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A B S T R A C T

Mechanosensation and mechanotransduction are fundamental processes in understanding the link between
physical stimuli and biological responses which currently still remain not well understood. The precise
molecular mechanism involved in stress and strain detection in cells is unclear. Sarcomeres are the contractile
machines of a cardiac myocyte and two main sarcomeric components that are directly involved in the sensation
and transmission of mechanical stimuli are titin and filaments (thin and thick). Titin is known as the largest
protein in biology with a mass of up to 4.2 MDa. Its flexible region (I-band region) may function as a length
sensor (ε=l l/ 0) while its Z-disc domain may be involved in the sensation of tension and stress (σ F A= / ).
Filaments act as contractile machineries by converting biochemical signals into mechanical work which in
response cells either shorten or relax. Based on these considerations and a qualitative understanding of the
maladaptation contribution to the development of heart failure, an inverse problem approach is taken to
evaluate the contractile force in a mathematical model that describes mechanosensation in normal heart cells.
Different functional forms to describe the contractile force are presented and for each of them we study the
computational efficiency and accuracy of two numerical techniques.

1. Introduction

Cardiovascular disease is the leading global cause of death world-
wide with an estimated 17.3 million deaths per year expected to exceed
23.6 million per year by 2030 [1]. The cause of cardiac hypertrophy is
known to be from mechanical overloading of cardiac myocytes
(induced by, e.g., hypertension or myocardial infarction). There has
been at least 230 different mutations identified to cause more than 10
different human diseases [2,3]. A growth factor treatment was used in
heart failure patients but was not successful in avoiding the loss of
cardiac myocytes. This may indicate the lack of knowledge of the
underlying molecular events and thus hindering interference [4].
However, there has been studies that suggest mutations in genes are
linked to defects in mechanosensation and mechanotransduction [5]. A
comprehensive review on mechanosensation and mechanotransduction
in the pathogenesis of heart failure can be found in Linke and Knoll
(2010), Knoll and Marston (2012) and Buyandelger et al. (2014) [3–5].

The functional link between cardiac myocyte loss and regeneration
as well as the influence of mechanical forces on these events still
remain poorly understood [6]. Regeneration and loss are associated

with cardiac hypertrophy and its reverse, cardiac atrophy, where there
is an increase or decrease in cell size, respectively. This poses a
tremendous challenge for every cell since it requires new sarcomeres
to be added or removed (growth in 3 dimensions) and membrane
constituents to increase or decrease (growth in 2 dimensions) which also
cause an increase or decrease in physical stress, respectively. This leads
to significant remodelling processes including changes in angiogenesis
and the composition of the extracellular matrix [7]. Considering these
changes, membrane and cellular components have to change proportio-
nately to find a new equilibrium only within possible limits [8,9].

The development of heart failure can lead to a loss of contractile
performance (i.e. the cell's ability to contract and relax). This results in
a significant difference in contractile force between normal and heart
failure cells. Cellular models that are able to generate realistic
contraction patterns in heart cells will be very helpful in understanding
diseased-induced alterations in contractile properties. These models
contribute to the understanding of cardiac cell contractility in both
physiological and pathological contexts at single cardiac myocyte level
and may lay the foundation for quantitatively understanding the
mechanism of heart failure.
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In this paper, one aim is to make use of a previously published
model that could be used to measure the contractile force in a single
cell and propose an inverse problem approach to evaluate the
contractile force. This approach could become a useful tool in studying
disease-induced alterations in contractile properties at single cardiac
myocyte level. The model has been derived based on physical laws and
linear elastic theory linking to the sarcomere dynamics (Sections 2 and
3). A brief biological background of the sarcomere dynamics with
linkages to the role of intracellular Ca2+ dynamics in triggering the
contractile mechanism is reviewed (in Section 2) with emphasis on the
three important processes and features that contribute to active,
passive and viscous forces in muscle contraction: calcium-induced
calcium release (CICR), sliding filament theory and the giant molecule
titin. The other aim is to provide the origins of the model and
encourage future developments. In Section 4, two numerical techni-
ques (i.e. Quantum-behaved Particle Swarm Optimisation (QPSO) and
Gauss-Newton (GN)) are used to identify the contractile force and cases
are presented in which different functional forms for the contractile
force are used. Section 5 is a comparison (i.e. comparing computational
accuracy and efficiency) of the results obtained for each case study
using either QPSO or GN and wherever suitable a hybrid of these two.
The suitability of the method and function in each case are discussed
with some possible further improvements in Section 6.

2. Excitation-contraction mechanism in normal heart cells

A single muscle cell consists of sarcomeres, each of which extends
from one Z-line to the neighbouring Z-line and contains many parallel
thin and thick filaments as illustrated schematically in Fig. 1. Thin
filaments consist of actin, tropomyosin and C-, I- and T-troponins [10]
(two of which are shown in Fig. 1). Thick filaments are mainly
composed of myosin and myosin binding proteins [10] (Fig. 1).

The excitation-contraction mechanisms in the cardiac muscle are
coordinated by an autonomous electrical activation generated in the sino-
atrial node and propagated through the heart wall [11,12]. The mem-
brane goes through depolarisation which causes the opening of voltage-
gated channels on the sarcolemma for the influx of Ca2+ into the cell
triggering a release of Ca2+ from the sarcoplasmic reticulum (SR) into the
surrounding sarcoplasm [13]. This phenomenon is known as CICR.

The release of Ca2+ from the SR binds to TnC sites (Fig. 1) which
causes a conformational change in tropomyosin and releases the
inhibitory subunit TnI. The troponin/tropomyosin complex shifts to
the centre of the groove between actin monomers allowing actin-
myosin interaction [14–16]. Myosin heads form crossbridges with

actin by attaching to these active site and perform power strokes by
pulling the actin filaments towards the centre of the sarcomere [17]. A
series of power strokes causes these filaments to slide along each other
(giving rise to the sliding filament theory) thus shortening the muscle
[17]. This is the mechanism that is known to cause muscle contraction.
However, uncertainties remain associated with the termination of the
release of the CICR mechanism which is important for diastolic refilling
of the heart [18,19]. Ca2+ that is released from the SR appears as Ca2+

sparks which propagate as waves throughout the cardiac myocytes. The
effects of this in full width cardiac myocyte has recently been
experimentally and theoretically investigated [20]. Here a stochastic
model for calcium concentration has been used to model the stochastic
behaviour of calcium release from channels and was compared to the
experimental results. This is known to cause perturbations in the
cellular mechanical response which is yet to be studied.

Thin filaments extend from the Z-lines through to the I-bands
(where it overlaps with the thick filaments) and terminate on either
side of the H-zone (Fig. 2). Thick filaments are connected to the Z-lines
through the protein titin and are anchored at the M-line located at the
centre of the sarcomere (Figs. 1 and 2) [11]. The sliding filament theory
was originally proposed by two papers published consecutively: first by
Huxley and Niedergerke (1954), and the other by Huxley and Hanson
(1954). They believed that the observed changes in the cross striations
of muscle during contraction implied that the actin and myosin
filaments are arranged in parallel in the A-band and in the absence
of ATP there would be crossbridges formed between them during
muscle contraction. In both contraction and stretching, the A-band
region remained relatively constant in length until the sarcomere
reached the length of the A-band where beyond this point further
shortening would fold up the ends of the myosin whereas the I-band
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Fig. 1. Schematic view of the influx and outflux of calcium in a cardiac myocyte and the CICR process. Ca2+ released from the sarcoplasmic reticulum (SR) binds to TnC (leading to
contraction) and then Ca2+ unbinds from TnC and is pumped back into the SR (during relaxation). Higher magnification around M-line is adapted from [10].
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Fig. 2. Mechanical model of the sarcomere with directions of active force, FA, passive

force, FP , and viscous force, Fv, during shortening.
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and H-zone of the sarcomere decrease or increase, respectively. The
process of stretching would be inhibited by crossbridges between the
actin and myosin filaments and the authors refer to evidence that
muscles are readily extensible in the absence of these linkages [21,22].

The giant protein titin plays an important part in the sliding of the
filaments by maintaining the sarcomeric structural integrity. During
stretching and contraction titin is important for thick filaments to
remain central in the sarcomere which ensures the development of
balanced forces between both halves of the sarcomere [23]. It has a
complex structure dependent upon elasticity which contributes to the
stress-strain relationship of the cardiac muscle. Each titin molecule
spans both the A-band and I-band regions of the sarcomeres (Fig. 2)
[24,25]. Titin in the I-band region has been identified as the function-
ally elastic region that acts like a bidirectional molecular spring
responsible for the generation of passive force when stretched or
compressed. This region consists of tandemly arranged protein do-
mains which unfold when stretched or compressed and refold when
tension is removed. The near Z-disc region of titin is the inextensible
region that can withstand compressive forces during shortening. [24].

In the case of no external force, cardiac myocytes are at an
equilibrium sarcomere length (slack length) of ~ 1.9 μm. Titin is highly
flexible such that thermally driven bending motions shorten the segment
to a near zero end to end length making it appear folded. Stretching the
sarcomere increases the end to end length and reduces the bending
motions of the extensible region. This gives rise to an opposing force in
titin also known as passive force that pulls Z-discs toward each other
[24]. In the case of sarcomere shortening below the slack length, titin's
extensible region is stretched in an opposite direction of that when
elongated and the thick filament moves quite close to titin's near Z-disc
region. This generates restoring force pushing the Z-discs away from
each other toward sarcomere slack length [24]. These forces generated
during sarcomere shortening are demonstrated in Fig. 2. In this paper,
the intracellular calcium concentration is not considered thus the model
is restricted to the vibration process as described below.

Fig. 2 is a schematic view that represents the contributing forces in
sarcomere shortening. The sarcomere compression or stretching is
opposed by passive force Fp and viscous damping force Fv (Fig. 2). The
passive force Fp is developed by the titin elastic module as described
earlier, FA is a time dependent active force generated by actin-myosin
interaction from crossbridge formations. Fv is a viscous damping force
which is proportional to the shortening velocity dl dt/ where l is the
sarcomere length. Therefore, the total force FTotal acting upon the
sarcomere during contraction can be described as

F F F F= + +Total A p v (1)

The sarcomere dynamics is similar to a damped spring-mass system
[26,27] and thus the cardiac cell contractile behaviour can be described
by a simple vibration model in Eq. (1) [27,28]. Ford, Huxley and Simmons
(1976) showed that Stokes's (1851, p. 20) formulation of an oscillating
rigid plate in its own plane can be applied to a muscle fiber oscillating
parallel to its axis [29,30]. In this paper, a similar formulation is made with
constant and numerical values for the cell elastic modulus and viscosity
damping factor. The purpose of doing this is to have a mathematical model
describing the longitudinal vibration of a cardiac myocyte derived from
sarcomere dynamics in order to demonstrate the application of two
numerical techniques in such problems to encourage further development.
The longitudinal vibration model is described in Section 3.

3. Derivation of the vibrationmodel for a single cardiacmyocyte

The healthy human myocardium consists of myocytes which are
attached to each other to form a spatial network. These cells are usually
in cylindrical shape [31] and range in length from 50 to 120 µm and in
diameter between 5 and 25 µm. In this paper, a cardiac cell of length
100 µm is considered. Cell diameters considered in some models and
experiments are: 16 µm in the model developed by Courtemanche et al.

(1998) where a mathematical model is developed to describe the action
potential of the cell membrane [32] and 27 µm in the model developed
by Tracqui and Ohayon (2009) where an intracellular calcium model is
coupled with a mechanical model [33]. Experimental procedures by
Anand et al. (1997) has taken rat left ventricle cardiac myocyte of
diameters ranging from approximately 16 µm to 23 µm [34]. In this
paper, a cell with diameter 20 µm is considered.

In Eq. (1), the total resultant force FTotal acting on a unit sarcomere
is proportional to the acceleration of the sarcomere according to
Newton's second law of motion, i.e.

F ma=Total

where m and a are the mass and acceleration of the sarcomere,
respectively. Eq. (1) is then rewritten as

⎛
⎝⎜

⎞
⎠⎟F F l t F l t F dl

dt
t m l t

t
= ( , ) + ( , ) + , = ∂ ( )

∂Total A p v
2

2

Assuming the cardiac myocyte has a constant elastic modulus E and
cross sectional area, A, the passive force (i.e. net elastic force developed
by deformation of the titin molecule) may be described by EA u x t

x
∂ ( , )

∂

2

2

using elastic theory [35] where u x t( , ) is the displacement of a unit cell
as a function of location and time, and the damping force can be
described by c u

t
∂
∂ where c is the viscosity damping factor. So the

excitation-contraction mechanism in the cardiac myocytes can be
described by using the longitudinal vibration model given below

ρA u x t
t

c u
t

F x t EA u x t
x

∂ ( , )
∂

+ ∂
∂

= ( , ) + ∂ ( , )
∂A

2

2

2

2 (2)

where A is a known parameter, ρ, the cell density, can be found from
published literature and u x t( , ) can be obtained by a high-resolution
microscope with real-time video output. This model describes the
displacement in a single cell during contraction and is previously
proposed by Yin et al. (2005). In this paper, the contractile force
obtained by Yin et al. [27] based on a moving magnetic bead is
adopted. Based on this measurement technique, the external force was
generated by applying the magnetic field on a magnetic bead located at
the cell end, and the contractile force is derived based on the maximal
displacement of cell contraction and magnetic loading force. Both
forces are applied in pairs at both ends of the cardiac myocyte with
opposite directions. Eq. (2) can then be rewritten into

ρA u x t
t

c u
t

EA u x t
x

f x t f x t∂ ( , )
∂

+ ∂
∂

= ∂ ( , )
∂

+ ( , ) + ( , )in e

2

2

2

2 (3)

where f x t( , )in is the internal force (i.e. contractile force) representing
active force due to crossbridge formation and f x t( , )e is the external
loading force representing the magnetic force. In this study, the
internal force in Eq. (3) is identified using an inverse problem approach
and different functional forms are introduced to study the performance
of two numerical techniques.

This section focuses on the derivation of a mathematical model that
could be used to measure contractile properties in a single cardiac myocyte.
The passive component of cell biomechanical response was derived using
linear elastic theory and the active component is left as an unknown term
to be determined later using an inverse problem approach. Although this
model is proposed previously by Yin et al. (2005), here we derive each of
these terms to clarify their linkages to the biophysical phenomenon and
establish an understanding of this model for any implementation.

4. An inverse problem approach to determine the internal force

For the inverse problem approach, data for displacement and
internal force in a single cardiac myocyte is taken from Yin et al.
[27]. They propose a measuring technique that involves using a moving
magnetic bead to derive the contractile force and mechanical properties
of a single cardiac cell. This is done by measuring the contraction force
under different levels of magnetic force loading. The measuring system
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is mainly based on a high power inverted microscope with video output
and edge detection as well as a moving magnetic bead based magnetic
force loading module. Initially, maximal displacements of a single
cardiac myocyte have been recorded during contraction and then a
magnetic bead has been attached on the right end of the myocyte that
moves during contraction. Again the contraction processes are re-
corded under different magnitudes of magnetic force loading by
adjusting the field. The formula for the internal force was derived from
displacement measured at the right end of the cardiac myocyte under
different levels of external forces. The authors showed that the peak
displacement values and the magnitude of force load are linearly
related. They also showed, through comparison with experimental
results, that their proposed method could be used to measure the
contractile force of a single cardiac myocyte. This method is proved to
be more advantageous over other measuring techniques such as Tarr
et al. (1983), Kent et al. (1989), Kawai et al. (1993), Lin et al. (2000),
Tan et al. (2002), Laslett et al. (2012) [1,36–40] due to the following:
(1) forces can be measured without direct connections to the cell; and
(2) the measured force has high sensitivity and a large dynamic range
(pN to µN). Due to these advantages, the measurement method in [27]
is adopted in an inverse problem approach to evaluate the internal
force and the results are used in the validation and optimisation process.

Two numerical techniques, QPSO and GN, are used to identify the
internal force (Table 1 Case 5) in Eq. (3) and different functional forms
are presented (Table 1 cases 1–4 and 6) in order to study the
performance of these techniques. QPSO is a stochastic based method
which is a nature inspired algorithm based on swarm intelligence
characteristics of birds and fish. Further details on the QPSO and its
implementation can be found in [41]. The GN in this study is an
iteratively regularised least squares method with a constant damping
parameter. This is a gradient based method and thus is very sensitive to
initial conditions. An initial approximation close enough can reduce the
instability in this method speeding up the convergence of the algo-
rithm. To overcome this sensitivity, the QPSO is used to obtain a good
initial approximation for the GN. Here, the computational details are
given prior to the application of the inverse problem approach.

The cell centre is fixed at the bottom as illustrated in Fig. 3. This
follows from the study by Yin et al. (2005) where the centre of the
myocyte is fixed at the bottom in order to prevent intracellular
distortion and retain the morphology of myocytes while studying
changes in the cellular structure [27].

The initial and boundary conditions from Yin et al. [27] are used. It
is assumed that cell fluxes at the boundaries vanish thus the boundary
conditions = 0u

x
∂
∂ for x = 0 and x L= (where L is the length of the cell)

are applied at both ends of the cell [27]. These boundary conditions
allow cell movement at the ends. The initial conditions used are u x( ,0)
=0 and = 0u x

t
∂ ( , 0)

∂ (Fig. 3). These conditions means that the initial

displacement of the cell is zero (i.e. there is no displacement (or
movement) in the cell initially). As demonstrated in Fig. 3, the loading
force, f x t f x t( , )+ ( , )e in , is applied at the ends of the cell with opposite
directions from time t = 0.12s for approximately 0.65 s. Numerically
this is applied everywhere in the cell except for the centre where it is
fixed. This is necessary for the convergence of the numerical schemes.
The applied external force is given as

⎧
⎨⎪
⎩⎪

f t( ) =
8.4 × 10 N x < x
0 x = x
− 8.4 × 10 N x > x

e

c

c

c

−7

−7

where xc is centre of the cell which is fixed.
Any inverse problem approach involves the evaluation of an

objective function, which in this case, can be defined as Least
Squares (or the residual sum of squared errors) of the pointwise
discrepancies between the model output and the measurement (at the
right end point of the cell)

J f u f t u t( ) = ( ; ) − ( )in in meas 2
2

where u f ;t( )in is the time varying displacement model output with the
internal force, fin, and u t( )meas is the time varying measured displace-
ment. The aim of this optimisation problem is to determine the internal
force, fin, which minimises the functional J f( )in . The displacement
model output is obtained by solving the partial differential equation
(PDE) in Eq. (3) using the finite difference method (FDM, here, the
fully implicit scheme is used as the PDE solver). The implicit scheme is
unconditionally stable and convergent (O x t(Δ , Δ )2 ) for this problem.

For the FDM simulations, the computational grid is divided into Nx

number of spatial grid points with grid size x x x∆ = −i i+1 = L
Nx

and Nt

number of temporal steps with step size t t t∆ = − =k k
T
N+1

t
,

k N=0, 1, …, t , (where T is the total simulation time). The spatial
and temporal terms in Eq. (3) are discretised using second and first
(forward Euler) order centred differences derived from the Taylor series.
Using standard finite difference notation the displacement at spatial
position i( +1) and temporal position k( +1) is discretised as below:

u
x

u u u
x

∂
∂

=
−2 +

∆
i k i k i k2

2
+1, +1 , +1 −1, +1

2

u
t

u u u
t

∂
∂

=
−2 +

∆
i k i k i k2

2
, +1 , , −1

2

u
t

u u
t

∂
∂

=
−

2∆
i k i k, +1 , −1

The computational grid given in Fig. 4 demonstrates the FDM using
central differences as given above. Grid points in dashed lines are used
as ghost points to approximate displacement at the two boundaries.

The computational details with the initial and boundary conditions,
and the applied forces are all given and we can now apply the inverse
problem approach to Eq. (3) to identify the internal force. In Table 1
Case 5, initial data is generated randomly within a specified interval
and is optimised to obtain the internal force in terms of data points.
Cases 1–4 and 6 involve different functional forms for the internal
force. In cases 1–3, the internal force, f L t( , )in , is assumed to be either
of the following: a polynomial of order 21 (Case 1), a piecewise
polynomial split into two time intervals-one of order 5 in

t0.12 ≤ ≤ 0.2 and the other of order 8 in t0.2 < ≤0. 825 (Case 2), and

Table 1
Functional forms for the internal force profile used in the inverse problem approach and
the algorithm used for each case.

Case fin (L,t) Algorithm

1: f L t t( , )=polynomial of order21,0.12 ≤ ≤ 0.825in QPSO and GN

2: ⎧⎨⎩f L t
t

t
( , )=

polynomial of order5,0.12 ≤ ≤ 0.2
polynomial of order8,0.2 < ≤ 0.825in

QPSO and GN

3: ⎧
⎨⎪
⎩⎪

f L t
t

t
t

( , )=
polynomial of order5,0.12 ≤ ≤ 0.2
polynomial of order8,0.2 < ≤ 0.765

polynomial of order6,0.765 < ≤ 0.825
in

QPSO and GN

4: f L t t( , )=Fourier series with22terms,0 ≤ ≤ 1in (scaled from

π π[− , ] to [0,1])
GN

5: f L t t( , )=random initial data,0 ≤ ≤ 1in QPSO

6: f L t( , )=K(t)u(L, t)in where

⎧
⎨⎪
⎩⎪

t
t
t

K(t)=
polynomial of order7,0.12 ≤ ≤ 0.2

polynomial of order22,0.2 < ≤ 0.76
polynomial of order15,0.76 < ≤ 0.83

QPSO

0),0(
=

∂
∂
x
tu

0),(
=

∂
∂
x
tLu

0)0,(
=

∂
∂

t
xu

0)0,( =xu

Fig. 3. Representation of the cardiac cell with initial and boundary conditions and force
load applied at each end. (Note: this is just a demonstration of how the forces are applied
at both ends of the cell and does not represent the computational domain.)
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a piecewise polynomial split into three time intervals - one of order 5 in
t0.12 ≤ ≤ 0.2, one of order 8 in t0.2 < ≤ 0.765 and the third of order 6

in t0.765 < ≤ 0.825 (Case 3). In case 4, a Fourier series with 22 terms is
used. Finally in case 6, it was assumed that the internal force can be
described by K(t)u(x, t) where K(t) is a piecewise polynomial specified
over three intervals: one of order 7 in t0.12 ≤ ≤ 0.2, one of order 22 in

t0.2 < ≤ 0.76 and the final of order 15 in t0.76 < ≤ 0.83.
QPSO is very advantageous for two main reasons: (1) when there is

no knowledge or information regarding some terms or parameters in
the model it's more convenient to specify an interval and the solution
can take any value in this interval based on a random generation; and
(2) GN is a gradient based method and thus requires good initial
approximations for better convergence of the method. This can be
obtained using the QPSO algorithm. Due to these advantages, for cases
1–3 a hybrid method (that integrates GN and QPSO) is used. Initially,
the QPSO algorithm is performed for 5–10 iterations to obtain a good
enough initial approximation (of polynomial parameters) that could be
used in the GN algorithm.

In case 4, only GN is used with a fixed initial approximation. It has
worked well in this case and no stability issue was observed. This is due
to the nature of the functional form involving the summation of a series
of nxsin( ) and nxcos( )in the time domain (Note that the initial condition
must be very small since the order of magnitude of the internal force is
10−6). The general Fourier series is applied to π π[− , ] and needs to be
scaled to T[0, ] for our time domain. This has been done by a simple
transformation of x πt T= /(0. 5 ) where T=1 is the final time step. For
Case 5 and 6, QPSO is used with a specified interval for the initial
random data (in Case 5) and initial random data for the polynomial
parameters (in case 6).

In this section, the problem is set up where all boundary and initial
conditions are known as well as the displacement and external force.
This is an ill-posed problem since the internal force term is not known
and thus it is suitable to use an inverse problem approach to identify
this term. The two numerical techniques proposed for this are QPSO
and GN. In Case 5, the QPSO is used to obtain the time variation of the
internal force in terms of data points whereas in the rest of the cases
different functional forms are presented. In some cases, a hybrid
method (i.e. QPSO and GN) is used and found to be more advantageous
than using only one of the techniques. In these particular cases, the GN
would have convergence issues but when this issue is addressed by
using a good initial approximation this would make the method more
computationally efficient than the QPSO. This hybrid method can be a
very powerful technique to overcome the limitations and thus would be
more preferable in other such applications.

5. Simulation results

The displacement solutions from the FDM was simulated with the
parameters given in Table 2. Note that Nx and Ntshould be chosen so
that a stable solution of the system of linear PDEs is guaranteed if using
a FDM explicit scheme. The density of the cell was taken from those
values used in [42] for rat myocardial tissue regional densities and
Eand care numerical values that guarantee a solution.

Results using each of the cases presented in Table 1 are graphically
shown in Fig. 5 and the least squares error calculated in each case is
given in Table 3. The main aim of this study is to identify the internal
force in Eq. (3) and investigate the performance of the two techniques

(especially when using different functional forms). This is determined
by studying their accuracy in fitting and computational efficiency. In
cases where QPSO is used, the population size is set to 50 and
maximum iterations to 100. For the hybrid scheme, the GN is set to
run for a maximum iteration of 1000, α=0. 0001 (for cases 2 and 3),
α=0. 001 (for case 1) and δ=0. 001 (for cases 1–3). In Fig. 5, cases 2 and
3 give similar results and show good agreement with the measured data
(blue solid line) from Yin et al. (2005) but case 3 provides a fit with a
slightly smaller error but computationally is less efficient by approxi-
mately 87 s. This is due to having more parameters to optimise (22
parameters in case 3 and 15 parameters in case 2). Case 1 involves
fitting one polynomial (red dashed dotted line) with 22 parameters and
computationally takes approximately 15 s longer in comparison with
case 3 and also gives a slightly larger error. This is due to the margin of
error of trying to fit one polynomial which cannot describe the internal
force very well. As seen in Fig. 5 (top) the peak displacement is not well
captured.

The Fourier series performed reasonably well and only required 10
iterations to converge but an oscillation can be observed at the start
(i.e. t0< <0. 12) and at the peak around time t=0. 2 which adds to the
overall error. This is due to Gibbs phenomenon and there are ways to
avoid (or reduce the effects of) this issue by using the spectrum-splitting
technique [43] but this will not be addressed any further in this study.

Case 5 appears to oscillate around the measured data due to the
stochastic approach in QPSO. Although this functional form provides
good results as seen in Table 3, it is the second most computationally
expensive case which is approximately 6 times as long as that of case 2.
Case 6 is the most computationally expensive due to using QPSO to
optimise for 47 parameters. This functional form was presented to
demonstrate that a formulation involving the PDE variable can give a
completely different internal force solution in comparison with the rest.
This can be useful in some cases when the internal force term depends
on u or is an nth partial derivative of u.

6. Discussion and conclusion

A vibration model based on the active, passive and viscous force
developments in sarcomere shortening is described and linked with the
physiology of mechanosensation. An inverse problem approach was
taken to identify the internal force in this model using QPSO in Case 5.
Different functional forms were presented (cases 1–4 and 6) to study
the performance of the numerical techniques. Some of the functions
provide a good fit to the internal force function whereas some suffer
limitations. It was shown that QPSO is very useful when there is no
knowledge regarding the shape of the internal force and thus only an
approximate interval needs to be specified to successfully obtain the
force. This approach is very useful prior to any attempt to functional

Fig. 4. Schematic diagram of the computational grid with grid points represented as dots
and displacement for the i k th( , ) position shown as ui k, .

Table 2
Biophysical and computational parameters used in the simulations.

Biophysical/
Computational
Parameters

Definition Value Units

L Length of cell 100 × 10−6 m
Nx Number of spatial

grid points
300 –

Tmax Final time step 1 s
Nt Number of time steps 500000 –

E Cell elastic modulus
(Youngs modulus)

4.07 N/m2

A πr( )2 Cross-sectional area
of cell with radius

10μm

π10 × 10−6 m2

c Viscosity damping
factor

0. 02 Ns/m

ρ Cell density 1. 053(1053kg/m )3 g/mL
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fitting. From the results in Table 3, we observe an increase in computa-
tional time as the number of parameters is increased (Case 5 and 6). This
does not seem to be the case for the Fourier series where 23 parameters
need to be optimised. This is due to the nature of the function and the
margin of error. In the case of the GN, an initial approximation was

obtained from QPSO due to sensitivity to initial conditions. With this
study we show that QPSO and GN perform well for evaluating the
internal force (i.e. contractile force) in single cardiac myocyte and could
be used as a supplementary tool in experimental studies when measur-
ing quantities with biophysical parameters. It is a very useful alternative
approach to the measuring technique proposed by Yin et al. (2005). The
vibration model considered in this paper can be coupled with an
intracellular calcium compartment model which can fully describe the
mechanosensation process in a single cell. Inverse problem approach
can then be applied to this coupled model to measure contractile force
associated with intracellular calcium concentration.
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