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ABSTRACT 

Modal Identification from Frequency Response Functions (FRFs) is a chapter of Experimental Modal 

Analysis (EMA) that many would consider as something from the past. Yet, in a previous work [2], a 

new approach to determine the modal damping factors from FRFs was proposed. Contrary to other 

modal identification methods which are based on the dynamic motion governing equations, the method 

used the dissipated energy per cycle of vibration as a starting point. The method used a plot of the sine 

of the phase of the receptance against its amplitude. In this paper, it will be shown that near resonant 

frequencies, its shape is elliptical, whereby the modal constants can be determined.  
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1. THEORETICAL DEVELOPMENT 

If the modes of a dynamic system are sufficiently spaced, the influence from other modes is small when 

compared to the resonant mode [2]. In such a case, the receptance of an MDOF in the vicinity of a 

resonance 𝜔𝑟 resembles the equation of a SDOF† and can be expressed as [1]: 

 

𝛼𝜔→𝜔𝑟
≅

𝐴𝑅 + 𝑖𝐴𝐼

𝜔𝑟
2 − 𝜔2 + 𝑖𝜂𝑟𝜔𝑟

2 (1) 

                                                     

* Corresponding author. Tel.: +44(0)1202 965513. 

E-mail address: dmontalvao@bournemouth.ac.uk. 

† In fact, a SDOF has no complex modal constant and it equals unity. It should be emphasized that this arbitrary 

SDOF corresponds to the approximation where the influence of other modes (in a MDOF) can be neglected and 

the mode under analysis can be accepted as a SDOF system. 
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where 𝐴𝑅 and 𝐴𝐼 are the real and imaginary parts of the complex modal constant, 𝜔𝑟 is the angular 

natural frequency and 𝜂𝑟 is the modal damping factor for mode 𝑟. The whole development is based on 

this assumption: that mode shapes are conveniently well spaced in the frequency spectrum. 

 

Condition 1: |𝜔𝑟
2  −  𝜔2| ≫  0 

Away from the natural frequency, and considering, for better convenience, a lightly damped system 

where 𝜂𝑟 ≅ 0, equation (1) is simplified to: 

 

𝛼𝜔≪≫𝜔𝑟
≅

𝐴𝑅 + 𝑖𝐴𝐼

𝜔𝑟
2 − 𝜔2

=
𝐴𝑅

𝜔𝑟
2 − 𝜔2

+ 𝑖
𝐴𝐼

𝜔𝑟
2 − 𝜔2

 (2) 

If the receptance is represented in the Argand plane, then the phase 𝜃𝜔≪≫𝜔𝑟
 is related to the imaginary 

𝛼𝐼𝜔≪≫𝜔𝑟
 and real 𝛼𝑅𝜔≪≫𝜔𝑟

 parts of the receptance by: 

 

tan[𝜃𝜔≪≫𝜔𝑟
] =

𝛼𝐼𝜔≪≫𝜔𝑟

𝛼𝑅𝜔≪≫𝜔𝑟

=
𝐴𝐼

𝐴𝑅
⇒ 𝜃𝜔≪≫𝜔𝑟

= tan−1 (
𝐴𝐼

𝐴𝑅
) (3) 

Therefore, in the 𝑥 ≡ 𝐻 vs 𝑦 ≡ sin(𝜃) plane this becomes: 

 

sin[𝜃𝜔≪≫𝜔𝑟
]  = sin [tan−1 (

AI

AR
)] (4) 

 

Condition 2: |𝜔𝑟
2  −  𝜔2| =  0 

When at the natural frequency, i.e., when 𝜔 = 𝜔𝑟, equation (1) will achieve its maximum value: 

 

𝛼𝜔=𝜔𝑟
=

𝐴𝑅 + 𝑖𝐴𝐼

𝑖𝜂𝑟𝜔𝑟
2 =

𝐴𝐼

𝜂𝑟𝜔𝑟
2 − 𝑖

𝐴𝑅

𝜂𝑟𝜔𝑟
2 (5) 

which, when solved for 𝐴𝑅, becomes: 

 

𝐴𝑅 = √𝐻𝜔=𝜔𝑟
2 𝜂𝑟

2𝜔𝑟
4 − 𝐴𝐼

2 (6) 

Equation (6) allows determining the real part of the modal constant from its complex counterpart, which 

must be determined somehow. Therefore, if one solves equation (4) for 𝐴𝐼 when having equation (6) in 

consideration, and after some mathematical manipulation, this results in: 

 

𝐴𝐼 = √
𝐻𝜔=𝜔𝑟

2 𝜂𝑟
2𝜔𝑟

4

[tan [sin−1( 𝜃𝜔≪≫𝜔𝑟
)]]

−2
+ 1

 (7) 

Equations (6) and (7) allow determining the real and imaginary parts of the modal constant from the 

plot of the receptance in the 𝑥 ≡ 𝐻 vs 𝑦 ≡ sin(𝜃) plane. 



 

 

2. PROPERTIES OF THE RECEPTANCE IN THE 𝒙 ≡ 𝑯 VS 𝒚 ≡ 𝐬𝐢𝐧(𝜽) PLANE 

Let us consider the example of an arbitrary SDOF system with complex modal constant 𝐴̅𝑟 = 1000 +
500𝑖, 20.4 Hz natural frequency and 0.01 modal damping factor. Let us also assume that the receptance 

was experimentally measured in the 0 to 40 Hz frequency range with a period of acquisition of 2 s (i.e., 

a 0.5 Hz frequency resolution). Plots of the amplitude 𝐻 and phase 𝜃 of the receptance so obtained in 

the frequency domain and the same function in the 𝑥 ≡ 𝐻 vs 𝑦 ≡ sin(𝜃) plane are shown in figure 1. 

   

Figure 1. Example of the amplitude and phase of a SDOF receptance in the frequency domain (left) and the 

same SDOF receptance represented in the 𝑥 ≡ 𝐻 vs 𝑦 ≡ 𝑠𝑖𝑛(𝜃) plane (right). 

The first observation to note is that the receptance data points when plotted in the 𝑥 ≡ 𝐻 vs 𝑦 ≡ sin(𝜃) 

plane describe a loop that can be fitted with the half of an ellipse. In this case, since the data has no 

noise and it is a SDOF, a perfect correlation between the data and the fit was obtained (figure 1 to the 

right). This ellipse has some important properties, namely: 

1. The ellipse is centred at (0, 0) and its slope depends on the damping coefficient ℎ (0, 0) [9. 10]. 

2. The function is limited between 1 and -1 since it depends on a sinusoidal function. In the 

example shown, where half an ellipse is represented, the ellipse is tangent at 𝑦 = −1; 

3. Since the natural frequency (20.4 Hz) is not a multiple of the frequency resolution (0.5 Hz) in 

the example shown, the frequency spectrum does not show the exact amplitude at the natural 

frequency. The amplitude at the resonance for this given example is determined to be 6.805 

from both equation (1) and the ellipse in figure 1 to the right. 

4. The value 𝜃𝜔≪≫𝜔𝑟
 required to determine the imaginary part 𝐴𝐼 of the modal constant (equation 

7) can also be determined from the ellipse, since this is when the ellipse crosses the 𝑦 axis, i.e. 

𝜃𝜔≪≫𝜔𝑟
= sin−1[sin(𝜃𝑥=0)]. 

3. NUMERICAL EXAMPLES AND RESULTS 

A total of eight different cases were used to illustrate the proposed method, which results are all listed 

in the full paper. Some of these are listed in table 1. The results from the modal identification following 

the process described herewith are shown in table 2. It is shown that there is good agreement between 

the theoretical models and the results obtained from the modal identification, at least for SDOF systems. 

The MDOF produced slightly worse results, namely for the second mode shape. This might be due to 

the fact that this mode shape has a considerably high imaginary part and also because of the influence 

of the other mode shape in the vicinity. Figure 3 shows the MDOF case 7 in the x ≡ H vs y ≡ sin(θ) 

plane, where the fitting ellipses can be clearly seen. 

Table 1. Numerical models’ theoretical properties. 

Case 

Mode 1 Mode 2 

Modal Constant 1 
𝑓(𝐻𝑧) 𝜂 (%)  Amp 

Modal Constant 2 
𝑓(𝐻𝑧) 𝜂 (%) Amp 

Real Imag Real Imag 

1 1000 0 20.4 1 6.087 - - - - - 

5 1000 -500 20.4 1 6.805 - - - - - 

7 1000 -500 20.4 1 6.805 2000 -1200 50.25 5 0.4679 



Table 2. Results from the modal identification. 

Case 

Mode 1 Mode 2 

Modal Constant 1 
𝑓(𝐻𝑧) 𝜂 (%)  Amp 

Modal Constant 2 
𝑓(𝐻𝑧) 𝜂 (%) Amp 

Real Imag Real Imag 

1 1019 1033 20.40 1.000 6.204 - - - - - 

5 1004 -502.1 20.35 1.009 6.805 - - - - - 

7 996.3 -485.0 20.22 0.939 7.312 2636 -1803 49.64 0.07189 0.4670 

 

 

Figure 3. MDOF receptance for case 7 represented in the 𝑥 ≡ 𝐻 vs 𝑦 ≡ 𝑠𝑖𝑛(𝜃) plane with two ellipses 

fitting the date at the vicinity of the mode shapes. 

4. CONCLUSIONS 

A novel method for the identification of the modal constants from FRFs for lightly damped systems 

with conveniently spaced mode shapes was presented. In previous works [2], it was shown that this 

method can provide a better estimate of the modal damping factors than the method of the inverse. 

However, with respect to the modal constants, more research is still required. Firstly, the method should 

be capable to “isolate” the already identified mode shapes to reduce the degree of influence from the 

other mode shapes. This is something that can easily be achieved programmatically and is expected to 

increase its accuracy. Secondly, the method should be tested on actual experimental data to assess how 

robust it is in real situations where noise and uncertainty are present. Thirdly, the fitting of the ellipse 

is not easy to achieve and must be improved, especially when the frequency resolution is coarse, as 

most of the data points in the ellipse will be shifted towards the origin. Finally, the method is yet to be 

tested on the modal identification of multiple FRF functions. 
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