

Charrier, C. et al. (2017) Novel bacterial topoisomerase inhibitors with potent broadspectrum activity against drug-resistant bacteria. Antimicrobial Agents and Chemotherapy, 61(5), e02100-16.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

<http://eprints.gla.ac.uk/141066/>

Deposited on: 30 May 2017

Enlighten – Research publications by members of the University of Glasgo[w](http://eprints.gla.ac.uk/) http://eprints.gla.ac.uk

 The Novel Bacterial Topoisomerase Inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that do not have cross- resistance with the quinolones. Here, we report the evaluation of the *in vitro* **properties of a new series of this type of small-molecule. Exemplar compounds selectively and potently inhibited the catalytic activities of** *Escherichia coli* **DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum bactericidal activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms, and** *Mycobacterium tuberculosis***. No cross-resistance with quinolone-resistant** *Staphylococcus aureus* **and** *E. coli* **isolates was observed. Measured MIC⁹⁰ values were 4 and 8 µg/mL against a panel of contemporary multidrug-resistant isolates of** *Acinetobacter baumannii* **and** *E. coli***. In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies-of-resistance typically <10-08 against** *E. coli* **and** *A. baumannii* **at concentrations equivalent to four-fold the MIC. Compound-resistant** *E***.** *coli* **mutants isolated following serial passage were characterised by whole-genome sequencing and carried a single Arg38Leu amino acid substitution in the GyrA subunit of DNA gyrase. Preliminary** *in vitro* **safety data indicate that the series shows a promising therapeutic index and potential for low hERG inhibition (IC⁵⁰ >100 µM). In summary, the compounds' distinct mechanism-of-action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development and favourable** *in vitro* **safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents.**

-
-
-
- **INTRODUCTION**

 Bacterial infections are becoming increasingly untreatable owing to the rapid emergence of multidrug resistance as well as the limited number of novel antibacterial agents in clinical development (1, 2, 3). The United States Centers for Disease Control and Prevention (CDC) recently identified 15 antibiotic-resistant microorganisms as posing a threat to human health classified as 'Urgent' or 'Serious' (4). Prominent amongst this set are antibiotic-resistant strains of the 'ESKAPE' group of species (1), such as carbapenem-resistant Enterobacteriaceae (CRE), multi-drug-resistant (MDR) *Acinetobacter*, MDR *Pseudomonas aeruginosa*, methicillin-resistant *Staphylococcus aureus* (MRSA) and vancomycin-resistant *Enterococcus* (VRE). Also in the list are the Gram-positive anaerobe *Clostridium difficile*, drug-resistant *Neisseria gonorrhoeae* and drug-resistant tuberculosis.

 The urgent need to discover and develop new antibacterial agents to counter the threat of drug-resistant infections is widely recognised. Research efforts over the past few years have focused on the development of novel classes of antibacterials with a dual-targeting mechanism-of-action distinct from currently-used antibiotics, with the twin objectives of avoiding cross-resistance and reducing the emergence of *de novo* resistance. The essential bacterial type II topoisomerase enzymes, DNA gyrase and topoisomerase IV, are well- validated drug targets for antibiotic pharmacology by the (fluoro)quinolone and aminocoumarin classes (5, 6, 7, 8). These enzymes are responsible for introducing negative supercoils into DNA and for the decatenation of DNA. The high degree of sequence similarity between DNA gyrase and topoisomerase IV offers the prospect of multi-targeting with a single pharmacophore (9, 10). Despite the now widespread resistance to the quinolones, the type II topoisomerases continue to provide opportunities for antibacterial discovery based on exploiting novel binding interactions between new chemical ligands and the target enzymes in order to bypass mutations associated with quinolone resistance. Selected examples of this strategy are the 2-aminoquinazolinedione (11), the isothiazoloquinolone (12), the spiropyrimidinetrione (13) and the novel tricyclic topoisomerase inhibitor (14) classes.

 One emerging class of non-quinolone inhibitors of DNA gyrase and topoisomerase IV is the Novel Bacterial Topoisomerase Inhibitor (NBTI) type. NBTI molecules bind a site distinct from, 88 but adjacent to, the catalytic centre of DNA gyrase/topoisomerase IV that is occupied by the quinolones (15). Consequently, NBTI compounds retain potency against quinolone-resistant isolates. Structurally, NBTI molecules comprise a northern head moiety that interacts with the DNA, a central linker portion, and a southern group that binds to the enzymes. A number of advanced NBTI molecules have been described in the literature, including NXL101 (16), AZD9742 (17), NBTI 5463 (18) and gepotidacin, (19), which is currently undergoing Phase II human clinical evaluation. The NBTI pharmacophore has been associated with cardiovascular and other safety liabilities (17, 20, 21, 22, 23). A key aim in the development of NBTIs, therefore, is achieving broad antibacterial potency, including against challenging Gram-negative pathogens, whilst maintaining satisfactory pharmacokinetics and safety margins.

 Towards this goal, Redx Pharma recently disclosed a new series of NBTI type compounds characterised by a novel tricyclic LHS moiety (A. Ratcliffe, I. Cooper, M. Pichowicz, N. Stokes, C. Charrier, 18 February 2016, International Patent Application Number WO 2016/024096). The chemical structures of six selected compounds from this series are displayed in Figure 1. The purpose of this present study was to undertake a detailed *in vitro* biological evaluation of exemplar compounds from the series. Specifically, their ability to inhibit DNA gyrase and topoisomerase IV activities; their whole-cell potency against panels of wild-type and quinolone-resistant bacteria, including clinically-important anaerobes and biodefence organisms; and their *in vitro* safety profiles were assessed and are reported.

MATERIALS AND METHODS

 Reagents and media. Proprietary compounds were prepared at Redx Pharma as described in International Patent Application WO 2016/024096. Reference antibiotics were purchased from Sigma Aldrich (Dorset, UK). Bacteriological media were purchased from Oxoid Ltd (Basingstoke, UK).

 Bacterial strains. The bacteria used in this study were obtained from the American Type Culture Collection (ATCC, Middlesex, United Kingdom), the Network on Antibacterial Resistance in *Staphylococcus aureus* (Manassas, Virginia) or the Coli Genetic Stock Center (New Haven, Connecticut). *Escherichia coli* strains MG1655 WT, MG1655 S83L and MG1655 D87G were provided by Professor Tony Maxwell (John Innes Centre, Norwich, United Kingdom). *E*. *coli* ECCPX1-SP25 was selected and characterised at Redx Pharma by the serial passage of *E*. *coli* ATCC 25922 in the presence of ciprofloxacin as described (V. Savage, C. Charrier, N. Stokes, 18 February 2016, International Patent Application Number WO 2016/024098).

 DNA supercoiling, decatenation and cleavage complex. DNA supercoiling, decatenation and cleavage complex assays were all performed by Inspiralis Ltd (Norwich, United Kingdom) using a gel-based assay format. Briefly, one unit of *E. coli* DNA gyrase was incubated with 0.5 µg of relaxed pBR322, and one unit of topoisomerase IV or human topoisomerase II was 131 incubated with 200 ng kDNA, all in a reaction volume of 30 µL at 37 °C for 30 min in the presence of a series of concentrations of the test compound. Human topoisomerase II activity 133 was assessed in the presence of 100 µM of test compound. Supercoiling reactions were conducted under the following conditions: 35 mM Tris.HCl (pH 7.5), 24 mM KCl, 4 mM MgCl2, 2 mM DTT, 1.8 mM Spermidine, 1 mM ATP, 6.5% (w/v) glycerol and 0.1 mg/ml BSA. *E. coli* topoisomerase IV decatenation reactions were conducted under the following conditions: 50 mM HEPES-KOH (pH 7.6), 100 mM potassium glutamate, 10 mM magnesium acetate, 10 mM dithiothreitol, 1 mM ATP and 50 μg/ml BSA. Inhibition of human topoisomerase II decatenation activity was assessed as described previously (Savage *et al*, 2016). Reactions were stopped

 using 30 μL chloroform/iso-amyl alcohol (26:1) and 20 μL Stop Dye (40 % sucrose, 100 mM 141 Tris.HCl [pH 7.5], 1 mM EDTA, 0.5 µg/mL bromophenol blue). Topoisomers were visualised by ethidium bromide staining, resolved and quantified by gel electrophoresis and the band intensities analysed by gel documentation equipment (Syngene, Cambridge, UK) and quantified using Syngene Gene Tools software. Raw data were converted to a percentage of the inhibitor-free control and were analysed using SigmaPlot Version 12.5. Non-linear 146 regression was used to calculate the half-inhibitory concentrations (IC_{50}). The human topoisomerase II inhibitor, etoposide, was used as a positive control for inhibition for this assay. For cleavage complex assays, compounds were tested at 100 μM in a final DMSO concentration of 1% (v/v). *E. coli* DNA gyrase (one unit) was incubated with 0.5 μg of supercoiled pBR322 DNA at 37 °C for 30 min. Reactions were performed in a volume of 30 μ L using the following conditions: 35 mM Tris. HCl (pH 7.5), 24 mM KCl, 4 mM MgCl₂, 2 mM DTT, 1.8 mM Spermidine, 6.5% (w/v) glycerol and 0.1 mg/mL BSA. Following this, reactions were incubated for 30 min with 0.2 % SDS and 0.5 μg/μL proteinase K. Reactions were stopped in the same manner as for the supercoiling and decatenation assays. Topoisomers and cleavage products were visualised by gel electrophoresis. Cleavage products were expressed as a percentage of the fully supercoiled inhibitor-free control as described for the supercoiling and decatenation assays.

 Antibacterial susceptibility testing. MICs were determined by the broth microdilution procedure according to the guidelines of the Clinical and Laboratory Standards Institute M07- A10 (24). The broth microdilution method involved a two-fold serial dilution of compounds in 96-well microtitre plates, giving a typical final concentration range of 0.25-128 µg/mL and a maximum final concentration of 1% DMSO. Strains were grown in cation-adjusted Müller- Hinton broth (CA-MHB) or agar (CA-MHA) with or without 5% lysed horse blood at 37°C in an ambient atmosphere, in haemophilus testing medium broth at 37°C in an ambient atmosphere, 166 or in gonococcal broth or agar supplemented with Vitox at 37°C in an atmosphere containing 167 5% CO₂. The MIC was determined as the lowest concentration of compound that inhibits

 visible growth following a 16-24 h incubation period. For *Mycobacterium tuberculosis*, a fluorescent reporter strain of H37Rv was used and the MIC was determined by measuring the 170 optical density (OD_{590}) or fluorescence (Ex 560 nm/Em 590 nm) after five days of growth in 7H9 broth with 10% v/v OADC supplement and 0.05 % w/v Tween 80 in the presence of test 172 compound with a final DMSO concentration of 2 %. MIC₉₀ determination was performed at IHMA Europe Sàrl (Epalinges, Switzerland) with a selection of clinical isolates collected between 2012 and 2014. Bacteria were obtained from a variety of infection types and geographical locations including at least 25% highly drug-resistant isolates (resistant to at least seven out of amikacin, aztreonam, cefepime, ceftazidime, ceftriaxone, colistin, gentamicin, imipenem/meropenem, levofloxacin, piperacillin-tazobactam and tetracycline) and with a selection of 10 different species of anaerobes, including 113 isolates collected in 2015 from diverse geographical origins. MICs were performed using frozen 96-well antibacterial panels prepared by broth microdilution in line with the guidelines of the Clinical and Laboratory Standards Institute M11-A8 (25), giving a final compound concentration range 182 of 0.004 to 64 µg/mL. The inoculum size was 5×10^5 CFU/mL and 5×10^7 CFU/mL for the aerobic and anaerobic strains, respectively. The testing plates for anaerobes were incubated 184 for 48 h at 35 °C with 5% $CO₂$ in an anaerobic cabinet (Whitley A35 anaerobic workstation, 185 Don Whitley Scientific). MICs were read visually and values were reported as MIC $_{90}$ for inhibition of 90% of the isolates. MIC testing of *Bacillus anthracis*, *Burkholderia mallei*, *Burkholderia pseudomallei*, *Francisella tularensis* and *Yersinia pestis* was undertaken by Southern Research (Birmingham, Alabama). Assay medium was CA-MHB (supplemented with 2% IsoVitalex in the case of *F*. *tularensis*). Cultures were incubated in the presence of compound for up to 24 h, up to 38 h (*F*. *tularensis*) or 24-48 h (*Y*. *pestis*).

 Synergy/antagonism experiments. Antibacterial combinations were assessed using a two- dimensional checkerboard MIC method. Interpretation of the fractional inhibitory concentration index (FICI) was as described by Odds (26). Results shown are representative of at least two independent experiments.

 Time-of-kill. The rate of bactericidal activity of compounds was determined against *A. baumannii* NCTC 13420 at 4 x MIC according to guidelines of the Clinical and Laboratory Standards Institute M26-A (27). *A. baumannii* was cultured overnight at 37°C, diluted in fresh 200 CA-MHB and grown to exponential phase ($OD_{600nm} = 0.3$). Cultures were then adjusted to 0.5 201 McFarland units (1-2 \times 10⁸ CFU/mL) before addition of compound to give a final concentration 202 of 4 x MIC. Samples were taken at 0, 0.5, 1, 3, 6 and 24 h, serial diluted and plated onto MHA, followed by overnight incubation at 37°C. The following day, colonies were enumerated to determine CFU/mL.

 Frequency of resistance. Overnight cultures of bacteria were grown from single colonies in CA-MHB. The following day, samples of the neat cultures were spread onto CA-MHB containing compound at the concentrations indicated. To determine the number of viable cells 209 in the inoculum, samples of the overnight cultures were serially diluted in phosphate-buffered 210 saline (PBS) and plated on compound-free CA-MHA. Plates were incubated for up to 48 h and the colonies were enumerated. The spontaneous frequency of resistance (FoR) was 212 calculated by dividing the number of resistant colonies (CFU/mL) by the total number of viable cells (CFU/mL).

 Selection of resistant mutants by serial passage. Resistant mutants were selected by serial passage carried out using the broth microdilution method. Following MIC determination 217 the culture representing $0.25 \times$ MIC was used to inoculate the subsequent until the desired level of resistance was achieved. At this point, clones were isolated and the MIC confirmed as described above.

 Whole-genome sequencing. Genomic DNA (gDNA) was extracted from the resistant strains using the PurElute Bacterial Genomic Kit (Edge BioSystems, Gaithersburg, Maryland). The gDNA was purified according to the manufacturer's instructions. Whole genome sequencing 223 was performed at the Next Generation Sequencing facility at the University of Leeds (Leeds,

 United Kingdom). Purified gDNA was used to create whole genome libraries using NEBNext Ultra kit and 150 bp paired end read sequence data were produced using an Illumina HiSeq 3000. Read data were stored as FASTQ files and then adaptor sequences were removed using cutadapt software (Version 1.8). Data for the wild-type strain was used to construct a reference genome sequence using the CLCBio genome assembler (Version 8.0.1). Sequence data for each sample, including the progenitor strain, were aligned to the published *E. coli* ATCC 25922 genome using BWA (Version 0.7.12); aligned data and were sorted using Samtools6 (Version 1.2). Variants were identified using VarScan (Version 2.3.7) using the *E. coli* ATCC 25922 assembled genome as the reference sequence. The resulting data provided coverage of >100 reads across the genome. Single nucleotide polymorphisms (SNPs), insertions and deletions were identified that were prevalent in ≥95% of the reads compared with the progenitor strain.

 Cytotoxicity testing. HepG2 cells (ATCC HB-8065) were seeded at a density of 20,000 cells 238 per well and incubated for 24 h at 37° C in an atmosphere of 5% CO₂. Cells were then exposed to a doubling dilution series of the test compound. After 24 h of incubation, the viability of the cells was determined using CellTiter-Glo® (Promega, WI, USA), according to the manufacturer's instructions. Each experiment was carried out in duplicate and the results 242 reported as the average concentration of test compound inhibiting 50% of cell viability (IC_{50}).

 hERG Inhibition. Inhibition of the human *Ether*-*a*-*go*-*go* Related Gene (hERG) cardiac 245 potassium (K⁺) ion channel was determined in a transfected Chinese Hamster Ovary K1 (CHO) cell line using IonWorks patch clamp electrophysiology (28).

 LogD measurements. Partitioning of compounds between 1-octanol and 0.1 M phosphate buffer (pH 7.4) was measured using the shake-flask method (29).

-
-

 RESULTS Inhibition of target activity *in vitro***.** The five compounds tested potently inhibited both *E. coli* DNA gyrase and topoisomerase IV enzymes, consistent with a dual-targeting mechanism of-action (Table 1). Ciprofloxacin was selected as a representative quinolone and tested in parallel for comparison. REDX05777, REDX06181, REDX06213, REDX07623 and 282 REDX07638 produced a range of IC_{50} values comparable with ciprofloxacin in the supercoiling 283 assay, while all five compounds showed approximately 10-fold lower IC_{50} values than ciprofloxacin in the decatenation assay. Stabilisation of the DNA gyrase cleavage complex was observed in the presence of ciprofloxacin (35% at 100 µM), while all Redx compounds showed little or no stabilisation of this complex at the same concentration. Taken together, these results indicate that the Redx compounds potentially have a more balanced dual targeting activity than ciprofloxacin and a distinct mechanism-of-action. Similar to ciprofloxacin, Redx compounds showed a high degree of selectivity for the bacterial enzymes over the homologous mammalian enzyme, human topoisomerase II, with approximately two 291 orders of magnitude difference in the measured IC_{50} values (Table 1).

 Bacterial susceptibility profile. Bacterial susceptibility profiling of the NBTI compounds indicates that the series has broad-spectrum activity against clinically-important Gram- negative and Gram-positive pathogens, including those of the 'ESKAPE' group of microorganisms (Table 2). Compounds from the series were generally more potent against the Gram-positive species. Fastidious Gram-negatives, such as *Haemophilus infuenzae* and *Neisseria gonorrhoeae*, as well as non-fastidious Gram-negatives species were susceptible to the compounds. Of the non-fastidious Gram-negatives, *Acinetobacter baumannii* and *E*. *coli* were generally more susceptible than *Enterobacter cloacae*, *Klebsiella pneumoniae* and *Pseudomonas aeruginosa*. Representative compound REDX05777 also potently inhibited the whole-cell proliferation of *Mycobacterium tuberculosis* (Table 2). The exemplar compound REDX07638 was tested against a set of five biothreat micro-organisms that included the aetiological agents of anthrax, Glanders, meliodosis, tularaemia and the plague (Table 3). REDX07638 inhibited all five Gram-positive and Gram-negative species, with *Bacillus anthracis*, *Francisella tularensis* and *Yersinia pestis* being the most susceptible.

 Compounds retained potency against the *E. coli* strains, MG1655 S83L and MG1655 D87G, carrying the Ser83Leu and Asp87Gly mutations in the GyrA subunit of DNA gyrase that are associated with quinolone resistance. In all cases the MIC for the mutants was within one- doubling-dilution either side of the MIC for the isogenic parent strain *E. coli* MG1655. By contrast, the MIC of ciprofloxacin increased 8-16-fold against the MG1655 S83L and MG1655 D87G strains compared to the isogenic parent (Table 2). *E. coli* ECCPX1-SP25 is a ciprofloxacin-resistant mutant derived from the wild-type parent strain ATCC 25922. The MIC of ciprofloxacin against this strain is elevated 1024-fold relative to the parent strain. In comparison, the activity of Redx compounds against *E. coli* ECCPX1-SP25 was within 2-to-8- fold of strain ATCC 25922 (Table 2). Taken together, these results indicate a lack of cross-resistance of the NBTI series with the quinolone class of antibiotics.

 A selection of Redx compounds were tested against a panel of recent multidrug-resistant (MDR) and quinolone-resistant Gram-negative clinical isolates (Table 4). All three compounds 320 tested showed antibacterial activity against *E. coli* with a MIC₉₀ of 4 or 8 µg/mL. Similarly, good activity was observed with REDX07623, REDX06213 and REDX06276 against *A. baumannii* with MIC90 of 4 or 8 µg/mL. The MIC⁹⁰ values observed for these NBTI compounds against *E. coli* and *A. baumannii* were lower than those obtained for the fluoroquinolone antibiotic levofloxacin (16 µg/mL). REDX06276 was the most active compound from this series against 325 the *K. pneumoniae* panel with a MIC₉₀ of 16 µg/mL, comparable to levofloxacin. Activity against *P. aeruginosa* and *E. cloacae* was observed at 32-to-64 µg/mL for all compounds 327 tested, which was similar to the MIC $_{90}$ values obtained for levofloxacin.

 Finally, compounds were tested for activity against species of clinically-significant obligate anaerobic Gram-positive and Gram-negative bacteria. Antibiotics of the quinolone class have generally shown poor-to-moderate *in vitro* antibacterial potency against anaerobic bacteria relative to other classes of antibiotics and compared with their potency against aerobic bacteria (30, 31). Metronidazole and vancomycin were equally effective against a panel of recently-isolated anaerobes including the Gram-positive strains of *P. harei, P. anaerobius* and *C. perfringens* with MIC₉₀ values lower or equal to 2 µg/mL (Table 5). Metronidazole, however,

 was not active against *P. acnes* while the Redx compounds maintained activity with MIC⁹⁰ values of 0.5 and 4 µg/mL. Similar to ciprofloxacin, the tested compounds showed reduced 337 activity against the Gram-positive strains of *F. magna* and *P. micra* with MIC₉₀ values 16-64 µg/mL. Against the Gram-negative isolates, Redx compounds showed activity at 2-to-16 μ g/mL against the four bacterial species tested. Although metronidazole displayed lower MIC₉₀ values (0.25-to-2 µg/mL), the NBTI compounds showed improved activity compared to ciprofloxacin and vancomycin.

 Antibiotic combination studies. Since co-administration of antibiotics acting on different targets can enhance antibacterial activity, REDX07638 was tested in combination with ampicillin and delafloxacin against several Gram-negative strains including those conferring resistance to β-lactam and fluoroquinolone antibiotics. An FICI was calculated and interpreted as described previously (26). A FICI of 0.5 was calculated for REDX07638 in combination with ampicillin against β-lactam resistant *E. coli* NCTC 13476 indicating synergism. This combination showed an FICI of 2 against other β-lactam strains indicating no interaction. Additionally, REDX07638 in combination with delafloxacin showed an FICI of 0.75-1.25 against fluoroquinolone resistant (FQR) strains *E. coli* ECDEL-SP45 and *K. pneumoniae* ATCC 13439, indicating no interaction. These results suggest REDX07638 in combination with ampicillin or delafloxacin could be used given the lack of antagonism observed.

 Time of kill. The rate of bactericidal activity was determined for REDX06213, REDX06276, REDX07623 and REDX07638 against *A. baumannii* NCTC 13420 at 4 × MIC. REDX06213 and REDX06276 both demonstrated bactericidal activity, showing a 3-log drop in CFU/mL at 1.56 and 1.06 h, respectively. A 3-log reduction in CFUs was not achieved within 24 h with REDX07623 and REDX07638 at 4 × MIC against this strain. All compounds showed regrowth at 24 h. Bactericidal activity of ciprofloxacin against *A. baumannii* has been documented in the 361 literature and demonstrates a 3-log drop in CFU/mL at 4x MIC, with no significant regrowth at 24 h (32).

 Selection of resistant mutants. In order to assess the propensity for the development of *de novo* resistance to this class of NBTI compounds, the spontaneous frequency of resistance to REDX06213, REDX06276, REDX07623 and REDX07638 was determined with *E. coli* strain ATCC 25922. No mutants could be isolated at concentrations equivalent to 4× MIC, yielding 368 frequencies-of-resistance ranging from <2.5 \times 10⁻⁹ to <3.3 \times 10⁻⁹. By comparison, the frequency-of-resistance to ciprofloxacin at 4 × MIC was 7.8 × 10-8 for *E*. *coli* ATCC 25922. To confirm that the observed mutation frequencies were not species-specific, frequencies-of- resistance values were also determined for REDX06213, REDX07623 and REDX07638 in *A. baumannii* strain NCTC 13420. Again, no mutants were isolated, yielding frequencies-of-373 resistance between <6.7 \times 10⁻⁸ and <7.4 \times 10⁻⁸.

 Next, *E. coli* ATCC 25922 was used in serial passage experiments with REDX06276 as a representative compound from this NBTI series. Ciprofloxacin and delafloxacin were used as comparator antibiotics. The MIC of ciprofloxacin increased up to 64 µg/mL after 25 passages 377 with resistance observed at passage 23 (MIC \geq 4 μ g/mL). The MIC of delafloxacin, however, remained within 2-fold of the original MIC (0.5 µg/mL) up to passage 24, after which it increased steadily to reach 16 µg/mL (32-fold increase) at passage 45. The MIC of REDX06276 followed a comparable trend to delafloxacin with an increase up to 32-fold (MIC 64 µg/mL) at passage 45, at which stage the experiment was ended (Figure 2). Whole genome sequencing of the ciprofloxacin resistant mutant from passage 25 (ECCPX1-SP25) revealed Ser83Leu and Asp87Gly mutations in the GyrA subunit and a Glu84Lys mutation in the ParC subunit. The delafloxacin-resistant mutant at passage 45 had target gene mutations corresponding to Ala119Glu and Ala179Val amino acid substitutions in the GyrA subunit. The REDX06276-resistant mutant from passage 45 carried a single Arg38Leu substitution in the GyrA subunit.

 In vitro **safety profile.** Mammalian cytotoxicity testing with the HepG2 cell line revealed IC⁵⁰ values that were higher than the corresponding MIC values observed with the ESKAPE

 lead to untreatable infections and increased mortality (33). To address this unmet medical need, this study describes the *in vitro* assessment of an NBTI series with dual-targeting activity against bacterial DNA gyrase and topoisomerase IV and a different mechanism-of-action to clinically used fluoroquinolones. Redx compounds demonstrated potent, balanced inhibitory 422 activity versus the two topoisomerase enzymes, with IC_{50} values ranging from 0.21 to 1.66 μ M with *E. coli* DNA gyrase and between 0.10 and 1.17 µM against *E. coli* topoisomerase IV 424 (Table 1). Inhibitory activity was more balanced than ciprofloxacin, which had IC_{50} values of 0.77 and 10.20 µM against *E. coli* gyrase and topoisomerase IV, respectively. This is in agreement with data recorded in the literature, which shows ciprofloxacin to have a preference for DNA gyrase in *E. coli* and topoisomerase IV in *S. aureus* (34). Importantly, selectivity over human topoisomerase II was found with bacterial enzymes showing an approximate 100-fold increase in sensitivity to Redx compounds. The formation of DNA cleaved complexes was limited with Redx compounds in comparison to the level observed with ciprofloxacin (Table 1). This indicates that the NBTI series described here has a different mechanism-of-action to ciprofloxacin, which stabilises double-stranded broken DNA strands, blocking re-ligation, the consequences of which are poisonous to the bacterial cell. Instead, the NBTIs described here interact with the topoisomerase and DNA prior to double strand breakage, which has been reported for other NBTI series (18).

 Broad-spectrum antibacterial activity was found with this series against a panel of ESKAPE pathogens, the fastidious Gram-negative organisms *H. influenzae* and *N. gonorrhoeae*, as well as *M*. *tuberculosis* and important Gram-positive and Gram-negative biothreat pathogens (Table 2 and 3). Potency was maintained against FQR *E. coli* isolates with a single amino acid substitution in the GyrA subunit (Ser83Leu or Asp87Gly) with MICs within two-fold of the MIC for the isogenic parent strain. Additionally, compounds retained potency against the serial passage FQR mutant *E. coli* ECCPX1-SP25, with MICs increasing eight-fold or less, in comparison to ciprofloxacin which showed a 1024-fold increase in MIC. The retained potency of this series against FQR mutants supports the different mechanism-of-action to the fluoroquinolones indicated by the cleavage complex enzyme assay. Good antibacterial activity

 was retained against a larger panel of MDR strains (25% levofloxacin resistant) of *A. baumannii* and *E. coli*, with MIC⁹⁰ values of 4-8 µg/mL. A loss of potency was found against the other Gram-negative strains, *K. pneumoniae, E. cloacae* and *P. aeruginosa*, with MIC⁹⁰ 449 values of 16-32 µg/mL, although these were still equal to or superior to levofloxacin and other fluoroquinolones reported in the literature (35). In addition to good activity against ESKAPE pathogens, compounds demonstrated antibacterial activity against a panel of anaerobic pathogens including *Clostridium* and *Bacteroides* species (Table 2 and 5). In Europe, *C. difficile* is estimated to cause 250,000 infections and 14,000 deaths per annum, showing resistance to a large number of antibiotics including the fluoroquinolones (36). *Bacteroides* species are part of the mammalian gut microflora and can be opportunistic pathogens as well as a reservoir for resistance. They are also frequently resistant to a wide range of antibiotics, necessitating development of novel compounds that are effective against these species..

 A representative compound, REDX07638, was tested in combination with ampicillin and delafloxacin against several resistant Gram-negative strains and showed no antagonism, suggesting that this series of compounds could potentially be used in combination therapy. This finding has been reported previously with other bacterial topoisomerase II inhibitors in combination with other antibiotics (37, 38, 39). Interestingly, REDX07638 and ampicillin demonstrated a synergistic interaction against *E. coli* NCTC 13476, but this was not consistently observed for other β-lactam resistant strains.

 Rapid, bactericidal activity of the series was confirmed with REDX06213 and REDX06276 against *A. baumannii* NCTC 13420 at 4 × MIC, with both compounds causing a 3-log drop in CFU/mL at 1.56 and 1.06 h, respectively. The rate of bactericidal activity was similar or superior to that for ciprofloxacin and other NBTIs reported in the literature (32, 40, 41).

 No mutants were raised against compounds tested at 4 × MIC with *A. baumannii* NCTC 13420 470 and *E. coli* ATCC 25922. By contrast, a mutation rate of 4.76 x 10⁻⁸ was obtained with *E. coli* ATCC 25922 against ciprofloxacin at equivalent multiples of its MIC. These results indicate a low potential for resistance development to this series and support the balanced dual-targeting

 activity revealed by the supercoiling and decatenation assay data. Development of resistance 474 to other NBTI series at 4 \times MIC has been reported in the literature. Resistance rates of 5 \times 10⁻ ⁸ were found with NBTI 5463 against *P. aeruginosa* PAO1, although sequencing showed no target gene mutations (18). Second- and third-step mutants had Asp82Glu and Asp82Glu plus Asp87Tyr point mutations in GyrA, respectively (42). These mutants showed no cross- resistance to the fluoroquinolones consistent with a differential binding mechanism between 479 the NBTI and fluoroquinolone classes of topoisomerase inhibitors. Although no mutants were raised during the spontaneous frequency-of-resistance experiments against the compounds described here, whole genome sequencing of the *E. coli* REDX06276 serial passage mutant revealed a single Arg38Leu substitution in the GyrA subunit. This mutation has been reported previously and conferred resistance to 5,6-bridged quinolones, but not other quinolones (43). Similarly, no cross-resistance to ciprofloxacin was found with the *E. coli* REDX06276 serial passage mutant (data not shown).

486 Compounds in this series show a promising safety profile with HepG2 cytotox IC_{50} values of 487 ≥32 µg/mL. Reduced hERG activity with the series has also been demonstrated, with IC_{50} 488 values of >100 µM. During the optimisation of this series, efforts have been made to reduce hERG effects while retaining antibacterial potency. The addition of a fluorine atom in the southern group of REDX07623 appears to increase the hERG activity in comparison to its 491 matched pair, REX06276, with IC_{50} values of 8.2 and >33 μ M, respectively. Introduction of more polar groups to reduce the logD of a compound, thereby reducing hERG activity, has been reported for NBTIs previously in the literature (22). REDX06181, with the lowest logD of 494 the compounds tested, showed the most attenuated hERG activity with an IC_{50} of >100 μ M, although relative to other compounds with a higher logD, such as REDX07623, its antibacterial potency was reduced. A negative correlation between whole-cell antibacterial potency and hERG activity has been reported for other NBTI type compounds (22).

 In summary, the NBTI series described here shows potent, balanced, dual-targeting inhibition 499 of DNA gyrase and topoisomerase IV, with selectivity over human topoisomerase II. Data from

 DNA cleaved complex experiments indicates the series has a different mechanism-of-action to the fluoroquinolones. The low mutation rate of Gram-negative strains to the compounds combined with the balanced inhibitory enzyme activity suggests resistance could be slow to develop during therapeutic use. Antibacterial activity was demonstrated against a wide panel of susceptible and drug-resistant bacterial species including the ESKAPE set of organisms, medically-important anaerobic species and other pathogens, including larger sets of MDR isolates thereof. Rapid, bactericidal activity was also demonstrated. These properties, in combination with the promising *in vitro* safety profile, warrants the further development of this NBTI series.

-
-
-
-
-
-
-
-

ACKNOWLEDGMENTS

 The research leading to these results was conducted in part with the ND4BB ENABLE Consortium and has received support from the Innovative Medicines Joint Undertaking under Grant Agreement n° 115583, resources which are composed of financial contribution from the European Union's seventh framework programme (FP7/2007-2013) and EFPIA companies in kind contribution. This work was supported by National Institutes of Health and the National Institute of Allergy and Infectious Diseases, Contract No. HHSN272201100009I and Contract No. HHSN272201100012I. We thank Zoe Gault, Sanna Appleby and Thomas Brown for assistance with logD measurements. We are grateful to IHMA Europe Sàrl (Epalinges,

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

REFERENCES

2. **Boucher HW, [Talbot GH,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Talbot%20GH%5BAuthor%5D&cauthor=true&cauthor_uid=23599308) [Benjamin DK Jr,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Benjamin%20DK%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=23599308) [Bradley J,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Bradley%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23599308) [Guidos RJ,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Guidos%20RJ%5BAuthor%5D&cauthor=true&cauthor_uid=23599308) [Jones RN,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Jones%20RN%5BAuthor%5D&cauthor=true&cauthor_uid=23599308) [Murray](http://www.ncbi.nlm.nih.gov/pubmed/?term=Murray%20BE%5BAuthor%5D&cauthor=true&cauthor_uid=23599308)**

- **[BE,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Murray%20BE%5BAuthor%5D&cauthor=true&cauthor_uid=23599308) [Bonomo RA,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Bonomo%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=23599308) [Gilbert D.](http://www.ncbi.nlm.nih.gov/pubmed/?term=Gilbert%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23599308)** 2013. 10 × '20 progress–development of new drugs active
- against gram-negative bacilli: an update from the Infectious Diseases Society of America.

Clin Infect Dis **56:**1685–1694.

 3. **Penchovsky R, Traykovska M.** 2015. Designing drugs that overcome antibacterial resistance: where do we stand and what should we do? Exp Opin Drug Disc **10:**631-650

- 4. **Centers for Disease Control and Prevention.** 2013. Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, Atlanta, GA.
- 5. **Mitscher LA. 2005**. Bacterial toposiomerase inhbitors: quinolone and pyridone antibacterial agents. Chem. Rev. **105:**559-592.
- 6. **[Drlica K,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Drlica%20K%5BAuthor%5D&cauthor=true&cauthor_uid=19747119) [Hiasa H,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Hiasa%20H%5BAuthor%5D&cauthor=true&cauthor_uid=19747119) [Kerns R,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Kerns%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19747119) [Malik M,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Malik%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19747119) [Mustaev A,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Mustaev%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19747119) [Zhao X](http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhao%20X%5BAuthor%5D&cauthor=true&cauthor_uid=19747119)**. 2009. Quinolones: action and resistance updated. Curr. Top. Med. Chem. **9:**981-998.
- 7. **Collin F, Karkare S, Maxwell A.** 2011. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl. Microbiol. Biotechnol. **92:**479-497.
- 8. **Bisacchi GS, Manchester JI.** 2015. A new-class antibacterial–alsmost. Lessons in drug discovery and development: A critical analysis of more than 50 years of effort towards ATPase inhbitors of DNA gyrase and topoisomerse IV. ACS Infect Dis **1:**4-41.
- 9. **Silver LL.** 2011. Challenges of antibacterial discovery. Clin Microbiol Rev **24:**71-109.
- 10. **East SP, Silver LL.** 2013. Multitarget ligands in antibacterial researech: progress and opportunities. Expert Opin Drug Discov. **8:**143–156.
- 11. **Ellsworth EL, Tran TP, Showalter HD, Sanchez JP, Watson BM, Stier MA, Domagala**
- **JM, Gracheck SJ, Joannides ET, Shapiro MA, Dunham SA, Hanna DL, Huband MD,**
- **Gage JW, Bronstein JC, Liu JY, Nguyen DQ, Singh R.** 2006[. 3-aminoquinazolinediones](http://www.ncbi.nlm.nih.gov/pubmed/17064062)
- [as a new class of antibacterial agents demonstrating excellent antibacterial activity against](http://www.ncbi.nlm.nih.gov/pubmed/17064062) [wild-type and multidrug resistant organisms.](http://www.ncbi.nlm.nih.gov/pubmed/17064062) J Med Chem **49:**6435-6438.
- 12. **Pucci MJ, Podos SD, Thanassi JA, Leggio MJ, Bradbury BJ, Deshpande M.** 2011. *In*
- *vitro* and *in vivo* profiles of ACH-702, an isothiazoquinolone, against bacterial pathogens. Antimicrob Agents Chemother **55:**2860-2871.
- 13. **Basarab GS, Kern GH, McNulty J, Mueller JP, Lawrence K, Vishwanathan K, Alm RA,**
- **Barvian K, Doig P, Galullo V, Gardner H, Gowravaram M, Huband M, Kimzey A,**
- **Morningstar M, Kutschke A, Lahiri SD, Perros M, Singh R, Schuck VJ, Tommasi R,**
- **Walkup G, Newman JV**. 2015. Responding to the challenge of untreatable gonorrhea:
- ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial type
- II topoisomerases. Sci. Rep. **5:**11827.

 14. **Savage VJ, Charrier C, Salisbury A-M, Moyo E, Forward H, Chaffer-Malam N, Metzger R, Huxley A, Kirk R, Uosis-Martin M, Noonan G, Mohmed S, Best SA, Ratcliffe AJ, Stokes NR**. 2016. Biological profiling of novel tricyclic inhibitors of bacterial DNA gyrase and topoisomerase IV. J. Antimicrob. Chemother. **71:**1905-1913.

- 15. **Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, Giordano I, Hann**
- **MM, Hennessy A, Hibbs M, Huang J, Jones E, Jones J, Brown KK, Lewis CJ, May**
- **EW, Saunders MR, Singh O, Spitzfaden CE, Shen C, Shillings A, Theobald AJ,**
- **Wohlkonig A, Pearson ND, Gwynn MN.** Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature **466:**935-940.
-
- 16. **Black MT, Stachyra T, Platel D, Girard A-M, Claudon M, Bruneau J-M, Miossec C.** 2008. Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor
- of bacterial type II topoisomerases. Antimicrob Agents Chemother **52:**3339-3349.

17. **Reck F, Alm RA, Brassil P, Newman JV, Ciaccio P, McNulty J, Barthlow H, Goteti K,**

Breen J, Comita-Prevoir J, Cronin M, Ehmann DE, Geng B, Godfrey AA, Fisher SL.

- 2012. [Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with](http://www.ncbi.nlm.nih.gov/pubmed/22779424) [reduced pK\(a\): antibacterial agents with an improved safety profile.](http://www.ncbi.nlm.nih.gov/pubmed/22779424) J Med Chem **55:**6916- 6933.
- 18. **Dougherty TJ, Nayar A, Newman JV, Hopkins S, Stone G, Johnstone M, Shapiro AB, Cronin M, Reck F, Ehmann DE.** 2014. NBTI 5463 is a novel bacterial type II topoisomerase inhibitor with activity against Gram-negative bacteria and *in vivo* efficacy. Antimicrob Agents Chemother **58:**2657-2664.
- 19. **Biedenbach DJ, Bouchillon SK, Hackel M, Miller LA, Scangarella-Oman E, Jakielaszek C, Sahm DF**. 2016. *In vitro* activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob. Agents Chemother. **60:**1918-1923.
- 20. **Reck F, Alm R, Brassil P, Newman J, Dejonge B, Eyermann CJ, Breault G, Breen J, Comita-Prevoir J, Cronin M, Davis H, Ehmann D, Galullo V, Geng B, Grebe T, Morningstar M, Walker P, Hayter B, Fisher S.** 2011. Novel N-linked aminopiperidine

 inhibitors of bacterial topoisomerase type II: broad spectrum antibacterial agents with reduced hERG activity. J Med Chem **54:**7834-7847.

21. **Miles TJ, Hennessy AJ, Bax B, Brooks G, Brown BS, Brown P, Cailleau N, Chen D,**

Dabbs S, Davies DT, Esken JM, Giordano I, Hoover JL, Huang J, Jones GE, Sukmar

SK, Spitzfaden C, Markwell RE, Minthorn EA, Rittenhouse S, Gwynn MN, Pearson

- **ND.** 2013. Novel hydroxyl tricyclics (e.g., GSK966587) as potent inhibitors of bacterial type
- IIA topoisomerases. Bioorg Med Chem Lett **23:**5437-5441.

22. **Reck F, Ehmann DE, Dougherty TJ, Newman JV, Hopkins S, Stone G, Agrawal N,**

Ciaccio P, McNulty J, Barthlow H, O'Donnell J, Goteti K, Breen J, Comita-Prevoir J,

Cornebise M, Cronin M, Eyermann CJ, Geng B, Carr GR, Pandarinathan L, Tang X,

 Cottone A, Zhao L, Bezdenejnih-Snyder N. 2014. Optimization of physicochemical properties and safety profile of novel bacterial topoisomerase type II inhibitors (NBTIs) with activity against *Pseudomonas aeruginosa*. Bioorg Med Chem **22:**5392-5409.

23. **Miles TJ, Hennessy AJ, Bax B, Brooks G, Brown BS, Brown P, Cailleau N, Chen D,**

 Dabbs S, Davies DT, Esken JM, Giordano I, Hoover JL, Jones GE, Kusalakumari Sukmar SK, Markwell RE, Minthorn EA, Rittenhouse S, Gwynn MN, Pearson ND. 2016. [Novel tricyclics \(e.g., GSK945237\) as potent inhibitors of bacterial type IIA](http://www.ncbi.nlm.nih.gov/pubmed/27055939) [topoisomerases.](http://www.ncbi.nlm.nih.gov/pubmed/27055939) Bioorg Med Chem Lett **26:**2464-2469.

 24. **Clinical and Laboratory Standards Institute**. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—tenth edition. CLSI document M07-A10. Clinical and Laboratory Standards Institute, USA.

 25. **Clinical and Laboratory Standards Institute.** 2012. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard-Eighth Edition. CLSI document M11-A8. Wayne, PA: Clinical and Laboratory Standards Institute, USA.

 26. **Odds FC.** 2003. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother **52:**1.

- 27. **Clinical and Laboratory Standards Institute.** 1999. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. CLSI document M26-A. Wayne, PA: Clinical and Laboratory Standards Institute, USA.
- 28. **Bridgland-Taylor MH, Hargreaves AC, Easter A, Orme A, Henthorn DC, Ding M,**
- **Davis AM, Small BG, Heapy CG, Abi-Gerges N, Persson F, Jacobson I, Sullivan M,**
- **Albertson N, Hammond TG, Sullivan E, Valentin JP, Pollard CE.** 2006. [Optimisation](http://www.ncbi.nlm.nih.gov/pubmed/16563806)
- [and validation of a medium-throughput electrophysiology-based hERG assay using](http://www.ncbi.nlm.nih.gov/pubmed/16563806) [IonWorks HT.](http://www.ncbi.nlm.nih.gov/pubmed/16563806) J Pharmacol Toxicol Methods **54:**189-199.
- 29. **[Wenlock MC,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Wenlock%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=21343602) [Potter T,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Potter%20T%5BAuthor%5D&cauthor=true&cauthor_uid=21343602) [Barton P,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Barton%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21343602) [Austin RP.](http://www.ncbi.nlm.nih.gov/pubmed/?term=Austin%20RP%5BAuthor%5D&cauthor=true&cauthor_uid=21343602)** 2011. A method for measuring the lipophilicity of compounds in mixtures of 10. J Biomol Screen **16:**348-355.
- 30. **Nord CE.** 1996. In vitro activity of quinolones and other antimicrobial agents against anaerobic bacteria. Clin Infect Dis **23:**S15-18.
- 31. **Alonso R, [Peláez T,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Pel%C3%A1ez%20T%5BAuthor%5D&cauthor=true&cauthor_uid=11157906) [González-Abad MJ,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Gonz%C3%A1lez-Abad%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=11157906) [Alcalá L,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Alcal%C3%A1%20L%5BAuthor%5D&cauthor=true&cauthor_uid=11157906) [Muñoz P,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Mu%C3%B1oz%20P%5BAuthor%5D&cauthor=true&cauthor_uid=11157906) [Rodríguez-Créixems](http://www.ncbi.nlm.nih.gov/pubmed/?term=Rodr%C3%ADguez-Cr%C3%A9ixems%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11157906)**
- **[M,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Rodr%C3%ADguez-Cr%C3%A9ixems%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11157906) [Bouza](http://www.ncbi.nlm.nih.gov/pubmed/?term=Bouza%20E%5BAuthor%5D&cauthor=true&cauthor_uid=11157906) E**. 2001. *In vitro* activity of new quinolones against *Clostridium difficile*. J. Antimicrob. Chemother. **47:**195-197.
- 32. **[Higgins PG,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Higgins%20PG%5BAuthor%5D&cauthor=true&cauthor_uid=10824036) [Coleman K,](http://www.ncbi.nlm.nih.gov/pubmed/?term=Coleman%20K%5BAuthor%5D&cauthor=true&cauthor_uid=10824036) [Amyes SG.](http://www.ncbi.nlm.nih.gov/pubmed/?term=Amyes%20SG%5BAuthor%5D&cauthor=true&cauthor_uid=10824036)** 2000. Bactericidal and bacteriostatic activity of gemifloxacin against *Acinetobacter* spp. *in vitro*. J Antimicrob Chemother **45:**71-77.
- 33. **Chaudhary AS.** 2016. A review of global initiatives to fight antibiotic resistance and recent
- antibiotics discovery. Acta Pharmaceutica Sinica B [doi.org/10.1016/j.apsb.2016.06.004.](http://dx.doi.org/10.1016/j.apsb.2016.06.004)
- 34. **Takei M, Fukuda H, Kishii R, Hosaka M.** 2001. Target preference of 15 quinolones against *Staphylococcus aureus*, based on antibacterial activities and target inhibition. *Antimicrob Agents Chemother* **45**:3544-3547.
- 35. **Grillon A, Schramm F, Kleinberg M, Jehl F.** 2016. Comparative activity of ciprofloxacin,
- levofloxacin and moxifloxacin against *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*
- and *Stenotrophomonas maltophilia* assessed by minimum inhibitory concentrations and
- time-kill studies. PLoS ONE **11(6):**e0156690.
- 36. **European Centre for Disease Prevention and Control**. 2015. Antimicrobial resistance surveillance in Europe. Annual report of the European Antimicrobial Resistance

 Surveillance Network (EARS-Net)—2014. Eruopean Centre for Disease Control and Prevention, Stockholm, Sweden.

 37. **Stokes NR, Thomaides-Brears HB, Barker S, Bennett JM, Berry J, Collins I, Czaplewski LG, Gamble V, Lancett P, Logan A, Lunniss CJ, Peasley H, Pommier S, Price D, Smee C, Haydon DJ**. 2013. Biological evaluation of benzothiazole ethyl urea inhibitors of bacterial type II topoisomerases. Antimicrob. Agents Chemother. **57:**5977- 5986.

 38. **Huband MD, Bradford PA, Otterson LG, Basarab GS, Kutschke AC, Giacobbe RA, Patey SA, Alm RA, Johnstone MR, Potter ME, Miller PF, Mueller JP.** 2015. In vitro

 antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-negative, and atypical bacteria. Antimicrob Agents Chemother **59:**467-474.

39. **Charrier C, Salisbury AM, Savage VJ, Moyo E, Forward H, Ooi N, Cheung J, Metzger**

 R, McGarry D, Walker R, Cooper IR, Ratcliffe AJ, Stokes NR. 2016. In vitro biological evaluation of novel broad-spectrum isothiazolone inhibitors of bacterial type II topoisomerases. J Antimicrob Chemother **71:**2831-2839.

 40. **Singh SB**. 2014. Confronting the challenges of discovery of novel antibacterial agents. Bioorg Med Chem Lett **24:**3683-3689.

 41. **Foerster S, Golparian D, Jacobsson S, Hathaway LJ, Low N, Shafer WM, Althaus CL, Unemo M.** 2015. Genetic resistance determinants, in vitro time-kill curve analysis and pharmacodynamic functions for the novel topoisomerase II Inhibitor ETX0914 (AZD0914) in *Neisseria gonorrhoeae*. Front Microbiol **6:**1377.

42. **Nayar AS, Dougherty TJ, Reck F, Thresher J, Gao N, Shapiro AB, Ehmann DE**. 2015.

Target-based resistance of *Pseudomonas aeruginosa* and *Escherichia coli* to NBTI 5463,

 a novel bacterial type II topoisomerase inhibitor. Antimicrob Agents Chemother **59:**331– 337.

 43. **Macinga DR, Renick PJ, Makin KM, Ellis DH, Kreiner AA, Li M, Rupnik KJ, Kincaid EM, Wallace CD, Ledoussal B, Morris TW**. 2003. Unique biological properties and

DNA gyrase, the decatenation activity of *E*. *coli* topoisomerase IV, and the decatenation

activity of human topoisomerase II by ciprofloxacin, REDX06181 and REDX06213.

TABLE 2 Bacterial susceptibility profile of NBTI compounds against reference bacterial strains

and fluoroquinolone mutants.

- 732 n.d., not determined
- 733
- 734
- 735
- 736
- 737

738 **TABLE 3** Susceptibility profile of a panel of biodefence pathogens to REDX07638 and the

739 comparator antibiotic doxycycline.

757 **TABLE 4** MIC₉₀ (µg/mL) of NBTI compounds and levofloxacin for a panel of recently isolated

levofloxacin-resistant and multidrug-resistant clinical isolates.

772 **TABLE 5** Bacterial susceptibility profile of NBTI compounds and comparator antibiotics

773 against a panel of recent clinical isolates of 10 anaerobic bacterial species.

775

776

777

778 **TABLE 6** *In vitro* safety profile of NBTI compounds and ciprofloxacin.

779

-
-
-
-

FIGURE 1 Chemical structures of the compounds described in this study.

