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Abstract 

This paper presents preliminary analysis of radar signatures for 

fall detection and classification of human indoor activities, to 

monitor the daily behaviour of individuals at risk of 

deteriorating physical or cognitive health. Two datasets of 

signatures in different environments have been collected, one 

of which included signatures generated from signals 

simultaneously collected from a radar and an RGB-D Kinect 

sensor, on a couple of older individuals. This preliminary 

analysis shows the potential effectiveness of different features 

and classifiers, and highlights the need of additional 

investigation to characterise and exploit the diversity of 

features and classification methods, in different experimental 

scenarios with different subjects. 

1 Introduction 

The problem of monitoring people’s activities in indoor 

scenarios has been addressed by several research works, with 

the aim of reliably discriminating fall events against other 

actions and activities, and more in general being able to analyse 

the daily activities patterns of the monitored subjects [1]. 

Estimates from the World Health Organisation report that the 

proportion of people aged over 65 years who fall every year is 

approximately 28-35%, and 32-42% for those aged over 70 

years [2]. Given the increasing proportion of elderly people in 

Europe, United States, and China, the occurrence of these fall 

events can pose a significant health and welfare challenge. 

Apart from the physical consequences and trauma, correlation 

has been highlighted between the long-lie time spent on the 

floor after a fall event and the reduction of life expectancy. 

Technologies for reliable and automatic fall events detection 

are therefore of significant interest. These systems can also 

provide additional information to evaluate the general 

wellbeing of patients, for example how active they are and in 

which part of the environment they spend their time, as well as 

how often they perform fundamental activities such as food 

intake or personal hygiene. Irregularities and anomalies in 

these patterns could inform carers and health professionals on 

risks related to deteriorating physical and cognitive 

capabilities. 

Many different types of sensors and technologies have been 

suggested for this purpose, namely wearable devices such as 

accelerometers, inertial sensors, and panic buttons, infrared 

proximity sensors, magnetic and acoustic sensors, video-

cameras, RGB-Depth sensors, and radar sensors [3-7]. The 

interest in radar technologies for indoor monitoring is related 

to their contactless sensing capabilities, with no need for the 

users to wear or carry devices or change their habits, and to the 

insensitivity to light conditions in the environment where the 

monitored subjects operate. Furthermore, it is expected that 

limited privacy concerns are associated with radar systems, as 

no personal images are recorded and there are no specific links 

between the individuals and their radar data. This is beneficial 

in addressing users’ acceptance issues and potentially deploy 

radar sensors in parts of the house such as bedrooms and 

bathrooms where the risk of falling is higher but also privacy 

issues are more relevant [8]. Regarding exposure to EM 

radiations, the power level required by radar systems in this 

context are comparable to those used by conventional Wi-Fi 

routers or smartphones and involve non-ionizing radiations. 

Additionally, the perceived risks from radar waves has to be 

traded off with the advantages of continuous monitoring that 

these systems can enable, especially for vulnerable people with 

physical/cognitive impairments. 

The majority of radar-based solutions in this context are based 

on the exploitation of micro-Doppler signatures, i.e. the 

additional Doppler frequency components on the human radar 

signature generated by movement of torso and swinging of 

limbs. These have been used for a variety of applications, 

including identification of people vs other targets such as 

vehicles and animals or of potentially armed personnel, and 

classification of specific individuals based on their walking 

gait [9-10]. Although the use of radar in the context of fall 

detection and indoor monitoring provided interesting 

preliminary results, challenges to be addressed remain. These 

include the deployment of the radar sensor to avoid occlusions 

of the monitored subject caused by other people or clutter 

objects, the compliance of the radar waveform with existing 

communication and electromagnetic compatibility standard, 

the dependency of micro-Doppler signatures on the cosine of 

the aspect angle, hence the possible degradation of the 

signatures that can invalidate the proposed classification 

schemes, and the robustness in rejecting false alarms and 

misclassification events related to similar actions (e.g. falling 

rather than bending or crouching down) [8]. An additional 

limitation is the current lack of large and shared databases of 

signatures to validate the proposed approaches rather than 

using small, ad-hoc datasets. Furthermore, these ad-hoc 

datasets are generally collected in semi-controlled laboratory 

environment and involving mostly young subjects rather than 

elderly people. 

Some of these technical challenges can be addressed by using 

multiple types of sensors through a sensor fusion approach 
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[11], with the aim of exploiting complementary advantages of 

different technologies to overcome the limitations of a single 

family of sensors. This paper introduces two datasets of 

signatures of human activities, one of which includes 

simultaneous radar and RGB-D signatures enabling the 

investigation of suitable multisensory classification techniques 

for this context. Preliminary results are presented, regarding 

the analysis of the radar data, showing promising classification 

accuracy and referring to the final version of the manuscript for 

the analysis of the RGB-D data and their joint use. Brief 

examples of simulated human micro-Doppler signatures 

generated by motion-capture data are also shown, referring to 

the final version of the manuscript for a more detailed 

discussion. These signatures can be used to complement 

experimental data for comparison and for achieving the very 

significant amount of data necessary to test some classification 

techniques, such as those based on unsupervised machine 

learning or neural networks.  

The paper is organized as follows. Section 2 presents examples 

of preliminary results of simulated human radar signatures. 

Section 3 describes the experimental setups of the two data 

collections, with the relevant analysis and some results 

presented in section 4. Finally, section 5 concludes the paper. 

2 Simulation of radar micro-Doppler signatures  

The generation of reliable simulated data can complement 

experimental radar data for improvement of classification 

methods. In order to try and characterise the contribution of 

various body parts in the micro-Doppler signatures, two 

scenarios were simulated: walking towards the radar (~10-15 

m – subject 7 motion 5) and crouching facing the radar (~4-5 

m – subject 26 motion 9). The human movements are extracted 

from the Carnegie Mellon motion capture database [12] and 

read with the HDM05 parser [13].  

 
Figure 1. 3D model of a man a) crouching b) walking and the 

resulting simulated spectrograms for c) crouching and d) 

walking actions while facing a radar with a carrier frequency 

of 5.8 GHz and a pulse repetition frequency of 1 kHz 

The database motion was shot at 120 frames per second (fps). 

Using MATLAB basic fitting tool based on ‘shape-preserving 

interpolant’, the movements were up-sampled to 1000 fps to 

match the experimental Doppler sampling rate (PRF 1 kHz). 

The data was simulated at 5.8 GHz using an adapted approach 

based on the simulation in V. Chen’s book [14] and the radar 

cross section (RCS) model was superimposed on the skeleton 

data from the database. The RCS has been modelled with 

spheres and ellipsoids that have analytical equations taking into 

consideration incident angles in azimuth and elevation thus 

resulting in more realistic micro-Doppler signatures as seen in 

Figure 1 for the 2 scenarios abovementioned and also matches 

the experimental radar parameters presented in section 3. 

3 Experimental setup and data collection 

The paper presents the preliminary analysis of radar data 

collected in two separate experiments. The radar is an off-the-

shelf Frequency Modulated Continuous Wave (FMCW) 

system operating at 5.8 GHz, with bandwidth equal to 400 

MHz and chirp duration equal to 1 ms (hence unambiguous 

Doppler frequency range equal to ±500 Hz, sufficient to 

capture the whole human micro-Doppler signature for indoor 

activities). The transmitted power of the radar sensor is 

approximately +19 dBm, and two linearly polarised Yagi 

antennas with gain equal to 17 dBi and beam-width of 

approximately 24° in azimuth and elevation were used. 

 

Dataset 1. The first experiment was performed in an indoor 

meeting room at the School of Engineering at the University of 

Glasgow. The room contained several pieces of office furniture 

(desks, chairs, cupboards, computers), but the radar system had 

line-of-sight to the targets and was located at a height of 

approximately 1.2 m pointing at the torso of the subjects. Six 

different volunteers took part to the data collection, 3 males 

and 3 females, with age varying between 20 and 30 years. For 

this collection seven different actions were recorded, namely 

walking back and forth in front of the radar, sitting on and 

standing up from a chair, bending to pick up an object from the 

floor and standing up, making circles with one arm while 

standing, clapping while standing, pushing (moving one arm 

fast towards the radar faster, and then slowly backwards), and 

pulling (basically the opposite of the previous movement). 

Two 60s long recordings for each activity and for each subject 

were collected, each of them containing several repetitions of 

the particular movement under test. Additional data were 

collected with two of the six subjects facing different aspect 

angles, namely 30°, 45° and 60° away from the line-of-sight of 

the radar. This was done to test the effect of the aspect angle 

parameter on the signatures and on the classification 

algorithms.  

Dataset 2. The second experiment was performed in the 

laboratory of the Telecommunication Systems Group at the 

Università Politecnica delle Marche, Ancona, Italy. The same 

radar sensor and antennas were used, in a similar setup in terms 

of height of the sensor (approximately 1-1.1 m from the floor) 

and distances between targets and radar (approximately 2 to 4 

m). Ten different actions were recorded, namely walking (A1), 

walking while carrying an object with both hands (A2), sitting 

down on a chair (A3), standing up from a chair (A4), bending 

to pick up a pen (A5), bending to tie shoelaces (A6), drink 

multiple sips from a glass while standing (A7), extract a mobile 

phone from pockets and pick up a call (A8), simulated tripping 
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with frontal fall (A9), and crouching down pretending to check 

something under a piece of furniture and then coming back up 

(A10). Three different recordings were collected for each 

person for each of the 10 activities. In each recording only one 

repetition of the particular movement considered was 

collected. The recordings had different durations depending on 

the activity (from 5 s to 10 s). Seven different subjects took part 

to this experiment, aged between 23 and 40 years old. 

It is known that micro-Doppler signatures can change 

significantly for the same action at different aspect angles [15], 

especially at aspect angles that approach 90° to the radar line 

of sight. Multistatic radar has been suggested as possible 

solution to approach this issue, where different radar nodes 

collect simultaneous signatures of the subject from different 

aspect angles, as well as different classes of sensors that can be 

more tolerant of the aspect angle issue. For these data, 

simultaneous recordings of the activities were also collected 

using the RGB-D sensor Kinect, located in frontal position 

with respect to the subjects. The joint use of radar and Kinect 

data to improve fall detection and activities classification 

performance is beyond the scope of this paper, but these data 

will enable a detailed investigation of the most effective 

information fusion techniques. The measurement setup is 

shown in Figure 2 where both the radar and Kinect sensors are 

visible.  

 
Figure 2. Laboratory setup for dataset 2. 

Additional data were then recorded for the same activities in a 

sitting room of an actual flat, with two subjects (one 62 years 

old male and one 58 years old female). These additional data 

will help investigating differences between signatures of 

younger and older subjects, in order to assess the robustness of 

classification approaches developed (mostly) on data from 

younger subjects in laboratory environments, when processing 

data from older subjects in realistic home environments.  

 

4. Data analysis and preliminary results 

The radar data were processed using a Short Time Fourier 

Transform (STFT) with a 0.2 s Hamming window and 95% 

overlap to produce spectrograms. A Moving Target Indication 

(MTI) IIR filter was applied to the data prior to time-frequency 

analysis to remove the static clutter contribution from the 

micro-Doppler signatures. Aside from the spectrogram, time 

frequency distributions that address the time and frequency 

resolution trade-off associated with STFT can also be applied. 

S-methods and bilinear or quadratic transforms [16], mostly a 

subset of Cohen’s class transformations, would also be suitable 

in this context, although beyond the scope of the analysis 

presented in this paper.  

Figure 3 shows an example of spectrograms for six different 

actions performed by the same subject as collected in dataset 

2. Figure 4 shows four spectrograms for the same action 

(crouching to look below a piece of furniture and coming back 

up) performed by four different subjects, one of which (Figure 

4d) was significantly older than the other 3. The temporal 

duration of the signature and the change and extension in 

positive/negative Doppler appear to differentiate the actions, 

with the challenge of finding suitable features that can capture 

these differences effectively and be robust to the variability 

from one subject to another. Some actions are more similar 

than others, e.g. the frontal fall in Figure 3e is very similar to 

the bending action in 3d, presenting a challenge for false 

alarms in fall detection. Furthermore, the signatures in Figure 

3c and 3f could be confused with the actual fall (3e) as well, if 

the classification algorithm only considers the initial part of the 

signature. One can also observe in Figure 4 how the same 

action produces rather different signatures for different 

subjects, and the fact that the signature for the older subject 

(Figure 4d) appears to be more limited in Doppler frequency 

range than for the younger subjects. This may highlight the 

importance of collecting data from actual older subjects for 

effective development and validation of classification 

techniques.  This needs to be validated through the collection 

of a large number of signatures, including older volunteers, to 

validate the statistical significance of this statement. 

Numerical features were then extracted from the spectrograms 

to perform automatic classifications. These are briefly 

described here, referring the readers to more detailed 

description in the references provided: 

 Centroid and bandwidth of the signatures, i.e. the centre of 

mass of the spectrograms and the intensity of the 

signatures around it. The mean and the standard deviation 

of these two quantities have been previously used for 

human micro-Doppler classification [15,17]. 

 Entropy of the spectrogram image and skewness of the 

histogram containing the intensity samples. These textural 

features have been previously used to discriminate human 

targets from other classes of targets [18]. 

 Features based on Singular Value Decomposition (SVD), 

in particular the mean and the standard deviation of the 

first three vectors of the left (U) and right matrix (V) 

resulting from the decomposition. These have been 

previously used for classification of unarmed vs 

potentially armed personnel and for micro-drones’ 

payloads classification [17, 19]. 

 

The feature samples were then processed using different 

classifiers implemented in MATLAB. These were: Naïve 

Bayes (NB), diagonal-linear version of the discriminant 

analysis (DL), Nearest-Neighbour with 7 neighbours (KNN), 

binary classification tree (CT), support vector machine with 

radial basis funcitons (SVM), and ensamble method based on 
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random forest/bagged tree (BT). A detailed description of the 

classifiers goes beyond the scope of this paper, but additional 

information can be found in [20-21]. 

When analysing dataset 1, the 60 s long spectrograms were 

partitioned in 3 s long segments and one sample per feature was 

extracted from each individual segment. For this dataset ten 

features were considered as input to the classifier, namely 

mean and standard deviation of the centroid and bandwidth of 

the signature, entropy and histogram skewness, and the six 

features based on SVD. This generated a total of 2460 feature 

samples (i.e. 246 datasets in total for the 6 people and 7 actions, 

and ten features). The feature samples set was randomly 

partitioned in two equal subsets for training and samples, and 

this process was repeated 50 times to test the validity of the 

classification approach. The average accuracy was then 

calculated and the results per class are reported in the confusion 

matrix in Table 1. The classifier used is a support vector 

machine (SVM) with cubic kernel, implemented with in 

MATLAB with one-vs-one approach for multiclass problems 

[22]. 

 
Figure 3. Spectrograms for 6 activities performed by the same subject: (a) sitting on a chair, (b) standing up from a chair, (c) 

bending and picking up a pen, (d) bending and staying low to tie shoelaces, (e) frontal fall, and (f) crouching to look below a 

piece of furniture and standing back up 

 
Figure 4.  Spectrograms for crouching to look below a piece of 

furniture and standing back up performed by 4 subjects of 

different ages 

The average accuracy across the seven activites is 

approximately 94%. The classification accuracy is higher than 

90% for each activity considered, with misclassification events 

spread fairly consistently across the other activities, i.e. there 

are no obvious pairs of activities misclassified one with each 

other. It is interesting to observe that the datasets contained 

recordings colelcted at different aspect angles (0, 30, 45, and 

60 degrees), and these have been used jointly for both training 

and testing. Future work will investigate how using robust the 

classification method is if testing data include aspect angles not 

used at training, as for practical applications it will be 

unfeasible to train the classifier with data from all possible 

orientation. Furthermore, these preliminary results used the ten 

available features jointly, whereas it is interesting to explore 

the diversity in performance obtained with different 

combination of fetures for different operational parameters, for 

example aspect angle and Signal-To-Noise Ratio. 

 

When analysing dataset 2, one feature sample was extracted 

from each spectrogram, generating 270 samples for each 

feature in total (10 activities, 3 recordings, 9 volunteers). For 

this datasets 6 features were used as inputs to the classifier, i.e. 

those based on centorid and bandwidth and the textural 

features. 80% of the data were used to train the classifier and 

20% for testing, repeating this process 50 times with different 

randomly selected samples for the training and testing process, 
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in order to test the validty and the robustness of this approach. 

The final accuracy shown is the average across the 50 

iterations. Table 1 presents the summary of the classification 

accuracy obtained with the different classifiers, and Table 2 

shows an example of confusion matrix obtained for the SVM 

classifier. One can see that the best classification accuracy 

(around 76-77%) is obtained with the BT (bagged tree) and 

SVM classifiers, whereas simpler classifiers such as DL or 

KNN yield reduced accuracy. The improved accuracy yielded 

by BT and SVM may be due to their ensemble-based 

implementation, whereby different simpler classifiers 

operating on subspaces of classes are combined together to 

provide final decisions, whereas the other simpler classifiers 

operate on the whole features/classes space. Furthermore, it is 

interesting to investigate where misclassification events 

happened in the confusion matrix, especially because the 

activities in dataset 2 were chosen to be similar with one 

another, and test how effectively false alarms are rejected. For 

example, it can be seen that A1 and A2 (walking and walking 

carrying an object) are confused one with each other quite 

often, and the actual fall (A9) is mostly confused with bending 

and sitting activities (A4 to A6). This highlights the importance 

of developing feature extraction techniques capable of 

rejecting these false alarms and characterising the differences 

between very similar movements. The activities A7 and A8 

performed on the spot (drinking, mobile phone call) present the 

highest classification result, and they are mostly confused one 

with another. 

 

Classification accuracy [%] 

NB 67.88 

DL 58.28 

KNN 60.4 

CT 66 

BT 77.8 

SVM 76.44 

Table 1. Classification accuracy for dataset 2 with different 

classifiers 

 

Accuracy [%] Walk Push Pick up item Pull Circle arms Clap Sit/Stand 

Walk 95.9 0.5 0.2 0.7 1.3 0.5 0.7 

Push 0.2 94.7 0.3 1.8 1.2 0.3 1.1 

Pick up item 0.4 0.6 94.2 1.5 1.9 0.2 0.9 

Pull 0.3 4.2 0.3 91.9 1.6 0.2 1.2 

Circle arms 0.3 1.7 1.6 2 91.4 1.2 1.3 

Clap 0.3 0.6 0.1 0.1 1.7 96.5 0.3 

Sit/Stand 0.3 1.5 0.3 1.6 1.6 0.3 94 

Table 2. Confusion matrix for SVM classifier (cubic kernel) for dataset 1 

 

[%] A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

A1 68 26.4 0 0 5.6 0 0 0 0 0 

A2 29.2 70.4 0 0 0.4 0 0 0 0 0 

A3 0 0 86 0 2.4 4.8 0 6.8 0 0 

A4 0 0 0 80.8 4 9.6 0 0 3.2 2.4 

A5 1.6 0 5.6 8.8 56 4 0.4 1.2 0 22.4 

A6 0 0 0 8.8 8.8 71.2 0 0 6.8 4.4 

A7 0 0 0 0 0 0 91.2 8.8 0 0 

A8 0 0 0.4 2 0.4 0 2.4 92.4 0 2.4 

A9 0.8 0 0 4 3.6 9.6 0 0 82 0 

A10 5.6 0 0 0 19.6 3.2 0 5.2 0 66.4 

Table 3. Confusion matrix for SVM classifier (RBF kernel) for dataset 2 

 

5. Conclusions 

This paper has presented preliminary results on the analysis of 

radar data for monitoring of human indoor activities and fall 

detection.  Two datasets collected with different subjects and 

in different locations have been analysed, using ten different 

features extracted from the micro-Doppler signatures. 

Accuracy up to an average of 94% has been achieved using the 

ten features jointly for one dataset. Large variability in the 

accuracy has been observed for different features (here based 

on the centre of mass of the signature, on the SVD 

decomposition, on image processing techniques), classifiers, 

scenario dependent parameters (e.g. the aspect angle of the 

movement with respect to the radar line of sight). This is being 

investigated in more detail to select the most suitable features 

and classification approach in each operational scenario, with 

the perspective of adopting cognitive-radar inspired 

approaches, whereby the radar system can know or even learn 

what is more appropriate to do in each condition. Different 

architectures of neural networks are also considered, for their 

effectiveness to learn features without human intervention and 

capabilities to transfer learning across signatures collected in 

different operational scenarios.   

Another element of interest in the data presented here is the 

simultaneous recording with radar and RGB-D (Kinect) 

sensors, and the acquisition of signatures of older volunteers in 

a realistic home environment. These have been only briefly 
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touched in this manuscript, but future work will explore multi-

sensor techniques for improved classification accuracy, and 

will aim to include more data from older volunteers. This will 

enable to characterise differences with signatures from 

younger people and investigate how the classification approach 

can take these differences into account. 

Furthermore, the simulated micro-Doppler signatures 

presented in section 2 will allow studying the effects of the 

radar geometry configuration (azimuth, elevation, monostatic, 

multistatic) and different radar parameters (frequency, 

bandwidth) on the classification effectiveness. 
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