
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Forensic Analysis of Digital Attack Tool Artifacts

Fletcher Bayley and Diane Gan

CSAFE Centre, School of Computing & Mathematical Sciences, University of Greenwich, UK

D.Gan@gre.ac.uk

Abstract. This work was to investigate the forensics artifacts left by network

attack tools within Linux and UNIX operating systems and to develop an appli-

cation called HexaFind. The application enables a forensics investigator to col-

lect the digital evidence left behind by the usage, installation or removal of spe-

cific attack tools. The main objective was to decrease the complexity of forensic

investigations within these operating systems and to increase the detection rate

of forensic artifacts relating to criminal or civil evidence of malicious conduct.

Keywords: Linux, UNIX, forensics investigation, digital evidence, network

enumeration, digital artifacts, HexaFind, big data

1 Introduction

The continued and growing trend towards the frequency and severity of network at-

tacks against corporations, private individuals and even towards countries has

prompted the development of network attack detection tools. In order to defend

against threats, security is not only required in a pre-emptive scenario, but also ex

post facto, whereby the criminal has been detected and the acquisition of evidence has

begun in order to facilitate a conviction.

Many system files within the Linux and UNIX operating systems are modified

when different types of attack tools are used and these key incriminating files or re-

positories may be overlooked by law enforcement and forensic investigators when

attempting to collect evidence left by a malicious user. It is also extremely useful for a

forensic investigator to be able to identify whether an attack was perpetrated by the

user, or whether the source of the attack came from outside and this can also be

proved, by detailed analysis of the logs and resources within Linux. Currently there

are only a few tools that can directly identify the use of a digital attack tool, within the

Linux/UNIX operating system and therefore this work should help to address this

imbalance.

Work similar to HexaFind has been identified. Hargreaves et al. discuss a frame-

work which extracts timeline data to identify high level events using pattern matching

[1]. An open-source tool to collect forensics evidence is proposed by Zhang et al.,

which runs on a live DVD/USB based on Linux [2]. Both of these papers include a

discussion of Log2timeline, which is mainly a Windows based tool, but it does run on

Linux platforms and creates a single timeline by identifying various artifacts and sus-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/82894052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:D.Gan@gre.ac.uk

picious files within the file system [3]. Fsaudit is a scripted tool, written in Perl and

created for the auditing of file system changes [4]. It has some similarities to

HexaFind in that it highlights any suspicious changes or recently modified files.

As a Linux system is entirely based around text, whether stored as a string or an in-

teger, all values are held within files. If it is not a file, then it is a process (which often

cannot be interrupted). Therefore, the assumption is made, that the contents of a

Linux/ UNIX hard drive may be enumerated easily. Strings held within files are able

to identify compromised systems or those which had been used for attack purposes,

by dynamically searching through every file (ignoring running processes), using spe-

cific search criteria. Results returned are based on a ratings value system using key-

words, similar to a search engine. Search engines enumerate the results, looking for

keywords and returning hits based on their inclusion/ exclusion. In contrast, the

scripted application developed here uses data mining to examine the hard drive, re-

turning results based on keywords and provides them with a relevancy rating.

The tool HexaFind was developed to assist a forensics investigator in determining

if any digital attack tools have been used in a Linux operating system. The attack

tools tested were Metasploit, Wireshark, Nmap, tcpdump and LOIC (Low Orbit Ion

Cannon). By examining the system for digital fingerprints, a forensic investigator

would be able to determine if an attack has occurred by identify the key tell-tale signs

(digital artifacts) left behind by these tools using data mining.

This paper is laid out as follows. Section 2 discusses the methodology used to build

the HexaFind application, section 3 is an overview of the application and section 4

discusses the results obtained by running the tool after specific attacks had occurred.

A discussion is presented in section 5 and the conclusion is found in section 6.

2 Operational Methodology of the Application

The application has been built using Bash (Bourne-again shell) scripting within a

UNIX POSIX environment, working with multiple distributions. This programming

language was chosen in order to keep the program portable, and reduce complexity.

All results retrieved by the scripted application are based around the semantics of

language or symbolic notation. Due to the way in which Linux creates and edits files

attempting to find artifacts which are created, modified or deleted during the same

time frame, but are not symbolically or semantically linked, is an inaccurate method-

ology when concerning in-vivo or recently in-vitro systems. The scripted application

instead relies on symbolically/semantically related files which contain information

related to the operation of the network attack tools specified by the user or by using

the inbuilt default. Recently edited/created files are still examined, except without the

main premise that their identification will be based around file time stamps, which are

easily modified. Therefore, rather than identifying files/artifacts which have been

marked as created or modified, the basis of the local search is founded instead on the

semantic/symbolic link between the file or its content and the network tool(s) speci-

fied as the search query. The operation of the tool can be further customized by edit-

ing the symbolic word lists. These word lists are part of the program, and offer an

internal way to customize the results seen. By using UNIX based text editors, these

word lists can be customized and thus easily changed.

There are four different categories of result within the filtered data set. These four

categories comprise: OK [Safe], Warnings [Suspicious], Investigate [Malicious], and

False [Incorrect]. The respective category relevancy ratings are shown below, where

x is the number of matched keywords:

 , , , (1)

Fig. 1. HexaFind Logic Engine Diagram

The above ratings (1) are based on the inclusion of certain symbolic words – such

as “port”, “attack” or “scan”. This method of analysis also tests for false positives,

ensuring incorrect results are ignored. All keywords used by the scripted application

can easily be edited. The results are based on a ratings value system which uses key/

symbolic words. For example, an integer is incremented for each additional key/

symbolic word that is present within the result, see Fig 1. Therefore the result in this

case would return a ratings value of three, for the three symbolic words mentioned

above. These are derived as follows, with the bold text indicating the specified key/

symbolic word:-

“/./tmp/logs/attack.txt:nmap attack log. 64 hosts scanned. 443/tcp port open, vulner-

able”

The logic engine used is proprietary. An argument is provided by the user (the que-

ry) for all known tools. This can be the name of a specific attack tool such as “nmap”,

or a null string (“”). If a null string is used then all the tools specified in the default

attack list will be included in the search. The unfiltered results are iteratively held and

processed in a “for loop”. The loop continues until all results have been processed.

If the string is not null, then the entries within the unfiltered results file are pro-

cessed against the contents of the current attack list. For each matching term in the

current attack list, a relevancy rating of one star (+1) is added to the individual result.

After this first processing stage has passed, the partially filtered result is compared

against the keywords list, irrespective of a null query. The second stage of processing

adds a relevancy rating of one star (+1) for each matching term in the keywords list.

The third stage is testing for false positives. The result is compared to a false posi-

tive file, whereby specific terms are set, and any results which match have their

“false” variable incremented and are subsequently removed from the filtered, pro-

cessed, dataset, regardless of the relevancy rating.

The fourth stage is classification. Here, results are classified into their respective

categories and logged to the corresponding results file. This operation continues until

all results have been processed. This also tests for false positives, allowing for incor-

rect results to be ignored. All symbolic words used by the scripted application can

easily be edited by the user. These results and their categories are then calculated as a

percentage of the total. The percentages are then used to dynamically create the 3D

pie chart via the amended 3rd party script [4]. When all the results are collated, the

investigator is presented with the option of choosing between HTML or text output

and the report file is dynamically generated.

3 Overview of the Application

The scripted application makes most use of inbuilt Linux and UNIX based command

line packages in order to retrieve the results. This big data set is achieved through the

use of regular expressions and widely available fundamental packages. The applica-

tion HexaFind comprises five modules which are shown in Fig. 2.

Fig. 2. HexaFind Module Design Diagram

 Main.sh – The main program module is the textual user interface. This module

runs the other scripted modules iteratively with the user specified mode of opera-

tion, until they return an error code other than zero. If the error code is equal to ze-

ro, the main module returns to the start of execution, and waits for user input.

 Trace.sh – The forensic fingerprinting module searches and enumerates the con-

tents of the local hard drive in order to identify the attack traces. This provides un-

filtered results, which are then converted, filtered and classified within this module.

 Report.sh – This is the basic text reporting module, originally designed to be port-

able, which runs automatically. This module offers a textual output, which is simi-

lar to that displayed through the console to the user, making it useful for command

line only deployments which have no access to a graphical user interface.

 Report_html.sh – The HTML reporting module (Report_html.sh) can also be run to

create a HTML formatted output. It runs the 3rd party 3D pie chart scripted module

in order to simplify and visualize the dataset.

 Pie3d_v2.sh – A 3rd party 3D pie chart creation script [5] has been modified to

enable the investigator to visualize the results. This is run by the HTML reporting

module, but can be run independently. However, data is required to first be placed

into a structured text file in order to define the visual layout of the 3D pie chart.

4 Results from HexaFind

A number of tests were performed by attacking the server using commonly available

attack tools (Metasploit, Wireshark, Nmap, tcpdump and LOIC). The results from

HexaFind are presented below.

[==========HexaFind:Trace Result #44=========]

/./tmp/msfe-nmap20130102-30793-1s8ajiu:</nmaprun>

Current Tool: nmap (1)

Current Keyword: msfe (1)

Current result:45 has a relevancy rating of [**] 2 stars

[OK]

Fig. 3. An OK [Safe] Result

Fig. 3 shows an OK result, as it has only achieved a relevancy rating of 2 stars.

This therefore this will be classified as a safe result [OK]. The result shown details the

use of the Metasploit Framework Environment or “msfe” used in conjunction with

Nmap.

[==========HexaFind:Trace Result #85=========]

/./tmp/bitrock_installer_13595.log:Uninstalling /opt/metasploit-

4.5.0/common/share/nmap/nselib/data/snmpcommunities.lst...

Current Tool: nmap (1)

Current Keyword: snmp (1)

Current Keyword: log (2)

Current result:86 has a relevancy rating of [***] 3 stars

[WARNING]

Fig. 4. A Warning [Suspicious] Result

A warning is shown in Fig. 4, which is the result of one matching attack tool

(“nmap”) and two matching keywords (“snmp” and “log”) being filtered from the

processed string.

[==========HexaFind:Trace Result #43=========]

/./tmp/msfe-nmap20130102-30793-1s8ajiu:<runstats><finished time="1357136502"

timestr="Wed Jan 2 14:21:42 2013" elapsed="188.73" summary="Nmap done at Wed Jan

2 14:21:42 2013; 1 IP address (1 host up) scanned in 188.73 seconds" ex-

it="success"/><hosts up="1" down="0" total="1"/>

Current Tool: nmap (1)

Current Keyword: ip (1)

Current Keyword: msfe (2)

Current Keyword: host (3)

Current Keyword: scan (4)

Current result:44 has a relevancy rating of [*****] 5 stars

[INVESTIGATE]

Fig. 5. An Investigate [Malicious] Result

Fig. 5 shows a malicious result that has been detected due to the query specified

(attack tool name = nmap), in addition to the four separate keywords that have been

found, which are “ip”, “msfe”, “host” and “scan”.

[==========HexaFind:Trace Result #746=========]

/./opt/metasploit-4.5.0/common/lib/python2.5/site-

packages/zenmapGUI/TopologyPage.py:# ***********************IMPORTANT NMAP LICENSE

TERMS************************

Current Tool: nmap (1)

Current Keyword: port (1)

Current Keyword: log (2)

Current result:747 has a relevancy rating of [***] 3 stars

[FALSE POSITIVE]

Fig. 6. A False Positive [Incorrect] Result

Fig. 6 illustrates an incorrect result, due to the term “.py:” being specified within

the false positive input file. The string “.py:” indicates the presence of a Python script,

and so this was removed, as large numbers of false positive results were being gener-

ated. If identified as a false positive, then the current result is appended to the false

positive list, overriding any previous decisions made.

A sample section of the final report is shown in Fig. 7. As can be seen, the details

of the investigator, with dates and times, are included, along with the total number of

results analysed and a dynamically generated 3D pie chart of the attacks identified.

This gives a high level overview of the current report and its findings. The HTML

report is easier for the investigator to read.

Fig. 7. HexaFind HTML Report

5 Discussion

Often attackers do not think about the long term consequences of their actions and the

possible repercussions. Although those that do will often take precautionary measures

in order to hide files from view or remove them entirely. This is due to the datum that

the implementation of relatively simple techniques could ultimately be able to hide

relevant important facts from system administrators or forensic investigators. Even

being able to replace keywords in a system would cause problems for this project, as

most of the algorithms that are implemented are based on information that is stored

textually throughout the system. If the attacker is technically skilled they may be able

to alter critical evidential information that is held within the system. Log items can be

extremely helpful and they are often the only piece of information which connects an

attack to a computer or user. If the log files are successfully erased from the comput-

er, then it will make the investigator’s job of proving that an attack was initiated near

impossible. Therefore any small changes that occur to a system must also be account-

ed for. Even the smallest detail may assist in convicting a suspect of tampering with

log files or system files.

Using shell scripts, and particularly Bash, makes the system highly portable, as the

scripts do not need to be compiled for each heterogeneous system environment.

The big data sets used were often over one hundred times the physical size of the

original application, and therefore a key requirement was efficiency. Another issue

encountered was being able to accurately process each individual result and pipe the

data stream to the other scripted applications to effectively process the unfiltered orig-

inal results.

6 Conclusion

HexaFind is a scripted tool that can assist investigators in aggregating and elucidating

key information from a big data set. The objective was to develop a systematic meth-

odology for identifying offensive digital attack tools and the digital artifacts that they

leave when they are run on a Linux system. This can be used to successfully prove

that a particular attack tool had been used. Working with Linux/ Unix POSIX systems

has provided an extremely flexible environment to work in. This also meant that the

application could be used across a wide variety of distributions without changes being

required for each different system. A future development will be to expand the num-

ber of attack tools included within the tool. HexaFind is distributed through the use of

a dedicated development website, which can be found at http://www.hexafind.com/.

Since opening it has consistently received over 1,500 hits per week.

References

1. Hargreaves, C., Patterson, J.: An automated timeline reconstruction approach for digital

forensic investigations. In The Proceedings of the Twelfth Annual DFRWS Conference,

Digital Investigation, vol. 9, pp S69–S79, Elsevier, (2012)

2. Zhang, J., Wang L.: An Integrated Open Forensic Environment for Digital Evidence Inves-

tigation, Wuhan University Journal of Natural Sciences 2012, vol.17, No.6, pp. 511-515

(2012)

3. Log2timeline, http://log2timeline.net (2011)

4. Hranicky, J., Fsaudit, http://www.cise.ufl.edu/~jfh/jst

5. Gnuplot tricks: Another simple 3D pie chart with gnuplot,

http://gnuplot-tricks.blogspot.co.uk/2009/05/another-simple-3d-pie-chart-with.html

http://www.sciencedirect.com/science/journal/17422876/9/supp/S
http://log2timeline.net/
http://www.cise.ufl.edu/~jfh/jst
http://gnuplot-tricks.blogspot.co.uk/2009/05/another-simple-3d-pie-chart-with.html

