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ABSTRACT 

OBJECTIVE: It is not known which laboratory indices of muscle mass, strength or quality 

can distinguish functional performance in healthy middle aged women. The aim of this study 

was to a) examine the association between upper leg lean tissue mass (LTM), knee extensor 

strength, muscle quality (strength per unit LTM) and functional performance and b) to 

determine the utility of tertiles of muscle strength and muscle quality to distinguish 

gradations of functional capacity in healthy 50 – 70y women. METHOD: Using a cross-

sectional study design, one hundred and twenty-eight healthy 50 – 70y women (mean age: 

60.4 SD=5.1 years) underwent body composition assessment (dual X-ray absorptiometry) 

and performed a maximal voluntary isometric contraction of the knee extensors (Con-Trex 

Dynamometer). Functional performance was assessed using a 5 repetition and 30 second 

chair rise test and 900m gait speed test. RESULTS: Ordered by muscle strength or muscle 

quality, those in the highest tertile (T1) demonstrated greater functional performance than 

those in lowest tertile (T3). There was no association between upper leg LTM and functional 

performance (r=≤0.06). Muscle strength explained a greater proportion of the variance in all 

functional performance measures relative to muscle quality (R2=0.13 to 0.36 vs. R2=0.11 to 

0.16) CONCLUSION: Upper leg LTM is not associated with physical performance in 
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healthy 50 – 70y women. These results suggest strength relative to the body mass being 

accelerated distinguishes gradations in functional performance better than muscle quality 

healthy 50-70y women.  

Keywords: healthy ageing; muscle function; knee extensor; physical performance; older 

adult. 

 

 

Bullet Points 

 Muscle strength can better differentiate between gradations of functional performance 

than muscle quality. 

 Muscle strength normalised to body mass may provide clinicians with an objective 

measure of muscle health that does not require imaging technology. 

 Extended gait speed may be a clinically useful measure of functional performance in 

healthy 50 – 70y women. 

 Functional performance measures that allow healthy adults perform close to 

maximum may be useful for clinicians attempting to distinguish gradations of 

capacity. 

 

 

 

 

 

 

 

 



 
 

Introduction 

Expert working groups1,2 have recommended older adult muscle health is evaluated in terms 

of mass, strength and functional performance. Laboratory measures of muscle mass, strength 

and quality which are considered to be below ‘normal’ are associated with functional 

impairment in the elderly3-5. Low relative muscle mass, knee extensor strength and muscle 

quality (strength per unit tissue) have been associated with self-reported and objectively 

measured functional limitation in older adults3-7. These associations have been studied 

extensively in older adults >65y6,8-10 and as a result tend to use simple tasks related to 

activities of daily living (ADL) such as gait speed tests <6m11-15. 

However, it is well documented that age-related change in muscle characteristics which 

precede functional limitation become noticeably different from a young adult aged ~50y16,17. 

By contrast comparatively little is known about the time course and transition to functional 

limitation after the age of ~50y. We previously reported age-related difference in lean tissue 

mass (LTM), muscle strength and quality (strength per unit tissue) in healthy older women18. 

Furthermore, our research group19 and others20 identified short gait speed tests (<10m) as 

unsuitable measures of functional performance for use in healthy older adults. This is 

primarily due to short performance tests inability to detect age-related difference where 

expected in healthy adults. Instead, we proposed that extended gait speed and chair rise tests 

are used due to their greater construct validity in detecting age-related difference and greater 

association with maximal voluntary knee extensor strength19.  

Ideally, laboratory measures of muscle mass, strength and quality which can distinguish 

gradations of capacity with aging would also reflect functional performance. Lower body 

strength is thought to undergo a preferential age-related decline relative to the upper body. 

Specifically, quadriceps strength declines at a greater rate than grip strength in healthy 

volunteers21. This preferential decline is thought to be due to a change in activity patterns22,23 

and is greatest in women24. Hicks et al.11, have suggested that establishing cut points from 

strength at one time point is predictive of future mobility decline in a population based 

sample of older (~73y) men and women. Researchers have recently12,25 classified healthy 

older (65 – 84y) adults into tertiles based on body composition, muscle function and 

functional performance. This approach may be more appropriate for attempting to distinguish 

gradations of capacity in healthy adults whereby cut-points below ‘normal’ in muscle health 

may not be able to identify individuals of lower physical capability24. 



 
 

At present, there are two indices of lower extremity muscle function most commonly reported 

in the literature. The first is knee extensor strength which is normally assessed by a 

commercially available dynamometer and the second is muscle quality normally expressed as 

knee extensor strength per unit muscle or LTM mass. Both indices have been associated with 

functional performance in older (>65y) adults. Hairi et al.5 reported that muscle quality had a 

stronger association than muscle mass with both self-reported and objectively measured 

physical disability in community dwelling older (≥70y) men (n=1,612). However, the authors 

also identified muscle strength (grip and quadriceps strength) as having stronger associations 

with all outcome measures than either muscle mass or muscle quality. Similarly, Visser et 

al.26 reported lower muscle strength and greater fatty infiltration as stronger predictors of self-

reported mobility limitation than muscle mass in well-functioning older (70 – 79y) adults 

(n=2,631). More recently, Hayashida et al.27 reported knee extension strength but not 

appendicular LTM to be associated with maximal gait speed (11m) in 318 community 

dwelling Japanese men and women (≥65y).  

Whilst muscle strength can be determined using a variety of cost effective techniques which 

are often portable, muscle quality requires imaging technology, often at significant time, 

financial and training cost. The association between both indices and functional performance 

has received considerably less attention in adults <70y of age. Furthermore, it is not yet 

known whether one index is superior to the other in distinguishing gradations of capacity in 

healthy middle aged adults. 

The aim of this study was to examine the association between upper leg LTM, knee extensor 

strength, muscle quality (strength per unit upper leg LTM) and functional performance in 

healthy 50 -70y women. The secondary aim of this investigation was to determine the utility 

of tertiles of muscle strength and muscle quality to distinguish gradations of functional 

capacity in healthy 50 – 70y women. 

Methods 

Participants 

A convenience sample (n=204) of healthy older (50 – 70y) adults were recruited via email 

and word of mouth from the University of Limerick campus community and surrounding area 

to take part in the University of Limerick Aging Study18,19,28,29. For the present investigation, 

one hundred and twenty-eight women participated in a cross-sectional study design. 



 
 

Participants received a full medical screening and physical examination prior to the 

assessment of body composition, maximal voluntary knee extensor strength and functional 

performance. Those defined as healthy, i.e. disease free based on Greig et al.30 and 

independent living were invited to participate. Disease free included the absence of clinical, 

cardiovascular or musculoskeletal abnormality as determined by a medical doctor. 

Participants were required to be healthy but not masters athletes as defined by Drey et al.31. 

After receiving a complete explanation of the procedures, benefits and risks of the study, all 

participants gave their written informed consent. This study was approved by the Research 

Ethics Committee of the University of Limerick (EHSREC 10/45). 

Measures 

Whole body and regional body composition analysis was conducted using dual X-ray 

absorptiometry (iDXATM; GE Healthcare, Chalfont St Giles, Buckinghamshire, UK), in 

accordance with procedures used in the University of Limerick Body Composition Study28,32. 

To standardise test conditions and tissue hydration, participants were instructed to refrain 

from strenuous exercise in the 12-hour period before testing and to attend after an overnight 

fast. Participants consumed 500ml of water one hour prior to the scan and were instructed to 

void and defecate, if required, immediately prior to measurement. Height was measured to 

the nearest 0.1 cm (SECA stadiometer) and body mass to the nearest 0.1 kg (Tanita MC-

180MA Body Composition Analyzer, Tanita UK Ltd.). Daily calibration of the scanner 

employed a phantom spine containing composites of bone, fat and lean tissue mass. 

Participants wore light clothing and removed all metal objects such as belts and jewellery. 

The thigh, representing upper leg LTM was measured from the inferior side of the lesser 

trochanter until the tibio-femoral joint.  

Reliability of estimate was calculated using a convenience sub-sample of participants who 

were asked to take part in the reliability study when attending a 6-month or 1 year follow up 

as part of the healthy aging study. Reliability of estimate was calculated in accordance with 

recommendations from the International Society of Clinical Densitometry (Baim et al., 2006). 

The root mean square coefficient of variance (RMSCV) of the iDXA for repeated measures 

of whole body composition analysis was 0.6%. Repeat scans on a sub-sample of 87 

participants between 18-70y (mean age: 35.0 SD=17.0 years) was used to assess reliability of 

whole body LTM and total leg LTM. The RMSCV was found to be 0.6% and 1.4% 

respectively. Of the 87 participants 22 were between the ages of 50 – 70y. The older adult 



 
 

scans (n=22) were further segmented to provide the additional measurement of upper leg 

LTM. The RMSCV was found to be 0.7%, 1.4% and 2.3% respectively for whole body, total 

and upper leg LTM respectively. 

Maximal voluntary isometric contractions of the knee extensors of the dominant limb were 

measured using a Con-Trex MJ Dynamometer (Con-Trex MJ; CMV AG, Dubendorf, 

Switzerland) in accordance with procedures used by Francis et al.19. The participants were 

tested during two identical sessions held 7 days apart. Warm up consisted of 5 minutes on a 

bicycle ergometer (Monark Ergomedic; 828E), at a workload of 40 watts in accordance with 

the methodology of Lynch et al.17. The knee extensors and flexors of the dominant limb (the 

limb used to kick a ball) were tested. Participants were seated with a hip flexion angle of 

110°. The back of the knee joint was on the edge of the seat with a knee angle of -60° from 

anatomical zero (180°), which has been demonstrated to be the angle of maximal isometric 

force generation33. The distal shin pad of the dynamometer was attached 4-5cm proximal to 

the medial malleolus using a velcro strap. Lever length (mean length: 22.7 SD=2.3 cm) was 

recorded as in Lynch et al.17. Two seatbelts were applied across the chest and pelvis while 

velcro straps were applied to the mid-thigh to reduce extraneous movement during 

contractions. The dynamometer rotational axis was aligned with the lateral femoral condyle 

(knee joint axis of rotation). The absolute zero (point at which gravity is acting vertically) 

was recorded prior to each trial. Participants were instructed to perform 2 submaximal 

voluntary isometric contractions (50 and 75% of perceived maximum) prior to each test 

series as in Maffiuletti et al.34, with a 1 minute rest period in between. The participant then 

performed 3 MVC’s of the knee extensors separated by 2 minutes of stationary rest. The 

participant was instructed to consistently produce their maximal force rapidly (as hard and as 

fast as possible in the sagittal plane) and to maintain that force for 3-4 seconds. Participants 

received a 5 second count down with a distinct emphasis on “Go”. No overt verbal 

encouragement was provided due to the difficulty in standardising it for all participants35. 

Visual feedback of the instantaneous dynamometer torque was provided to the participants on 

a computer screen. This was used to show the participant the type of contraction required and 

also to provide encouragement to reach their maximum as in Bazzucchi et al.36. The 

participant then received 2-3 minutes of stationary rest to allow set up of the protocol to 

measure MVC of the knee flexors. To assess the knee flexors, the distal shin pad was 

removed and replaced along the posterior portion of the triceps surae; 4 -5cm above the 



 
 

medial malleolus. The participant was then instructed to repeat the procedure used for 

extension above whilst kicking back (flexion) in the sagittal plane.  

The coefficient of variance (CV) for the knee extensors and flexors was 3 % in both cases 

with a range of 0-9%. There was an increase in the number of participants with repeated 

measures which satisfied the criteria for a MVC (knee extensors (n=9) and flexors (n=7)) on 

day 2 (CV 3%; range 0-6%). A 2-way mixed model intra class correlation coefficient (ICC) 

was used to assess absolute agreement. The ICC on day 1 and day 2 for the knee extensors 

(0.99 (95% CI 0.99 to 1.00) and 1.00 (95% CI 1.00 to 1.00) respectively) and flexors (0.99 

(95% CI 0.99 to 1.00) and 0.99 (95% CI 0.99 to 1.00) respectively) demonstrate excellent 

within day reliability. The intra-class correlations between testing sessions for knee extensors 

and flexors were 0.85 (95% CI 0.79 to 0.90) and 0.887 (95% CI 0.83 to 0.92) respectively. 

The highest value for both days was used for analysis in this study. Muscle quality was 

expressed as knee extensor torque per kilogram upper leg LTM as this has been reported as 

the most appropriate index of muscle quality when using DXA and isokinetic dynamometry 

as the measurement tools19. 

The ability to rise from a chair was assessed using a timed 5 repetition chair rise test37 and by 

counting the number of chair rises completed in 30 seconds38. Maximal extended gait speed, 

using a one or a combination of walking, jogging or running, was assessed by the time taken 

to complete 900m (4 laps of a 225m indoor track)19,29. All measures were repeated separated 

by 7 days in order to reduce the potential for a learning effect. The highest measures from 

both days are used to report tertiles of functional performance and to examine associations 

with LTM, muscle strength and muscle quality. All measurements were carried out by the 

same exercise scientist to exclude issues with inter-tester reliability. 

Analysis 

Physical characteristics, body-composition, muscle strength and functional performance data 

were checked for normality of distribution by using a Kolmogorov-Smirnov test or Shapiro-

Wilk test and expressed as means and SDs for normally distributed variables and medians 

(IQRs) for asymmetric distributed variables. Functional performance was classified per tertile 

of muscle strength and muscle quality. A one-way ANOVA or Kruskall Wallis test was used 

to determine if differences existed between tertiles. Pairwise comparison resulting from a 

Bonferroni post hoc test were used to determine differences between tertiles. The association 

between the independent variables (upper leg LTM, muscle strength and muscle quality) and 



 
 

the dependent variables (functional performance) were assessed using a Pearson’s or 

Spearman’s correlation for normal and non-normal data respectively. Correlations were 

classified based on British Medical Journal recommendations39: r: 0-0.19 very weak, 0.2-0.39 

weak, 0.40-0.59 moderate, 0.6-0.79 as strong and 0.8-1 very strong. Linear regression was 

used to explain the proportion of variance in functional performance explained by muscle 

strength and muscle quality. The data were analysed using SPSS 22.0 for Windows (SPSS, 

Inc., Chicago, IL, USA). 

Results 

Physical characteristics, body composition and functional performance of 50 -70y women are 

displayed in Table 1. Functional performance classified per tertile of muscle strength and 

muscle quality are displayed in Table 2. Classified by muscle strength or muscle quality, 

those in the highest tertile (T1) had a higher functional performance across all tests than those 

in lowest tertile (T3) (P<0.05). Classified by tertile of muscle strength extended gait speed 

was different between those in the highest tertile, middle tertile and lowest tertile. Classified 

by tertile of muscle quality, those in the lowest tertile were different to those in the middle 

and highest tertile for extended gait speed and time taken to complete 5 chair rises. Those in 

the middle and highest tertile of muscle quality did not differ in functional capability. 

There was no association between upper leg LTM and functional performance (r=0.007 to 

0.061, P>.05). Muscle strength demonstrated a moderate association with extended gait speed 

(Figure 1) and the number of chair rises undertaken in 30 seconds and a weak association 

with the time taken to complete 5 chair rises (Table 3). Muscle strength was associated with 

all functional performance measures in the highest tertile and with gait speed and the number 

of chair rises completed in 30 seconds in the lowest tertile but was not associated with 

functional performance in the middle tertile.  

Muscle quality demonstrated a moderate association with extended gait speed and a weak 

association with both chair rise tests. Muscle quality was associated with the time taken to 

complete 5 chair rises in the highest tertile but was not associated with any other functional 

performance measure in any other tertile. Compared to muscle quality, muscle strength 

explained a greater proportion of the variance in extended gait speed (36% vs. 16%), the 

number of chair rises completed in 30 seconds (22% vs. 15%) and the time taken to complete 

5 chair rises (13% vs. 11%). 



 
 

Discussion 

Compared to muscle quality, knee extensor strength per kg body mass had a stronger 

association with functional performance and could better differentiate between those of high, 

intermediate and lower functional performance in healthy 50 – 70y women. 

Interestingly, classified by tertile of muscle strength or muscle quality those in the highest 

tertile could be differentiated from those in the lowest tertile in terms of functional 

performance. It became more challenging to separate those in the middle tertile from those in 

the highest or lowest; in fact, only gait speed classified by muscle strength could provide this 

differentiation. Furthermore, knee extensor strength was associated with functional 

performance in the highest and lowest tertiles of muscle strength but muscle quality was 

generally not associated with functional performance in any tertile. The absence of an 

association between strength and functional performance in the middle tertile perhaps 

suggests a non-linear relationship between strength and functional performance. Buchner et 

al.40 reported an association between strength and gait speed (15.2 m) in weaker participants 

but not in stronger participants. The authors suggested that small changes in physiological 

capacity of frail older adults, may lead to large changes in functional performance whereas 

small changes in physiological capacity of stronger adults, may lead to little or no change in 

functional performance. Our results suggest that this may be the case in the lowest tertile but 

also that small changes in strength for healthy adults in the highest tertile may lead to 

significant changes in functional performance. This has recently been demonstrated in well-

trained distance runners who experienced an increase in running economy as a result of a 

strength training intervention41. Buchner et al.38 may not have seen this effect at the higher 

end due to using a population based sample that allowed for participants with 

musculoskeletal conditions. These explanations whilst plausible need to be interpreted 

cognisant of the sample size used to derive the associations in each tertile (n=42-43).  

As reported by Visser et al.26, Hairi et al.5 and Hayashida et al.27 in older (≥65y) adults, we 

report muscle strength and quality to have a greater association with functional performance 

than muscle mass in healthy 50 – 70y women. However, compared to muscle quality, we 

report knee extensor strength corrected for body mass to have a stronger association with all 

functional performance measures. This suggestion has been supported by Hairi et al.5 when 

investigating the association between knee extensor strength and 6m gait speed and by Vilaça 

et al.25 using the 6 minute walk test in older (≥65y) adults. In our study, it is perhaps expected 



 
 

that as the difficulty of the test increases towards maximum so does the association between 

performance of the test and maximal voluntary knee extensor strength. Strength per unit LTM 

is considered to be an accurate representation of a muscles force generating capacity. The 

lower association between muscle quality and functional performance is perhaps because the 

upper leg LTM does not represent the body mass required to be elevated from a chair or 

accelerated during a gait speed test. Furthermore, we previously reported no difference in 

LTM between women in the 6th and 7th decade of life19 which may suggest that changes in 

muscle quality are a function of the underlying strength rather than mass25,26. However, it 

must be acknowledged that we have used DXA to estimate LTM which has been shown to 

underestimate age-related change in skeletal mass compared to gold standard methods such 

as MRI and CT42.  

Previously, Buchner et al.40 have reported lower extremity strength to account for ~17 – 20% 

of short (<16m) gait speed tests in older adults (50 – 96y). To the authors knowledge, the 

900m gait speed test is the first gait speed test reported in which >30% of the variance in 

performance among healthy older women can be explained by knee extensor strength. Our 

test which requires a similar time (~6 – 7 minutes) to complete as the 6 minute walk test is 

perhaps a step in the right direction toward the call for the generation of maximal gait speed 

reference values in healthy adults25. The fact that lower extremity strength has a strong 

association with a maximal gait speed test which has a range of 1.3 – 3.9 m/s is encouraging. 

This suggests that the relative muscular effort for those with the mean gait speed (2.3 m/s) is 

considerably less when performing a habitual gait speed (~1.4 m/s) for extended periods of 

time. The relative effort required to perform tasks related to activities of daily living (ADL) 

could be a key determinant as to how long quality of live and independent living are 

preserved. 

Our study makes a contribution to knowledge about the association between laboratory 

measures of LTM, muscle strength, muscle quality and functional limitation in healthy late 

middle aged 20 adults who are not yet frail. The applicability of our study is limited by our 

small (n=128) convenience sample of healthy older women recruited from the University 

campus community and surrounding area. This may be especially important as education and 

socioeconomic status have been reported to influence the health status of a population43.  The 

mean habitual gait speed (1.4 m/s) and dietary protein intake (1.2g ∙kg-1 BW∙day-1) of 

participants in the University of Limerick Healthy Aging Study demonstrate the relative 

physical and nutritional health of this cohort compared to more representative cohorts 



 
 

(dietary protein intake 0.8 – 1.1 ∙kg-1 BW∙day-1 and habitual gait speed 0.8m/s)44,45 which may 

introduce a health bias. Furthermore, we did not assess cognitive function, stage of the 

menopause or control for habitual physical activity and as such it is unknown how these co-

founding variables may have affected the associations reported.  

Although 900m gait speed had the strongest association with muscle strength and quality, the 

self-selected mode of maximal gait speed which included walking, jogging or running may 

have over or underestimated our gait speed and therefore influenced the strength of the 

associations reported. Furthermore, endurance performance is also dependent on 

cardiorespiratory and muscle oxidative capacity which we did not control for. The 

associations reported for all muscle and functional performance parameters must be 

interpreted cognisant of the cross-sectional study design and therefore survival bias may have 

influenced the results.  

Conclusion 

The fact that cross-sectional strength measurement has been shown to be predictive of 

mobility decline11, that the lower limbs are most affected21,24 should make lower limb 

strength assessment a priority for researchers generating reference values for muscle health 

and clinicians in practice. As Dulac et al.46 have recently reported using handgrip strength, 

we report knee extensor strength normalised to body mass as an index that could provide a 

cost effective and simplistic measure of muscle health which could be used in a clinical 

setting and can represent a significant proportion of the variance in functional capacity. This 

may be useful to clinicians attempting to assess the functional capability of older adults in the 

community. By contrast our results suggest that muscle quality assessment, requiring 

expensive imaging technology may be of lesser value in relation to distinguishing functional 

performance. Further work is required to determine whether these differences remain when 

using MRI or CT to determine skeletal muscle mass. 
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Table 1: Physical characteristics, body composition, muscle strength and functional performance 

In healthy 50 – 70y women. 

 Mean ± SD or Median (IQR) 95% CI 

Age (years) 60.4 ± 5.1 59.5 to 61.3 

Height (cm) 162.7 ± 5.5 161.8 to 163.7 

Body mass (kg) 66.2 (13.5) 64.8 to 68.1 

Lean tissue mass (kg) 40.0 ± 3.9 39.3 to 40.6 

Body fat (%) 37.5 ± 6.8 36.4 to 38.7 

Knee Extensor Torque (N·m/kg) 1.3 ± 0.4 1.2 to 1.4 

Muscle Quality (N·m/kg) 23.7 ± 5.9 22.6 to 24.7 

900m Gait Speed (m/s) 2.3 ± 0.5 2.2 to 2.4 

5 repetition chair rise time (s) 8.4 (2.5) 8.0 to 8.7 

Chair rises in 30 seconds (n) 17.2 ± 4.1 16.2 to 18.2 

Values are displayed as mean ± SD, median (IQR) and 95% or Boostrap 95% confidence interval (CI). 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Table 2: Functional performance classified by tertile of knee extensor torque and muscle quality. 

 T1 (n=42) T2 (n=43) T3 (n=43)     P 

 Knee Extensor Torque (N·m /kg)  

 Mean ± SD or 

Median (IQR) 

Mean ± SD or 

Median (IQR) 

Mean ± SD or 

Median (IQR) 

 

Gait Speed (m/s)1 

95% CI 

2.6 ± 0.5 

2.5 to 2.8 

2.3 ± 0.4 

2.2 to 2.4 

2.1 ± 0.4 

1.9 to 2.2 

<0.001 

5 Chair Repetitions (s)2 

95% CI 

8.1 ± 1.8 

7.5 to 8.6 

8.3 (2.1) 

7.6 to 8.7 

9.4 ± 2.3 

8.8 to 10.2 

0.006 

30 s Chair Repetitions 

(n)2* 

19.0 ± 4.6 

17.0 to 21.0 

16.8 ± 3.3 

15.4 to 18.2 

15.6 ± 3.6 

13.8 to 17.4 

0.020 

 Muscle Quality (N·m/kg)  

 Mean ± SD or 

Median (IQR) 

Mean ± SD or 

Median (IQR) 

Mean ± SD or 

Median (IQR) 

 

Gait Speed (m/s)3 

95% CI 

2.4 (0.7) 

2.3 to 2.7 

2.4 ± 0.4 

2.2 to 2.5 

2.1 ± 0.2 

2.0 to 2.3 

0.001 

5 Chair Repetitions (s)3 

95% CI 

8.0 (2.4) 

7.5 to 8.5 

8.2 ± 1.7 

7.7 to 8.7 

9.6 ± 2.2 

8.9 to 10.2 

0.003 

30 s Chair Repetitions 

(n)2* 

95% CI 

18.3 ± 4.8 

16.4 to 20.3 

17.8 ± 3.6 

16.2 to 19.3 

15.2 ± 3.2 

13.7 to 16.7 

0.027 

Values are displayed as mean ± SD or median (IQR) and 95% or Boostrap 95% CI. P = significance value for one-

way ANOVA or Kruskall Wallis test. *=T1 (n=25); T2 (n=23); T3 = (n=20). Post hoc analysis: 1= differences 

between T1, T2 and T3 P=<0.05; 2=difference between T1 and T3 P=<0.05; 3=T1 and T2 different to T3. 

 

 

 



 
 

 

Table 3: The association between knee extensor torque or muscle quality and functional performance for 

healthy 50 – 70y women (n=128) and per tertile. 

 n=128 T1 (=42) T2 (n=43) T3 (n=43) 

  Knee Extensor Torque (N·m /kg) 

Gait Speed (m/s) 0.60 (<0.01) 0.54 (<0.01)* 0.13 (0.40) 0.46 (<0.01)* 

5 Chair Repetitions (s) -0.35 (<0.01) 0.37 (0.02)* -0.08 (0.60) -0.24 (0.12) 

30 s Chair Repetitions (n) 0.47 (<0.01)1 0.41 (0.05)* 0.20 (0.35) 0.47 (0.04)* 

  Muscle Quality (N·m/kg) 

Gait Speed (m/s) 0.40 (<0.01) 0.27 (0.08) 0.12 (0.45) 0.24 (0.11) 

5 Chair Repetitions (s) -0.33 (<0.01) -0.39 (0.01)* -0.11 (0.48) -0.21 (0.19) 

30 s Chair Repetitions (n) 0.38 (0.01)1 0.31 (0.13) 0.04 (0.84) 0.40 (0.08) 

Values are displayed as Pearsons or Spearmans r (p-value). *=statistical significance. 1n=68. 

 

 

 

Figure 1: The association between knee extensor torque and 900m gait speed in healthy older women. 

 

 


