibres and 

values are mean ± SD for ≥6 hollow fibres. Statistical analysis was conducted using the 

Students t-test and ** and * indicate significance at p < 0.01 and p < 0.05 respectively. The 

results of dose escalation studies and toxicity assessments are presented in panel B. Toxicity 

was defined as (i) >10% loss in body weight measured over a two week period and (ii) 

assessment of acute toxicity in the form of behavioral signs of stress in animals over a 24 

hour period following drug administration.  

 


