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Abstract

The aim of this research is to introduce new advanced statistical methods for analysing gene

expression profiles to consequently enhance our understanding of the spatial gradients of the

proteins produced by genes in a gene regulatory network (GRN). To that end, this research

has three main contributions.

In this thesis, the segmentation Network (SN) in Drosophila melanogaster and the bicoid

gene (bcd) as the critical input of this network are targeted to study. The first contribution

of this research is to introduce a new noise filtering and signal processing algorithm based

on Singular Spectrum Analysis (SSA) for extracting the signal of bicoid gene. Using the

proposed SSA algorithm which is based on the minimum variance estimator, the extraction

of bcd signal from its noisy profile is considerably improved compared to the most widely

accepted model, Synthesis Diffusion Degradation (SDD). The achieved results are evaluated

via both simulation studies and empirical results.

Given the reliance of this research towards introducing an improved signal extraction

approach, it is mandatory to compare the proposed method with the other well-known and

widely used signal processing models. Therefore, the results are compared with a range of

parametric and non-parametric signal processing methods. The conducted comparison study

confirmed the outperformance of the SSA technique.

Having the superior performance of SSA, in the second contribution, the SSA signal

extraction performance is optimised using several novel computational methods including

window length and eigenvalue identification approaches, Sequential and Hybrid SSA and



viii

SSA based on Colonial Theory. Each introduced method successfully improves a particular

aspect of the SSA signal extraction procedure.

The third and final contribution of this research aims at extracting the regulatory role of

the maternal effect genes in SN using a variety of causality detection techniques. The hybrid

algorithm developed here successfully portrays the interactions which have been previously

accredited via laboratory experiments and therefore, suggests a new analytical view to the

GRNs.
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Chapter 1

Introduction

Most of our knowledge about the molecular basis of biological development has come from

the magnificent studies on Drosopila melanogaster (D. melanogaster), also known as fruit

fly.

Recent advances in methods and techniques that generate gene expression data have

provided an excellent possibility to investigate the development of D. melanogaster.

D. melanogaster life cycle consists of several stages: embryogenesis, three larval stages,

a pupal stage and the adult stage [Arbeitman et al., 2002]. Developmental studies are mostly

focused on the principals underlying the genetic regulation mechanisms in the embryogenesis

stage. According to the studies conducted in the field of system biology, the embryogenesis

principles which are uncovered following the investigations on D. melanogaster may apply

to other eukaryotes as well.

During the embryogenesis stage of D. melanogaster, several Gene Regulatory Networks

(GRNs) act in the embryo which among them Segmentation Network (SN) is a well known

and mostly studied GRN. Such studies are aimed at explaining and characterising the complex

relationships between primary developmental transcription factors (TFs) and their target

genes. The TFs control the amount and appearance timing of the proteins produced by the

genes in a GRN.
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Therefore, the insight gained by studying the gene expression profiles of the SN as a

fundamental network at the beginning of cell differentiation process in D. melanogaster

has considerably enhanced our knowledge of transcriptional mechanisms and gene-gene

interactions.

Undoubtedly, given the big size, noisy feature and complicated characteristics of gene

expression data sets, a computationally efficient and statistically robust analysing method

plays a central role to reinforce the validity and reliability of new findings in this area. Hence,

this research introduces a number of novel statistical methods to improve the computational

analysis of cell differentiation process during the segmentation stage. The presented methods

play a significant role in improving the precision of gene expression signal processing and

network analysing techniques. Furthermore, the new methods proposed in this research

introduce novel approaches for modelling the segmentation gene expression profiles which

are present in the SN.

It is imperative to note that the theoretical contribution presented in this thesis results not

only in the improvement of the accuracy of gene expression studies, but it is also applicable

to other fields of applied statistics where signal extraction, noise filtering, forecasting and

causality detection goals are aimed to study.

1.1 Motivation

At the beginning of life, there were only single cells. Today, after many millions of years,

most plants, animals, fungus, and algae consist of multiple cells that work together as an

individual being. Accordingly, the questions of how a simple fertilised cell develops into a

complex multicellular organism and how different cells cooperate to carry out specific tasks

and perform particular roles have attracted the interest of many researchers during the last

century.
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Being very much fascinated by the questions above, in this thesis, we focused our research

on a particular aspect of these subjects. Accordingly, we introduce and integrate several

computational techniques and develop a new analytical view to study the gene expression

profiles and to analyse the GRNs. The principal aim of our study is to improve the noise

filtering algorithms applied for extracting the signal of gene expression data set and to give a

statistical representation of gene expression profiles. To elucidate the important contribution

of a useful gene expression signal processing approach to address the questions mentioned

above, an overview of the phenomenon lied in those questions is given below.

The process of developing a simple zygote to a complex system of tissues and cell types

is known as cell differentiation [Van den Berg et al., 1997]. Like any other scientific question,

to investigate this phenomenon and to acquire new details, a scientific method needs to be

adopted.

Understanding the genetic process of cell differentiation demands to apply several ad-

vanced methodologies and tools as well as a broad knowledge of the other areas of study

such as chemistry, physics and mathematics. More importantly, there is a great amount of

studies focused on this phenomenon over the past decade. Therefore, to effectively improve

the knowledge in this area, a research study should be narrowed down to one particular aspect

of cell differentiation. As it has been famously quoted, a good research question is not too

broad nor too narrow.

According to the extensive studies carried out during the last century, now, it is widely

believed that cellular differentiation leading to the development of a multicellular organism

is a response to the distinct spatial order of morphogen gradients [Rivera-Pomar and Jãckle,

1996; Scott et al., 1987]. Hence, morphogens, their gradients and interactions have been

targeted for further exploration by developmental biologists. A summary of these studies is

presented later Chapter 2.
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Having considered the morphogens as the substance under study, a possible way to

facilitate the research is the use of a model organism. Besides the fact that studies on certain

characteristics of morphogens initially started with studying D. melanogaster, the main

reason behind applying a model organism in genetic studies is an evolutionary principle

stating that due to the common ancestry fact, all organisms have some degree of relatedness

and genetic similarity. For example, several basic biological, physiological, and neurological

characteristics are conserved between mammals and D. melanogaster, and approximately

75% of human disease-causing genes are believed to have a functional homolog in this fly

[Pandey and Nichols, 2011].

Being easy to control and breed in a laboratory setting, simple genetic accessibility and

short generation time can be addressed as the other important features which credit applying

D. melanogaster in genetic studies.

Given these factors, D. melanogaster was chosen to be an excellent candidate for screen-

ing the function of morphogenes process. In addition to the reasons mentioned above, the

small size of this fly, transparent embryo and large embryo size can be addressed as the other

key factors which further encouraged scientists to adopt D. melanogaster to investigate the

characteristics of the morphogens [Powell, 1997].

Having considered D. melanogaster as a very useful model organism, Bicoid (Bcd) 1 ,

the first identified protein to act as a morphogen was discovered in 1988. Therefore, the bcd

gene in D.melanogaster soon became a hot research spot for developmental researches.

Bcd is a homeodomain transcriptional factor whose protein concentration gradient plays

a crucial role in patterning along the future head to tail axis of an adult fruit fly and is a key

maternal input of the SN. As previously mentioned, SN is one of the first developmental

gene networks in D. melanogaster which establishes only within several hours after fertil-

isation [Rivera-Pomar and Jãckle, 1996; Scott et al., 1987]. It is widely accepted that the

1In what follows, the italic lower-case bcd represents either the gene or the mRNA and Bcd refers to the
protein. This presentation is applied for all the genes mentioned in this thesis.
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SN is responsible for forming the segmented pattern of D. melanogaster body along the

anterior–posterior (AP) axis , Fig 1.1 [Surkova et al., 2008b].

Over the years, the extensive studies on different aspects of pattern formation and segment

determination processes in SN have enhanced our understanding of how genes cooperate to

pattern the body after fertilisation.

Fig. 1.1 The segmented body of D. melanogaster. Figure adopted from [Alberts et al., 2002]

Now we know that the genetic cascade in the SN comprised of maternal, gap, pair-rule

and segment polarity genes and the sequential activation in this network starts with the

expression of bcd gene [Zamparo and Perkins, 2009].

Accordingly, the SN and in particular the bcd gene as the principal input of this network

were considered as the premier system for system biology studies. Hence, over many years

of study, different experimental datasets have been coupled to various computational models

to portray the biological processes of this network. [Hengenius et al., 2011; Jaeger et al.,

2004; Papatsenko and Levine, 2011; Poustelnikova et al., 2004; Reinitz and Sharp, 1995].

It is evident that the prediction reliability and success of the proposed models greatly

depend on the availability of the methods and techniques which can generate improved and

accurate quantitative gene expression data at cellular resolution. To extract the quantitative

data set from cell-specific gene expression, immunofluorescence technique using confocal
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scanning microscopy of fluorescently tagged molecules is widely applied. This technique is

a popular method which among different applicable approaches has recently transformed

itself into a practical toolkit for developmental biologists [Zamparo and Perkins, 2009].

Immunofluorescence method is based on the interactions created between antibodies

labelled with fluorescent dyes and the appropriate antigens [Minsky, 1988] (Fig 1.2). The

fluorescent signals are then detected by fluorescent microscopy using laser and confocal

scanning microscopes. The achieved signals can accordingly provide great insight into the

cellular world by visualising the distribution and the concentration of the proteins under study

[Surkova et al., 2008b]. It should be noted that although in studying a single-cell system it

is possible to perform an in vivo screening, in multicellular organisms, the study is usually

carried out on fixed tissues [Wu et al., 2007].

There are two classes of immunofluorescence technique:

• Primary (direct): Which applies a single, primary antibody. This antibody is chemi-

cally attached to a fluorochrome. The primary antibody binds to the target molecule

(i.e. antigen). A fluorescent microscope then identifies the attached fluorochrome.

Although the direct Immunofluorescence method is less common than the indirect one,

it has several powerful advantages including the reduced number of analytical steps,

quickness and less non-specific background signals [Fritschy and Härtig, 2001].

• Secondary (indirect): Which applies two antibodies. The primary antibody from one

side binds the antigen while from the other side binds the secondary antibody which

is attached to the fluorochrome. In this case, the signal is amplified considerably by

multiplying the number of fluorochrome per antigens. Nevertheless, this method is

rather time-consuming, it is more flexible because for any given primary antibody,

different secondary antibodies can be utilised, [Fritschy and Härtig, 2001], (Fig 1.3).

Later in this chapter, we will see that the gene expression data used in this study is

achieved via an indirect immunofluorescence technique.



1.1 Motivation 7

Fig. 1.2 Direct immunofluorescence. In this method the object is visualised using a fluorescence-
tagged antibody. Figure adapted from [Dubreux, 1998].

Fig. 1.3 The direct immunofluorescence techniques versus the indirect immunofluorescence.
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The data achieved by means of immunofluorescence technique can be applied in a wide

variety of studies ( e.g. Studying GRNs, determining co-expressed genes or co-located gene

products, sub cellular localisation of proteins, determining the effects of gene knockouts,

over/under gene expression, promoter manipulations, inferring protein functions determining

the concentration of specific cellular ions) [Zamparo and Perkins, 2009].

Immunofluorescence technique can quantify both the spatial and the temporal measure-

ments of the fluorescent molecules in a biological specimen. In the spatial measurement,

the information on features such as distance, areas and velocity are aimed to achieve as

opposed to the temporal analyses where the intensity levels attributed to the fluorochromes

are measured at different time points [Ji et al., 2009].

Moreover, depending on the aim of the study, different techniques can be applied in

conjunction with immunofluorescence technique. (e.g. Comparing the relative intensities of

two fluorescent specimens, fluorescence recovery after photobleaching (FRAP) and Förster

resonance energy transfer (FRET) [Waters, 2009].)

Without any doubt, the accuracy and precision of the data achieved by immunofluores-

cence technique play a significant role in the success of the computational models proposed

for gene expression profiles. Therefore, it is of critical importance to note that regardless

of the general advantages of immunofluorescence technique, like any other computational

procedure, this method has its limitations which have been previously raised by several

studies [van der Loos, 2008]. According to [Wu et al., 2007], the existence of considerable

amounts of noise can be addressed as one of the most important limitations of this technique.

Confocal scanning microscopes provide digital images of the fluorescence signals which

are used for numerical measurements. To this aim, the detected photons at each pixel of a

digital image are converted to an intensity value. It should be noted that this value is only an

estimation of the correlation between the number of the photons and the intensity level and is

not exactly equal to the number of detected photons [Pawley, 2006].
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However, this is not the only flaw of the numerical measurements of immunofluorescence

technique ( the outline of these issues is addressed later in this chapter). Therefore, to increase

the accuracy and precision of the measurements, this technique has been notably improved

over the past decade. For example, the advanced digital cameras and genetically encoded

fluorochromes have led to a considerable enhancement of the resolution and contrast of the

images.

Since the last decade, the analysis of noise in achieved gene expression profiles has

attracted the attention of researchers and theoreticians from different fields of study [Golyan-

dina et al., 2012]. The main focus of such studies has been to uncover the source of the errors

introduced to the data and to evaluate the possible ways to overcome this issue [Myasnikova

et al., 2009]. According to these studies, noise in quantitative measurements might arise from

the specimen, the microscope, or the detector [Pawley, 2006].

However, noise in the gene expression data enters not only from the data acquisition

and processing procedures [Wu et al., 2007] but also the fluctuations seen in an expression

pattern can be a consequence of biological noise which may also introduce error into the

data [Myasnikova et al., 2009]. Therefore, the source of the natural biological variability is

different from the system noise [Myasnikova et al., 2009]. In Chapter 5, we will show that by

adopting a new hybrid signal processing algorithm developed in this thesis, different sources

of error can be effectively discriminated and modelled in analysing gene expression profiles.

Accordingly, the contribution of error introduced to a gene expression profile which

causes variance in intensity can be categorised as follows:

• Biological noise

arises from the active molecular transport, compartmentalisation, and the mechanics

of cell division [Spirov et al., 2012]. Biological noise is categorised in two different

groups of intrinsic and extrinsic noises [Fedoroff and Fontana, 2002].
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Intrinsic noise is related to the inherent randomness of biochemical processes such

as transcription and translation and is highly dynamic in time [Longo and Hasty,

2006]. Intrinsic noise arises from the stochastic nature of the biochemical process of

gene expression and causes identical copies of a gene to express at different levels

[Golyandina et al., 2012]. According to [Wu et al., 2007], this source of error is the

major contribution of fluctuations.

Extrinsic noise arises from the fluctuations in cellular components such as regulatory

proteins and polymerases that indirectly cause variation in the expression pattern of a

gene [Longo and Hasty, 2006].

• Observational noise

This source of error is attributed to the fluorescence measurement uncertainty in the

acquisition of quantitative gene expression data which might be due to several reasons:

Errors introduced by confocal microscope [Myasnikova et al., 2009], chemical causes

such as fluctuations in the number of primary and secondary antibody molecules

binding to proteins which according to [Wu et al., 2007] can explain the multiplicative

observed noise, possible errors in instrument functionality, sample preparation and

mathematical treatment of data [Myasnikova et al., 2009], the quantification of blurred

images [Myasnikova et al., 2009], errors due to over- and under-saturation, errors

due to image blurring [Myasnikova et al., 2009], background staining, non-accurate

embryo orientation, image and data processing errors. Evidently, all these procedures

add further errors in data [Myasnikova et al., 2009].

In affecting the precision and accuracy of the obtained images and quantitative mea-

surements, the structural damage or pessimal immunolabeling produced by poor sample

preparation should not be underestimated [North, 2006]. “Garbage in = garbage out” can be
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addressed as the best description for the noise introduced after a poor sample preparation

step.

As noted in [Verveer et al., 1999], inaccurate accumulation of fluorescent tags on or-

ganelles also creates a signal bias.

It is of note that in some projects repeated measurement is addressed to be an effective

way to reduce the noise. However, in some studies like a one-time point measurement in a

live-cell time-lapse experiment, the analysis is often bounded to make only one measurement.

Accordingly, one of the challenging issues in analysing gene expression profiles is

the association of the data with both biological and observational noise, which limits the

performance of the models and techniques, and consequently affects the accuracy of results

[Gregor et al., 2007; Hilfinger and Paulsson, 2011]. Therefore, employing an effective

method to deal with noisy profiles is essential.

Since in this thesis, our main focus is on analysing the bcd gene, from now we consider

the Bcd profile as the gene expression profile under study. In Chapter 5, we will show how

the outlined principles are adjustable and applicable to the other gene expression profiles of

SN.

There are two main approaches for fitting a model to a noisy Bcd profile:

• Ignoring the presence of noise and directly fit a model to the noisy Bcd data (A model

like the Synthesis Diffusion Degradation (SDD) model).

• Reducing the level of noise in Bcd profile by using a filtering method and then fit a

model to the filtered data [Hassani et al., 2009b].

The second approach increases the precision of the study by reducing the noise to

the lowest level possible and therefore, it is believed to be more efficient than the first

approach. As would expect, the selection of an appropriate filtering method is crucial for the

effectiveness of this approach.
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In adopting a standard filtering method, assuming the stationarity of data, linearity of the

model and normality of residuals are essential [Sanei and Hassani, 2015]. However, a method

with these assumptions provides only an approximation of the actual situation [Hassani et al.,

2013c]. Therefore, a method that does not depend on the mentioned assumptions can be

very useful for modelling and filtering not only the Bcd data but the other segmentation gene

expression profiles.

Singular spectrum analysis (SSA) is an excellent time series analysing and noise filtering

technique. SSA is a nonparametric method and therefore does not require any assumptions

[Hassani et al., 2010]. Accordingly, These features of SSA technique have motivated us to

consider this method as the foremost analytical tool of interest for this research. The reason

behind this selection and the main contributions and characteristics of SSA technique are

further elaborated later in Chapter 2.

However, before going to the details of SSA, it is necessary to point out the main

objectives targeted in this research.

1.2 Research Aim and Objectives

The main aim of this research is to introduce an improved statistical approach for signal

processing of gene expression profiles and network analysing in SN. The emphasis is placed

on providing an analytical tool for signal extraction and noise filtering process. To that end,

this research has four main objectives.

• To introduce SSA based on minimum variance estimator as a new and enhanced signal

extraction method for gene expression profiles. To compare and evaluate the reliability

of different parametric and nonparametric signal processing techniques with SSA

based on minimum variance estimator as the new introduced method and an excellent

candidate of non parametric techniques.
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• To improve the performance of the signal processing procedure by optimising specialis-

ing and automating the introduced noise filtering algorithm and expand the application

to different segmentation genes of SN.

• Evaluate the applicability of a hybrid analytical tool comprised of SSA and a variety

of causality detection techniques as a novel analytical approach for studying the SN

and GRNs in general.

Accordingly, this research is organised in such direction to achieve the mentioned ob-

jectives. The rational, methodology and results of each objective are further expanded and

elaborated in sufficient detail under separate chapters.

As it will be further discussed the realisation of these objectives will indeed result in

considerable theoretical advancements for SSA and also the field of signal processing and

time series analysis.

The conclusions, limitations and pathways for future research are also presented in the

final chapter of this thesis.

1.3 Why Singular Spectrum Analysis?

Having the research aims and objectives specifically identified above, in this section, the

motivation for the selection of SSA technique is further elaborated.

Accordingly, different characteristics which motivated the choose of SSA as the principal

method of interest for this research are described below.

After the introduction of SSA as a time series analysis technique in 1986, this method

transformed itself into a practical tool for analysing biomedical data and recently it has

also been applied to genetic studies where it illustrated its strong potential for such studies

[Du et al., 2008; Tang and Yan, 2012]. Noise filtering, smoothing, and forecasting a given

time series are among the most important applications of SSA technique. Since only the
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signal processing capabilities of SSA including smoothing and filtering are beneficial for this

research, Chapter 3, provides the details on these features of the method and therefore the

forecasting aspect is not discussed in this thesis.

As already mentioned, SSA is a nonparametric technique which does not rely on the

assumptions of normality of the residuals, stationarity of the data, or linearity of the model

[Hassani et al., 2013a] which are highly unlikely to hold in the real world applications. As

such, applying SSA enables modelling a given data set with a true approximation of the

situation without losing any information [Hassani and Mahmoudvand, 2013].

It is also worthy to ask if the SSA technique is a powerful method for time series analysis

how is it possible to adopt this method for a one-time point measured gene expression profile?

To answer this question, it should be noted that as we will discuss later in this chapter, the

gene expression can be traced either in time or space. The data points used in this study are

the intensity levels attributed to the nuclei along the AP axis which can be considered as

a sequence series. Therefore, SSA with all of its capabilities can be applied to a sequence

exactly the same way as it is implemented on a time series.

Since the introduction of SSA, the power of this technique has been illustrated by several

studies. Having said that, it should be noted that SSA is a relatively young technique and

therefore there is still a huge scope for further improving and enhancing this method as a

viable and efficient tool for modelling and processing different types of data sets.

1.4 Database

without any doubt, availability of a database which provides researchers with access to

up-to-date and accurate quantitative data specified to D. melanogaster plays a significant

role in developing new models to analyse the Bcd gradient and to infer the regulatory links

between the segmentation genes in the SN.
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There are several databases which provide comprehensive information on genomics and

developmental processes in D. melanogaster including FlyEx http://urchin.spbcas.ru/flyex/,

FlyBase http://flybase.org/, Flymove http://flymove.uni-muenster.de/, BDGP http://www.

fruitfly.org/, FlyTF http://www.flytf.org/, FlyMine http://www.flymine.org/, FlyAtlas http:

//flyatlas.org/atlas.cgi and FlyCircuit http://www.flycircuit.tw/. Each database mentioned

above, is specifically designed to provide essential information for studies focused on a

particular feature of D. melanogaster and other related species.

FlyEx is the most popular database in providing quantitative data on SN and is the

main database used in this research. Therefore, in what follows the data characteristics

and the methodology applied to achieve FlyEx quantitative data are exploited. Thereafter,

we also briefly touch upon the other databases which can provide powerful insight into D.

melanogaster and in parallel to FlyEx can be successfully adopted for the future studies.

1.4.1 FlyEx

FlyEx is a large database for the expression profiles of D. melanogaster segmentation genes

in cleavage cycles 10-–13 and all temporal classes of cycle 14A. In total, FlyEx contains 4716

images of 14 segmentation genes. The images are obtained from 1580 wild-type (OregonR)

D. melanogaster embryos immunostained for segmentation proteins which provide 9500000

quantitative data records.

FlyEx is designed as a spatiotemporal atlas of fourteen segmentation genes listed as

follows:

• The maternal coordinate genes: bicoid (bcd) and caudal (cad).

• The gap genes: Kruppel (kr), knirps (kni), giant, hunchback and tailless (tll).

• The pair-rule genes: even-skipped (eve), fushi-tarazu (ftz), hairy (h) , runt (run),

odd-skipped (odd), paired (prd) and sloppypaired (slp) .

http://urchin.spbcas.ru/flyex/
http://flybase.org/
http://flymove.uni-muenster.de/
http://www.fruitfly.org/
http://www.fruitfly.org/
http://www.flytf.org/
http://www.flymine.org/
http://flyatlas.org/atlas.cgi
http://flyatlas.org/atlas.cgi
http://www.flycircuit.tw/
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A short description of the methodology used to gather the quantitative data in FlyEx

is given below. Since in SN, our principal focus is on the bcd gene, the data-acquisition

procedure is specifically outlined for this gene and in doing so, we mainly follow [Pisarev

et al., 2009; Poustelnikova et al., 2004] where a more detailed description is made available.

The most steps of this procedure are similar to what is carried on to obtain the expression

profile for the other segmentation genes.

Step 1: Confocal imaging

Confocal scanning microscopy provides images of gene expression patterns. As described in

[Kosman et al., 1998], gene expression is measured by using fluorescence-tagged antibodies

technique. The final image of a single-gene expression pattern in an embryo is achieved by

averaging, cropping and rotating the obtained image.

Step 2: Image segmentation

In this step to improve the accuracy, the size differences among the various embryos are

normalised in size.

At a given time point, each embryo is scanned for the expression of three segmentation

genes. This process is followed by combining three embryo images. The final image is

then segmented to make a binary nuclear mask. The advantage of using the binary nuclear

mask is determining the average x and y related to each nucleus to estimate the average

fluorescence level of each three gene expression. A detailed explanation of the nuclear mask

characteristics can be found in [Janssens et al., 2005].

To improve the quality and to characterise the achieved quantitative data for each single

embryo, the following two steps are applied:
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Step 3: Data normalization

In this step, the background noise is minimised by re-scaling the bcd expression data by

fitting an exponential curve [Myasnikova et al., 2005]. The exponential curve used here is

derived from the SDD model which described before. The improvements made in this step

following the studies provided in this thesis are reported in details in Chapters 4 and 5.

Step 4: Temporal characterization

To achieve a more reliable estimation of the quantitative data, determining the developmental

age of each embryo and temporal dynamics of gene expression data is of critical importance.

To this end, for the embryos prior to cycle 14A the number of nuclei is computed. Since

cleavage cycle 14A is about 50 min long, in addition to the nuclei number computing, other

morphological markers such as the blastoderm morphology and the membrane/cortex ratio

are also examined.

Step 5: Registration

In this step, the small size variation among the embryos within a specific temporal class is

removed. As noted in [Kozlov et al., 2002; Myasnikova et al., 2001] there are two registration

methods: the spline and or wavelet method. The central difference between these two

methods lies in the procedure applied to extract the ground control points. The data obtained

in this step is called the integrated data.

1.4.2 FlyBase

FlyBase is a large informative database for D. melanogaster fundamental genomics informa-

tion. In this database, the three attributes of wild-type gene products including the molecular

function, biological processes and subcellular location are provided by adopting the Gene

Ontology (GO) terms.
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Fig. 1.4 An example of a gene expression image from Flyex. Different colors of pink, blue and green
are respectively related to Bcd , Hb and Gt. Figure adapted from http://urchin.spbcas.ru/flyex/.

Moreover, the FlyBase database has the responsibility of recurrent or re-evaluated anno-

tation of the D. melanogaster genome. This database has provided valuable insights into the

genome of D. melanogaster. The facilities available at this platform are helpful for users with

different levels of knowledge. There is also a wide variety of modes of access to download

the files.

1.4.3 FlyMove

FlyMove is a helpful resource for studying the developmental process of D. melanogaster.

This database provides users with a variety of multimedia presentations such as images,

movies and interactive shockwaves, which effectively facilitate the understanding of the

developing stages in this fly. All the media provided by FlyMove is free to download.

1.5 The Bcd Data

Real data

The activity of bcd gene can be examined either by studying its mRNA profile or its gene

expression profile. A gene expression profile is a concentration measurement of the proteins

produced by that particular gene. This profile is achieved by fluorescence imaging technique

http://urchin.spbcas.ru/flyex/
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[Kosman et al., 1998]. The applied antibody allows the visualisation of the Bcd proteins.

Such quantification relies on the assumption that the actual protein concentration detected by

the antibodies and the measured fluorescence intensity are linearly related.

In this thesis, the quantitative bcd gene expression data in wild-type D. melanogaster

embryos is obtained from FlyEx database [Pisarev et al., 2009]. This database is widely used

as a valuable source of information for studying the dynamics of segment determination in

the early D. melnogaster development [Poustelnikova et al., 2004].

Data acquisition in this dataset is based on the confocal scanning microscopy of fixed

embryos immunostained for segmentation proteins [Pisarev et al., 2009]. To that aim, a 1024

× 1024 pixel confocal image with 8 bits of fluorescence data is achieved for each embryo

which then transformed into an ASCII table.

The ASCII table contains the fluorescence intensity levels attributed to each nucleus in

the %10 of longitudinal strips ( i.e. only the nuclei correspondents to the central 45—55% of

the DV axis )along in the AP direction) and is unprocessed for any noise reduction methods.

Fig 1.5 shows the %10 longitudinal strips of a confocal image [Holloway et al., 2006]. It is

of note that Ap and DV axis make the first and the second dimension of the data respectively.

Fig. 1.5 Confocal image of an embryo related to time class 14(1). White horizontal lines depict the
10% strip utilised to collect data. Figure adapted from [Surkova et al., 2008a].

Since the segment determination starts from cleavage cycle 10 and lasts until the end of

cleavage cycle 14A (when proteins synthesised from maternal transcripts begin to appear

up to the onset of gastrulation) the data is categorised to five main cycles of 10 to 14A.

Additionally, as the cleavage cycle 14A is considerably longer in time, to facilitate the
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analysis, temporal classes 1 to 8 are considered as the subgroups of this cleavage cycle.

Hence, all the embryos are classified into the following time classes: 10, 11, 12, 13, 14(1),

14(2), 14(3), 14(4), 14(5), 14(6), 14(7) and 14(8). It should be noted that each class of data

contains a different number of embryos.

Fig 1.6 shows a typical example of Bcd gradient along the embryo at cleavage cycle

14(3), the effect of noise (i.e., fluctuations visible in Fig 1.6) in this gradient can be seen as

the high volatile pattern.
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Fig. 1.6 A typical example of Bcd gene expression profile. Y-axis shows the fluorescence intensities
and X-axis shows the position along the A-P axis of the embryo.

Table 1.1 presents the descriptive statistics of Bcd. As it can be seen, each time class

has a dissimilar number of embryos and the length of the series obtained for each embryo is

different where a large series length indicates that a greater number of nuclei was presenting

the fluorescence intensity. In other words, Bcd protein molecules were produced in a higher

number of nuclei along the AP axis. For each time class, the average of variance, series

length, mean, skewnwss and kurtosis are presented separately. Due to the considerable

variation present in the data, the median is chosen as a measure of central tendency.



1.5 The Bcd Data 21

In Table 1.1, the fourth column shows the variation of each profile within a time class.

For example, in time class 10, the minimum variance is 928.8, however, the maximum

variance for this cycle is more than 2000. Hence, here, we deal with two kinds of variation;

within a cycle and between a cycle variation. The skewness was also tested, and the results

confirm that there is a statistically significant skewness (at 5% level) indicating that almost

all the series have values towards the lower end of the series. In this table, Min, Median

and Maximum of variance, length size, mean, median, minimum, maximum, skewness and

kurtosis have been presented separately for each time class.

Fig 1.7 shows the histogram of two Bcd profiles 2. As it is apparent from this figure, Bcd

profile is asymmetric and notably right-skewed suggesting that it may be poorly characterised

by its mean and variance.

(a) Time Class 14(3) (b) Time Class 14(4)

Fig. 1.7 The histogram of Bcd related to time class 14(3) and 14(4).

1.5.1 Simulated Data

In this thesis, a series of simulated data is used to evaluate the performance of different

models adopted to study. The baseline of the simulation procedure applied in this thesis is

presented below. Some adjustments in this process are made upon the aim of the study of

2Histograms of cleavage cycles 10-13 and all temporal classes of cleavage cycle 14A are presented in
Appendix 1.
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Time class N Var. length Mean Med. Min. Max. Skew. Kurt.

10 7 Min 928.8 79.00 16.95 2.970 0 134.4 1.09 0.33
Med 1294 124.0 46.33 37.55 7.420 163.9 1.550 1.950
Max 2358 146.0 70.83 54.68 20.95 209.5 1.670 4.020

11 14 Min 693.5 238.0 34.41 21.39 3.67 152.91 1.190 0.300
Med 1780 288.5 46.30 26.92 6.160 185.8 1.460 1.120
Max 2999 308.0 77.07 63.64 20.96 223.2 1.860 2.980

12 31 Min 1160 394.0 35.15 17.63 1.570 147.20 0.66 -1.27
Med 2422 524.0 51.09 28.41 7.110 206.4 1.420 0.980
Max 5224 607.0 165.5 174.6 87.62 239.7 1.860 2.850

13 98 Min 412.6 738.0 21.97 13.05 0 131.0 0.660 -0.32
Med 1578 1276 42.08 26.21 4.740 197.8 1.810 2.701
Max 2795 1550 77.87 65.39 16.14 240.5 2.640 7.430

14(1) 58 Min 705.4 1085 24.07 12.00 0 143.7 1 -0.15
Med 2041 2257 43.25 24.73 4.110 223.67 1.890 2.880
Max 2968 2548 148.66 131.6 67.19 252.9 2.600 6.840

14(2) 30 Min 1344 2043 32.18 16.54 0 190.9 1.680 2.250
Med 1921 2315 42.93 25.16 4.430 225.6 1.690 3.400
Max 1887 2678 51.64 36.20 11.84 245.63 2.710 7.240

14(3) 38 Min 480.8 1642 17.62 6.460 0 147.0 0.680 -0.66
Med 1490 2280 40.30 23.19 6.070 216.02 2.18 4.48
Max 2654 2783 138.9 125.9 56.07 252.7 2.560 6.540

14(4) 28 Min 697.7 1741 33.49 16.39 0 170.8 1.390 1.110
Med 1578 2275 42.17 25.88 7 212.1 1.990 3.510
Max 2324 2520 55.33 42.64 13.91 234.6 2.250 5.110

14(5) 25 Min 439.6 1707 22.87 13.69 0 113.0 0.520 -0.90
Med 1195 2297 38.17 23.99 4.400 192.64 2.020 3.850
Max 2263 2453 154.0 137.7 71.08 236.60 2.270 5.450

14(6) 29 Min 84.37 1583 27.85 15.64 0 134.20 0.980 0.820
Med 1131 2266 39.26 25.81 7.620 194.3 1.920 3.300
Max 2057 2584 93.40 83.62 40.43 235.2 2.460 6.700

14(7) 15 Min 141.0 1535 17.48 12.70 0 81.58 0.670 0.090
Med 443.5 2109 40.00 34.94 8.140 133.6 1.670 2.110
Max 18060 2423 108.7 101.3 52.56 220.6 2.460 6.700

14(8) 12 Min 397.9 1245 26.05 14.79 2.170 133.6 0.630 -0.36
Med 636.2 1521 64.68 56.00 21.55 170.0 1.470 2.120
Max 818.0 2195 134.1 128.9 80.26 202.0 2.060 5.130

Note: N= Number of embryos studied per time class, Var.= Variance in each profile, Length= Length of data in each expression

profile, Mean=The average of intensity levels, Med.= Median of intensity levels, Min.= The minimum value of intensity levels,

Max.= The maximum value of intensity levels, Skew. =Skewness, and Kurt.= Kurtosis.

Table 1.1 Descriptive statistics of Bcd profile.
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each chapter where in that case the modifications are presented in details under the simulation

section of that chapter.

To start the simulation, an exponential curve is drawn from the simple SDD model which

is a commonly used model for studying the Bcd profile [Bergmann et al., 2007; Driever and

Nüsslein-Volhard, 1988; Gregor et al., 2005; Houchmandzadeh et al., 2002]. This curve is

then considered as the benchmark for comparison studies. Recall that the concentration of

Bcd in SDD model follows:

B = Ae−
x
λ , (1.1)

where A is the amplitude, x is the distance from the anterior [Driever and Nüsslein-Volhard,

1988], and λ is the length parameter obtained by fitting an exponential model to the Bcd

intensity profile and computing the position at which the concentration has dropped to 1/exp

of the maximal value at the anterior (at x = 0 ) [Bergmann et al., 2007; Driever and Nüsslein-

Volhard, 1988; Gregor et al., 2005; Houchmandzadeh et al., 2002]. The initial value of these

parameters obtained by following the study conducted by Gregor et al. [Gregor et al., 2005].

To obtain a noisy series as close as possible to the real one, random errors ε of a normal

distribution with zero mean and variance σ2
ε with different amplitudes which are an estimation

from the real dataset, are added to various parts of this curve. This simulation is repeated

1,000 times.

From now, in this thesis, the length parameter of SDD model λ will be shown as H. This

is just to make a discrimination between the length parameter of SDD model and eigenvalue

of SSA technique.



Chapter 2

Background

In order to display the power of SSA technique, in what follows, almost all recently published

articles associated with the application of SSA and Singular Value Decomposition (SVD) 1

in genetic studies are categorised and summarised. It is important to note that the following

section is not aimed at showing the details of the presented studies. Instead we are mainly

interested in showing how SSA technique can be applied as a useful method for variety of

experiments with different aims of study.

2.1 Applications of SSA in Signal Extraction and Filtering

Here, the existing signal extraction and noise filtering applications of SSA in genetic studies

are identified.

The first such application was reported in 2006 where SSA was used for signal extraction

of D. melanogaster’s gene expression profiles [Holloway et al., 2006]. in that study, the

relation between the maternal gradients and D. melanogaster segmentation process was

investigated by quantifying the spatial precision in protein distribution patterns. The patterns

were extracted by applying the basic SSA method.

1 The SVD algorithms used here are either based on Hankel or Teoplitz matrix.
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The idea of using SSA for signal extraction was then followed in an approximately similar

study in [Surkova et al., 2008a] where the characteristic features of the expression domains

were studied. The intensity levels were used to classify the domains. However, in prior to

this classification the intensity values were refined by applying SSA as a filtering method.

Having depicted the importance of the signal extraction step in such studies, in 2008,

a more technical study was conducted on the methodology of signal extraction from the

noisy Bcd protein profile in [Alexandrov et al., 2008]. According to that study, the signal

extraction process on noisy gene expression profiles (Bcd in particular) was complicated by

two facts: (i) the data contained outliers and (ii) that the data was exceedingly noisy and the

noise consisted of an unknown structure.

To reconstruct a precise signal, the author examined two approaches:

• Applying a small window length.

• Improving the signal and noise separability by adding a constant to the series.

Following the presented approaches, the researchers could obtain an analytical repre-

sentation of the signal as a sum of two exponential functions; the well-known exponential

pattern of the Bcd, and the background approximated by an exponential or linear function

[Alexandrov et al., 2008].

Although these solutions are functional, in practice they may not be applicable for every

profile. Moreover, by considering a small window length signal noise perturbation can

seriously degrade the performance of the method. These approaches will be discussed in

more detail in Chapter 4 where the Bcd signal extraction using SSA is comprehensively

studied.

In addition, the activation of hb gene in response to different concentrations of Bcd

gradient was studied in [Lopes et al., 2008]. In that study SSA was applied for filtering two

types of noise; experimental noise and the noise caused by variability in nuclear order (As
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previously noted, this noise is categorised under the biological noise class) [Lopes et al.,

2008].

2.2 SSA Combined with AR Model

Microarray technique is a very useful method for acquiring quantitative data in genetic

studies. Today researchers are conducting most of their studies using this method. The main

advantage of microarray is the capability of studying thousands of genes simultaneously.

However, microarray data usually contains a high level of noise, which can reduce the

performance of the results considerably [Klebanov and Yakovlev, 2007].

Among many applications of the microarray technique, studying rhythmic cellular pro-

cesses can be addressed as an important application. The rhythmic cellular process is

regulated by different gene products, and can be measured by using multiple DNA microar-

ray experiments. Having a group of gene experiments over a time period, a time series of

gene expression related to the rhythmic behavior of that specific gene can be achieved.

The characteristics of a rhythmic gene expression are summarised as follows:

• The number of time points and cycles related to a profile is usually very few. For

example, the 14 time point elutriation observations may be in constitution of just one

cell-cycle [Spellman et al., 1998].

• The dataset usually contains many missing values which need to be determined in prior

to the analysis [Spellman et al., 1998].

• The intervals spaced between time points are not equal and the gene expression data is

considerably noisy [Liew and Yan, 2009].

To overcome these issues and to extract the dominant trend from the noisy expression

profiles, in 2008, Du et al. applied SSA on the obtained microarray results [Du et al.,
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2008]. The authors have also proposed a new procedure for analysing the periodicity

of the transcriptome of the Intraerythrocytic Developmental Cycle (IDC) by combining

Autoregressive (AR) model and SSA technique. This hybridisation of SSA and AR resulted in

successfully identifying almost 90% of genes (4496 periodic profiles) in P. falciparum, which

was a noticeable improvement regarding detecting 777 additional periodic oligonucleotides

in comparison to the previous results reported in [Bozdech et al., 2003]. Fig 2.1 depicts the

improvement achieved following applying SSA for analysing the rhythmic cellular processes.

Fig. 2.1 The AR spectra of the expression profile of Dihydrofolate Reductase-Thymidylate Synthase
with and without SSA filtering [Du et al., 2008].

Four subsequent studies followed this procedure and successfully improved the capability

of detecting periodicity from 60% to 80% [Tang et al., 2010; Tang and Yan, 2010, 2012;

Vivian et al., 2010].

According to [Liew and Yan, 2009], periodic profiles can be detected by combining SSA and

AR as follows:

• At the first step SSA is applied to reconstruct each expression dataset. To this aim

only those expression profiles with sum of first two eigenvalues over the sum of all

eigenvalues greater than 0.6 are selected for reconstruction.

• The second step is devoted to the calculation of the AR spectrum. The frequency fi

at peak value point and the ratio of the power fi in Regions of Interest (ROI) of the
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reconstructed profiles achieved in the first step are also computed. It should be noted

that to get the ratio of the power, the frequency band [ fi−1, fi+1 ] to the total power

are used according to S = poweri
powertotal

.

• If the obtained power ratio S is larger than 0.7, the corresponding profile is classified

as periodic [Liew and Yan, 2009].

2.3 Two Dimensional SSA

The Two Dimensional SSA (2D-SSA) approach was used to process two-dimensional scalar

fields [Golyandina and Zhigljavsky, 2013]. The first difference between 2D-SSA and basic

SSA is the window length. In 2D-SSA we need to choose two different values for the

window length L (L1,L2), whilst in basic ( also known as univariate) SSA we only require to

select one window length. Note that if L2 = 1, then 2D-SSA is equivalent to basic SSA. By

choosing L2 = M, the interaction among different series can be taken into account for further

analysis (For more information, see [Golyandina and Usevich, 2010; Zhang et al., 2014]).

As mentioned before, Bcd is a transcriptional regulator for downstream segmentation

genes. Therefore, the alteration in Bcd gradient expects to shift the downstream gene

expression patterns [Porcher and Dostatni, 2010]. However, according to a study conducted

by [Spirov and Holloway, 2003], the zygotic gene products are positioned more precisely

than the gradients related to the maternal genes which indicates an embryonic error reduction

or adjusting process.

In order to determine how gene regulation dynamics controls this different levels of noise,

the AP segmentation in D. melanogaster was studied in [Holloway et al., 2011] .In that study,

the activation of the hb gene in response to the Bcd protein gradient of the anterior part of

the embryo was monitored by modelling the noise observed in Hb protein profile using a

chemical master equation approach. To solve this model, the MesoRD software package was
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used http://mesord.sourceforge.net. The solution is found following a stochastic modeling

approach. According to the results of that study, the noise in Hb greatly depends on the

transcription and translation dynamics of its own expression.

Moreover, the multiple Bcd binding sites located on the hb promoter improve was claimed

to have a critical role in the Hb pattern formation [Holloway et al., 2011].

The noise in that study was calculated using the following formula:

√
Σ[(data− trend)/trend]2

m−1
, (2.1)

where data is background-removed intensity of an energid, trend is the signal extracted using

2D SSA (AP and DV and m indicates the number of positions. This measurement was

obtained for the activated region (15-45% egg length).

the 2D SSA method was also adopted by Golyandina et al. to measure the between-

nucleus variability (the part of the noise which was targeted to study) seen in the gradient of

Bcd in D. melanogaster embryos [Golyandina et al., 2012]. In that study, To measure and

compare the noise in fixed immunostained embryos with the live embryos with fluorescent

Bcd (Bcd-GFP), 2D SSA was adopted. The result of that study is depicted in Fig 2.2, as can

be seen the nucleus-to-nucleus noise in Bcd intensity, is signal-independent for live and fixed

immunstained embryos. Therefore the authors claimed that this noise is primarily sensitive

to the nuclear masking technique used to extract the intensity levels.

2.4 SVD

SVD has proved to be a very useful method and has already become an appropriate tool for

analysing the data achieved by microarray technique (see, for example, [Vikalo et al., 2008]).

Such studies are mostly aimed at eliminating cross-hybridisation in time microarray data.
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Fig. 2.2 Between-nucleus noise and the its corresponding signal dependency at different ROI, the
between-nucleus noise is mostly correlated with the signal level. A) Nuclear intensity of Bcd, obtained
by small ROI. B) Bcd nuclear intensity with large ROI [Golyandina et al., 2012].

To separate the components of a compound signal which results in a better estimation of

the amounts of both hybridising and cross-hybridising targets, Vikalo et al. in [Vikalo et al.,

2008] evaluated multiple techniques including SVD.

Nevertheless, the microarray technology has become a widely used method, the data

is still very complicated to analyse. In 2010 Rau et al. presented an algorithm to infer the

structure of gene regulatory networks using an empirical Bayes estimation procedure for the

hyperparameters of a linear feedback state-space model [Rau et al., 2010]. In that model,

to select the model, SVD of the block-Hankel matrix was applied. This approach enabled

Rau et al. to significantly reduce the computation time required for running the algorithm

mainly because in the new computational model, there is no need to run the algorithm over a

wide range of values for the hidden state dimension. Moreover, as discussed in [Bremer and

Doerge, 2009] the numerical computations in SVD even for a huge dataset such as microarray

data is not time extensive compared to the other clustering techniques.

In the study conducted by [Bremer and Doerge, 2009] a new approach for gene ranking

was introduced which was based on gene degree of regulation. According to that study, the

gene ranking according to the regulation was genetically more meaningful than using the

absolute expression or variation over time. Therefore, the introduced model was presented as

a valuable aid to find the regulatory pathways and networks. The SVD in that method was
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applied on the block-Hankel matrix of the observation autocovariance estimated from the

gene expression profiles. The number of singular values attributed to the greatest magnitude

was considered as the best estimation of for the state space dimension. The singular values

of the estimated Hankelautocovariance matrix were also calculated and normalised to a 0−1

scale. The number of singular values of magnitude larger than the threshold was consequently

considered as an estimation for the state space dimension.

Since the gist of this thesis concentrates on developing a new computational model for

analysing the segmentation gene expression profiles and bcd gene in particular, the following

section is devoted to the bcd gene, its function, characteristics and previous introduced

methods and techniques to model this morphogen which offers further reasons for extensive

interest in studying bcd gene.

2.5 bicoid Gene

As mentioned before, the fundamental question of how a simple fertilised cell develops into

a complex multicellular organism has attracted the interest of many researchers since the

last century. The first noteworthy attempt to answer this question was by Driesch in 1891

when he tried to separate two sea urchin blastomeres [Driesch, 1929]. Taking Driesch by

surprise, each of the separated blastomeres developed to a half-sized blastula rather than a

half sea urchin which was the expectation [Driesch, 1929]. This result furnished Driesch

with the idea of considering a coordinate system which dictates the positional information

along the embryo [Driesch, 1929]. Later on, this initial view by Driesch was perceived as a

fundamental step in the discovery of what we know today as a morphogen. Today, it is widely

accepted that the pattern of morphogen products play a key role in directing the embryo into

a complex multicellular organism.

A prime example of morphogens is Bcd which is the first known morphogen identified by

Nüsslein-Volhard [Driever and Nüsslein-Volhard, 1988]. Bcd is a homeodomain transcription
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factor which plays a crucial role in patterning head and thorax of the adult D. melanogaster

[Driever and Nüsslein-Volhard, 1988]. The important role of Bcd in developing the anterior

structure of D. melanogaster has been proven by several studies [Berleth et al., 1988;

Driever and Nüsslein-Volhard, 1988; Frohnhöfer and Nüsslein-Volhard, 1986]. For example,

Frohnhöfer et al. [Frohnhöfer and Nüsslein-Volhard, 1986] showed that embryos receiving

different doses of bcd have differently sized anterior structures (Fig 2.3) and in the absence

of bcd, anterior structures of body are replaced with posterior regions.

Fig. 2.3 Different doses of bcd affects the size of the head in D. melanogaster. Figure adapted from
[Harwell and Leroy Goldberg, 2004]

During the oogenesis, bcd mRNA molecules which have been previously synthesised in

the nurse cells are localised at the anterior end of the egg [Berleth et al., 1988].

As can be seen in Fig 2.4, the embryonic period starts with fertilisation. In that stage,

different length of two main axes of D. melanogaster embryo; AP (Adult head to tail) and

DV (Adult back to abdomen) causes the ellipsoidal shape of the embryo.
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The translation of bcd mRNA starts immediately after fertilisation. Consequently, the Bcd

protein molecules distribute along the AP axis of the embryo which forms a concentration

gradient of Bcd [Driever and Nüsslein-Volhard, 1988]. Meanwhile, the nuclear division

without division of the cytoplasm begins in the early D. melanogaster embryo which unlike

most of the animal embryos results in a multinucleate cell called a syncytium.

A syncytial blastoderm contains about 6,000 nuclei in the cortical layer. Lack of cell mem-

branes makes the Bcd diffusion much easier during this stage [Driever and Nüsslein-Volhard,

1988; Houchmandzadeh et al., 2002]. The very rapid nuclear divisions in the syncytium

which is also known as cleavage, further rise the number of nuclei [Houchmandzadeh et al.,

2002].

By the ninth division majority of nuclei migrate to the periphery and leave the yolk cells

in the middle of the embryo. This stage is known as the blastoderm [Houchmandzadeh et al.,

2002].

Later on, the blastoderm undergoes four more cleavage cycles (10-14A). By invaginating

the cell membrane to enclose each nucleus the critical stage of cellularisation begins. Up to

the cellular blastoderm stage, development depends largely—although not exclusively—on

stocks of maternal mRNA and protein that accumulated in the egg before fertilisation. Mid

blastula transition starts by the end of cycle 14A when zygotic transcription initiates rapidly

after maternal mRNA and protein degradation. Then after, the gastrulation stage completes

after forming the germ layers.

The whole process of 14 different cleavage cycles occurs during the first three hours

after fertilisation. The final result of this process is the segmented body of D. melanogaster

[Driever and Nüsslein-Volhard, 1988; Grimm et al., 2010; Grimm and Wieschaus, 2010].

This period is known as the early stage of the development in D. melanogaster (Fig 2.5).

the segmented pattern contains fourteen repeating units; three segments in the head

(mandibular, maxillary and labial), three in the thorax and eight in the abdomen.
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Fig. 2.4 Nuclear divisions in 14 cleavage cycles produce a syncytial blastoderm. Figure adapted from
[Harwell and Leroy Goldberg, 2004].
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Fig. 2.5 Early development in D. melanogaster. From fertilised egg to the segmented embryo.

Efforts to introduce a model for Bcd gradient have brought together many researchers

from different areas, including biology, physics, and statistics. Hence, the various aspects of

this gradient, including molecular and functional have been explored in different studies.

Here, we classify and explore those studies mainly focused on Bcd gradient. To that

aim, this review starts with a brief introduction on models which are representing a general

morphogen gradient formation.

In 1902, Morgan published a book titled “Regeneration". In that book, Morgan suggested

that the fate of the cells in an organism is determined by a gradient of “formative substances”

[Morgan, 1901]. These substances specify the pattern formation. Later on, through an

experiment, Spemann [Spemann and Mangold, 2003] discovered that in a gastrula, a sec-

ondary body axis is formed by grafting a group of dorsal cells onto the opposite ventral

pole. Spemann’s experiment indicated that the gradient responsible for pattern formation was

released by a group of localised cells [Spemann and Mangold, 2003]. According to [Child,

1941], the gradient of formative substances contains metabolic functions.

In 1952, Turing named these chemical substances as morphogens [Turing, 1952]. He also

introduced the reaction—diffusion model. This model shows how different morphogens with
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slightly different diffusion properties interact with each other to generate spatial patterns for

various concentrations of morphogens [Liu et al., 2011].

The establishment of morphogen gradient then was described by French Flag Model

[Wolpert, 1969]. According to that model, a morphogen is extracted from a group of source

cells to provide positional information. Different target genes are consequently expressed

above the specific concentration thresholds of that morphogen, Fig 2.6.

Fig. 2.6 French flag model. Based on this model the concentration is a function of the positions (x).
The morphogen activates different target genes above different concentration thresholds (brown and
orange) [Liu et al., 2011].

Source-sink model [Crick, 1970] was proposed on the foundation of the French-flag

model. Based on Source-sink model, morphogen molecules are produced in source cells and

destroyed at the other end of the embryo by sink cells. However, nowadays it is believed that

considering sink cells is not requisite since a morphogen gradient can be formed even if it is

not degraded at all [Liu et al., 2011].

In 1988, for the first time, the gradient of Bcd in D. melanogaster was visualised by the

antibody staining technique [Driever and Nüsslein-Volhard, 1988]. This visualisation along
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with the inputs of the previous models supported Driever and Nusslein-Volhard to introduce

the SDD model which is the most widely accepted model for Bcd gradient. According to

SDD model, Bcd gradient in the embryo follows an exponential curve until it reaches a steady

state. In the steady state, the production and degradation of Bcd molecules are in the balance.

Since then, studying the Bcd gradient has become popular, and many quantitative models

have been developed to portray the function of this gradient and its interactions with other

morphogens.

Most of the models accounted for Bcd gradient establishment rely on three principal

concepts: Bcd synthesis at the anterior end of the embryo, diffusion and degradation. Inter-

estingly, what makes these models different from each other is the assumptions held to find

the parameters.

2.5.1 Modeling Bcd using Differential Equation

This equation is the first mathematical model proposed for describing the Bcd gradient in

1985 which was introduced before visualising this gradient [Rice, 1985]. Based on this model

by assuming the space interval as ∆x, the concentration of Bcd molecules over the period of

∆t follows the equation 2.2.

C(x, t +∆t) =C(x, t)− kC(x, t)∆t

+d
[
−C(x, t)+

1
2

C(x+∆x, t)+
1
2

C(x−∆x, t)
]

+ j(x, t)∆t.

(2.2)

where C is the concentration of Bcd [molecules/µm3] and is a function of space and time. It

should be noted that for a very small ∆t the concentration of Bcd at time t +∆t is equal to

the concentration at t. Unlike the sink model which considers a localized sink, in this model

in order to generate the steady-state gradients morphogens are degraded with a constant
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degradation rate k[1/s] and the terms inside the bracket describes the Bcd movement which

is respectively related to the diffusion, leaving and coming Bcd molecules from the adjacent

positions x∓∆x. The one-half here shows the equal probability of Bcd movement to the left

and right, d is used for scaling and is related to D which is diffusion coefficient and j is the

source function accounts for describing the spatial distribution and the rate of Bcd production

[Grimm et al., 2010].

Accordingly, the rate of alteration in Bcd concentration can also be obtained by reordering

Equation 2.2:

C(x, t +∆t)−C(x, t)
∆t

=−kC(x, t)

+
d(∆x)2

2∆t
−2C(x, t)+C(x+∆x, t)+C(x−∆x, t)

(∆x)2

+ j(x, t),

(2.3)

by assuming the limit ∆t, ∆x → 0 equal to a finite value when d(∆x)2/2∆t ≡ D, Differential

Equation is obtained.

∂C
∂ t

= D
∂ 2

∂x2 − kC+ j. (2.4)

From now for the simplicity we can show C(x, t) as C.

It is worthy to mention that when using this model different assumptions should be taken

into account and also the parameters used in this model are not tractable thorough analytical

solutions since the parameters in equation 2.4 are the representor of the macroscopic prop-

erties of the embryo which sometimes are not a good representative of Bcd molecules (for

more information see, [Crick, 1970; Grimm et al., 2010; Liu et al., 2011]).
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2.5.2 Synthesis Diffusion Degradation model

As mentioned earlier this model was proposed by Nüsslein-Volhard and is widely known as

the SDD model.

Since the j(x, t) for any other space except the source is equal to zero, by having diffu-

sion and degradation together, the diffusion equation with linear degradation is achieved.

Therefore, the changes in Bcd concentration C over time t can be written as:

∂C
∂ t

= D
∂ 2C
∂x2 − kC. (2.5)

Now by considering the fact that in the steady state, ∂C
∂ t = 0, the diffusion equation with

linear degradation can be written as:

∂ 2C
∂x2 =

k
D

C. (2.6)

Either an exponential functions or sums of hyperbolic sines and cosines can be considered

as the solution for the second derivative of C. Since the sums of hyperbolic sines and cosines

can also be written as exponentials, the general solution for C follows:

C =C0e−
x
λ , (2.7)

where λ is a constant value. Assuming C =C0 at x = 0, therefore C0 is the source concentra-

tion and at x = λ , C will be equal to C0e−1, thus λ is the distance to the source at which the

concentration has dropped to 1/e of the maximal value at the anterior (at x = 0) Fig 2.7(A).

It should be noted that the Equation 2.7 is only true when the limit of L ≫ λ and λ =
√

D
k .

This exponential decaying gradient is a general way of presenting the SDD model [Bergmann
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et al., 2007; Driever and Nüsslein-Volhard, 1988; Gregor et al., 2005; Houchmandzadeh

et al., 2002]. This model can also be written as:

C =
C0

kλ
e−

x
λ (2.8)

Based on this model the activation of gap genes such as hb and kr is regulated by the

Bcd gradient and their transcription begins at different concentration of Bcd [Driever and

Nüsslein-Volhard, 1988].

Fig. 2.7 Bcd gradient along the A-P axis. Calculating the length constant [Grimm et al., 2010], λ ..

In 2005, the SDD model was tested by injecting Dextran in living embryos and which

resulted in added support for the SSD model [Gregor et al., 2005]. In that study, the

relation between the egg size during evolution and gene expression pattern scaling was also

investigated and the authors showed that even in embryos with very different sizes, diffusion

constants are the same in closely related dipteran species. However, it should be noted in

different species, the pattern of gene expression scales with egg length and it also greatly

depends on the Bcd lifetime [Gregor et al., 2005].

Among the quantitative approaches, Gregor et al. experiment [Gregor et al., 2007] on

nuclear dynamics and stability of the Bcd gradient must be addressed as a successful study.
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Fig. 2.8 Expression the different target genes based on Bcd gradient (find the detailed explanation in
text). Figures adapted from [Gregor et al., 2007].

The issues outlined by Gregor et al. is mentioned below in detail and discussed further using

the experiments achieved by other related studies.

According to [Gregor et al., 2005, 2007], the Bcd gradient establishes within the first

hour after fertilisation. This pattern stays consistent during blastodermal stages (by 10%

precision). However, since Bcd is a DNA-binding protein, the nuclear Bcd concentration

has an up and down pattern during the mitosis caused by forming and deforming the nuclear

membrane [Gregor et al., 2007]. This observation raised the question of how the stable Bcd

gradient is established in the embryo in the presence of the repeated dynamical structural

change during the mitoses.

Another important part of Gregor et al. experiment is measuring the diffusion coeffi-

cient of Bcd using fluorescence recovery after photobleaching method. According to this

measurement, D ∼ 0.3µm2/s and λ ∼ 100µm. Therefore, the author concluded that using

the SDD model, by considering theSDD model, the time needed to achieve the steady-state

concentration profile (> 9h) is much greater than the syncytial embryonic development time

(∼ 2h) and protein lifetime τ . Moreover, the length constant λ is much smaller than the
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length of the embryo [Gregor et al., 2007]. Considering the slow Bcd diffusion, now the

question is: How the Bcd gradient is formed so quickly after fertilisation?

Therefore, taking the nuclear degradation element into account, Gregor et al. [Gregor

et al., 2007] proposed a variant of the SDD model and suggested that Bcd gradient is founded

following the intranuclear degradation of Bcd protein molecules:

In that model, transporting the molecules into the nucleus depends on the Bcd concentra-

tion in the cytoplasm (kinCout). However, disappearing the Bcd molecules from the nucleus

is due to both their active transportation back into the cytoplasm (at kout) and degradation (at

kd−nuc). This dynamic for n(t) nucleus is presented as:

∂n(t)
t

= kinCout −
1
τn

n(t), (2.9)

1
τn

= kout + kd−nuc, (2.10)

where τn is the life time related to the Bcd molecules in the nucleus. As cytoplasmic

concentration approximated to be constant, hence we have:

n(t) = n∞ −∆n0e(−t/τn), (2.11)

where ∆n0 is the molecules reduction, and n∞ = kinτnCout is the number of molecules at

nucleus steady state. Following this equation, the τn is approximated to be around 1 or 2

minutes. considering this equation along with the physical factors of the nucleus, equation

2.12 is achieved:

Cin

Cin
=

3Dτn

r2
n

. (2.12)

where rn is the nucleus radius.
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Gregor et al. suggested two possible reasons for the paradox seen between the slow diffu-

sion constant and the rapid formed steady state; diffusion coefficient may not be consistent

at different temporal and spatial conditions, or there might be and an element of nuclear

contribution function or active transportation which should be taken into account [Gregor

et al., 2007].

These suggestions encouraged more researchers to investigate the pointed out possibili-

ties:

2.5.3 Pre-steady-state decoding

According to the previous studies, Bcd induces the cell’s fate only after it reaches a steady

state. However, in 2007 the pre-steady state decoding hypothesis raised by Bergmann et al.

noting that Bcd gradient is decoded even before reaching a steady state [Bergmann et al.,

2007].

Bergmann et al. showed that changes in Bcd dosage induces small shifts in the gap and

pair-rule gene expression domains suggesting that the observed shifts can be explained by

the positions of gap genes and their distance to the source of Bcd since those genes at the

posterior part found to be less sensitive to Bcd changes which is inconsistent with the steady

state assumption. The proposed model in [Bergmann et al., 2007], explains the small shifts

in the gap and pair-rule gene expression domains. Based on this model, the solution of Eq

2.4 is time independent and Bcd concentration changes with time:

C =
C0

kλ

[
e−

x
λ − e−

x
λ

2
er f c

(2Dt/λ − x√
4Dt

)
− e

x
λ

2
er f c

(2Dt/λ − x√
4Dt

)]
. (2.13)

Based on this model, the λ is not constant and is due to change by both degradation and

diffusion time.
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2.5.4 Nuclear trapping

The idea of nuclear trapping proposed by Coppey considers a substitute for Bcd degradation

[Coppey et al., 2007; Liu et al., 2011].

This model explains the temporarily stable Bcd gradients in the absence of Bcd degra-

dation. Based on this model, nuclear division not only increases the nuclear density in the

syncytium, but it also raises the shuttling of Bcd molecules in and out of nuclei at each

cleavage cycle. This, in turn decreases the effective Bcd diffusivity. Hence, the nuclear Bcd

concentration gets stable over several cleavage cycles, despite the continuous expansion of

total Bcd concentration. Therefore, the steady Bcd concentration in the nuclei is read out by

the target genes.

C(tot) =
C0

D

[
λ (t)
sqrtπ

e
− x2

λ (t)2 − x.er f c
( x

λ (t)

)]
, (2.14)

2.5.5 bcd mRNA based approaches

As discussed before, based on [Ephrussi and St Johnston, 2004; Johnston et al., 1989]

bcd mRNA is transcribed in the mother and localised at the anterior end of the egg and

encodes Bcd. The Bcd molecules distribute and establish a gradient along A-P axis. Surdej

and Jacobs-Lorena in 1998 suggested that the stability of maternal bcd mRNA is under a

systematically regulation [Surdej and Jacobs-Lorena, 1998]. Years later, following this idea,

an entirely different approach for describing the Bcd gradient establishment proposed by

Spirov et al. [Spirov et al., 2009].

Spirov et al. state that Bcd gradient is formed mainly by transporting the bcd mRNA

along the cortex and not by Bcd diffusion. Using FISH method and confocal microscopy

authors showed that the gradient related to bcd mRNA and Bcd are virtually identical at

all time classes. Moreover, their proposed Active RNA Transport and Synthesis model

(ARTS) could successfully explain the small measured diffusion coefficient by Gregor et
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al. Following the ARTS model, Berezhkovskii et al. state since there is no production of

mRNA at the anterior part of the embryo and all the bcd is provided by the mother, the bcd

diffusion follows a Gaussian rather than an exponential distribution [Berezhkovskii et al.,

2009]. Taking this distribution into account the source function of Equation 2.4 is rewritten

as:

j =
C0√
2πσ

e−
x2

2σ2 , (2.15)

where σ is the length constant attributed to the mRNA Gaussian distribution (i.e λRNA ≡ σ ),

now another solution for the Equation 2.4 can be obtained:

C(x) =
C0

2kλ
e

σ2

2λ2

(
e

x
λ er f c

(
σ2 +λx√

2λσ

)
+ e−

x
λ er f c

(
σ2 −λx√

2λσ

))
(2.16)

Following this solution Bcd gradient is not just a simple exponential curve and both λ

and σ should be considered in gradient formation model.

According to these findings, another computational model proposed by Dilao and Muraro

[Dilão and Muraro, 2010]. In that model, the bcd mRNA diffuses along the A-P axis and

Bcd protein production occurs in the ribosomes localised near the syncytial nuclei. A scaling

relation is also considered between the bcd diffusion and degradation coefficient rate and the

embryo length. The steady state achieved when the bcd translation is completed. Hence, the

idea of Bcd degradation step is no longer a necessary to consider in this model.

However, in 2011 Little et al. by using a novel method of fluorescent in situ hybridization

found that approximately 90% of all bcd mRNA localised within the 20% anterior part of

the embryo. Hence this result is inconsistent with the Dilao and Muraro work because the

mRNA spatial distribution is not sufficient to provide the Bcd protein gradient especially at

the posterior end of the egg therefore either the active or passive Bcd movement is necessary

for the gradient formation.[Little et al., 2011].
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Accordingly, the result illustrated by Little et al. experiment adds more confidence and

value to the reliability of adopting the Bcd expression profile in studying the Bcd gradient.

Gregor et al. also studied the precision and reproducibility of positional information

of Bcd. in [Gregor et al., 2007] where a 10% concentration difference was reported to be

necessary to distinguish individual nuclei from their neighbours. However, the absolute

concentration of Bcd molecules at half-embryo length, where Bcd targets Hb, found to be

too low to be distinguished by nuclei [Gregor et al., 2007].

This, made the author quantify three other measures of precision; limits set by the random

arrival of Bcd molecules at their targets, input—output relationship between Bcd and Hb and

reproducibility in the spatial profile of Bcd from embryo to embryo. Using a combination of

different experiments, the precision in all the quantities mentioned above found to be 10%

[Gregor et al., 2007]. This quantification suggests that mechanisms other than small noise

reduction should be involved to achieve a 10% accuracy and it was concluded that the pattern

formation in the embryo is precisely and reproducibly controlled [Gregor et al., 2007].

To understand the mechanisms that control this extreme precision and reproducibility,

several studies were conducted by other researchers [Crauk and Dostatni, 2005; Lewis, 2008;

Wang and Leu, 1996]. For example, using stochastic simulations, Wang et al. challenged the

traditional models for gene regulation systems and suggest that activators regulate the gene

transcription by recruiting several proteins such as general transcription factors and RNA

polymerase II (Pol II) [Wang and Leu, 1996].

The stochastic approaches conducted to explain the dynamics of Bcd gradient are dis-

cussed in more details in the following section.

2.5.6 Stochastic models

The deterministic models presented so far have limitations when uncertainty analysis is

required. Thus, to provide a more detailed understanding of the chemical reactions in a
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morphological system, several researchers studied a discrete chemical reaction system, based

on the stochastic simulation [Andrews and Bray, 2004; Gibson and Bruck, 2000; Liu, 2013].

According to [Liu, 2013], the stochastic simulation tries to answer two fundamental

questions: “which reaction occurs next and when does it occur?”. Stochastic simulation

is considered as a new successful method for simulating evolution at the genomic level.

However, when the system contains many reactions, the stochastic simulation can be compu-

tationally expensive [Liu, 2013].

To understand the dynamics of Bcd gradient formation at the molecular number level and

to identify the source of the nucleus-to-nucleus expression variation Wu et al. formulated

a chemical master equation by considering the embryo as a finite number of sub volumes

and presented the stochastic simulations for molecules undergoing transitions between those

compartments [Wu et al., 2007]. The simulations then obtained by using a publicly available

software called MesoRD [Hattne et al., 2005].

Another stochastic approach can be found in [Dewar et al., 2010] where a bayesian

inference approach presented to solve both the parameter and the state estimation problem

for a stochastic reaction-diffusion system.

To address that how Bcd gradient is generated and read out precisely to form the Hb

gradient with a small embryo-to-embryo fluctuation, OkabeOho et al. developed one- and

three-dimensional stochastic models. In the three-dimensional model, the consequences

of nuclei dynamical change is examined by considering a cylinder of length L ≈ 490µm

extending along the AP axis of the embryo [Okabe-Oho et al., 2009].

The achieved results by these two models reconfirmed that the stable profile of Bcd

establishes by the stochastic processes of synthesis, diffusion and degradation as well as the

rapid movements of the Bcd molecules to the nuclei [Okabe-Oho et al., 2009]. Moreover, the

authors claimed that the fluctuations in hb gene profile are due to the Bcd random arrival at

the hb enhancer [Okabe-Oho et al., 2009].
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In another model presented in [Deng et al., 2010], two forms of Bcd molecules are

reflected in the model; free-diffusing molecules, Bfree, that are in the cytoplasm, and

immobile molecules, Bbound, that are bound to the low-affinity DNA sites inside the nuclei.

According to this two-dimensional stochastic model, Bbound plays a significant role in the

formation of the Bcd gradient [Deng et al., 2010] confirming the results reported in [Gregor

et al., 2007] which showed that the Bcd and Hb random diffusions are the dominant sources

to limit the precision of readout.

Fig. 2.9 A simulated embryo at cleavage cycle 14 showing the local total Bcd concentration [Btot]
(arbitrary units). Figure adopted from [Deng et al., 2010].

The quantitative and theoretical analysis of Bcd gradient has enhanced our knowledge

on several key parameters; the generation mechanism of Bcd profile, the readout system

for downstream genes. However, still a simple quantitative model with more molecular and

cell biological depth is encouraged to be developed. Such a less detailed mechanism, in

which avoids using too many equations and parameters gives a more reliable image of D.

melanogaster morphogen system.

Furthermore, the fundamental questions of how morphogens and their receptors are

moving in and extracellular matrix and how the precision and robustness of developmental

control is achieved at the molecular number level are yet to be addressed.



Chapter 3

Methodology

Presented in this chapter is the methodology relevant to this thesis. The primary focus is on

the theory underlying the basic SSA and principles associated with this technique. Therefore,

the different steps of SSA are clearly illustrated here. The potential points to improve the

performance of the SSA technique are also outlined and consequently tackled under the

following chapters of this thesis.

In this thesis, to determine whether the proposed techniques are equally/out or under

performing the current models in use, extensive comparison studies to other well-known

signal processing techniques are conducted. The benchmark models and the metrics applied

to compare the performance of the models are concisely articled in this chapter.

3.1 Singular Spectrum Analysis

The origin of SSA goes back to 1986 with a publication by Broomhead and King [Broomhead

and King, 1986]. Later on, this technique was independently developed in Russia, UK and

the USA.

The notably versatile and flexible nature of this method soon made SSA as an excellent

candidate and powerful technique in time series analysis. Compared to the other well
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established time series analysis techniques, SSA is a young method, but it has been developing

at a noteworthy pace. Therefore, the application of this technique as the main analytical

method is reported in a wide range of areas: from mathematics and physics to economics

and medicine. As once quoted by Golyandina et al. "Any seemingly complex series with

a potential structure could provide another example of a successful application of SSA"

[Golyandina et al., 2001b].

SSA is a powerful non-parametric technique which combines some elements of classical

time series analysis, multivariate statistics, multivariate geometry, dynamical systems and

signal processing [Hassani, 2007]. Unveiling the dynamics underlying a given time series

and removing the random, unexplained component of noise are among the most widely

adopted applications of the SSA technique.

As it was mentioned before, an important feature of SSA lies in the fact that this method

can be applied to a study without making any assumptions about stationarity and normality

of the data under study [Sanei and Hassani, 2015]. Therefore, in the process of the analysis,

the data transformation is no longer needed. This privilege can be considered as a significant

advantage of this technique because in adopting parametric methods, data transformation is

an inevitable step of the analysis in most cases. Although transforming the data facilitates

the analysis in several ways, it may also cause loss of information [Hassani et al., 2013c].

SSA technique is further classified as univariate (also known as basic SSA) and multi-

variate SSA (MSSA). The univariate SSA considers a single time series and is applied in

this research which will be explained in details later in this chapter. Some recent examples

of the application of the univariate type can be found in [Ghodsi et al., 2015; Hassani et al.,

2010, 2013b, 2009a; Hassani and Thomakos, 2010; Rodrıguez-Aragón and Zhigljavsky,

2010; Sanei et al., 2011; Silva and Hassani, 2015]. The multivariate version of this method

considers modelling multiple information about the same series or a particular time series

with a time lag into the past [Hassani and Mahmoudvand, 2013].
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Although in comparison to its univariate counterpart, the MSSA is a relatively younger

approach, its diverse capabilities have recently transferred it into a useful method for a wide

range of areas especially forecasting applications, see for example [Groth and Ghil, 2011;

Hassani et al., 2013a; Hassani and Mahmoudvand, 2013; Kapl and Müller, 2010; Oropeza

and Sacchi, 2011; Patterson et al., 2011].

The selection between the two versions of SSA greatly depends on the aim of the study.

Given the data characteristics previously portrayed in chapter 1 (i.e. The intensity levels

attributed to the nuclei along the AP axis which are considered as a sequenced series) and

the principal objective of this research (i.e. Enhancing the gene expression signal processing)

our focus is mainly on the univariate SSA.

SSA comprised of two complementary stages known as decomposition and reconstruction.

Each stage consists of two additional steps [Hassani, 2007]. In summary, the main aim of

SSA technique is to decompose a time series to identify the trend, harmonic and noise

components. A less noisy series then is reconstructed by estimating the trend and harmonic

components [Golyandina et al., 2001a].

Before going to the details of each step, let us illustrate the whole process with a simple

example:

Fig. 3.1 An example of a noisy time series called Y .

In Figure 3.1, a simple series called Y is depicted. According to a general concept in time

series analysis, any given time series can be represented as a composition of signal and noise.

It should be noted noise in statistics is defined as the colloquialism for recognised

amounts of unexplained variation in a sample [Hida et al., 2013]. According to its statistical
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characteristics, noise can be categorised in two classes of White Noise and Coloured Noise

[Arnold et al., 1978; Hida et al., 2013].

White noise is a discrete signal whose samples are considered as a sequence of serially

uncorrelated random variables with zero mean and finite variance [Chichilnisky, 2001; Hida

et al., 2013]. In other words, white noise is defined as an uncorrelated noise process with

equal power at all frequencies [Kuo, 1996]. If the variables in the series are drawn from a

Gaussian distribution, the series is called Gaussian white noise [Kuo, 1996].

However, the coloured noise has correlations which are not satisfied by white noise.

Therefore, coloured noise can be described by having a different integrated power at different

frequency bands [Chichilnisky, 2001; Hida et al., 2013]. The power spectrum is used to

classify the coloured noise into several groups known by different colours [Chichilnisky,

2001; Hida et al., 2013].

Therefore, considering the general concept in time series analysis, Y consists of signal

and noise. Nevertheless, this may not be distinctly apparent in that figure.

To extract the signal from Y , the noise components need to be identified and removed

first. Fig 3.2 shows the extracted signal and what is left from the Y series known as the

residuals or noise.

Fig. 3.2 Signal and noise components in Y .

In this particular example, the signal can be further decomposed into a trend component

and sine component as shown in Fig 3.3.
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Fig. 3.3 Sine and trend components in Y .

The analytical process of this example follows several steps which are depicted in Fig 3.4

below. According to this flow chart, the SSA algorithm is made upon making two important

inputs:

• Window length L.

• Number of eigenvalues r.

Fig. 3.4 A summary of the basic SSA process [Sanei and Hassani, 2015].

SSA analysis initiates with a noisy time series YN . The first SSA choice (L), is the input

for decomposition stage. Following the embedding step, a Hankel matrix X is achieved which
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is then forwarded as the input of the SVD step. The SVD step provides the singular values

of the series. Further examining the singular values leads to identifying and differentiating

between signal and noise components.

At the reconstruction stage, the singular values are grouped according to the second

and final choice of SSA, r. This step results in the grouping matrices X1, . . . ,XL . The r is

the cutting point between signal and noise of the grouping matrices. Eventually, diagonal

averaging is applied to transform the defined signal matrices into a Hankel matrix so that it

can be consequently converted into a less noisy time series.

As it will be discussed in more details later in this chapter, the effectiveness and per-

formance of SSA technique greatly depend upon making the two choices of L and r. The

selection of L considerably relates to the aim of study and the data under investigation, while

the choice of r is imperative to provide the noise free series following the reconstruction stage

[Sanei and Hassani, 2015]. The choice of r has a critical role in determining the efficiency of

the signal extraction process. An inaccurate estimation of r results in signal-noise perturba-

tion or loss of information in some parts of the signal(s). In this thesis, several approaches

are introduced to optimise the SSA performance. The improvements made upon the L and r

selections are discussed in details in Chapter 5.

3.2 Basic SSA

The theory underlying basic SSA is exploited and discussed below. In doing so, we mainly

follow [Hassani, 2007] and [Sanei and Hassani, 2015].

Before discussing the methodology of the SSA technique, the general idea of applying

SSA in gene expression analysis is briefly outlined here.

As noted before, gene expression can be traced either in time or space. The data points

used in this study represent the intensity levels attributed to the nuclei along the AP axis and
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are considered as a sequenced series. Therefore, the analysis starts with a one-dimensional

gene expression profile and the aim is to extract the signal of this profile.

Let us consider a noisy gene expression YN with any arbitrary series length N, such that:

YN = (y1, . . . ,yN). (3.1)

This series can be the gene expression profile of any of the segmentation genes. However,

from now for simplicity, we consider that YN represents the Bcd profile.

As it was already discussed Bcd expression profile is exceedingly noisy. Therefore, we

assume that YN comprises of signal and noise. Hence, YN can be represented as:

YN = SN +EN =



y1

y2

...

yN


=



s1

s2

...

sN


+



e1

e2

...

eN


, (3.2)

where SN and EN stand for the signal and noise respectively.

Next, SSA is applied to estimate the signal and leave aside the approximated EN . It

should be noted that the term ‘approximated’ is used here as it is not possible to affirm if the

extracted signal is the true signal present in the real situations.

Below we provide a brief discussion on the methodology of the SSA technique.

3.2.1 Stage 1: Decomposition

At the decomposition stage, Window Length L which is the first choice of SSA is defined.

The L choice transfers a one-dimensional expression profile YN into a multidimensional

series.

It is of note that L is an integer such that 2 ≤ L ≤ N −1. The first step of the SSA

algorithm produces a Hankel trajectory matrix. The step providing the hankel trajectory
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matrix is of critical importance since the other steps of the SSA technique greatly depend

on the structure of this matrix which consequently provides the eigenvalues [Hassani and

Mahmoudvand, 2013].

Step 1: Embedding

Embedding can be defined as the mapping operation that transfers a one-dimensional profile

YN into a multidimensional series X1, . . . ,XK with i = 1,2, . . . ,K vectors:

Xi = [yi,yi+1,yi+2, . . . ,yi+L−1]
T , (3.3)

T represents transposition. As discussed later in this chapter, there is not a single universal

rule for choosing L [Sanei and Hassani, 2015]. According to [Hassani, 2007] and [Golyandina

et al., 2001a] L should be large enough to provide a sufficient separation between components

but no greater than N/2. [Hassani, 2007] also showed that it is practical to choose L

proportional to the periodicity and cycle duration of the data,

The outcome of the embedding step is the trajectory matrix X which is a Hankel matrix.

In X, all the elements along the diagonal i+ j = const are constant [Hassani, 2007]:

X = [X1, . . . ,XK] =
(
xi j

)L,K
i, j=1 =



y1 y2 y3 . . . yK

y2 y3 y4 . . . yK+1

...
...

... . . . ...

yL yL+1 yL+2 . . . yT


. (3.4)

Step 2: Singular Value Decomposition

At the second step of the decomposition stage, the singular values of the trajectory matrix X

are calculated. These singular values which are also known as eigenvalues capture all the

information of a profile. To perform the SVD, the matrix XXT needs to be found first. This
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matrix provides us with positive eigenvalues λ1, . . . ,λL in decreasing order of size. The SVD

of X can be shown as:

X = X1 + . . .+XL, (3.5)

where Xi are rank-one bi-orthogonal elementary matrices, Xi =
√

λiUiV T
i , and Vi =XTUi/

√
λi.

Here, Ui and Vi are also known as principal components which represents the left and right

eigenvectors of the trajectory matrix X.

The
√

λ i is also known as the singular value of X, whilst {
√

λ 1,
√

λ 2, . . . ,
√

λ L} is called

the spectrum of singular values. “Singular Spectrum Analysis” is derived from this feature

of the SSA process which describes the idea of achieving and analysing the spectrum of

singular values for any given time series to distinguish and discriminate between the signal

and noise.

3.2.2 Stage 2: Reconstruction

The reconstruction stage corresponds to the analysis of the spectrum of singular values to

identify the signal and noise components. The eventual outcome of this stage is a filtered

gene expression profile. As it was previously mentioned the second and final choice of SSA

which is the number of eigenvalues, r is required to be made at the first step of this stage

known as grouping step.

Step 1: Grouping

At the first step of the reconstruction stage the elementary matrices Xi are split into several

groups and summing the matrices within each group. As discussed in [Silva and Hassani,

2015], if we denote I = {i1, . . . , ip} as a group of indices i1, . . . , ip, then the matrix XI

corresponding to the group I is defined as XI = Xi1 + · · ·+Xip . The spilt of the set of

indices {1, . . . ,L} into disjoint subsets I1, . . . , Im corresponds to the representation X =
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XI1 + · · ·+XIm. The process of choosing the sets I1, . . . , Im is called the grouping. For any

given group of I, the contribution of the component XI can be estimated by the share of the

corresponding eigenvalues: ∑i∈I λi/∑
d
i=1 λi. In separating the signal and noise of a profile,

one then considers two groups of indices, I1 = {1, . . . ,r} and I2 = {r+1, . . . ,L} and associate

the group I = I1 with the signal component and the group I2 with noise.

The grouping step should be regarded as the most important step of SSA which determines

the accuracy of the analysis. Therefore, several options are introduced to assist the analysis

for differentiating between signal and noise in a given profile including the possibility of

examining the periodogram, scatterplot of right eigenvectors or the eigenvalue functions

graph (see, [Hassani, 2007] or [Sanei and Hassani, 2015]). Once the selection of eigenvalues

corresponding to signal and noise is made, the effectiveness of the separation needs to be

evaluated. This can be performed by using a statistical technique known as the weighted

correlation (w-correlation). This technique is further discussed under section 3.5.1 of this

chapter.

Step 2: Diagonal averaging

The last step of SSA technique transforms a matrix into a Hankel matrix which can afterwards

be converted to a new series. Following [Sanei and Hassani, 2015] this process can be briefly

explained as follows:

If we consider the zi j for an element of a matrix Z. Then, the k-th term of the resulting

series is calculated by averaging zi j over all i, j such that i+ j = k+ 1. By performin the

diagonal averaging over all matrix components of XI j in the expansion of X above, another

expansion of: X = X̃I1 + . . .+ X̃Im , where X̃I j is the diagonalized version of the matrix XI j is

found.
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Note that the SVD of the trajectory matrix X can be represented as:

X =
d

∑
i=1

√
λiUiV T

i = X1 + . . . ,Xd = ∑
i∈I

Xi +∑
i ̸∈I

Xi,

where d = max{i; i = 1, . . . ,L|λi > 0} (rank X = d), Vi = XT Ui/
√

λi (i = 1, . . . ,d), Xi =
√

λiUiV T
i and I ⊂ {1, . . . ,d}. The noise reduced series is reconstructed by XI = ∑i∈I Xi after

selecting a set of indices I. However, XI does not have a Hankel structure and is not the

trajectory matrix of some time series. By performing diagonal averaging over the diagonals

i+ j = const which corresponds to averaging the matrix elements over the ‘antidiagonals’

i+ j = k+ 1, the aforementioned issue is overcome: the choice k = 1 gives y1 = y1,1, for

k = 2, y2 = (y1,2+y2,1)/2, y3 = (y1,3+y2,2+y3,1)/3 and so on. Applying diagonal averaging

to the matrix XI yeilds a reconstructed signal st , and provides the SSA decomposition of

the original series yt as follows yt = st + εt (t = 1,2, . . . ,N), where εt is the residual series

following signal extraction.

3.3 On the Selection of L and r in SSA

As will be discussed in more details in chapter 5, improving the performance of the SSA

(SSA optimisation) can occur at different levels and in various steps which greatly depends

on the aim of the study. For example, if increasing the accuracy of signal extraction is the

main objective of the study, the parameter selection step should be conducted with regards

to some precision criteria. However, in some studies, the priority is given to reducing the

amount of time that running a program takes. Therefore, in such cases, one might deliberately

choose a less accurate, but faster algorithm.

Given the critical role of L and r in SSA technique, several noteworthy studies have

attempted to introduce a particular theoretical justification for choosing these parameters

(see, for example, [Golyandina et al., 2001b]). Since the selection of the window length L
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significantly depends on the structure of the data as well as the purpose of the analysis, such

studies could only bring several suggestions which are only practical for a particular type of

data like a seasonal time series (see, for example, [Golyandina et al., 2001b] and [Hassani

et al., 2009a]). Therefore, there is not a universally best method for L and r selection. The

situation is even vaguer when it comes to the application of SSA in gene expression analysis.

Because in analysing gene expression profiles, the pattern of the profiles is significantly

diverse between different genes. Moreover, in gene expression analysis, we deal with a

noticeable amount of noise in the profiles which makes the problem even more complex.

Therefore, defining a value for L for a particular study is both critical and challenging.

Although there is some recommendations on selecting L = N/4, [Elsner and Tsonis, 1996],

the most common practice is to select the window length fairly large but not greater than

N/2 [Ghodsi et al., 2009; Golyandina et al., 2001a; Hassani, 2007].

When L is too large, the covariance matrix of the L variables is calculated with only a

few observations. This, in turn, extends the imprecision of the result [Hassani et al., 2011a].

Moreover, a too large L results in mixing some parts of the noise with the signal.

However, a rather small L leads to convey some parts of the signal to the noise [Golyandina

et al., 2001a]. According to [Hassani, 2007], in a seasonal or periodic time series with an

integer period, to achieve a better separation of the periodic components, L should be selected

proportional to the period present in the data.

According to the outcome of a simulation study, Golyandina et al. claimed that setting L

close to the half of the time series length gives the optimal signal-noise separation [Golyand-

ina et al., 2001a]. However, [Atikur Rahman Khan and Poskitt, 2013] showed that this claim

is not constantly valid.

It should be noted that in the selection of L, the criterion of comparison is of critical

importance. [Hassani et al., 2011a] and [Hassani et al., 2012] suggested this criterion can be

the separability between signal and noise. Hence, setting L = [N+1
2 ], the minimum value for
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the w-correlation statistic which is a natural measure of the similarity between two series

can be attained [Hassani et al., 2011a]. However, according to [Atikur Rahman Khan and

Poskitt, 2013] setting L much shorter than the upper bound N/2 results in an improved SSA

forecasts. In other words, L ≤≤≤≤ N/2 and L = (logN)c, where c > log(2)/ log log(N)

[Atikur Rahman Khan and Poskitt, 2013].

The selection of the correct number of eigenvalues r which has a direct effect on the

reconstruction stage is another open question in working with SSA.

Hassani et al. noted setting r greater than what it accurately should be, enters some levels

of noise into the reconstructed series. However, a smaller estimation for r in comparison with

its exact value results in losing some parts of the signal [Hassani and Mahmoudvand, 2013].

Also, analysing the scree plot and pairwise scatter plots are suggested to be a helpful

guide to select r [Hassani, 2007]. Having said that, according to [Atikur Rahman Khan and

Poskitt, 2013], there are no established statistical decision rules for using these approaches.

So far, we have highlighted the importance of the accuracy of gene expression signal

processing studies and the critical role of L and r in improving the quality of those studies.

Accordingly, in this thesis, the process of enhancing and adjusting the SSA technique to

analyse the segmentation gene profiles is organised as follows:

• SSA based on the minimum variance estimator is presented in Chapter 4. The MV

estimator is the optimal linear estimator, which gives the minimum total residual power

[De Moor, 1993].

• In Chapter 5, several approaches for optimising the SSA algorithm including SSA

hybrid algorithm with parametric and non-parametric signal processing models, identi-

fying L and r according to the foundations of genetics Colonial Theory are proposed.

Moreover, a new approach for determining the eigenvalues related to the signal of

different gene expression profiles is presented. The latter method is based on the

distribution of the eigenvalues of a scaled Hankel matrix.
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3.4 Benchmark Models

In this thesis, the performance of the SSA technique is compared with those of several

popular, benchmark models. As such, these models are concisely described below and in

doing so [Ghodsi et al., 2015] is mainly followed.

3.4.1 Autoregressive Integrated Moving Average

An optimized version of the ARIMA model is provided through the forecast package in R.

Referred to as auto.arima, a detailed description of the algorithm can be found in [Hyndman

and Khandakar, 2007]. In brief, the number of differences is defined as d, and this may be

determined using either a KPSS test, Augmented Dickey Fuller (ADF) test or the Phillips-

Perron test. The algorithm then minimises the Akaike Information Criterion (AIC) to

determine the values for the order of autoregressive terms p, and the order of the moving

average process q. The optimal model is chosen to be the model which represents the smallest

AIC. The decision on the inclusion or exclusion of the constant c is made depending on the

value of d.

To expand on the above summary, we provide the following modelling equations for

ARIMA based on [Hyndman and Athanasopoulos, 2014]. A non-seasonal ARIMA model

may be written as:

(1−φ1B− . . .φpBp)(1−B)dyt = c+(1+φ1B+ . . .+φqBq)et , (3.6)

or

(1−φ1B− . . .φpBp)(1−B)d(yt −µtd/d!) = (1+φ1B+ . . .+φqBq)et , (3.7)
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where µ is the mean of (1−B)d(yt , c = µ(1−φ1 − . . .−φp) and B is the backshift operator.

In the R software, the inclusion of a constant in a non-stationary ARIMA model is equivalent

to inducing a polynomial trend of order d in the forecast function. It should be noted that

when d=0, µ is the mean of yt .

3.4.2 Autoregressive Fractionally Integrated Moving Average

The general form of an ARFIMA(p,d,q) model shares the same form as an ARIMA process

shown in equations (2). However, in contrast to the ARIMA models, here the d is allowed

to take the form of non-integer values. Moreover, there is evidence of ARFIMA models

been applied in the medical field, see for example [Leite et al., 2007, 2006]. The ARFIMA

model used here is estimated automatically using the Hyndman and Khandakar [Hyndman

and Khandakar, 2007] algorithm explained above, and the Haslett and Raftery [Haslett and

Raftery, 1989] algorithm for estimating the parameters including d. Moreover, this ARFIMA

algorithm combines the functions of f racdi f f and auto.arima to automatically select and

estimate an ARFIMA model. Initially, the fractional differencing parameter is assumed to

be an ARFIMA(2,d,0) model. Thereafter the data are fractionally differenced using this

estimated d and an ARMA model is selected for the resulting time series using auto.arima.

Finally, the full ARFIMA(p,d,q) model is re-estimated using the f racdi f f function.

3.4.3 Exponential Smoothing

The ETS technique overcomes a limitation found in earlier exponential smoothing models

which did not provide a method for easy calculation of prediction intervals [Makridakis et al.,

2008]. The ETS model from the forecast package considers the error, trend and seasonal

components along with over 30 possible options for choosing the best exponential smoothing

model via optimization of initial values and parameters using the MLE and selecting the

best model based on the AIC. A detailed description of ETS can be found in [Hyndman and
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Athanasopoulos, 2014]. Those interested in the several ETS formula’s that are evaluated

through the forecast package when selecting the best model to fit the data are referred to

Table 7.8 in [Hyndman and Athanasopoulos, 2014].

3.4.4 Neural Networks

The NN model has been successfully used for gene expression profiling, clustering and also

gene identification (see for example [Herrero et al., 2001; Xu et al., 1996]) and this is the

first time that this model been applied for gene expression signal extraction. This model

chosen is referred to as nnetar and provided through the forecast package for R. A detailed

description of the model can be found in [Hyndman and Athanasopoulos, 2014] along with

an explanation on the underlying dynamics. In brief, the nnetar function trains 25 neural

networks by adopting random starting values and then obtains the mean of the resulting

predictions to compute the forecasts. The neural network takes the form

ŷt = β̂0 +
k

∑
j=1

β̂ jψ(xT
t .γ̂ j), (3.8)

where xt consist of p lags of yt and T denotes transpose. Then, the function ψ has the logistic

form

ψ(x
′
t .γ̂ j) = [1+ exp(−γ̂ j0 +

p

∑
i=1

γ̂ ji.yt−1)]
−1 j = 1, . . . ,k (3.9)

This form of neural networks is referred to as a one hidden layer feed forward neural network

model and is the default version in the package. However, we consider the use of multiple

hidden layers in order to select the best NN model for this type of data. The nonlinearity

arises through the lagged yt entering in a flexible way through the logistic functions of Eq

3.9. The number of logistic functions (k) included, is known as the number of hidden nodes.
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The neural network models in this study are estimated using the automatic forecasting

model, nnetar which is provided through the forecast package in R. For a detailed explanation

on how the nnetar model operated, see (http://cran.r-project.org/web/packages/forecast/

forecast.pdf). The parameters in the neural network model are selected based on a loss

function embedded into learning algorithm. This loss function could be for example Root

Mean Square Error (RMSE). It may be noted that in all cases the selected neural network

model has only k=1 hidden node, p=2 lags and we adopt annual difference specifications.

3.5 Metrics

Presented in this section are the various metrics which are adopted to evaluate and compare

the results obtained in different approaches applied in this thesis.

3.5.1 w-correlation

According to [Golyandina et al., 2001a], the w-correlation statistic shows the dependence

between two series and can be calculated as:

ρ
(w)
12 =

(
Y (1)

N ,Y (2)
N

)
w

∥ Y (1)
N ∥w∥ Y (2)

N ∥w,
(3.10)

where Y (1)
N and Y (2)

N are two time series, ∥ Y (i)
N ∥w =

√(
Y (i)

N ,Y (i)
N

)
w
,
(

Y (i)
N ,Y ( j)

N

)
w
=

∑
N
k=1 wky(i)k y( j)

k (i, j = 1,2), wk=min{k,L,N − k} (here, assume L ≤ N/2).

Therefore, if the obtained w-correlation is close to 0, this confirms that the corresponding

series are w-orthogonal and that the two components are adequately separable [Hassani et al.,

2009a]. However, if the w-correlation between the two reconstructed series is large, this
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confirms that the series are far from being w-orthogonal, and are therefore not very well

separable and the components should be considered as one group.

Fig 3.5 depicts the w-correlations for an example in which 24 reconstructed components

are computed. The 20-grade grey scale from white to black attributes to the absolute values

of correlations from 0 to 1.

Fig. 3.5 An example of w-correlations Matrix for 24 reconstructed components.

3.5.2 Mean Square Error

Mean Square Error (MSE) is a widely used measure to assess the quality of an estimator.

The MSE always yields a non-negative value. The closer measure of MSE to zero defines the

better performance of the estimator.

It is more common to use the Root mean square error (RMSE) which simply is the square

root of MSE. RMSE is also a popular measure of accuracy to find the average of the squares

of the errors or deviations. RMSE has the same unit of measurement as the quantity under

study.

In comparing two estimators (e.g. two noise reduction methods in this study), it is advised

to adopt the Ratio of Root Mean Square Error (RRMSE) [Hassani et al., 2009a]. For example:
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RRMSE =
RMSE(SSA)

RMSE(AlternativeModel)
=

(
∑

N
i=1(si − ŝi)

2)1/2(
∑

N
i=1(si − s̃i)2

)1/2

where, ŝi are the estimated values of si, obtained with SSA and s̃i are the estimated values of

si obtained by the alternative model and N is the series length. If RRMSE < 1, then the SSA

procedure outperforms the alternative method. Conversely, RRMSE > 1 would indicate that

the performance of the corresponding SSA procedure is worse than the competing method.

3.5.3 Mean Absolute Percentage Error

Mean Absolute Percentage Error (MAPE) also known as Mean Absolute Percentage Devia-

tion (MAPD) is a well-known measure of accuracy in statistics. Similar to RMSE, MAPE is

also widely used in trend estimation, signal processing and forecasting studies. In compari-

son studies, a lower MAPE value indicates a better signal extraction performance. MAPE

represents the accuracy as a percentage:

MAPE =
1
N

N

∑
t=1

|100× yT − ŷT

yT
|,

where yT represents the actual noisy data, and ŷT is the reconstructed point obtained via

a particular noise filtering method. Nevertheless, this measure of accuracy is a popular

comparison criterion, its application presents a major drawback as it cannot be applied in

outcomes with zero values because in that case there would be a division by zero.
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3.5.4 Pearson coefficient of skewness

The Pearson coefficient of skewness (Also known as the Pearson mode skewness) estimates

the skewness of a given distribution [Joanes and Gill, 1998]. This quantity is based on the

notion of the moment of the distribution and is defined as:

skewness =
x̄−mode

S
(3.11)

where x̄ is the arithmetic mean and S is the standard deviation. Apparently, the skewness

of a normal distribution is equal to zero.

3.5.5 Coefficient of Variation

The Coefficient of Variation (CV), also known as relative standard deviation (RSD) is a

measure of dispersion of a frequency distribution and is defined as the ratio of the standard

deviation over mean:

CV =
SD
x̄

(3.12)

CV is usually presented as a percentage and is only computed for a data with non-negative

ratio scale of the values.

3.5.6 Pearson correlation coefficient

The pearson correlation coefficient, also known to as the Pearson’s r or pearson product-

moment correlation coefficient, is a measure of the linear dependence between two variables

X and Y [Benesty et al., 2009].

ρ(X ,Y ) =
cov(X ,Y )

σX σY
(3.13)
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where cov is the covariance, σX is the standard deviation of X and σY is the standard deviation

of Y.

3.5.7 Kendall rank correlation coefficient

Kendall rank correlation coefficient, is a statistic applied to measure the ordinal association

between two measured quantities. Kendall is a non-parametric hypothesis test for statistical

dependence based on the tau coefficient [Kendall, 1938].

Let (x1,y1),(x2,y2), . . . ,(xn,yn) be a set of observations of the joint random variables X

and Y respectively, and all the values of (xi) and (yi) are unique. Any pair of observations

(xi,yi) and (x j,y j), where i ̸= j, are said to be concordant if the ranks for both elements

agree: that is, if both xi > x j and yi > y j; or if both xi < x j and yi < y j. They are said to be

discordant, if xi > x j and yi < y j; or if xi < x j and yi > y j. If xi = x j oryi = y j , the pair is

neither concordant nor discordant [Kendall, 1938]. The Kendall τ coefficient is defined as:

τ =
(numbero f concordant pairs)− (numbero f discordant pairs)

n(n−1)/2
(3.14)

3.5.8 Spearman correlation coefficient

The Spearman correlation coefficient is defined as the Pearson correlation coefficient between

the ranked variables [Spearman, 1904]. For a sample of size n, the n raw scores Xi,Yi are

converted to ranks rgxi,rgYi and rs is calculated following:

rs = ρrgX ,rgY =
cov(rgX ,rgY )

σrgX σrgY
(3.15)

where, ρ is the pearson correlation coefficient which is applied to the rank variables.

cov(rgX ,rgY ) is the covariance of the ranked variables and σrgX and σrgY are the stan-

dard deviations of the ranked variables.



Chapter 4

Bicoid signal extraction using SSA based

on minimum variance

4.1 Introduction

Having discussed the models and techniques which have been previously proposed for

studying the Bcd profile in Chapter 2, here, we introduce a new signal processing algorithm

for filtering the Bcd profile and extract the signal consequently.

The new method is an enhanced version of SSA technique and is known as SSA based on

the minimum variance estimator (SSAMV ). SSAMV was firstly introduced in [Hassani, 2010]

where it was shown to be more efficient than the basic version of SSA [Hassani, 2010].

Accordingly, in this study, to improve the precision of signal extraction and noise filtering

of gene expression profiles, we adopt SSAMV algorithm and evaluate its performance for bcd

gene expression profile.

At the outset, it is important to note that we use the SDD model as the overall benchmark

as it is the most commonly used approach for signal extraction in Bcd.

The detail of the SSAMV technique is provided in Section 4.2 which follows with the rest

of the chapter organised in two phases:
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• Comparison study I

• Comparison study II

At the first phase, we start the analysis with evaluating the application of SSAMV on Bcd

profile. Recall Fig 1.6 illustrating the Bcd profile achieved using the immunofluorescence

technique. As it was apparent in that figure, Bcd profile contains different levels of noise

which need to be removed first.

To validate the theoretical results, extensive simulation study is carried out. Analysing

the real data is also performed on all cleavage cycles in which Bcd is present in the embryo

(i.e. cleavage cycles 10-14(A)). The empirical results are presented and compared with SDD

model as the commonly used model for analysing Bcd profile.

At the second phase, we evaluate the use of a range of powerful and popular signal

processing techniques from both parametric and nonparametric backgrounds to provide

a sound extraction of Bcd signal. Our aim here is to ascertain whether the other signal

processing models can provide a more accurate signal for Bcd in comparison to the SDD and

SSAMV techniques.

Similar to the first phase, here, the evaluation consists of the analysis on both simulated

and real data sets.

The selections of the signal processing models in the second phase representing both

parametric and nonparametric methods are important for several reasons. Firstly, as will be

discussed, the residuals following signal extraction in Bcd is nonstationary. Secondly, whilst

it is well known that parametric models rely on the underlying assumptions of normality

and stationarity, interestingly, the most widely used method for Bcd signal extraction, the

SDD model is also parametric. Thirdly, as noted in [Hassani et al., 2013c], for the parametric

methods, assuming stationarity for the data, the linearity of the model and normality of the

residuals can provide only an approximation of the true situation. Therefore, a method that
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does not depend on these assumptions could be very useful for modelling and extract the

signal in Bcd data.

Moreover, the selection of the models in this chapter has also considered former applica-

tions in solving signal extraction problems.

As we are interested in ascertaining the applicability, and introducing a suitable signal

processing method for signal extraction in gene expression profiles, it is common to con-

sider an Autoregressive Integrated Moving Average (ARIMA) model as a benchmark for

comparing with the other signal processing models. In addition, ARIMA-based models have

been applied for signal extraction in various fields both historically and recently (see, for

example, [Alexandrov et al., 2012; Burman, 1980; Gonzalez-Romera et al., 2006; Halliday,

2004; Harvey and Koopman, 2000].)

It should be noted that Autoregressive Fractionally Integrated Moving Average is mainly

recognised as a method suitable for long memory processes where the decay is slower than in

an exponential process. However, the results justify the consideration given to an ARFIMA

model as explained later. The use of state space models such as Exponential Smoothing

(ETS) does not require added justification as the benchmark model SDD in itself follows

and exponential curve [Liu et al., 2011]. Furthermore, the ETS method used here fits the

best model for signal extraction by evaluating between both Holt-Winters and Exponential

Smoothing. Neural network (NN) models are increasingly popular in the modern world

and have been applied for solving signal extraction problems in the past (see for example,

[Halliday, 2004; Lee et al., 2003]).

Accordingly, the signal processing models used in the second phase of this chapter

include an optimised version of ARIMA, ARFIMA, ETS and NN model with one hidden

layer. These models are fully described in Chapter 3.

In what follows, we show how the selected signal processing techniques compare and

compete against each other, and the widely accepted SDD model. Any efforts at finding a
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Model Nature
SDD Parametric

ARIMA Parametric
ARFIMA Parametric

ETS Non-parametric
NN Non-parametric
SSA Non-parametric

Note:SDD – Synthesis Diffusion Degradation, ARIMA – Autoregressive Integrated Moving Average,
ARFIMA – Autoregressive Fractionally Integrated Moving Average, ETS – Exponential Smoothing, NN –

Neural Networks, SSA – Singular Spectrum Analysis.
Table 4.1 Parametric or non-parametric nature of algorithms.

universally optimal model for this purpose would require more extensive research which

considers a wide range of filtering techniques and that objective is beyond the mandate of

this research.

4.2 SSA based on minimum variance

The theory underlying SSAMV technique is given below. In doing so we mainly follow

[Hassani, 2010] where a more detailed description is made available.

Consider a noisy signal vector YN = (y1, . . . ,yN)
T of length N.

YN = SN +EN (4.1)

where SN represents the signal component and EN the noise component. Let K = N −L+1,

where L is some integer called the window length (we can assume L ≤ N/2). Define the
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so-called “trajectory matrix”:

X = (xi j)
L,K
i, j=1 =



y1 y2 y3 . . . yK

y2 y3 y4 . . . yK+1

...
...

... . . . ...

yL yL+1 yL+2 . . . yN


(4.2)

The columns X j of X, considered as vectors, lie in an L-dimensional space RL. It is

obvious that:

X = S+E (4.3)

where S and E represent Hankel matrices of the signal SN and noise EN , respectively. The

SVD of the trajectory matrix X can be written as:

X = UΣVT (4.4)

where U ∈ RL×K is the matrix consists of the normalized eigenvector Ui corresponding to

the eigenvalue λi (i = 1, . . . ,L), V ∈ RK×K , is the matrix contains the principal components

defined as Vi = XTUi/
√

λ i, and Σ = diag(λ1 ≥ λ2 ≥ . . .≥ λL). The diagonal elements of Σ

are called singular value of X, and their set is called the singular value spectrum.

The signal subspace methods are based on the assumption that the vector space of

the noisy time series (signal) can be split in mutually orthogonal noise and “signal+noise”

subspaces. Thus, by adapting the weights of the different singular components, an estimate

of the Hankel matrix X, which corresponds to noise reduced series, can be achieved:

X = U(WΣ)VT (4.5)
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where W is the diagonal matrix containing the weights. Now, the problem is choosing the

weight matrix W. Next we consider the problem of choosing this matrix using different

criteria. The SVD of the matrix X can be written as:

X = [U1 U2]

 Σ1 0

0 Σ2


 VT

1

VT
2

 (4.6)

where U1 ∈ RL×r, Σ1 ∈ Rr×r and V1 ∈ RK×r. We can also represent the SVD of the Hankel

matrix of the signal sT as:

S = [U1s U2s]

 Σ1s 0

0 0


 VT

1s

VT
2s

 (4.7)

It is clear that the Hankel matrix S cannot be reconstructed exactly if it is perturbed by

noise.

4.2.1 Least Square Estimate of S

If the matrix XL×K is rank deficient, i.e., rank X = r and r < L < K. The simplest estimate of

S is obtained when we approximate S by a matrix of rank r in the LS sense:

min ∥ X− ŜLS ∥2
F (4.8)

where ∥ . ∥F is the Frobenius norm. That is, the LS estimate is obtained by setting the

smallest singular value to zero (λr+1 = 0, . . . ,λL = 0) in Equation (4.6):

ŜLS = [U1 U2]

 Σ1 0

0 0


 VT

1

VT
2

= U1Σ1VT
1 (4.9)



4.2 SSA based on minimum variance 76

The SLS estimate removes the noise subspace but keeps the noisy signal uncorrelated

in the “signal+noise” subspace. The disadvantage of LS is that the performance of the LS

estimator is crucially dependent on the estimation of the signal rank r. That is, selecting

singular values in LS is a binary approach. The main advantage of the LS estimate is that

one does not need to consider any assumptions either about the signal or the noise.

4.2.2 MV Estimate of S

The aims of the noise reduction can be considered as follows: (1) separate the “signal+noise”

subspaces from the noise-only subspace; (2) remove the noise-only subspace; (3) ideally,

remove the noise components in the “signal+noise” subspaces. The first two steps can be

achieved by the least squares estimate, while the MV estimate allows us to achieve the third

aim as well. However, one should consider some assumptions to obtain the MV estimate

[Hassani, 2010] and if the assumptions are met, one can obtain the MV estimate as follows

[De Moor, 1993; Van Huffel, 1993]. Given the matrix X, with rank X = rank N = L and also

rank S = r. Find the matrix P ∈ RK×K that minimises min ∥ XP−S ∥2
F and the solution is

obtained by P = (XTX)−1XTS. Therefore, the MV estimate of S is XP = X(XTX)−1XTS.

Using the SVD of the X, we can obtain XP = UUT S.

That is, the MV estimate of S can be interpreted as an orthogonal projection of S onto

the column space of X because UUT is the associated projection matrix. Note also that rank

(XP) = rank (S) = r. Let us now consider an alternative form of the SVD of the matrix X

using the SVD of S Equation (4.7) as follows:

X = S+N = U1sΣ1sVT
1s +NV1sVT

1s +NV2sVT
2s

=
[
(U1sΣ1s +NV1s)(Σ

2
1s +σ2

noiseI)−1/2 σ
−1
noiseNV2s

]
×

 (Σ2
1s +σ2

noiseI)1/2 0

0 σnoiseI


 VT

1s

VT
2s


(4.10)
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As it appears from Equation (4.10), the middle matrix is diagonal, and the left and right

matrices have orthonormal columns. Therefore, Equation (4.10) can be considered as an

alternative form of the SVD of X, and the singular values of X are:

Σ1 = (Σ2
1s +σ2

noiseI)1/2

Σ2 = σnoiseI
(4.11)

Hence, the singular values in Σ2 can be interpreted as a noise threshold, which permits

estimating σnoise from Σ2 in Equation (4.11). We can also consider the following submatrices:

U1 = (U1sΣ1s +NV1s)(Σ
2
1s +σ2

noiseI)−1/2

= (U1sΣ1s +NV1s)Σ
−1
1

U2 = σ
−1
noiseNV2s

V1 = V1s

V2 = V2s

(4.12)

Now, the MV estimate of S:

U1Σ
−1
1 (Σ2

1 −σ
2
noiseI)VT

1 (4.13)

4.2.3 Weight Matrix W

Let us consider again the weight matrix W based on the LS and MV estimates. As it is

appears from Equations (4.9) and (4.13), the left and right singular vectors, U1 and V1, of

LS and MV estimates are the same, but the singular values are different. The LS and MV

estimates can be defined based on the weight matrix Wr×r as follows:

ŜLS = U1(WLSΣ1)VT
1

ŜMV = U1(WMV Σ1)VT
1

(4.14)
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where
WLS = Ir×r

WMV = diag
(
(1− σ2

noise
λ 2

1
), . . . ,(1− σ2

noise
λ 2

r
)
) (4.15)

However, it should be noted than in achieving the obtained weight matrix it has been

assumed that the variance of the signal is always greater than the variance of noise.

Next, we compare the performance of the SSAMV and SSALS on the simulated series

drawn from an exponential curve.

The detail of the simulation procedure was provided in chapter 1. The only difference to

note here is the number of data points generated per simulated series which is in total 200

data points.

Different values of window length L are considered to examine the sensitivity of the SSA

technique for different L. Based on the theoretical results L should be large enough but not

greater than N/2 [Golyandina and Zhigljavsky, 2013]. Here, for reconstruction stage, the

first two eigenvalues are selected. RRMSE is used to compare two noise reduction methods

[Hassani et al., 2009a]:

Fig 4.1 shows the RRMSE values obtained for SSAMV /SSALS. As it appears, the SSAMV

has a better performance in small window lengths where this value tends to 1 as the window

length increases showing that both methods have a similar performance for large window

lengths. Also, as it can be seen, there is a gradual increase in RRMSE with regards to the

window length. For example, for a window length equal to 3, the performance of the SSAMV

in series reconstruction is up to 14% better than SSALS. However, there is no significant

discrepancy between the performance of SSAMV and SSALS in window lengths greater than

36.

Having illustrated the detail of SSAMV algorithm and its superior performance over the

basic SSA in this study, in what follows, in section 4.3 this method is applied to extract the
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Fig. 4.1 The RRMSE of SSAMV /SSALS in the reconstruction of noisy exponential series.

Bcd signal and is compared against SDD model, while in section 4.4 the comparison study is

further extended to a range of parametric and non-parametric signal processing methods.

It is of note that the evaluation is conducted on both simulated and real data separately in

each section.

4.3 Comparison study I

4.3.1 Simulation study

Here, a series of simulated data is used to evaluate the performance of two different possible

approaches for extracting the Bcd signal from its noisy profile.

In the first approach, the performance of the SDD model is evaluated before and after

filtering the series using the SSA technique. Recall that in SDD model B = Ae−x/H , is

assumed to be the Bcd protein diffusion during segmentation which follows an exponential

curve. By estimating the two parameters of this model before and after filtering, one can

depict the effect of the noise filtering method on the performance of the SDD model.

In the second approach, SSAMV is directly applied to the Bcd profiles and its signal

extraction capability is compared with SDD model using RMSE criterion.
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Let us start the first approach by comparing the performance of the SDD model before

and after filtering. Table 4.2 presents the values of the estimated parameters and the related

standard deviations. As it appears, by adopting SSA, the estimated values are more robust

and accurate than the values obtained before filtering.

Parameter Original value Average S.D Ratio
before after before after

A 200 204.2 202.6 4.19 2.64 2.64
4.19 = 0.63

H 20 19.57 19.76 0.41 0.26 0.26
0.41 = 0.62

Table 4.2 The estimated parameters and their standard deviation before and after applying SSA.

Fig 4.2 shows the normal distribution of the estimated parameters A and H before and

after filtering. As it appears, parameters show different values in noisy and noise-free series,

which confirms that applying a noise reduction method does help the SDD model to give an

improved result.

(a) Parameter A

(b) Parameter H

Fig. 4.2 Distribution of the estimated parameters of A and H for noisy Bcd and noise-reduced Bcd
(thick lines).

It should be noted that noise has been added to the signal. Therefore, the distribution of

the parameters are not a function of noise distribution.
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Next, we compare the performance of the SSAMV against the SDD model. In this

approach SSAMV and SDD are separately fitted to Bcd profiles and their signal extraction

performance is compared using the RRMSE value.

For the SSA analysis, since the length of each simulated series is assumed to be 100 (one

observation per egg length percentage), the window length of 50 is chosen to extract the

signal and reconstruct the series.

Choosing L = 50 and performing the SVD step of the trajectory matrix X, 50 eigentriples

are obtained, ordered by their contribution (share) in the decomposition stage. We shall

say that the series YN is not complex if YN is well approximated by a series with small

rank d. For example series yi = eαi (i = 1, . . . , N) has rank 1. For all 2 ≤ L ≤ N − 1,

yi = byi−1 where b = eα where α is a model parameter. It should be noted that the number

of eigentriples selected as corresponding to the series SN has to be at least d. For example, if

yi = eα + εi then the window length L should be at least 2 and the first eigentriple is enough

for reconstructing the original series if ||SN || ≫ ||EN ||. Accordingly, the first eigentriple is

selected for filtering and trend extraction.

Furthermore, RRMSE is used to measure the difference between the estimated values

(fitted by SDD model and reconstructed by SSA) and the actual values.

Table 4.3 shows the results. As it appears from this table, a significant reduction in the

RMSE value is achieved by SSA, confirming that these results are more accurate than the

points estimated by SDD model.

For all simulation runs (5 of which are shown here) SSA outperforms the SDD model

ranging from 42% to 46%. For instance, regarding the first case of this table, the extracted

signal by SSA method is 45% more accurate than the SDD model.
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Simulation run RMSE RRMSE ( SSA
SDD )

SSA SDD
1 2.72 4.87 0.55
2 2.71 4.83 0.56
3 2.69 3.98 0.54
4 2.72 4.68 0.58
5 2.73 4.96 0.54

Table 4.3 The RMSE results achieved by SSA and SDD using noisy simulated data.

4.3.2 Real data

Here, the performance of the newly introduced model is evaluated on the real data and is

compared against the SDD model. This data is fully described in Chapter 1, where a more

detailed information on the characteristics of the data and the data acquisition procedure is

made available.

As it was previously noted in Chapter 3, the matrix of the absolute values of w-correlations

is a great criterion to decide about the efficiency of a noise filtering technique. Therefore,

the calculated w-correlations for different cleavage cycles and time classes are presented in

Table 4.4.

If the absolute value of the w-correlations is small, then Bcd signal and its corresponding

noise are almost w-orthogonal, but if this value is large, then they are far from being w-

orthogonal, and are therefore not very well separable. As it can be seen from the results, the

Bcd signal can be effectively separated from the noise component confirming the technique

proposed in this study performs well in noise reduction and pattern recognition of Bcd profile.

Class w-correlation Class w-correlation
10 0.008 14(3) 0.001
11 0.005 14(4) 0.002
12 0.007 14(5) 0.001
13 0.003 14(6) 0.001

14(1) 0.001 14(7) 0.001
14(2) 0.001 14(8) 0.001

Table 4.4 w-correlations between signal and residuals for bcd gene expression profile.
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Figs 4.3 and 4.4 show the extracted signal obtained by SSAMV and SDD. The black,

red and green colours indicate the original data, the signal extracted by SSA and SDD

respectively. Here we can see that the signal component is precisely extracted for cleavage

cycles 10-13 and all temporal classes of 14(A), indicating the robustness of the SSAMV to

different levels of noise and outliers.

(a) (b)

(c) (d)

Fig. 4.3 Bcd expression profile in cleavage cycles 10-13. Black, red and green depict the original
data, signal extracted using SSAMV and signal extracted using SDD model. a) cleavage cycle 10, b)
cleavage cycle 11, c) cleavage cycle 12 and d) cleavage cycle 13

4.4 Comparison study II

4.4.1 Simulation study

In this section, different signal processing models which are fully described in Chapter 1 are

fitted to the noisy simulated Bcd profiles.

The following metrics are calculated in order to measure the accuracy of signal extraction:
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.4 Bcd expression profile in cleavage cycle 14(A). Black, red and green depict the original
data, signal extracted using SSAMV and signal extracted using SDD model. a) cleavage cycle 14(1),
b) cleavage cycle 14(2), c) cleavage cycle 14(3), d) cleavage cycle 14(4), e) cleavage cycle 14(5), f)
cleavage cycle 14(6), g) cleavage cycle 14(7) and h) cleavage cycle 14(8)
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• Mean Absolute Error (MAE)

• Mean Absolute Percentage Error (MAPE)

• Ratio of the Root Mean Squared Error (RRMSE)

It is of note that the RRMSE has been calculated to measure the accuracy of signal

extraction as follows:

RRMSE =
RMSE(AlternateModel)

RMSE(SDD)
,

If RRMSE < 1, then the alternate model outperforms the SDD method. In contrast,

RRMSE > 1 would indicate that the performance of the corresponding alternate procedure

is worse than the SDD model.

Table 4.5 reports the average RMSE values attained by each model following 1000

iterations and some other descriptives relating to the performance of each model.

Model RMSE MAPE MAE RRMSE Min Max
ARIMA 4.69 6.00% 3.21 0.42 3.00 7.70

ARFIMA 5.34 5.80% 3.42 0.48 3.54 10.19
ETS 3.74 4.40% 2.50 0.34 1.89 6.51
NN 6.03 6.27% 4.11 0.55 4.02 11.29

SSAMV 2.25 2.00% 1.58 0.20 1.07 3.87
SDD 10.96 23.00% 9.30 N/A 10.92 11.27

Note: RMSE – Root Mean Squared Error, MAPE – Mean Absolute Percentage Error, MAE – Mean
Absolute Error, RRMSE – Ratio of the Root Mean Squared Error, Min – Minimum, Max – Maximum.

Table 4.5 Average loss functions and RRMSE for signal extraction using noisy simulated data.

In brief, as it appears from Table 4.5, a significant reduction in the RMSE value is

achieved by SSAMV , confirming that these results are more accurate than the points estimated

by SDD and other models.

Based on this table we can also reach the following conclusions:

Firstly, the parametric SDD model reports the worst performance in comparison to the

other parametric and nonparametric models considered in this simulation. The SDD model is



4.4 Comparison study II 86

outperformed by 58% and 52% by the ARIMA and ARFIMA models respectively whilst the

ETS model is 66 % better than the SDD model. The performance of the ARFIMA model is

noteworthy mainly because it is famously recognized as a model suitable for long memory

processes. These results justify the consideration given to ARFIMA in this study.

Interestingly, the nonparametric feed-forward NN model is the second worst performer

and outperforms the SDD model by 45%. It should be noted that we have examined the

use of multiple hidden layers and selected a NN model with two hidden layers as the most

appropriate for this data based on the lowest RMSE and MAE.

The simulation results indicate that SSAMV provides the best signal extraction and is

successful at outperforming the SDD model by 80%. The MAE and MAPE criterions too

confirm that SSAMV is the best model in comparison to SDD, ARIMA, ARFIMA, ETS and

NN and that SDD is infact the worst performer in this case. The minimum and maximul

columns clearly indicate that there is less variation in the results reported by SSAMV and

accordingly we can confirm that SSAMV is the most stable model in this case.

In order to confirm the statistical significance of the simulation results, we opted for the

nonparametric two sample Wilcoxon test which in this case is able to indicate whether the

values of the RMSE’s attained via simulation from two given methods actually differ in terms

of the size. Based on this test it was confirmed that there exists a statistically significant

difference between the RMSE’s obtained via SDD and all other models at a p-value of 0.01,

under the null hypothesis of equality of RMSE values, further confirming the validity of

the results. The p-value is defined as the probability of making the type one error which is

rejecting the null hypothesis when it should not have been rejected [Fisher et al., 1949].

Given this superior performance portrayed by the SSAMV technique, we believe it is

important to briefly comment on the factor underlying this result. The SSAMV model is

a specialised filtering technique with the ability of decomposing a given time series and

analysing the eigenvalues for accurately identifying, and separating the noise from the signal.



4.4 Comparison study II 87

The appropriateness of the separation between signal and noise obtained via SSAMV was

confirmed by the very small values of w-correlation which confirms that the signal and its

corresponding noise are almost w-orthogonal.

It is also interesting to note that the minimum and maximum errors reported by SSAMV

over the 1,000 simulations are significantly lower than the minimums and maximums reported

by the other models. Accordingly, it is clear that the SSAMV technique is more reliable and

suitable for signal extraction in Bcd as the average RMSE, MAPE and MAE values are

significantly lower than those reported by the other models over the 1,000 iterations.

4.4.2 Real data

The analysis on bcd gene expression profile is usually carried on either the whole data set

from FlyEx or a sample of embryos introduced by Alexandrov et al. [Alexandrov et al., 2008].

Therefore, having used the FlyEx in the first phase of this chapter, in this section the evaluation

is performed on the data which consists of 17 embryos (http://urchin.spbcas.ru/flyex/) and

were presented by Alexandrov et al. [Alexandrov et al., 2008]. A complete explanation of the

method and biological characteristics of this data can be found in [Alexandrov et al., 2008].

For each embryo the expression level of Bcd protein was measured by using fluorescently

tagged antibodies. The nuclear intensities were obtained from a rectangle of 50% of the

DV height of the embryo, centred on the AP axis. This data presents the gene expression of

the AP coordinate between 20 and 80% egg length. Similar to the first comparison study,

this work seeks to extract the signal from one-dimensional gene expression data, hence, the

second spatial coordinate (DV axis) has not been considered.

First we seek to extract the signal in the actual data using the various signal processing

techniques. The examples of the output from these efforts for embryo hz29 can be found in

Fig 4.5. It is evident that in comparison to the other models, the SSAMV method provides a

comparatively smooth signal line. Moreover, it is clear that the SDD signal appears to be
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least accurate in comparison to the other models even though SDD provides a smooth line as

opposed to ARIMA, ARFIMA, and NN models. Overall, the results from the application to

real data appear to be consistent with the simulation findings based on what is visible through

Fig 4.5.
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Fig. 4.5 Signal extraction using various time series models and SDD.
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Let us now consider the extracted signal lines from each model. A close look at Fig 4.5

suggests that the SDD signal line is the smoothest one out of the evaluated options. However,

it is very clear that the SDD signal extraction is also the worst fit in this case as it fails to

accurately model the signal amidst the fluctuations, regardless of the fact that it appears to

have filtered these fluctuations out. The feed-forward NN model with two hidden layers is

showing signs of difficulties with filtering the fluctuations to accurately capturing the signal

in Bcd. We can notice similar issues to a certain extent in both the ARIMA and ARFIMA

models (with ARFIMA being comparatively worse than ARIMA). In contrast, the ETS and

SSAMV signal lines are the most effective in this case. Yet, a close observation of the ETS

signal extraction graph makes it evident that in the middle stages the ETS line loses its

smoothness to a certain extent. In contrast, the SSAMV model is able to provide a smooth

signal line right throughout and thus based on the smoothness of the extracted signal we

conclude that SSAMV does indeed capture the signal in Bcd comparatively better than the

other methods evaluated here.

Fig 4.6 shows the residuals from each model following signal extraction. Firstly, it is clear

from Fig 4.6 that the residuals for the Bcd data following signal extraction is nonstationary.

In order to confirm this nonstationary aspect, we tested each of the residuals using the

Augmented Dickey-Fuller (ADF) test for unit roots [Cheung and Lai, 1995].

Based on the ADF test is was confirmed that the residuals are in fact nonstationary at a

p-value of 0.01. As we have used parametric methods which assume stationarity, we believe

it is important to briefly comment on the results obtained through the simulation.

Interestingly, the parametric models of ARIMA and ARFIMA are able to provide a

comparatively sound signal extraction for Bcd even with the data being nonstationary (the

ARIMA algorithm used in this paper automatically considers taking the number of differences

until the series becomes stationary.
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Fig. 4.6 Residuals following Bcd signal extraction.
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For the ARFIMA model we evaluated a log transformation which worsened the signal

extraction). However, residuals from the widely accepted SDD model does not appear to be

white noise and we can see that it has a clear signal. Accordingly, we tested the residuals

from the parametric models for white noise using the Ljung-Box test which proved the SDD

residuals are not white noise at a p-value of 0.01. This further explains the comparatively

mediocre performance shown by SDD when applied to actual data.

Finally, we consider the correlation between the signal and noise extracted from each

model in order to analyse the noise separation capabilities. For this purpose we consider

correlation between signal and noise based on three different methods; pearsons, spearman

and kendall. These results which consider all 17 datasets are reported in Table 4.6. From this

table it is evident that all models here have attained a satisfactory level of separation between

noise and signal with SSAMV providing correlations below 0.10 in 15 out of the 17 cases.

Moreover in general the correlations reported by SSAMV are comparatively smaller with the

exception of a few cases.

These results provide further support for the comparatively sound performance that

SSAMV has portrayed in extracting the signal in Bcd. It is clear that SSAMV ’s impressive

filtering capabilities are indeed advantageous for this purpose.

4.5 Conclusion

Even though the extraction of Bcd signal appears to be simple, in practice it is an arduous

and complicated task as a result of Bcd profile characteristics including lack of normality,

being highly volatile and posseisng a heavy tail.

The derived result from this chapter is based on both simulated and actual data application

and highlights the following conclusions:

First, SSAMV outperforms the basic SSA and therefore can be adopted as a new analytical

algorithm for gene expression signal extraction.
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Embryo ARIMA ARFIMA ETS NN SSAMV SDD

ac2 pearson 0.1026 0.0716 0.145 0.047 0.035 0.057
kendall 0.125 0.087 0.065 0.001 0.011 0.176

spearman 0.146 0.104 0.077 0.005 0.03 0.187
ad36 pearson 0.225 0.147 0.025 0.041 0.051 0.124

kendall 0.161 0.144 0.054 0.019 0.078 0.452
spearman 0.207 0.193 0.08 0.022 0.106 0.51

as15 pearson 0.129 0.125 0.125 0.03 0.057 0.161
kendall 0.088 0.086 0.018 0.012 0.006 0.387

spearman 0.114 0.11 0.032 0.024 0.007 0.438
as18 pearson 0.129 0.125 0.041 0.03 0.057 0.161

kendall 0.088 0.086 0.018 0.012 0.006 0.387
spearman 0.114 0.11 0.032 0.024 0.007 0.438

as19 pearson 0.157 0.13 0.015 0.037 0.034 0.065
kendall 0.12 0.099 0.018 0 0.054 0.16

spearman 0.181 0.151 0.024 0.003 0.079 0.203
as22 pearson 0.148 0.124 0.069 0.338 0.03 0.085

kendall 0.029 0.008 0.126 0.252 0.093 0.235
spearman 0.03 0.018 0.168 0.388 0.14 0.252

as27 pearson 0.175 0.183 0.053 0.003 0.015 0.195
kendall 0.105 0.073 0.03 0.014 0.006 0.439

spearman 0.139 0.101 0.042 0.025 0.015 0.473
cb22 pearson 0.204 0.198 0.025 0.003 0 0.076

kendall 0.069 0.083 0.014 0.011 0.011 0.159
spearman 0.086 0.111 0.031 0.023 0.035 0.163

cb23 pearson 0.156 0.092 0.041 0.026 0.028 0.06
kendall 0.082 0.037 0.051 0.011 0.039 0.157

spearman 0.12 0.057 0.065 0.01 0.053 0.199
hx8 pearson 0.156 0.092 0.041 0.026 0.028 0.06

kendall 0.082 0.037 0.051 0.011 0.039 0.157
spearman 0.12 0.057 0.065 0.01 0.053 0.199

hz19 pearson 0.186 0.206 0.008 0.001 0.038 0.156
kendall 0.092 0.111 0.014 0.009 0.017 0.335

spearman 0.141 0.168 0.024 0.007 0.019 0.399
hz20 pearson 0.152 0.086 0.063 0.006 0.005 0.071

kendall 0.013 0.064 0.177 0.119 0.14 0.123
spearman 0.02 0.091 0.244 0.162 0.195 0.133

hz29 pearson 0.229 0.188 0.191 0.001 0.074 0.232
kendall 0.062 0.033 0.116 0.04 0.02 0.463

spearman 0.09 0.054 0.147 0.042 0.025 0.543
iz4 pearson 0.202 0.23 0.022 0.028 0.003 0.105

kendall 0.071 0.006 0.108 0.034 0.073 0.21
spearman 0.086 0.01 0.16 0.052 0.119 0.212

iz13 pearson 0.244 0.039 0.026 0.035 0.027 0.149
kendall 0.137 0.008 0.029 0.008 0.046 0.334

spearman 0.178 0 0.037 0.024 0.051 0.387
iz15 pearson 0.228 0.172 0.075 0.029 0.043 0.149

kendall 0.119 0.115 0.049 0.02 0.006 0.426
spearman 0.17 0.162 0.056 0.026 0.013 0.523

ms19 pearson 0.207 0.201 0.102 0.028 0.017 0.154
kendall 0.141 0.106 0.069 0.023 0.049 0.348

spearman 0.185 0.142 0.096 0.04 0.048 0.385

Table 4.6 Correlation absolute values between Bcd signal and noise in 17 different embryos.
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Second, SDD model provides a more reliable signal with more accurate parameters if it

applies to a filtered profile. Therefore, if a user is inclined to apply a parametric method such

as SDD, it is strongly suggested to reduce the level of noise with any noise reduction method

(here for example the basic SSAMV or ) before fitting the model to the data.

Third, the obtained results illustrate that the SSAMV filtering method proposed in this

study outperforms the SDD model and various other methods considered for filtering noisy

Bcd.

The ETS technique was found to be the next best alternative followed by ARIMA.

Moreover, given that both parametric and non-parametric algorithms have been evaluated

in this investigation, it is pertinent to note that non-parametric algorithms are not explicitly

better than parametric algorithms. The performance depends and varies on the nature of the

data in question. However, in the case of Bcd signal extraction, we find the SSAMV model

(which is nonparametric) outperforming the rest.

Interestingly the simple parametric model of ARIMA was seen outperforming the non-

parametric NN algorithm considered in our study. The poor performance of the NN model

can be attributed to its proneness to overfitting.

In conclusion, the results confirm that filtering is critical for Bcd curve fitting and

the SSAMV technique yields a promising result for Bcd analysis. The consistent superior

performance of the SSAMV method over different cleavage cycles and time classes also

suggests that SSAMV is a more flexible technique and therefore can be a valuable aid in

analysing spatially inhomogeneous noisy data. The feasibility of capturing the signal of

the bcd gene in D. melanogaster embryos suggests that SSAMV may be of general use in

evaluating other expressional systems.

Also, comparing with other signal processing methods, using SSA for signal extraction

provides the ability to use both dimensions (AP and DV) which expects to give a more

reliable result.
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Regarding future research it would be insightful to consider various other filtering

approaches, such as nonparametric linear filtering, wavelets and the NN models in [Hinton

et al., 2006] and [Hinton and Salakhutdinov, 2006] for signal extraction in Bcd.



Chapter 5

Optimising Bcd signal extraction

Signal extraction is critical and at times challenging task in the fields of time series analysis

and gene expression signal processing which enables analysts to smooth out a time series by

removing the seasonal and cyclical variations and determining the long-run behaviour of the

underlying data.

A signal can be formally defined as a smooth additive component which contains in-

formation relating to the global change in a time series [Alexandrov, 2008], and the term

‘smooth’ is a vital characteristic of any given signal. In the field of genetics and gene expres-

sion in particular, signal extraction and noise reduction are crucial as genetic data is often

characterised by the existence of significant noise [Hassani and Ghodsi, 2014].

As outlined in the previous chapters, in achieving the profiles using fluorescence imaging

technique, the quantification relies on the assumption that the actual protein concentrations

detected by the fluorescence imaging technique are linearly related to the embryo’s natural

protein concentration [Surkova et al., 2008a]. However, this is just an estimation and the

obtained profiles contain different levels of noise which need to be removed first.

Besides the effect of the observational noise, the Bcd signal extraction process is complex

as the data is also associated with biological noise. Moreover, the extracted residual is not

normally distributed as required by parametric techniques. The distribution of Bcd follows
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an exponential trend, and the high volatility depicted in Fig 1.6 of chapter 1, ensures that the

extraction of this signal remains an arduous task.

Recall that Bcd is a morphogen localised at the anterior end of the egg. After fertilisation,

the distribution of Bcd along the embryo –the signal under study in this chapter– determines

the cell’s destiny in a concentration-dependent mode.

The findings in chapter 3 which showed SSA as a nonparametric approach produces the

most efficient extraction of the Bcd signal (in relation to SDD, ETS, ARIMA, ARFIMA and

NN) motivated us to step further in this chapter and enhance this signal processing procedure

in different ways.

Accordingly, the aim of this chapter is to introduce and define several new criteria

for optimising Bcd signal extraction. At present, there exist no definitive criterion to aid

researchers and scientists interested in extracting the Bcd signal for analysis. Characterising

the Bcd signal as a critical segmentation gene expects to enhance our knowledge of the

developmental processes such as embryogenesis, regional specification and canalisation

since the Bcd signal defines what positional information actually is available for morphogen

readout. Hence, a small level of noise remained in the extracted signal may considerably

affect our understanding of the developmental fate of an embryo. The importance of defining

such criteria is further evidenced by the fact that SSA has been applied for extracting the Bcd

and other segmentation gene’s signal since 2006 (see for example [Holloway et al., 2006;

Spirov et al., 2012]). Therefore, it is clear that researcher’s and scientists alike can benefit

from some formal criteria for the selection of SSA choices when using same for Bcd signal

extraction.

As mentioned before, the SSA technique is a nonparametric filtering technique that is

highly dependent upon its choice of window length L and the number of eigenvalues r. SSA

was successfully introduced for Bcd signal extraction in [Holloway et al., 2006] and exploited

in more details in Chapter 4 of this thesis. According to Chapter 4, the residual following
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signal extraction in Bcd is not normally distributed or stationary, and also the residual itself

has a complex pattern which adds further to the difficulty in smoothing and signal extraction.

In this chapter, we present several new approaches for optimising Bcd signal extraction

with SSA and provide justification for the process. Accordingly, this chapter presents five

different approaches for enhacing Bcd signal extraction:

• Section 5.1 introduces a new criterion to determine L.

• Section 5.2 introduces the concept of sequential SSA and its application in gene

expression signal processing.

• Section 5.3 evaluates the performance of SSA method in conjunction with parametric

and non parametric signal processing techniques.

• Section 5.4 introduces a new approach for eigenvalues identification in extracting the

signal from gene expression profiles.

• Section 5.5, inspired by Colonial Theory, introduces a new approach for the grouping

step of SSA.

The approaches presented in section 5.1, 5.2, 5.4 and 5.5 are suitable for those who wish

to rely on a single model for Bcd signal extraction. We have tailored the criteria presented

in this chapter to enable a swift and accurate Bcd signal extraction using the nonparametric

approach identified as best in Chapter 4.

Should the extracted signal appear to have captured some unnecessary fluctuations, then

the sequential process described in section 5.2 can be applied to the original signal to generate

a refined and smoother signal line. Even though the findings in Chapter 4 suggests that the

Bcd residual is skewed, we appreciate that statistician who subscribes to classical methods

would find it difficult to agree with such outcomes. Therefore, as the third approach, we

propose a hybrid parametric signal extraction process which can ensure that the residual is in
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fact white noise. For those who wish to exploit hybrid modelling from a purely nonparametric

perspective with the possibility of capturing the maximum variation via a smooth signal line,

we present the hybrid nonparametric approach and show that it can produce far better results

when combined with the optimising signal extraction criteria presented herewith.

It should be noted that the set criteria in sections 5.1 and 5.3 are tailored for the sole

purpose of extracting an accurate Bcd signal based on the knowledge disseminated through

the work in Chapter 4 with regard to the distribution of the residual following Bcd signal

extraction. However, the process introduced in sections 5.2, 5.4 and 5.5 can be adopted to

extract the signal from a wide ranges of gene expression profiles.

5.0.1 Data

The evaluation in this chapter is performed on 17 D. melanogaster embryos introduced by

Alexandrov et al. [Alexandrov et al., 2008] which is avaliable via (http://urchin.spbcas.ru/flyex/).

The quantitative Bcd data in these wild-type embryos was obtained using the confocal scan-

ning microscopy of fixed embryos immunostained for segmentation proteins [Pisarev et al.,

2009]. To that aim, A 1024 × 1024 pixel confocal image with 8 bits of fluorescence data

was achieved for each embryo which then transformed into an ASCII table. The ASCII

table contains the fluorescence intensity levels attributed to each nucleus in the 10% of

longitudinal strips (i.e. only the nuclei correspondent to the central 45-55% of DV axis along

the 20-80% of the AP direction). This data is unprocessed for any noise reduction methods.

A complete explanation of the method and biological characteristics of this data can be found

in [Alexandrov et al., 2008; Surkova et al., 2008a]. The analysis has considered both large

and small sample sizes of profiles ranging from N = 79 to N = 2570.
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5.1 On the selection of window length

SSA is a unique technique as it can extract several signals for any given series depending on

the chosen value of L. In fact, the choice could be any L such that 2 ≤ L ≤ N/2 where N is

the length of the series. In this section, to exploit the best L, the number of the eigenvalues

correspond to the signal is considered to be one (in some cases, r = 1,2). This is due to the

general application of SSA in extracting the signal in which the first eigenvalue is considered

as the signal component and the remainder as noise. Thereafter, the diagonal averaging is

performed to transform the matrix containing the first eigenvalue into a series which will

now provide the extracted signal from Bcd.

In this section, to optimise the Bcd signal extraction process using SSA, a new criterion

upon making the choice of L is introduced. The proposed criterion is developed as follows.

1) The extracted Bcd signal must be smooth. This is in accordance with the widely accepted

definition of a signal which states that it must be a ‘smooth’ additive component [Alexandrov,

2008].

2) Setting L sufficiently large enables the first eigenvalue, i.e. r = 1 (in some cases, r = 1,2)

to extract a smooth signal for a given series, however the value of L must not be too small or

too large. By theory, L must lie between 2 ≤ L ≤ N/2 [Sanei and Hassani, 2015]. Yet, when

it comes to Bcd signal extraction, setting L at N/2 can have negative implications, as with

setting L too small.

For example, let us first consider the scenario in Fig 5.1 whereby in a series with length

301 we consider SSA choices of L = 2 and r = 1 for Bcd signal extraction. Notice how

the extracted signal fails to meet the ‘smooth’ criteria as per the definition of a signal in

[Alexandrov, 2008]. Accordingly, it is evident that setting L too small fails to achieve an

optimal signal extraction with SSA for Bcd.
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Fig. 5.1 signal extraction from noisy Bcd with SSA choices of L = 2 and r = 1.

Secondly, let us consider what happens when we set L too large for the same data set.

Here, the maximum possible value of L is 150. As such, we set L = 150 and seek to extract

the signal in our data. Fig 5.2 shows the resulting outcome. In this case, notice how the

signal line is smooth (confirming that setting L large can provide a smoother line) but the

extracted signal fails to fit well to the actual data especially towards the tail of the series.
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Fig. 5.2 signal extraction from noisy Bcd with SSA choices of L = 150 and r = 1.

3) Based on points 1) and 2), we suggest the following threshold for the selection of L

for Bcd signal extraction purposes. The window length L should be some value between

10 ≤ L ≤ N/4. Whilst this assumption helps restrict the selection of L, on its own it fails to
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provide the researcher with an exact value for L. Therefore, we call upon the nonparametric

nature of SSA to provide the final closing argument for the criteria.

4) As a nonparametric technique, the SSA residual can be skewed. Based on the findings in

Chapter 4 which is an extensive study into signal extraction in Bcd, the residual from the

process is in fact found to be skewed. As such, we propose using the skewness statistic as an

indicator, and finding L which corresponds to the minimum skewness for a given Bcd series

within the threshold 10 ≤ L ≤ N/4.

The presented justifications are further explored and evaluated on the real dataset later in

this chapter.

5.1.1 Residual Analysis

In order to save space, via Fig 5.3 we only show the residuals corresponding to the signal

extractions shown in Fig 5.4. All remaining residuals are shown in Appendix 2 for those

interested. A first look at the structure and distribution of the residual over time helps us

to understand the difficulty in extracting the signal from Bcd profiles. This is largely to

do with the the highly volatile nature of the data which results in fluctuating amplitudes

over time in a particular pattern. In fact, the general patterns appears such that all residuals

portray amplitudes which are initially high and then gradually decrease. This in turn means

that the techniques adopted for Bcd signal extraction should be able to cope well with such

variation and fluctuations in data if it is to accurately perform its task. Moreover, it appears

to the naked eye that there is indeed some signal contained within these residuals. Whilst

it is expected that a residual following signal extraction would result in capturing the other

signals, in some instances there also appears to be a small signal pattern hidden within this

data.
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However, as visual inspections fall short of providing sound evidence, we also consider

some statistics for analysing the residuals further. These are reported via Table 5.1 for all

the Bcd data considered in this study. The residuals are initially tested for normality via the

Kolmogorov-Smirnov (KS) test for normality. The choice of KS test as opposed to using the

popular Shapiro-Wilk (SW) test for normality was because when faced with large samples

the KS test is likely to be comparatively more accurate than the SW test [Silva et al., 2016].

As expected, all residuals failed to pass the normality test reporting probability values of less

than 0.001, and thereby leading to a rejection of the null hypothesis of normality. This lets us

conclude with 99% confidence that the Bcd residuals following signal extraction are in fact

skewed and these results are consistent with the findings in Chapter 4.

Finally, we go a step further and fit optimal ARIMA models [Hyndman and Athana-

sopoulos, 2014] to the residuals. This was done in order to ascertain the randomness of

the residuals following Bcd signal extraction with optimised SSA. Statisticians who rely

on classical signal extraction techniques would be overly concerned with the parametric

assumptions of normality and stationarity of the residuals. Whilst we have assessed the

normality of residuals via the KS test and justified based on Chapter 4 that the residuals from

this signal extraction exercise should be skewed, fitting of optimal ARIMA models enables

us to easily show whether the residuals meet the stationary criteria. We fit automated and

optimised ARIMA models (as provided via the forecast package in R) on the residuals and

report the outcomes in Table 5.1. If the data is nonstationary, then within the ARIMA(p,d,q)

process the value of d ≥ 1. If the data is stationary, then no differencing is required, and so

d = 0. In this case, we notice that d = 0 in all instances, and thereby proves that the residuals

are indeed stationary.

However, the fitting of ARIMA models on the residuals also highlight another interesting

point. Notice how for 27 Bcd residuals there have been a variety of 14 different ARIMA

models which have been fitted. This in turn indicates the complexity and difficulty associated
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with the selection of a single technique for extracting Bcd signal, and most certainly highlights

the difficulties which any technique would when seeking to extract a signal from data with

such complex fluctuations. In addition, except for where the model reads ARIMA(0,0,0),

in all other instances we notice that the residuals are not white noise. We discuss this, and

provide a possible solution later in this chapter.

Embryo N KS ARIMA
ab2 138 <0.001 ARIMA(0,0,1) with zero mean
hz15 85 <0.001 ARIMA(0,0,0) with zero mean
hz28 79 <0.001 ARIMA(2,0,2) with zero mean
ad14 301 <0.001 ARIMA(2,0,5) with zero mean
ad22 294 <0.001 ARIMA(4,0,3) with zero mean
ad23 308 <0.001 ARIMA(1,0,3) with non-zero mean
ab17 485 <0.001 ARIMA(1,0,3) with non-zero mean
ad4 556 <0.001 ARIMA(4,0,4) with zero mean
ad6 566 <0.001 ARIMA(2,0,2) with non-zero mean
ab12 2284 <0.001 ARIMA(4,0,2) with zero mean
ab10 2263 <0.001 ARIMA(1,0,2) with zero mean
ac5 2404 <0.001 ARIMA(4,0,4) with non-zero mean
ab1 2570 <0.001 ARIMA(4,0,4) with zero mean
ac7 2268 <0.001 ARIMA(1,0,2) with zero mean
ad13 2235 <0.001 ARIMA(4,0,2) with non-zero mean
ad29 2193 <0.001 ARIMA(1,0,2) with zero mean
ad32 2183 <0.001 ARIMA(2,0,1) with zero mean
ab7 2346 <0.001 ARIMA(1,0,2) with zero mean
ac3 2356 <0.001 ARIMA(0,0,1) with zero mean
ac9 2215 <0.001 ARIMA(4,0,1) with zero mean
ms14 2305 <0.001 ARIMA(4,0,2) with zero mean
ab11 2355 <0.001 ARIMA(4,0,2) with zero mean
ac4 2383 <0.001 ARIMA(3,0,1) with zero mean
ab14 2218 <0.001 ARIMA(1,0,2) with zero mean
ab9 2369 <0.001 ARIMA(2,0,1) with zero mean
dq2 2423 <0.001 ARIMA(2,0,4) with zero mean
ms36 2239 <0.001 ARIMA(5,0,1) with zero mean

Note: Embryo: name of the embryo under study. N: length of the Bcd profile. KS: p-values obtained using
the KS test of normality.

Table 5.1 Residual analysis for Bcd signal extractions.
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Fig. 5.3 Residuals following optimised signal extraction with SSA for a selection of Bcd data.
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Here, we consider real Bcd data and seek to extract the signal with SSA using the newly

proposed criterion as outlined in Section 5.1. Fig 5.4 below portrays a selection of the actual

data and extracted signal with the optimised SSA algorithm. Table 5.2 outlines the SSA

choices which have been used in each case.

Embryo N L,r Embryo N L,r
ab2 138 25,1 ad13 2235 557,1-2
hz15 85 21,1 ad29 2193 547,1-2
hz28 79 19,1 ad32 2183 544,1-2
ad14 301 11,1 ab7 2346 585,1-2
ad22 294 73,1 ac3 2356 11,1
ad23 308 10,1 ac9 2215 552,1-2
ab17 485 10,1 ms14 2305 575,1-2
ad4 556 139,1 ab11 2355 588,1-2
ad6 566 130,1 ac4 2383 39,1
ab12 2284 570,1-2 ab14 2218 52,1
ab10 2263 564,1-2 ab9 2369 591,1-2
ac5 2404 600,1-2 dq2 2423 604,1-2
ab1 2570 642,1-2 ms36 2239 558,1-2
ac7 2268 566,1-2

Note: Embryo: name of the embryo under study. N: length of the Bcd profile. L,r: Optimal L and r.
Table 5.2 Optimal L and r found for different embryos under study.

All results for the remaining signal extractions can be found in the Appendix 2. For the

examples in Fig 5.4, note how the extracted signal is not only smooth, but also well centred

around the data, thereby providing the reader with a very accurate outlook for the long term

prospects of the Bcd gradient. However, it is evident that on its own, SSA appears to have

difficulties in accurately capturing the signal curve initially when it is faced with very high

levels of fluctuations as clearly visible within the first few observations of the Bcd profile.

We consider this aspect further in Section 5.3.

Even though signal extraction is the primary focus of this study, it is no secret that the

residual can often enlighten us to crucial information pertaining to any given data set. As

such, we follow up the signal extractions with a sound residual analysis.
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Fig. 5.4 Optimised signal extraction with SSA for a selection of Bcd data.
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5.2 Sequential SSA

Signal extraction in Bcd data can be an arduous task owing to the complex structure portrayed

by the data. Sequential SSA is a relatively new concept which is of great benefit when faced

with weak separability between signal and noise as a result of such complexities. For

example, when faced with problems in separating a signal of complex form and seasonality,

sequential SSA can be exploited to obtain a more accurate decomposition from the residual

after signal extraction [Golyandina and Shlemov, 2013]. Whilst historically, sequential SSA

was performed on a residual, in this chapter we suggest the use of sequential SSA for further

refining the Bcd signal.

The basic idea underlying sequential SSA is to perform a second round of SSA based

decomposition and reconstruction on data that has already undergone an initial round of SSA,

with the aim to refine the signal of interest further. Suppose that we exploit the optimised Bcd

signal extraction algorithm explained above and extract some signal line. However, if the

Bcd data in question has a highly complex structure, it is possible to end up with a signal line

that is not as smooth as one would like. In such instances, we suggest exploiting sequential

SSA, not on the residual, but on the extracted signal to smooth it further and obtain a new

and refined signal curve. This approach is greatly beneficial to those who wish to rely on a

single model for Bcd signal extraction and enjoy the benefits of a nonparametric technique.

Note how the signal extraction in ac3 (see, Appendix 2) appears to have captured some

other fluctuations apart from the signal alone. As such, this extraction, in particular, fails to

meet our criteria for a smooth signal. When faced with such situations, we are able to find a

solution via sequential SSA. Sequential SSA enables users to take the extracted signal (the

Bcd signal in our example) and filter same with SSA once more to obtain a more refined

output. In what follows we have applied sequential SSA on the initially extracted Bcd signal.

As visible via Fig 5.5, following sequential SSA we have been able to extract a smoother

signal. In this instance, we used the signal extracted via the optimised SSA signal extraction
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algorithm for Bcd and refined this signal further via sequential SSA. Here we have used

L = N/2 and r = 1 for signal extraction with Sequential SSA. In line with good practice, the

residual was once again tested for normality via the KS test which indicated that the residual

is skewed at a 1% significance level, and fitting of an ARIMA model showed that the residual

is stationary as well.
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Fig. 5.5 Refined signal extraction with sequential SSA on ac3 signal.

5.3 Hybrid signal Extraction Techniques

It is possible that some statisticians may not be convinced or used to subspace-based meth-

ods such as SSA. Therefore, we find it pertinent to present the possibility of obtaining a

hybrid signal extraction process which will combine the optimised SSA signal extraction

algorithm for Bcd with other automated signal processing techniques from both parametric

and nonparametric backgrounds.

The basic idea underlying the hybrid signal extraction process is as follows:

1. Extract the Bcd signal via the optimised SSA signal extraction algorithm.
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2. Fit a different signal processing model to the residuals following SSA signal extraction

and obtain the fitted values.

3. Add the fitted values to the original SSA signal to create the Hybrid SSA signal.

5.3.1 Hybrid SSA signal: Parametric Approach

The idea underlying hybriding SSA signal extraction method with a parametric approach

is to combine the nonparametric SSA signal with the fitted values on residuals from a

parametric signal processing model. As most classical statisticians welcome and subscribe to

the ARIMA model, here we choose an automated ARIMA model as provided via the forecast

package in R [Hyndman and Khandakar, 2007]. This approach is useful as it ensures that the

residual following hybrid signal extraction will indeed be white noise.

The residual analysis in Table 5.1 indicates that ARIMA models could be fitted to all but

one of the residuals following signal extraction with the optimised SSA signal algorithm.

This means that only one of the residuals are pure white noise as it stands. Whilst some

might argue that this is acceptable given that the objective is to extract the signal component

alone, there may be others who subscribe to an alternate view along the lines of obtaining a

random residual following signal extraction. The first hybrid SSA signal approach we present

is one which enables users who wish to obtain white noise achieve this following Bcd signal

extraction with SSA. We begin by fitting the ARIMA models as identified via Table 5.1 to

the data and extract the fitted values which are then combined with our original SSA Bcd

signal to create a hybrid SSA-ARIMA signal for Bcd. We consider the examples discussed in

text so far and generate the following results. Fig 5.6 shows the hybrid SSA-ARIMA signals

for Bcd data. In comparison to the optimised SSA signals in Fig 5.4, the hybrid SSA signal

with ARIMA fit fails to meet the smooth criteria. As such, it is evident that on its own, the
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hybrid SSA-ARIMA approach is only beneficial for those who wish to capture all the signal

in the data whilst ensuring that the residual following Bcd signal extraction is white noise.

It clearly comes at a cost of lost smoothness in signal curves. However, it is of note that as

previously mentioned, noise in gene expression data enters not only from the data acquisition

and processing procedures [Wu et al., 2007] but also the fluctuations seen in an expression

pattern can be a consequence of biological noise which may also introduce error into the

data [Myasnikova et al., 2009]. Therefore, the source of the natural biological variability is

different from the experimental noise [Myasnikova et al., 2009]. Biological noise arises from

the active molecular transport, compartmentalization, and the mechanics of cell division

[Spirov et al., 2012]. Therefore, the hybrid SSA with the ARIMA model can be applied in

studies such as segmentation network analysis where the combination of Bcd signal with its

biological noise needs to be considered as an input to the system.

5.3.2 Hybrid SSA signal: Nonparametric Approach

Whilst the underlying idea remains the same, in this instance, as opposed to relying on a

parametric signal processing model, we can combine the nonparametric and optimised SSA

signal with fitted values on residuals from a nonparametric signal processing model in order

to obtain the hybrid SSA signal. The benefits of this approach would be that it enables

to overcome the parametric restrictions of normality and stationarity of residuals of which

the former condition was found to be irrelevant in the case of Bcd data where the residual

following signal extraction is skewed according to Chapter 4. In this case we rely on the

automated Exponential Smoothing (ETS) model found in the forecast package in R. Those

interested in the several ETS formula’s that are evaluated through the forecast package when

selecting the best model to fit the residuals are referred to Chapter 7, Table 7.8 in [Hyndman

and Athanasopoulos, 2014].
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Fig. 5.6 Hybrid SSA signal with ARIMA fit for Bcd data.



5.3 Hybrid signal Extraction Techniques 112

Here, we apply the same process as above, but instead of ARIMA, we rely on the

nonparametric time series analysis model of ETS. This enables the entire hybrid SSA signal

approach to remain nonparametric in nature. The resulting hybrid SSA signals with ETS fit

are shown via Fig 5.7.

There are few interesting points to note here. Firstly, in comparison to the parametric

hybrid signal extraction approach, it is clear that the nonparametric hybrid approach has

resulted in much smoother signal curves as one would expect and like to see following a

signal extraction exercise. As such, out of the two hybrid approaches, for the purposes of

Bcd signal extraction, it is likely that users will prefer the nonparametric approach over the

parametric approach.

Secondly, and perhaps most importantly, the hybrid SSA signal with ETS fit for Bcd

data is able to overcome an issue we experienced in the optimised SSA signal extractions.

Recall that the optimised SSA signals in Fig 5.4 failed to capture the initial curve in Bcd

appropriately. This primary curve attributes to the concentration of Bcd in nuclei at the

anterior position along the AP axis which shows that Bcd concentration initially reaches a

maximum value before decaying along the embryo. Considering the fact the data used in

this study presents only the interval of the AP coordinate between 20% and 80% egg lengths

(%EL), detecting the initial curve in this interval suggests that the mechanism of gradient

readout might be more complicated than reading a particular concentration of the morphogen.

If we compare the results for the very first observations of Bcd data in Fig 5.7 and Fig

5.4, we will notice how the hybrid nonparametric signals are able to capture the initial curve

in Bcd data more accurately than before, thereby providing a refined and improved signal

extraction for Bcd. In order to make this clearer for the reader, we present in Fig 5.8 few

examples of signal extraction whereby we have zoomed into the initial signal extraction chart

areas for both optimised SSA signal and hybrid SSA-ETS signals.
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Fig. 5.7 Hybrid SSA signal with ETS fit for bicoid data.
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This result is of utmost importance as the problem of accurately fitting the SSA signal

to the initial variation in Bcd data was also visible in Chapter 4, and we have succeeded in

providing a solution to this issue via this study. Moreover, results not reported here (but

available upon request) showed that one will not be able to capture the initial curve using

the ETS technique alone. This further portrays a positive aspect of our proposed optimised

SSA signal extraction process as it can produce superior results when combined with the

smoothing capabilities of ETS.

Fig. 5.8 Zoomed in view of optimized SSA signals [left] and hybrid SSA-ETS signals [right].

5.4 Eigenvalues identification approach

As discussed before, due to the presence of noise, finding the expression pattern of the

segmentation factors in an embryo is not a simple task [Alexandrov et al., 2008; Houch-
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mandzadeh et al., 2002; Myasnikova et al., 2005]. It is of critical importance that having

portrayed the process underlying finding the optimal L, in applying the SSA algorithm for

signal extraction purposes, there is still an open question related to the identification of

the number of eigenvalues required for series reconstruction. Two principal reasons are

underlying the essential need for an enhanced algorithm which enables us to decide the

appropriate number of eigenvalues related to the signal:

• Improving the signal extraction performance by minimising the signal-noise perturba-

tion.

• finding the optimal number of eigenvalues not only for Bcd but for different gene

expression profiles of the SN.

Accordingly, to address this issue, this section provides a new approach to find the number

of eigenvalues needed for removing the nonspecific noise from D. melanogaster segmen-

tation genes. This approach mainly relies on the distribution of the scaled Hankel matrix

eigenvalues.

As it is shown below, gene expression pattern is greatly diverse among the various

segmentation genes. Therefore, we expect to find a different number of eigenvalues required

for signal reconstruction in each profile. Consequently, given the considerable variation

between different gene expression profiles, eigenvalues identification can be considered as

the biggest challenge for the signal extraction process using SSA technique.

The performance of the newly introduced signal extraction method is evaluated on four

different genes of SN; bcd, cad, gt and eve which are among the most important maternal and

zygotic segmentation genes. The bcd gene is maternal, cad has both maternal and zygotic

origin and gt and eve are respectively related to gap and pair rule category of zygotic genes

[Holloway et al., 2006; Surkova et al., 2008a].

Same as the data set used in the previous section, the gene expression data of cad, gt and

eve was achieved by immunofluorescence technique and is available via http://urchin.spbcas.
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ru/flyex/. This data is also extracted from the nuclear intensities of %10 longitudinal strips

and is not processed by any other noise removal technique.

Recall that bcd mRNA is completely maternal and the Bcd protein gradient is formed at

cleavage cycle 10 [Holloway et al., 2006; Surkova et al., 2008a].

The cad mRNA has both maternal and the zygotic origin and the maternal transcripts

begin to translate immediately after fertilisation. However, proteins encoded by gt and eve

appear at cycle 12 and 10 respectively.

Fig 5.9 depicts the gene expression profile of these four different segmentation genes. As

can be seen, the profiles are highly volatile and diverse in the pattern.
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Fig. 5.9 Experimental data from D. melanogaster embryo; (a): bcd, (b): cad, (c): gt, (d): eve .

Here, the method introduced in this chapter is explained in details. The central aim

of the study is to enhance analysing the original series by decomposing it into a sum of

series so that each component can be identified as either a signal component or noise. The
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proposed approach is a novel step that lies between the first and the second stages of SSA (i.e.

decomposition and reconstruction) to select the proper value for the number eigenvalues r.

In doing so, let us consider a one-dimensional series YN = (y1, . . . ,yN) of length N.

Mapping this series into a multi-dimensional series X1, . . . ,XK where Xi = (yi, . . . ,yi+L−1)
T

∈ RL provides X = (xi, j)
L,K
i, j=1, where L (2 ⩽ L ⩽ N/2) and K = N −L+1. The matrix X is

a Hankel matrix, which means all the elements along the diagonal i+ j = const are equal.

Set A = XXT and denote by λi (i = 1, . . . ,L) the eigenvalues of A taken in the decreasing

order of magnitude ( λ1 ≥ . . . ≥ λL ≥ 0) and by U1, . . . ,UL the orthonormal system of the

eigenvectors of the matrix A corresponding to these eigenvalues. Set

d = rank X = max(i, such thatλi > 0).

The SVD of the trajectory matrix can be written as:

X = X1 + · · ·+Xd, (5.1)

where Xi =
√

λ iUiVi
T . The elementary matrices Xi have rank 1, Ui and Vi are the left and

right eigenvectors of the trajectory matrix. Note that the collection (
√

λi,Ui,Vi) is called the

ith eigentriple of the SVD. Note also that ||X||2F = tr(XXT ) =
L
∑

i=1
λi and ||X||2F = λi, where

|| ||F denotes the Frobenius norm.

Let us now consider the step that comes between the two stages in SSA, that is to divide

the matrix A by its trace, A/tr(A). Let ζ1, . . . ,ζL denote the eigenvalues of the matrix

A/tr(A) in decreasing order of magnitude (1 ≥ ζ1 ≥ . . .≥ ζL ≥ 0). In this step, we perform

the simulation technique to gain the distribution of ζi, so we can understand the behaviour of

each eigenvalue, which can be useful for obtaining the proper value of r. In this section, our

aim is to ascertain the distribution of ζi and its related forms that can be used directly for

choosing the optimal value of r for the genes signal extraction.
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Once r is obtained, the grouping step splits the matrices Xi into two groups. Therefore,

(5.1) can be written as

X = S+E, (5.2)

where S =
r
∑

i=1
Xi is the signal matrix and E =

d
∑

i=r+1
Xi is the noise matrix. At the final step,

we use the diagonal averaging to transform the matrix S into a new series of length N (for

more information see [Ghodsi et al., 2015; Golyandina et al., 2001b]).

5.4.1 Algorithm

The Algorithm is composed of two stages. At the first stage, we use skewness coefficient

and coefficient of variation of ζi as the main indicators to find the optimal value of r for the

separability between signal and noise, and then at the second stage, we reconstruct the time

series.

Stage 1:

1. Transfer a one-dimensional time series YN = (y1, . . . ,yN) into the multi-dimensional

series X1, . . . ,XK with vectors Xi = (yi, . . . ,yi+L−1)
T ∈ RL, where K = N −L+1, and

the window length L is an integer such that 2 ≤ L ≤ N/2. This steps provide the

trajectory matrix X = [X1, . . . ,XK] =
(
xi j

)L,K
i, j=1.

2. Computing the matrix A = XXT/tr(XXT ).

3. Compute the eigenvalues and eigenvectors of the matrix A and represent it in the form

A = PΓPT . Here, Γ = diag(ζ1, . . . ,ζL) is the diagonal matrix of the eigenvalues of A

that has the order (1≥ ζ1 ≥ ζ2, . . . ,ζL ≥ 0) and P=(P1,P2, . . . ,PL) is the corresponding

orthogonal matrix of the eigenvectors of A.

4. Simulate the original series m times and calculate the eigenvalues for each series.

We simulate yi from a uniform distribution with boundaries yi −a and yi +b, where
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a =| yi−1 − yi | and b =| yi − yi+1 |. In order to obtain a noisy series similar to the real

one, random error ε with a normal distribution with zero mean and variance σ2
ε with

different amplitudes were added to different parts of the series.

5. Calculate the coefficient of skewness for each eigenvalue, skew(ζi). If skew(ζc) is the

maximum, then select r = c−1.

6. Calculate the coefficient of variation, CV (ζi). This can split the eigenvalues in two

groups, from ζ1 to ζc−1 which are corresponding to the signal and the rest which has

almost a U shape which are corresponding to the noise component.

7. Calculate the absolute values of the correlation between ζi and ζi+1, and plot them

in one figure (ρ). If ρ(ζc−1,ζc) is the minimum, and the pattern for ρ(ζc,ζc+1) to

ρ(ζL−1,ζL) has the same pattern for the white noise, then choose r = c−1.

Stage 2

1. Use the number of the eigenvalues r obtained in the first stage to calculate the approxi-

mated signal matrix S̃, that is S̃ = ∑
r
i=1 Xi, where Xi =

√
λ iUiVi

T , Ui and Vi stands for

the left and right eigenvectors of the trajectory matrix.

2. Transition to the one dimensional series can now be achieved by averaging over the

diagonals of the matrix S̃.

Although the gene expression profiles are slightly different from embryo to embryo, as

the obtained results in terms of number of eigenvalues are similar, we only consider ten

different embryos for studying each gene. In this regard, each copy of gene expression data

was simulated 104 times. Studying the distribution of each eigenvalue provides the capacity

to obtain an accurate and deep intuitive understanding of selecting the proper value of r. The

first data for each gene is analysed and discussed in more detail whilst the results of the
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other data are summarised based on the outcomes of the skewness, variation and correlation

coefficients. The window length used for analysing the bcd, cad, gt and eve genes series is

200 (for more information for the selection of the window length refer to [Golyandina and

Zhigljavsky, 2013]).

We mainly focus on the third moment, that is the skewness of the distribution for each

eigenvalue:

skew(ζi) =

1
m

m
∑

n=1

(
ζi,n −ζ i

)3

[
1

m−1

m
∑

n=1

(
ζi,n −ζ i

)2
]3/2 , (5.3)

and the coefficient of variation, CV (ζi), which is defined as the ratio of the standard deviation

σ(ζi) and ζ i:

CVi =
σ(ζi)

ζ i
. (5.4)

In addition, the Spearman correlation ρ between ζi and ζi+1 is also evaluated to enhance the

results obtained by skew and CV measures. The absolute value of the correlation between ζi

and ζi+1 is considered, 1 indicates that ζi and ζi+1 have perfect positive correlation whilst 0

shows there is no correlation between them.

Fig 5.10 illustrates the results of skew(ζi) (left) and CV (ζi) (right) for the first data series

for each gene type. It can be seen from the left column that the maximum value of skew is

obtained for ζ2 in both bcd and cad data. Whereas, skew(ζ4) is the maximum for both eve

and gt series. In the right column, the results of CV splits the eigenvalues into two groups for

each data; the second group looks like a U shape which is related to the noise component. The

results indicate that r = 2,2,3,3 for extracting the bcd, cad,eve and gt signal, respectively.

Furthermore, the result of ρ can be used o decide the skew and CV measures give different

results. However, in these typical examples, the results of those two measures are the same

which also supported by the results of the correlation coefficient. It is obvious that the

minimum value of ρ are emerged between (ζ2,ζ3), (ζ2,ζ3), (ζ3,ζ4) and (ζ3,ζ4) for bcd,
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cad, eve and gt, respectively. Therefore, the results enhance that r = 2,2,3,3 for the first data

for each gene (see Fig. 5.11).

Tables 5.3, 5.4, 5.5, and 5.6 depict the results of r based on those three measures for all

40 series. For the bcd signal extraction, all the outputs show r = 2 for all bcd data (see Table.

5.3). Similar results was emerged for extracting the cad signal, most of the outcomes indicate

r = 2.

For the eve data, r = 3 for five series as all the three measures give the same result.

However, for example; for series 2, the results of skew and CV are different, r = 3 and r = 4,

respectively. To overcome this, we look at the result of ρ , which confirms r = 4. In this

regards, the decision that r = 3 is for six series of ten eve data. Table. 5.6 demonstrates that

r = 3 for all gt series except the last series, because all measures have the same results. As a

result, for L = 200, the required eigenvalues to extract the bcd, cad, eve, and gt signals are 2,

2, 3, 3, respectively. Table. 5.7 shows the final results for all four genes along with the most

frequent reported skew, CV and ρ .

Series r (skew) r (CV ) r (ρ) Series r (skew) r (CV ) r (ρ)
1 2 2 2 6 2 2 2
2 2 2 2 7 2 2 2
3 2 2 2 8 2 2 2
4 2 2 2 9 2 2 2
5 2 2 2 10 4 2 2

Table 5.3 The values of r based on Skew and CV for the ten bcd series.

Series r (skew) r (CV ) r (ρ) Series r (skew) r (CV ) r (ρ)
1 2 2 2 6 1 2 1
2 2 2 2 7 2 2 2
3 2 2 2 8 2 2 2
4 1 2 1 9 2 1 2
5 2 2 2 10 3 3 3

Table 5.4 The values of r based on skew and CV for the ten cad series.
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Fig. 5.10 The skewness coefficient (left) and the variation coefficient of ζi (right) for the first series
of bcd, cad, gt and eve data.
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Fig. 5.11 The correlation between ζi and ζi+1 for the first series from each data.

Series r (skew) r (CV ) r (ρ) Series r (skew) r (CV ) r (ρ)
1 3 3 3 6 3 4 4
2 4 3 4 7 3 3 3
3 6 6 6 8 4 4 4
4 6 4 4 9 3 3 3
5 3 3 3 10 3 3 3

Table 5.5 The values of r based on skew and CV for the ten eve series.

Series r (skew) r (CV ) r (ρ) Series r (skew) r (CV ) r (ρ)
1 3 3 3 6 3 3 3
2 3 3 3 7 3 3 3
3 3 3 3 8 3 3 3
4 3 3 3 9 3 3 3
5 3 3 3 10 5 3 5

Table 5.6 The values of r based on skew and CV for the ten gt series.
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Gene type r (skew) r (CV ) r (ρ)
bcd 2 2 2
cad 2 2 2
eve 3 3 3
gt 3 3 3

Table 5.7 The final result obtained in noise-signal separation study.

After the step of identifying the value of r, we can use those leader eigenvalues in the

second stage of the SSA approach (Grouping and Diagonal averaging) to reconstruct the first

typical data for each gene. Fig. 5.12 shows the result of the gene signal extraction or recon-

struction series without noise. The red and the black lines correspond to the reconstructed

series and the original series respectively. As a results, the considered r for the reconstruction

of the original series is obtained properly.
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Fig. 5.12 Original (black) and reconstructed (red) series.
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Taking a closer look at Fig 5.12, it is imperative to note that the extracted signal profiles

of eve and gt do not follow the expression data satisfactorily when the data series changes

sharply. Therefore, in order to solve this issue and capture the peaks of the profiles, we used

sequential SSA. As opposed to the sequential SSA introduced in section 5.2, here, the main

idea underlying this approach is to apply SSA recursively on the residuals with different

window length L [Lahiri et al., 1995]. By doing so we extract some components of the initial

series using basic SSA and then extract the remaining components related to the signal by

applying SSA on residuals. Such a recursive SSA application produces a gradual extraction

of the signal present in the noise. Fig 5.13 shows the result after applying sequential SSA.

As can be seen signal extraction and peak capturing has been improved accordingly.

(a) bcd (b) cad

Fig. 5.13 Improving signal extraction using sequential SSA. Original (black) and extracted signal
(red);(a): eve, (b): gt

5.5 SSA based on Colonial Theory

As previously mentioned in Chapter 3, the mathematical optimisation of an algorithm can be

defined as the selection of the best inputs from some set of possible choices. This selection is

made in respect to a criterion which is set upon the aim of the study (e.g. the precision of the

extracted signal in signal processing studies, the accuracy of forecasted points in forecasting
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analysis or the cost of time for running the programme). Therefore, it is possible to introduce

various approaches to optimise a signal processing algorithm according to different objectives

of interest. Presented in this section is an alternative method for choosing the eigenvalues

related to the signal of any given time series and gene expression profiles. The idea behind the

newly proposed technique has driven from a developmental genetics theory called "Colonial

theory” which aims at exploring the grouping step of the SSA technique in details.

As a great source of inspiration, nature holds the key to many questions we face on a

daily basis. Therefore, it is not entirely surprising that much of the novel problem-solving

techniques were initially inspired by nature (see, for example [Bonabeau et al., 1999; Dorigo,

1992; Eiben et al., 1994; McCulloch and Pitts, 1943; Nielsen and Chuang, 2010]). Even

though credit is seldom given, In developing such intelligent solutions, nature provides us

with effective background knowledge which follows from the profound observation and

questioning of a natural phenomenon.

Quantum computing [Nielsen and Chuang, 2010], genetic algorithms [Eiben et al., 1994],

neural networks[McCulloch and Pitts, 1943], swarm algorithms [Bonabeau et al., 1999] and

ant colony optimization algorithms [Dorigo, 1992] are among the most established nature

inspired models which seek to imitate specific phenomenon from nature in order to provide

simple solutions to complex problems. Although attempting to model natural phenomena

has a long history, the recent application of nature inspired algorithms like firefly algorithm

[Yang, 2010], neuro fuzzy technique [Jang et al., 1997] and genetic programming [Koza,

1999] in the area of soft computing and also recent improvements in forecasting approaches

[Benedetto et al., 2015; Martens and Zein, 2004] must be addressed as successful studies

with great impacts.

However, improving signal extraction using bio–inspired algorithms is a relatively new

area of research. It is noteworthy that in most of the nature-inspired algorithms, the nat-

ural phenomenon of interest is the strategy taken by biological organisms after facing an
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environmental change. Because the environmental setting makes the organism to exploit an

ingenious solution to meet the new specific conditions.

Even though such biological solutions have been taken many times by organisms over

the evolution process, the most prominent one can be referred to as the multicellularity

phenomenon which describes how multicellular organisms arose from a single cell and

generated multi-celled organisms. Despite there being various theories that may be able to

explain this mechanism, Colonial Theory (CT) has received most credit by developmental

scientists [Wolpert and Szathmáry, 2002].

Inspired by CT and by identifying certain characteristics of this theory, in this section,

we draw a line between nature and mathematics. The mathematical procedures which

we specifically seek to link with nature consist of not only SSA technique, but the SVD

based methods and signal subspace (SS) methods which form the basis of a general class

of subspace-based noise reduction algorithms. The superior performance of this class of

algorithms in noise reduction has been proved by several studies ( see, for example, [Hassani

et al., 2011b; Soofi and Cao, 2012]).

SSA technique, is a SVD and SS based method which has been considered as a powerful

nonparametric tool in several studies [Hassani, 2007]. Recall that SSA technique begins by

decomposing the original series into the sum of a small number of independent components.

Thereafter, the selected components are used to reconstruct the less noisy series which can

be used for forecasting the future data points. However, due to the nature of least squares

(LS) estimation method used in the current SSA procedure, the signal and noise separation is

not optimum and the reconstructed series continues to hold some part of initial noise whilst

the residual is not completely signal free. This section considers an alternative approach

which is based on CT in order to provide a more efficient outcome for the signal and noise

separation issue in SSA.
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The exploitation of CT towards improving the SSA process is made possible via our

identification of a general similarity between CT and SSA. However, this similarity was not

visible in the grouping step of the basic SSA process, and therein lies our focus as we intend

on defining a new approach to grouping in SSA by imitating one of the steps followed in

CT. It is expected that this novel CT based approach to grouping enables a more efficient

separation of signal from noise which in turn enhances the signal extraction and forecasting

results. Since the forecasting aspect of the SSA technique is not of the main application

in this thesis, we briefly touch upon the forecasting approach as the steps of the improved

algorithm are explained.

5.5.1 Similarities between SSA and CT

This section focusses on providing a clear view on the similarities between SSA and CT as

portrayed in Fig 5.14. In what follows, the information contained in Fig 5.14 is expanded

upon as we present a detailed explanation of the linkages between SSA and CT.

Fig. 5.14 The linkage between CT and SSA.

As presented in details in Chapter 3, the SSA method is made up of two complementary

stages: Decomposition and Reconstruction; each stage consists of two compatible steps.

At the first stage a group of small number of independent and interpretable components
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is achieved by decomposing the main series [Hassani, 2007], which is followed by the

reconstruction of a less noisy series at the second stage [Hassani, 2007].

Stage 1: Decomposition

We begin with a one dimensional time series, YN = (y1, . . . ,yN) where N is the length of the

series. The SSA technique consists of two choices, the window length L and the number

of eigenvalues r [Hassani and Mahmoudvand, 2013]. In SSA the number of components

are related to the selection of the proper window length L which should be defined such

that it minimises the signal distortion and maximises the residual noise level. However, as

discussed before, we cannot impose a general rule in selecting L for different time series

with different structure. For example, in instances where there is a periodic component with

an integer period like a seasonal component, to obtain a higher separability the tradition is to

select L proportional to that period [Hassani, 2007].

Likewise, the starting point of CT is a single cell which evolves over time and generates

a multi-celled organism. Similar to SSA, there is also a limit on the number of cell types

and different kinds of organisms necessitate different numbers of cell types. It is assumed

that this number is determined by the balance between selective pressure and functional

requirements, whilst variety is favoured by selection, functional needs limit the number of

cell types [Grosberg and Strathmann, 2007].

1st step: Embedding

Here we take the one dimensional time series YN , and map it in order to create a multi-

dimensional variable of X1, . . . ,XK where Xi = (yi, . . . ,yi+L−1)
′ ∈ RL. It is clear that this can

be viewed as the creation of the colony from the initial single cell as we take YN and create
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multiple dimensions from the same series. This step provides us with a trajectory matrix, X

which is a Hankel matrix that captures all information contained in YN .

X = (xi j)
L,K
i, j=1 =



y1 y2 y3 . . . yK

y2 y3 y4 . . . yK+1

...
...

...
. . .

...

yL yL+1 yL+2 . . . yN


. (5.5)

It should be noted that unlike the Symbiotic theory [Hickman et al., 2001], which assumes

that the symbiosis of various species caused a multicellular organism, in CT it is the symbiosis

of many cells of the same species that forms a multicellular organism. This point is interesting

as it can be referred to as the first and main difference between SSA and principal component

analysis (PCA) . In the latter, the obtained matrix is achieved by considering different time

series (multiple cells) whilst in SSA we consider one time series (single cell).

Moreover, transferring a one dimensional time series into a trajectory matrix will enable

us to significantly reduce the computation time required for running the algorithm, as it

eliminates the need for running the algorithm over a wide range of values for the hidden state

dimension. Furthermore, by analysing the eigenvalues with the aim of filtering the signal and

noise, the Signal to Noise Ratio (SNR) will be optimised in the newly reconstructed time

series. Likewise, increasing in size is initially favoured by individual cells since multicellular

organisms do not have the size limit which is mainly imposed by diffusion. As the surface-

to-volume ratio decreases in a given single cell, with increased size they will experience

difficulty in obtaining the required nutrients and transporting the cellular waste products out

the cell [Grosberg and Strathmann, 2007; Kirk, 2005].
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2nd step: Singular Value Decomposition

SVD is a procedure which is performed on X and provides us with several eigenvalues or

components. The components obtained via this step are identified as trend, periodic, quasi-

periodic component, or noise. In CT, X can represent the entire colony of cells generated

from the original single cell. By increasing the interdependency level in a colony some of the

cells specialise to do different tasks and by obtaining ever more complexity level, cells form

tissues and then organs [Grosberg and Strathmann, 2007].

5.5.2 Stage 2: Reconstruction

In SSA, this is the stage where we seek to analyse the eigenvalues extracted via the SVD step

to differentiate between noise and signal in a time series. In CT this would correspond to

identifying which of the specialised cells are able to successfully carry out the reproductive

task and which cells are responsible for viability.

1st step: Grouping

Grouping is a very important step in SSA as the quality of the filtering achieved via this

technique depends on the successful analysis of eigenvalues and selection of appropriate

groups of them to rebuild the less noisy time series. In brief, this step involves grouping

together the eigenvalues with similar characteristics i.e. signal and harmonic components

whilst leaving out those corresponding to noise. Likewise, the grouping step plays a signif-

icant role in CT as it determines which of the specialised cells are successful in carrying

out the reproduction task and which of these fail along that way. Here it is imperative to

note that in spite of the general similarity between SSA and CT in the grouping step, there is

an important fundamental difference between the current version of SSA and CT which is

discussed in detail in Section 5.5.3.
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2nd step: Diagonal Averaging

The diagonal averaging step in SSA transforms the matrix of grouped eigenvalues back into

a Hankel matrix which can later be converted into a time series. The resulting time series

will be the less noisy, filtered time series corresponding to the original one-dimensional

time series that was applied to the SSA process at the beginning. This step is important and

similar to the final stage of CT where a single multiple organism is formed after defining the

productive cells in order to compensate for the increased cost of reproduction imposed by

increasing the size of the colony size.

According to the role of a small variant in CT, adding a single cell will only have a

slight impact on the performance of a large organism [Bell and Mooers, 1997] which means

after achieving the major functional specializations, there would presumably be a decline

in adding capabilities by increasing the number of cell lines [Grosberg and Strathmann,

2007]. Similarly, in a time series, after extracting different components related to the trend,

oscillation and noise, increasing the number of observations gives more components but all

of these are categorised in the previously defined groups of components.

5.5.3 A New Approach for Grouping

It is widely accepted that the first grouping in nature happened when multicellular organisms

arose from a single cell and generated a multi-celled organism [Michod, 2007]. At the very

beginning of life there were only single cells. Today, after millions of years, most animals,

plants, fungi, and algae are made up of multiple cells that work together as a single being

[Adl et al., 2005].

Presented here is a brief explanation on developing functional specialisation and grouping

the specialised cells of CT. Following this approach which is called changes in the level of

complexity [Herron and Michod, 2008], we describe a novel approach for grouping in SSA.
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In order to present a clearer view, we consider Volvocalean green algae as a model system.

Volvocalean green algae are well suited for studying the transition as they provide different

ranges from unicells to multicellular organisms with the explicit specification between germ

and soma cells. In Volvocalean green algae, multicellular organisms are formed clonally

from a single cell [Michod and Nedelcu, 2003]. Here, we mainly focus on one member of

this lineage named V. carteri which exhibits a range of development in different cell types

[Herron and Michod, 2008].

In [Kirk, 2005] a twelve-step program for the grouping step in V. carteri is considered. In

this process, motility and mitosis activity compete for the same cellular machinery and cell

destiny is determined finally by the location of microtubule organizing centre. The activity

of the microtubule organizing centre mainly depends on its location in the cell and can serve

either as a basal body which is related to the flagellar synthesis and consequently cell motion

or a mitotic spindle which aids the segregation of the chromosomes during mitosis [King,

2004]. This germ–soma dichotomy is generated during the early embryogenesis and results

in specifying two cell types; the somatic cells which are non-reproductive and only vegetative

and the germ cell which performs the exclusively reproductive task [Kirk, 2005].

Here, as the germ cells execute the reproductive function and cell divisions which are

required to produce a new daughter colony we consider them as those signal components

which are later selected for series reconstruction. Differentiating the somatic and germ cells

in V. carteri is largely dependent on the genetic differentiation which happens in somatic

cells. During this process regA which is a regulatory gene and encodes a transcriptional

repressor begins to express [Kirk et al., 1999]. As a result, several nuclear genes which

are responsible for coding the chloroplast proteins are suppressed [Meissner et al., 1999].

Consequently, these somatic cells will not go under the cell growth or division. Lacking

the division ability, they do not participate in the reproductive functions and offspring but

accomplish the survival task by flagellar action [Kirk, 2005].
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When comparing the grouping step between CT and SSA, two important points must to

be highlighted:

1. Following differentiation germ cells do not not stay attached together. In a colony,

those cells underpinning reproductive functions may divide on (a) the colony surface,

(b) introgress or (c) in the interior of the colony as shown in Fig 5.15 [King, 2004].

2. In each round of reproduction, germ cells produce both future germ cells and soma

cells.

Fig. 5.15 Genetic variants produced differentiated cells in colonial flagellates [King, 2004].

However, the current grouping stage of the SSA method is based on the LS estimator i.e.,

choosing the leading eigentriple which describes the general tendency of the series [Hassani,

2007]. Accordingly:

• Selecting the signal components follows a binary approach. In other words, by estimat-

ing the signal rank r, the first r eigenvalues are always selected as signal components

and the rest is considered to be noise.

• The leading components of I1, . . . , Im are related only to signal, hence, it is assumed

that the reconstructed signal is not perturbed by noise.

Taking into consideration these points of comparison and our assumption which states

germs cell from CT are equal to signal components, we can conclude that following the LS

estimator the first r selected eigenvalues will not produce a clear signal because germ cells
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will produce both future germ cells and soma cells. This statement makes sense when we

take the noise perturbation into account. Even in the leading components of I1, . . . , Im, we

have to exclude some eigenvalues with less information about the series, seek to find the

other related signal components which capture more information and use all of them for

reconstructing the series.

5.5.4 SSA–CT Algorithm

Presented below is a concise explanation of the SSA–CT algorithm which has also been

depicted in Fig 5.16. Here, we use the RMSE criterion to determine the optimal choices

of L and r (it is also possible to use any other criteria to determine the error as explained

below in the algorithm). Accordingly, relying on the simulation procedure, in each L we are

looking for a combination of eigenvalues r which provides the lowest RMSE, and this in

turn represents the optimal decomposition and reconstruction choices for the SSA model.

The automated SSA-CT code is able to perform this task by evaluating all possible L and r

choices for a given time profile. 1

Fig. 5.16 SSA-CT flowchart which depicts different computational steps of this algorithm.

1The SSA-CT code used in this thesis is available upon request.



5.5 SSA based on Colonial Theory 136

1. Consider a real-valued nonzero time series YN = (y1, . . . ,yN) of length N.

2. Use the training data to construct the trajectory matrix X = (xi j)
L,K
i, j=1 = [X1, ...,XK],

where X j = (y j, ...,yL+ j−1)
T and K = N − L + 1. Initially, we begin with L = 2

(2 ≤ L ≤ N
2 ) and in the process, evaluate all possible values of L for YN .

3. Obtain the SVD of X by calculating XXT for which λ1, . . . ,λL denotes the eigen-

values in decreasing order (λ1 ≥ . . .λL ≥ 0) and by U1, . . . ,UL the corresponding

eigenvectors. The output of this stage is X = X1 + . . .+XL where Xi =
√

λ iUiV T
i and

Vi = XTUi/
√

λ i.

4. Adapt a diagonal matrix containing the weights WK×K as follows:

ŜCT = U1(WCT Σ1)V
′
1 .

5. Choose the weight matrix WK×K .

WCT = diag((1∨0), . . . ,(1∨0)) .

6. Evaluate all possible combinations of WCT (step by step) for the selected L and split

the elementary matrices Xi (i = 1, . . . ,L) into several groups and sum the matrices

within each group.

7. Perform diagonal averaging to transform the matrix into a Hankel matrix which can

then be converted into a time series.

8. Find the RMSE value for each reconstructed series and report the L and the selected

combination of r attributed to the minimum RMSE as optimal choices.

9. The output is a filtered series that can be used for forecasting.
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The optimal choices of L and r can be used for forecasting via vector or recurrent SSA

(SSA-V,SSA-R) techniques. More detailed information of these techniques can be found in

[Sanei and Hassani, 2015].

Accordingly, to assess the performance of the newly proposed technique we conduct a

simulation study. The Bcd simulation process follows the procedure explained in chapter

1. To start the simulation, an exponential curve is drawn from the simple SDD model.

Thereafter, random errors ε of a normal distribution with zero mean and variance σ2
ε with

different amplitudes are added to various parts of this curve. This simulation is repeated

1,000 times.

SSA-CT algorithm gives the ability to evaluate all possible values of L with different

combinations of r. Although this method assures to provide a signal with the least RMSE,

the computation process for a simulation study covering different noise levels and lengths of

series can be considerably time taking. However, for forecasting objective, a set of training

data is utilised and therefore the computation time required for running the algorithm is

considerably reduced.

Accordingly, we have applied the SSA-CT algorithm for Bcd signal extraction. Table 5.8

shows the obtained result where N depicts the length of the Bcd profile, (L,r) the optimal

L and r and f shows the frequency out of 1000 iteration. As can be seen, for the case of

Bcd profile the best-extracted signal with the least RMSE and the highest frequency always

achieved following the binary approach. This result indicates that to reconstruct the Bcd

signal as correctly assumed before only the first eigenvalue (in some cases, r = 1,2) is

required which may be due to the overall exponential pattern of the Bcd profile. However,

when the SSA-CT algorithm is applied for both signal extraction and forecasting purposes

on a wide range of time series, the obtained result ( Not reported here but available upon

request) showed that for the more complicated series, one will not be able to capture the best

result using the binary approach.
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N L,r f N L,r f
50 5,1 947 700 205,1 689

100 11,1 952 1000 256,1-2 863
150 25,1 856 1200 153,1 745
200 25,1 984 1400 542,1-2 923
300 74,1 866 1800 512,1-2 685
500 124,1-2 954 2000 532,1-2 981
600 212,1 978 2500 585,1-2 714

Table 5.8 Optimal L and r found for simulated Bcd profiles with different lengths.

5.6 Conclusion

This chapter begins with the core aim of introducing new criteria for optimising Bcd signal

extraction. Motivated by the findings in Chapter 4, we opt to tailor the new Bcd signal

extraction criteria for use with the SSA technique which found to be the best option for Bcd

signal extraction in relation to SDD, ARIMA, ETS, ARFIMA and NN models. In line with

our aim, we initially produce an algorithm for optimising the Bcd signal extraction process

with SSA. In brief, the algorithm is optimised based on minimising the skewness statistic

for the SSA residual. We suggest that setting L equal to the minimum skewness within the

threshold 10 ≥ L ≥ N/4 and combine this SSA choice with r = 1 or r = 1,2 as appropriate

will enable users to obtain the optimal Bcd signal extraction with SSA.

Through this chapter, we have succeeded in presenting several contributions to the field

of Bcd signal extraction. The first and most important of which deals with the application

of the newly proposed algorithm to 27 real Bcd data to show that it can enable researchers

to select the appropriate SSA choices to extract a smooth and accurate Bcd signal quickly

and easily without the need to spend an increased amount of time for the selection of L for

decomposing the data. However, we notice that given the highly complex nature of the Bcd

data, on one occasion the SSA algorithm fails to extract an absolutely smoothed signal. As

a solution to this problem, we introduce for the first time, the concept of Sequential SSA
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on signals in section 5.2. Via this approach, we are able to refine and smoothen further the

initial signal which had captured some of the observational and biological noise in Bcd data.

In line with good practice, in addition to evaluating the signal extractions alone, this study

also pays attention to the residuals. The analysis of the residuals motivated us to introduce

hybrid SSA based signal extraction processes for Bcd in section 5.3. In brief, when extracting

the signal from any given data set, one would reasonably expect other signals to end up

within the noise component. However, this would mean that the residual is no longer random

and some statisticians could find it difficult to accept such techniques. Accordingly, the first

hybrid SSA signal process is focussed on providing a Bcd signal extraction procedure which

will ensure the residual is white noise. This was achieved by combining the optimised SSA

signal with optimised ARIMA models being fitted to the residuals. Whilst the results did

provide the necessary outcomes in terms of residuals with white noise, it comes at a cost (i.e.,

a loss in the smoothness of the extracted signal).

The SSA-ARIMA hybrid approach is a combination of parametric and nonparametric

techniques. For those who wish to rely on nonparametric techniques alone so that one is

not restricted by the parametric assumptions, we present the SSA-ETS hybrid Bcd signal

extraction approach. This process also produces an important contribution of this research

as we find a solution to the problem of modelling accurately the initial curve in Bcd data

which was not only experienced in Chapter 4. Accordingly, we are able to present the hybrid

SSA-ETS process which is a combination of the optimised SSA signal extraction algorithm

with an optimised ETS algorithm as the most efficient approach for Bcd signal extraction.

Also, in this chapter, a new approach for removing noise and signal extraction of Bcd is

introduced which also applied and evauted for four different D. melanogaster segmentation

genes. The approach was based on the distribution of the eigenvalues of a scaled Hankel

matrix. The skewness and variation coefficients of the eigenvalue distribution are used as

new criteria and indicator for the cut-off point in the eigenvalue spectra between signal and
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noise components. The results confirm that the proposed approach gives a promising output

for the gene expression signal extraction.

The results obtained by applying the introduced algorithm in section 5.4, emphasises that

when extracting signal from different expression gene profiles, for optimised signal and noise

separation, a different number of eigenvalues need to be chosen for each gene.

In Section 5.5, a novel approach for enhancing the accuracy of SSA signal extraction is

introduced based on the foundations of CT. Initially, we draw upon the general similarity

between CT and SSA, and then exploit these similarities, particularly certain characteristics

of CT in the grouping step which is the most important step in the SSA procedure.

In brief, we suggest that relying on a binary approach of differentiating between signal

and noise at the grouping step is not necessarily the best approach as this assumes there is

no useful information contained in the selected noise components. Instead, based on CT

we propose a different grouping approach which considers analysing all eigenvalues and

selecting those which have useful information for grouping in SSA. The result shows that

the new idea of grouping has the potential to enable us to obtain a more efficient signal in

comparison to the existing approach for grouping in SSA which is based on LS.



Chapter 6

A novel hybrid method to study the

regulatory interactions

6.1 Introduction

As previously noted in chapter 1, segmentation in D. melanogaster is a particularly well-

studied process which highlights the role of GRNs in the earliest stage of development

[Lewis, 1978].

In SN, there are three fundamental types of genes which play crucial roles in the develop-

ment of D. melanogaster : maternal effect genes, gap genes and pair-rule genes [Bieler et al.,

2011]. Among them, the maternal effect genes including bcd and cad must be addressed

as the most important factors since they respectively determine most aspects of anterior

and posterior axis of an adult fruit fly and more importantly, they commence the sequential

activation of SN. [Berleth et al., 1988; Bieler et al., 2011; Copf et al., 2004]

The SN is perhaps the best-studied transcriptional network in D. melanogaster devel-

opment. Therefore, there are considerable attempts to portrait a picture of the interactions

presented between regulators in this GRN. Quantitatively, it is common to model GRNs using

Ordinary Differential Equations (ODEs) or stochastic ODEs [De Jong, 2002; Karlebach and
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Shamir, 2008]. Even though, the substantial progress which has been made in modeling

transcriptional regulations using these models in recent years is not deniable, the enormous

number of regulatory functions obtained by these models and the estimation of parameters

which are difficult to assess experimentally are still considered as two major drawbacks of

these methods [Schlitt and Brazma, 2007; Wilczynski and Furlong, 2010].

Recently, the availability of more data on molecular mechanisms of regulatory interactions

has made it possible to study these interactions in more quantitative depth. however, to the

best of our knowledge, there is not a particular study which evaluates the dynamic interactions

of this system from a statistical causality point of view [Chaves et al., 2005; Frigerio et al.,

1986; Levine and Davidson, 2005].

Hence, this chapter considers an alternative approach to evaluate the possibility of

ratifying the validity and reliability of genetic inferences derived from experimental evidence

by using proper analytical tools. It is of note that the detected regulatory link can be

either inductive ( i.e. increasing the protein concentration of one gene raises the protein

concentration of the other gene), or inhibitory ( i.e. increasing the protein concentration

of one gene decreases the protein concentration of the other gene) [Davidson and Levin,

2005]. Any efforts for identifying the nature of the detected interaction would require more

extensive research and that objective is beyond the mandate of this thesis.

The analytical methods developed in this chapter is a novel hybrid method comprised of

a variety of causality detection methods and SSA technique.

The causality detection methods adopted here consist of time and frequency domain

Granger Causality detection (GC) [Geweke, 1982] approaches and an advanced non-parametric

method - Convergent Cross Mapping (CCM) [Sugihara et al., 2012]. Time domain causality

test [Granger, 1969] and its developed versions are the most common and generally accepted

methods in causal inference analysis. Frequency domain causality test is the extension of

time domain causality test on identifying causality for each individual frequency component
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instead of computing a single measure for the entire causal association. CCM is an advanced

non-parametric method that is designed for a dynamical system involving complex interac-

tions. The fundamental concept of CCM is that the information of the driver variable can be

recovered from the predator variable, but not vice versa.

It is imperative to note that since providing robust genetic evidence is an important step

in reporting genetic regulatory, among all the interactions between regulators in SN, we

have narrowed down this study to the interactions between bcd and cad, bcd and kr and cad

and kr which their interactions have been previously accredited via laboratory experimental

evidence. Accordingly, extracting this link using mentioned causality detection techniques

gives us credit to step further and apply this method to find the unknown regulatory links

between other genes.

The regulatory role of bcd has been unveiled by several studies [Berleth et al., 1988;

Lopes et al., 2012]. According to [Baird-Titus et al., 2006] Bcd is one of few proteins

which binds both RNA and DNA targets and can be involved in both transcriptional and

post-transcriptional regulation. Bcd enhances the transcription of anterior gap genes such as

hb and represses the translation of cad in the anterior region of the embryo. In 2002, through

an experimental approach, Niessing et al. showed translational repression of cad mRNA by

Bcd depends on a functional eIF4E-binding motif [Niessing et al., 2002]. The cad and kr

genes are also required for a normal segmentation of the embryo. As noted in [Liu and Jack,

1992], the interaction of Cad and Kr gene is an important input of the segmentation genetic

network.

In applying the causality detection techniques, it should also be noted that several studies

have previously shown that these methods are sensitive to noise [Ancona et al., 2004;

Hiemstra and Jones, 1994; Zou and Feng, 2009] and gene expression profiles are exceedingly

noisy [Golyandina et al., 2012]. As it has been shown in Fig 6.1, the profile achieved by

fluorescence antibodies technique is highly volatile and in such cases, establishing a cause-
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and-effect relationship is more challenging and demands to apply a noise filtering step before

regulatory detection studies. Therefore, to overcome this issue we adopt the SSA technique

to filter the noise of the profiles. The main reason behind choosing SSA does not require

added justification here as the superior performance of this method is illustrated through the

previous chapters of this thesis.
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Fig. 6.1 A typical example of noisy Bcd, Cad and Kr for embryo ms26 at time class 14(1). Black,
blue and green colours depict Bcd, Cad and Kr profiles respectively. The x-axis shows the position of
the nuclei along the A-P axis of the embryo and Y-axis shows the fluorescence intensity levels.
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6.2 Causality detection techniques

6.2.1 Time domain Granger causality

Granger causality test [Granger, 1969] is the most generally accepted and significant method

for causality analyses in various disciplines. Various applications and developments of this

technique, also more specifically in the biomedical area, can be found in [Chen et al., 2006;

Deshpande et al., 2010; Gow et al., 2008; Hsiao, 1981; Sims, 1972; Sims et al., 1990]. The

regression formulation of Granger causality states that vector Xi is the cause of vector Yi

if the past values of Xi are helpful in predicting the future value of Yi, two regressions are

considered as follows:

Xi =
T

∑
t=1

αtYi−t + ε1i, (6.1)

Yi =
T

∑
t=1

αtYi−t +
T

∑
t=1

βtXi−t + ε2i, (6.2)

where i = 1,2, · · · ,N (N is the number of observations), T is the maximal time lag, α and

β are vectors of coefficients, ε is the term. The first regression is the model that predicts

Xi by using the history of Yi only, while the second regression represents the model of Yi is

predicted by the past information of both Xi and Yi. Therefore, the conclusion of existing

causality is conducted if the second model is a significantly better model than the first one.

6.2.2 Frequency domain causality

The frequency domain causality test is the extension of time domain GC test that identifys

the causality between different variables for each frequency. In order to briefly introduce the

methodology, we mainly follow [Ciner, 2011; Croux and Reusens, 2013; Geweke, 1982].

More details can be found in [Breitung and Candelon, 2006; Faes and Nollo, 2013; Lemmens

et al., 2008].
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It is assumed that Xi and Yi are two centred stationary time series (where i = 1,2, · · · ,N

and N is the number of observations) with a finite-order Vector Auto-regression Model (VAR)

representative of order p,

Θ(R)

 Yi

Xi

=

 Θ11(R) Θ12(R)

Θ21(R) Θ22(R)


 Yi

Xi

+Ei, (6.3)

where Θ(R) = I −Θ1R− ...−ΘpRp is a 2× 2 lag polynomial and Θ1, ...,Θp are 2× 2

autoregressive parameter matrices, with RkXi = Xi−k and RkYi =Yi−k. The error vector vector

E is assumed to be multivariate white noise with zero mean, and E(EiE ′
i ) = Z, where Z is

positive definite matrix. The moving average (MA) representative of the system is

 Yi

Xi

= Ψ(R)ηi =

 Ψ11(R) Ψ12(R)

Ψ21(R) Ψ22(R)


 η1i

η2i

 , (6.4)

with Ψ(R) =Θ(R)−1G−1 and G is the lower triangular matrix of the Cholesky decomposition

G′G = Z−1, such that E(ηtη
′
t ) = I and ηi = GEi. The causality test developed in [Geweke,

1982] can be written as:

CX⇒Y (γ) = log
[

1+
|Ψ12(e−iγ)|2

|Ψ11(e−iγ)|2

]
. (6.5)

However, according to this framework, no Granger causality from Xi to Yi at frequency γ

corresponds to the condition |Ψ12(e−iγ)|= 0, this condition leads to

|Θ12(e−iγ)|= |Σp
k=1Θk,12 cos(kγ)− iΣp

k=1Θk,12 sin(kγ)|= 0, (6.6)
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where Θk,1,2 is the (1,2)th element of Θk, such that a sufficient set of conditions for no

causality is given by [Breitung and Candelon, 2006]

Σ
p
k=1Θk,1,2 cos(kγ) = 0

Σ
p
k=1Θk,1,2 sin(kγ) = 0

, (6.7)

Hence, the null hypothesis of no Granger causality at frequency γ can be tested by using a

standard F-test for the linear restrictions (6.7), which according to Breitung and Candelon,

follows an F(2,B−2p) distribution, for every γ between 0 and π , with B begin the number

of observations in the series [Breitung and Candelon, 2006].

6.2.3 Convergent Cross Mapping

Convergent Cross Mapping (CCM) is firstly introduced in [Sugihara et al., 2012] that aimed at

detecting the causation among time series and provide a better understanding of the dynamical

systems that have not been covered by other well established methods like Granger causality.

CCM has proven to be an advance non-parametric technique for distinguishing causality in

a dynamic system that contains complex interactions in biological studies and ecosystems,

more details can be found in [Clark et al., 2015; Deyle et al., 2013; Sugihara et al., 2012; Ye

et al., 2015]. CCM is briefly introduced below by mainly following [Sugihara et al., 2012].

Assume there are two variables Xi and Yi, for which Xi has a causal effect on Yi. CCM

test will test the causality by evaluating whether the historical record of Yi can be used to get

reliable estimates of Xi. Given a library set of n points (not necessarily to be the total number

of observations N of two variables) and here set i = 1,2, · · · ,n, the lagged coordinates are

adopted to generate an E-dimensional embedding state space [Sugihara and Mayf, 1990;

Takens, 1981], in which the points are the library vector Xi and prediction vector Yi
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Xi : {xi,xi−1,xi−2, · · · ,xi−(E−1)}, (6.8)

Yi : {yi,yi−1,yi−2, · · · ,yi−(E−1)}, (6.9)

The E + 1 neighbors of Yi from the library set Xi will be selected, which actually form

the smallest simplex that contains Yi as an interior point. Accordingly, the forecast is then

conducted by this process, which is the nearest-neighbour forecasting algorithm of simplex

projection [Sugihara and Mayf, 1990]. The optimal E will be evaluated and selected based

on the forward performances of these nearby points in an embedding state space.

Therefore, by adopting the essential concept of Empirical Dynamic Modeling (EDM)

and generalized Takens’ Theorem [Takens, 1981], two manifolds are conducted based on the

lagged coordinates of the two variables under evaluation, which are the attractor manifold

MY constructed by Yi and respectively, the manifold MX by Xi. The causality will then

be identified accordingly if the nearby points on MY can be employed for reconstructing

observed Xi. Note that the correlation coefficient ρ is used for the estimates of cross map skill

due to its widely acceptance and understanding, additionally, leave-one-out cross-validation

is considered a more conservative method and adopted for all evaluations in CCM.

6.3 Data

In selecting the appropriate type of data, it is imperative to note that unlike bcd mRNA,

cad mRNA has a uniform distribution along the embryo, which indicates that Bcd does not

regulate the transcription of cad but inhibits the translation of the cad mRNA [Latchman

et al., 2007]. Therefore, Cad can only be produced where the concentration of Bcd is low

suggesting that the protein profiles of these two genes should be targeted to study.
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Accordingly, we use the dataset which is fully described in chapter 1. Similar to Bcd, Cad

Profile in wild-type D. melanogaster embryos achieved by fluorescently tagged antibodies

technique and is available via FlyEx database.

Here, we evaluate the method for cleavage cycles 10-14A ( when proteins synthesised

from maternal transcripts begin to appear up to the onset of gastrulation) and all the time

classes of cleavage cycle 14A. As expected, the profiles from different cleavage cycles vary

in expression level and expression pattern.

Table 6.1 presents the number of embryos studied per each time class. It is of note the

expression profile of each embryo has a different length of data where the third column in

this table reports the average.

Time class N Length SD
10 5 127 18.83
11 12 276 25.83
12 15 489 97.18
13 47 1224 78.56

14(1) 28 2318 143.87
14(2) 15 2315 86.83
14(3) 20 2367 141.05
14(4) 17 2309 119.16
14(5) 14 2301 126.96
14(6) 18 2347 103.74
14(7) 13 2007 229.61
14(8) 12 1600 311.21

Table 6.1 Different time classes and the embryos studied per each time class. Note: N= Number of
embryos studied per each time class, Length= The average length of data of expression profiles, SD= Standard
deviation of length of data.

In order to extract the signals from the profiles, we adopt the SSA technique. To that

aim, number of the eigenvalues needed for signal reconstruction is obtained by following the

method presented in section 5.4 of Chapter 5.

Fig 6.2 illustrates the output from this effort. It is evident that the SSA method provides a

relatively smooth signal line with correlation below 0.10 which credits the satisfactory level

of separation between noise and signal using this technique ( See, Chapter 4).
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Fig. 6.2 A typical example of noisy Bcd, Cad and Kr along with the extracted signals in red for
embryo ms26 at time class 14(1). Black, blue and green colours depict Bcd, Cad and Kr profiles
respectively. The x-axis shows the position of the nuclei along the A-P axis of the embryo and Y-axis
shows the fluorescence intensity level.
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6.4 Empirical Results

This section provides the result following the application of three causality detection ap-

proaches before and after filtering the expression profiles using SSA. For all evaluations, we

ensure that all the test requirements are satisfied by choosing the optimal indices. Table 6.2

illustrates the findings of the regulatory relationships where “Yes" stands for the detected

regulatory relationship by the adopted test. It should be noted that for each time class, all the

embryos available at FlyEx representing expression profiles for Bcd, Cad and Kr are studied.

The p-values reported for time domain GC test are the average p-values attained for each

time class. Moreover, for time domain GC test, the co-integration test is conducted only for

those variables having one unit root. Since none of the tested groups showed a significant

result in indicating the co-integration, the co-integration test result is not reported here. The

optimal lag for each Vector Auto-regression Model (VAR) model is selected by comparing

the information criteria matrix, which includes results based on the AIC [Akaike, 1973], HQ

[Hannan and Quinn, 1979], SIC [Schwarz et al., 1978] and FPE [Akaike, 1969] criteria.

According to Table 6.2, it is evident that there is a significant difference in results before

and after reducing the noise from the profiles. The regulatory link between Bcd and Cad

can be detected by neither time domain nor frequency domain tests in presence of noise.

Accordingly, it is clear that the filtering capability displayed by SSA is indeed advantageous

for regulatory detection. Nevertheless, as can be seen, the feasibility of capturing the

regulatory link for CCM method is not affected by noise and the results achieved by this test

confirm the regulatory relationship between Bcd and Cad in expression profiles with and

without noise. However, regardless of the developing time, the index representing the ability

of cross mapping is relatively smaller on average for noisy series than filtered series.

It is of note that the length of the data under study vary between different cleavage cycles

and time classes. Cleavage cycle 10 to 13 and time classes 14(7-8) have shorter lengths

comparing to the time class 14(1-6), which may be the reason of getting slightly smaller
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p-values for cleavage cycles 11 to 13 and 14(8) comparing to the rest of the sub classes of

time class 14. Yet, the frequency domain test shows less sensitivity to the data length possibly

because this method identifies the possible regulatory link for each individual frequency

component rather than the entire series.

Time Domain GC Frequency Domain GC CCM

Time
Class

Noisy Series Filtered Series Noisy Series Filtered Series Noisy Series Filtered Series

YES/NO p-value YES/NO p-value YES/NO YES/NO YES/NO YES/NO
10 NO 0.68 NO 0.45 NO YES YES YES
11 NO 0.71 NO 0.33 NO YES YES YES
12 NO 0.89 NO 0.32 NO YES YES YES
13 NO 0.89 NO 0.24 NO YES YES YES
14(1) NO 0.95 YES 0.05 NO YES YES YES
14(2) NO 0.98 YES 0.04 NO YES YES YES
14(3) NO 0.98 YES 0.01 NO YES YES YES
14(4) NO 0.94 YES 0.01 NO YES YES YES
14(5) NO 0.95 YES 0.00 NO YES YES YES
14(6) NO 0.96 YES 0.00 NO YES YES YES
14(7) NO 0.81 YES 0.00 NO YES YES YES
14(8) NO 0.79 YES 0.04 NO YES YES YES

Table 6.2 Summary of causality test results of Bcd on Cad.Note: Differentiations are taken accordingly
for stationarity prior to the tests; Optimal lag lengthes are chosen based on the AIC, HQ, SIC and FPE criteria.
"Yes" stands for the detected regulatory link and "No" means the regulatory link could not be detected by the
adopted test.

Furthermore, the p-values obtained for both noisy and filtered data of all the embryos

in different time classes are summarised in Figs 6.3 and 6.4 as box and whisker diagram

respectively. These diagrams follow the standard format of box plot in displaying the

distribution of the p-values based on maximum, upper quartile, median, lower quartile, and

minimum. A close look at Figs 6.3 and 6.4 suggests that the time domain GC test cannot

detect any regulatory links in the presence of noise, while the results for filtered series are

significant and more consistent especially for those time classes after 14(1). Moreover, it is

evident that the length of the profiles and level of intensities affect the noisy profiles more

than the filtered ones as the p-values in Fig 6.3 are getting more insignificant for the final

subclasses of time class 14, where the length and intensity levels of the profiles tend to

decrease.
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Fig. 6.3 Box Plots of Time Domain GC Test P-values for Noisy Series. (Circle refers to the
corresponding outlier that is more/less than 1.5 times of upper/lower quartile; the central rectangle
spans the upper quartile to the lower quartile; the segment inside the rectangle indicates the median;
whiskers above and below the box refer to the maximum and minimum.)
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Fig. 6.4 Box Plots of Time Domain GC Test P-values for Filtered Series. (Circle refers to the
corresponding outlier that is more/less than 1.5 times of upper/lower quartile; the central rectangle
spans the upper quartile to the lower quartile; the segment inside the rectangle indicates the median;
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Tables 6.3 and 6.4 present the results of the conducted analysis to detect the regulatory

link between Bcd–Kr profiles and Cad–kr profiles respectively. As can be seen, reducing

the noise level is an essential step in detecting the regulatory link using the time domain and

frequency domain tests. Similar to the results reported in Table 6.2, CCM method can again

efficiently identify the regulatory relationship even in the presence of noise.

Time Domain GC Frequency Domain GC CCM

Time
Class

Noisy Series Filtered Series Noisy Series Filtered Series Noisy Series Filtered Series

YES/NO p-value YES/NO p-value YES/NO YES/NO YES/NO YES/NO
12 NO 0.71 NO 0.15 NO YES YES YES
13 NO 0.66 YES 0.04 NO YES YES YES
14(1) NO 0.89 YES 0.03 NO YES YES YES
14(2) NO 0.93 YES 0.01 NO YES YES YES
14(3) NO 0.97 YES 0.01 NO YES YES YES
14(4) NO 0.94 YES 0.00 NO YES YES YES
14(5) NO 0.95 YES 0.00 NO YES YES YES
14(6) NO 0.92 YES 0.00 NO YES YES YES
14(7) NO 0.81 YES 0.00 NO YES YES YES

Table 6.3 A summary of the causality tests results for Bcd on Kr profiles. Note: Differentiations are
taken accordingly for stationarity prior to the tests; Optimal lag lengthes are chosen based on the AIC, HQ, SIC
and FPE criteria. "Yes" stands for the detected regulatory link and "No" means the regulatory link could not be
detected by the adopted test.

Time Domain GC Frequency Domain GC CCM

Time
Class

Noisy Series Filtered Series Noisy Series Filtered Series Noisy Series Filtered Series

YES/NO p-value YES/NO p-value YES/NO YES/NO YES/NO YES/NO
12 NO 0.39 NO 0.25 NO YES YES YES
13 NO 0.78 NO 0.11 NO YES YES YES
14(1) NO 0.84 YES 0.05 NO YES YES YES
14(2) NO 0.89 YES 0.03 NO YES YES YES
14(3) NO 0.94 YES 0.01 NO YES YES YES
14(4) NO 0.91 YES 0.01 NO YES YES YES
14(5) NO 0.87 YES 0.00 NO YES YES YES
14(6) NO 0.82 YES 0.00 NO YES YES YES
14(7) NO 0.75 YES 0.00 NO YES YES YES

Table 6.4 A summary of the causality tests results for Cad on Kr profiles.Note: Differentiations are
taken accordingly for stationarity prior to the tests; Optimal lag lengthes are chosen based on the AIC, HQ, SIC
and FPE criteria. "Yes" stands for the detected regulatory link and "No" means the regulatory link could not be
detected by the adopted test.

Figures 6.5, 6.6 and 6.7 depict examples of the results obtained by frequency domain

GC test for Bcd–Cad, Bcd–Kr and Cad–Kr profile pairs respectively 1. In these Figs, the
1The frequency domain GC test results for all considered pairs of genes related to all different time classes

can be found in Appendix 3.



6.4 Empirical Results 155

blue line represents the statistic test of each specific frequency, and the red line represents

the 5% critical value for all the frequencies. The horizontal axis gives the parameter w to

calculate the corresponding frequency f by f = 2π/w. Therefore, when the test statistics is

above or very close to the 5% critical value, the regulatory is detected for that corresponding

frequency.

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Incremental Rsquared GC−test

frequency

In
c
re

m
e
n
ta

l 
R

−
s
q
u
a
re

d

(a) Noisy-t11-bcd on cad

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Incremental Rsquared GC−test

frequency

In
c
re

m
e
n
ta

l 
R

−
s
q
u
a
re

d
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Fig. 6.5 Frequency domain causality test results for Bcd and Kr before and after filtering (time class
12). The blue line represents the statistic test of each specific frequency, and the red line represents
the 5% critical value for all the frequencies.
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Fig. 6.6 Frequency domain causality test results for Bcd and Kr before and after filtering (time class
12). The blue line represents the statistic test of each specific frequency, and the red line represents
the 5% critical value for all the frequencies.
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(b) Filtered-t12-cad on kr

Fig. 6.7 Frequency domain causality test results for Cad and Kr before and after filtering (time class
12). The blue line represents the statistic test of each specific frequency, and the red line represents
the 5% critical value for all the frequencies.

For CCM test, the optimal embedding dimension E is selected for each pair of gene

expression profiles based on the nearest neighbor forecasting performance by simplex pro-

jection. Figs 6.8, 6.9 and 6.10 represent the examples of the CCM test result for Bcd–Cad,

Bcd–Kr and Cad–Kr before and after filtering the profiles 2, where for example regrding

the Fig 6.8, the red line indicates the reconstruction ability of Bcd cross mapping Cad,

while the blue line represents the performance of using historical information of Cad on

cross mapping Bcd. In general, the higher ability of factor X on reconstructing the attractor

reflects more significant regulatory effects of the attractor on X . The results of CCM reflect

close relationships between Bcd and Cad with and without filtering, whilst Bcd shows more

significant relationship with Kr comparing to Cad for both original and filtered data. The

crossmap abilities of Bcd and Cad on Kr are fairly similar, however, Kr clearly indicates

higher reconstruction ability on Bcd comparing to Cad. In more details regarding the rela-

tionship between Bcd and Cad, considering the average reconstruction ability represented by

ρ , it is suggested that CCM is not affected by the smaller length of the series related to the

initial time. However, the increasing pattern of the average level of cross-mapping ability

2The CCM test results for all considered pairs of genes related to all different time classes can be found in
Appendix 3.
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up to time class 14(3), which follows by a decreasing trend for the rest of the subclasses,

indicates less accuracy of the results for higher time classes. The approximate average value

of ρ over 0.5 for noisy series indicates significant cross-mapping (or reconstruction) ability to

identify the regulatory links. Correspondingly, an average is found to be approximately over

0.8, which reflects stronger regulatory links detected between Bcd and Cad after filtering.

Regarding the relationships between Bcd and Kr, both original and filtered series indicate

stronger cross-mapping ability from Kr to Bcd, which means that Bcd shows a more powerful

regulatory effect on Kr than the other way around. However, this link is slightly more

significant in the filtered profiles. In the case of Cad and Kr, the regulatory relationship

identified is less significant comparing to the other pairs of genes considered in this study

and the average of 0.4 for filtered profiles compared to the average of 0.2 for original series

highlights the role of the SSA in improving the achieved results.
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Fig. 6.8 CCM test results for Bcd and Cad before and after filtering (time class 14(8)). The red
line indicates the reconstruction ability of Bcd crossmap Cad, while the blue line represents the
performance of Cad on crossmapping Bcd.

It is of note that the overall findings of this research are consistent with the previous

efforts in mathematical modelling the segmentation network [Gursky et al., 2011; Surkova

et al., 2009]. For example, [Surkova et al., 2009] presents a succesful canalization study of
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Fig. 6.9 CCM test results for Bcd and Kr before and after filtering (time class 14(7)). The red line
indicates the reconstruction ability of Bcd crossmap Kr, while the blue line represents the performance
of Kr on crossmapping Bcd.
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Fig. 6.10 CCM test results for Cad and Kr before and after filtering (time class 14(5)). The red line
indicates the reconstruction ability of Cad crossmap Kr, while the blue line represents the performance
of Kr on crossmapping Cad.
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four gap genes hb, gt kni kr using the gene circuit method which uses the concentration of

bcd, cad, tll and genes as outside inputs.

6.5 Conclusion

In developmental studies, inferring the regulatory interactions in SN plays an important

role in unveiling the mechanism responsible for pattern formation. As such, there exists an

opportune demand for theoretical developments and new mathematical models to achieve

a more accurate illustration of this genetic network. Accordingly, this chapter introduces a

new method to extract the meaningful regulatory role of maternal effect genes using a variety

of causality detection techniques and also explores whether this method can suggest a new

analytical view to study the gene regulatory networks.

To that aim, three causality detection approaches before and after filtering the expression

profiles using SSA are applied. According to the obtained results, data accuracy is of critical

importance to the success of the causality detection studies. Using time domain and frequency

domain GC tests, the regulatory link can be detected only after removing the noise from the

expression profiles which indicates even having a small amount of noise in mean intensities

may lead us to obtain a false negative result.

It is also imperative to note that for all pairs of genes considered in this study, the time

domain GC fails to detect the regulatory link in time classes 10-13. The poor performance of

this model here can be attributed to either the length of the data or low expression level of the

gene under study for those time classes. The protein molecules synthesised from maternal

transcripts just begin to appear from time class 10 and the number of these morphogens, in the

areas where they were concentrated, is at a lower amount for time classes 10-13 comparing

to the higher time classes.

In summary, Our findings show that the regulatory role of maternal effect genes is

detectable in different cleavage cycles and time classes and thereby the introduced method
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can be applied to infer the possible regulatory interactions present among the other genes of

this network.



Chapter 7

Conclusions and Future Research

Directions

This thesis begins with an overall aim of improving signal processing step in analysing gene

expression profiles using SSA technique. To that aim, D. melanogaster is considered as

the model organism and the protein profile of bcd gene which is the first and most critical

input of the SN is chosen to be the primer gene expression profile under study [Berleth et al.,

1988; Driever and Nüsslein-Volhard, 1988; Frohnhöfer and Nüsslein-Volhard, 1986]. Chapter

one begins with an introduction to the subject highlighting the noteworthy contribution of

this research not only in the field of gene expression studies but also in the area of applied

statistics where signal extraction, noise filtering, forecasting and network analysis goals

are aimed to study. An introduction to the methodology in addition to concise portrays

of benchmark signal processing models and metrics adopted in this study are presented in

Chapter 3. The remaining Chapters (up until Chapter 7) successfully present the four outlined

objectives of this research.

here talk about bcd The significantly stochastic, highly volatile and non-normal nature of

Bcd
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This Chapter is divided into two sections. Section 7.1 brings the thesis to a conclusion by

presenting the contribution of the current work and section 7.2 discusses the future work.

7.1 Summary of Findings

The first contribution of this thesis is to introduce a new method for reducing the noise

and accordingly to extracting the Bcd signal from its noisy profile. Hence, in Chapter 4 an

enhanced version of SSA known as SSA based on minimum variance estimator SSAMV is

introduced. Both the simulation studies and empirical results presented in that Chapter shows

SSAMV to be more efficient than the basic version of SSA.

The performance of the SSAMV is compared against several parametric and non-parametric

well established signal processing techniques (ARIMA, ARFIMA, ETS and NN models)

as well as SDD model as the most commonly used model for analysing the Bcd profile

[Bergmann et al., 2007; Driever and Nüsslein-Volhard, 1988; Gregor et al., 2005; Houch-

mandzadeh et al., 2002]. In that Chapter, the efficiency of adopted noise filtering techniques

is evaluated using several criteria including RMSE, MAPE and MAE for simulation study

and w, pearsons, spearman and kendall correlations for empirical results. The attained RMSE,

MAE and MAPE values in the simulation results indicate that SSAMV provides the best signal

extraction and is successful at outperforming the SDD, ARIMA, ARFIMA, ETS and NN

models. Moreover, in analysing the real data sets a satisfactory level of separation between

noise and signal was achieved by SSAMV providing an average signal–noise correlation value

below 0.10 in 90% of the studied profiles.

Because of examining the applicability of several parametric methods in addition to non-

parametric ones, the ADF test is used to examine for stationarity where the obtained results

show that the residuals are in fact nonstationary. More importantly, approved by Ljung-Box

test, the SDD residuals are not white noise suggesting that there are some components of
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signal remained in the residuals which motivated us to thoroughly explore the residuals in in

the next Chapter.

Having depicted the superior performance of the SSA technique in Chapter 4, the second

contribution of this thesis provides five different approaches to optimise this algorithm.

As discussed before the performance of the SSA technique highly depends upon its choice

of window length L and the number of eigenvalues r. Accordingly, we initially produce

an algorithm for optimising the Bcd signal extraction following setting a new criterion for

choosing the best value for L. In brief, the algorithm is optimised based on minimising the

skewness statistic for the SSA residual. We suggest that setting L equal to the minimum

skewness within the threshold 10 ≥ L ≥ N/4 and combine this SSA choice with r = 1 or

r = 1,2 as appropriate will enable users to obtain the optimal Bcd signal extraction with SSA.

The main advantage of this algorithm is producing a smooth and accurate Bcd signal quickly

and easily without the need to spend an increased amount of time for the selection of L.

It is of note that in some applications such as gene expression signal processing, reducing

the running time of an algorithm is of critical importance because some of the profiles

achieved at specific developmental times possess a high degree of series length. As was

reported in Chapter 1, the length of the data in some Bcd profiles exceeds 3000 observations

giving a range between 2 to 1500 as the possible values for L. Therefore, setting a new

criterion which successfully allows exploring a precise signal in a less amount of time would

be highly beneficial. The application of the introduced algorithm on the real data which

produces smooth and well-centred signals has illustrated the feasibility of the proposed

theory.

In some cases, the extracted signal using SSA contained small levels of fluctuations. In

such instances, we suggest exploiting sequential SSA, not on the residual, but on the extracted

signal to smooth it further. Sequential SSA provides users with a single non-parametric

algorithm for Bcd signal extraction. The results obtained from different Bcd profiles confirm
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the capability of the sequential SSA in capturing the maximum variation via a smooth signal

line and also highlights the usefulness and applicability of the proposed test.

Furthermore, exploring the residuals in more details has led us to introduce the hybrid

Bcd signal extraction methods. The first hybrid SSA signal process is a combination of

optimised SSA with optimised ARIMA (popular in signal processing literature) being fitted

to the residuals and ensures providing the white noise residuals. The extracted signal achieved

following this procedure is no longer smooth. Since the small fluctuations modelled using

ARIMA may be attributed to the biological noise, the hybrid SSA–ARIMA model can be

applied in studies where a combination of Bcd signal with its biological noise is considered

as an input to the network simulation system.

The second hybrid model introduced in this thesis is a combination of non-parametric

models. The SSA–ETS hybrid presents a great contribution to Bcd signal extraction by

finding a solution to the problem of modelling the initial curve in Bcd data. The initial

curve in Bcd profiles attributes to the concentration of Bcd in nuclei at the anterior end of

the AP axis which shows that Bcd concentration initially reaches a maximum value before

decaying along the embryo and suggests a more complicated mechanism of morphogen

gradient readout.

The third approach of optimising the Bcd signal extraction introduced in Chapter 5

focuses on finding the number of eigenvalues r as the second and final choice of the SSA

technique. This approach is based on the distribution of the eigenvalues of a scaled Hankel

matrix. To that aim, a new step is added to the algorithm which comes between the two

stages of SSA and divides the matrix A by its trace, A/tr(A). Let ζ1, . . . ,ζL denote the

eigenvalues of the matrix A/tr(A) in decreasing order of magnitude (1 ≥ ζ1 ≥ . . .≥ ζL ≥ 0).

In this step, we perform the simulation technique to gain the distribution of ζi, so we can

understand the behaviour of each eigenvalue, which can be useful for obtaining the proper

value of r. In this study, our aim is to ascertain the distribution of ζi and its related forms
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that can be used directly for choosing the optimal value of r for the genes signal extraction.

Therefore, the skewness and variation coefficients of the eigenvalue distribution are used as

new criteria and indicator for the cut-off point in the eigenvalue spectra between signal and

noise components. Thereafter, this procedure is evaluated for three other members of the

SN, cad, gt and eve. The obtained results confirm that in the extracting signal from different

expression gene profiles, for optimised signal and noise separation, a different number of

eigenvalues need to be chosen for each gene. The new introduced algorithm enables both

automation and optimisation of SSA.

Chapter 5 also introduces a novel approach for enhancing the accuracy of SSA signal

extraction following studying the foundations of Colonial Theory. In brief, the proposed

algorithm suggests that the binary approach for differentiating between signal and noise at

the grouping step does not necessarily give the best outcome as the binary approach assumes

that there is no useful information contained in the selected noise components. Instead,

based on CT we propose a different grouping approach which considers analysing all L and r

combinations and according to the precision criteria of choose, selecting those eigenvalues

which have useful information for reconstructing the signal.

The final contribution of this research (as discussed in Chapter 6) is the development of a

new approach for extracting the meaningful regulatory links between the genes present in the

SN using a hybrid model comprised of optimised SSA and a variety of causality detection

techniques. The principal aim here is to explore the possibility of determining the genes

in SNwhich are regulated in response to Bcd signal. Since the data accuracy is of critical

importance to the success of the causality detection studies, the role of SSA in this model

is refining the data and providing the next step of the analysis with the required input (i.e

signals of gene expression profiles). According to the obtained results, using time domain

and frequency domain GC tests, the regulatory link can be detected only after removing the

noise from the expression profiles which indicates even having a small amount of noise in
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mean intensity may lead us to obtain a false negative result. However, the CCM method

presents more resistant to the noise and fluctuations of data.

7.2 Future Directions

While this thesis demonstrates innovative computational techniques for analysing segmen-

tation gene expression profiles, in particular, the gradient of Bcd during D. melanogaster

embryonic development, many opportunities for extending the scope of this thesis remain.

This section presents some of these directions.

As already mentioned in Chapter 1, FlyEx provides the most commonly used database

for quantitative segmentation gene expression profiles in D. melanogaster. However, in

addition to having a considerable level of noise, FlyEx presents a number of challenges

which addressing them would be highly advantageous when developing a new database for

future studies:

Firstly, since the fixing process causes the death of the embryos prior to imaging, in

FlyEx, the gene expression profiles are obtained from nonliving embryos [Van Soom et al.,

2003]. The achieved information from a single time point ( i.e. the time that the embryo was

fixed) makes the data to be far from ideal [Van Soom et al., 2003]. Moreover, the confocal

scans are achieved from flattened embryos, squeezed under a cover glass causing an arbitrary

orientation of embryos under the cover glass.

Secondly, following the procedure developed in FlyEx, a single embryo can be imaged

only for up to three segmentation genes. This issue limits the analysis of the SN, where the

interaction between different segmentation genes is explored. As would expect a database

containing the quantitative gene expression data of several genes obtained from the same

embryo will greatly improve the accuracy of the analysis presented in Chapter 6.

This thesis thoroughly explores the expression profile of bcd gene. However, there are

several other morphogen gradients, which control the gene expression similar to the way that
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bcd does, including Decapentaplegic (Dpp) which makes a contribution to the Drosophila

DV axis and the wing imaginal disc [Ferguson and Anderson, 1992] and Sonic hedgehog

homolog (Shh), a critical gene for the growth of digits on limbs and the brain in humans

[Roelink et al., 1995]. Therefore, a more thorough analysis of these genes can also be

performed in the future by the modelling tools introduced in our work.

Regarding the future studies, more extensive research into hybrid signal extraction

processes is likely to result in positive, vital and interesting outcomes as clearly shown via

Chapter 5. Researchers should evaluate a variety of different signal extraction techniques

within the hybrid framework proposed in this thesis to ascertain whether outcomes could be

further improved.

To obtain a more accurate illustration of the SN, there exists an opportune demand for

theoretical developments and new mathematical models representing this network. Therefore,

we believe that the findings presented in Chapter 5, open up several avenues for future

research. Introducing the statistical distribution and model parameters of the other members

of this network lays the necessary groundwork for the future goal of modelling a dynamic

SN and an automated mutant recognition system.

Chapter 6 of this thesis opens up an entirely new area of research for analysing the

regulatory links between the genes cooperating in a GRN. Hence, it would be insightful

to assess the cross-regulatory links existing between the entire members of this network.

To extend this line of research, new optimised algorithms should be developed which can

successfully address the limitation of the implementation time.
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Appendix A

Bicoid data illustration

Histograms

Presented below are the histograms of cleavage cycles 10-13 and all time classes of cleavage

cycle 14A. It should be noted that each histogram is related to one particular embryo which

is selected as a sample representing that cycle or temporal class.

(a) Time Class 10 (b) Time Class 11

(c) Time Class 12 (d) Time Class 13
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(e) Time Class 14(1) (f) Time Class 14(2)

(g) Time Class 14(3) (h) Time Class 14(4)

(i) Time Class 14(5) (j) Time Class 14(6)

(k) Time Class 14(7) (l) Time Class 14(8)

Fig. A.1 The histogram of Bcd related to cleavage cycles 10-13 and all the time class of
cleavage cycle 14A.



Appendix B

Bcd signal extraction
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Fig. B.1 SSA based optimal trend extraction for Bcd.
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Fig. B.2 Residuals following SSA based optimal trend extraction for Bcd.



Appendix C

Frequency domain GC and CCM Tests

Results

In this appendix, the obtained results following adopting the Frequency domain and CCM

Tests are presented. Each plot is related to one particular embryo which is selected as a

sample representing that cycle or temporal class. Note that some results of filtered series

show a minor difference between the test statistics and the 5% critical value, which is hard to

depict in the outcome test plots when considering the same legend for comparison.
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Fig. C.1 Frequency domain causality test results for Bcd and Cad at cleavage cycles 10-14A (Noisy
Series).
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Fig. C.2 Frequency domain causality test results for Bcd and Cad at at cleavage cycles 10-14A
(Filtered Series).
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Fig. C.3 Frequency domain causality test results for Bcd and Kr at cleavage cycles 10-14A (Noisy
Series).
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Fig. C.4 Frequency domain causality test results for Bcd and Kr at cleavage cycles 10-14A (Filtered
Series).
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Fig. C.5 Frequency domain causality test results for Cad and Kr at cleavage cycles 10-14A (Noisy
Series).
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Fig. C.6 Frequency domain causality test results for Cad and Kr at cleavage cycles 10-14A (Filtered
Series).
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Fig. C.7 CCM test results for Bcd and Cad at cleavage cycle at cleavage cycles 10-14A (Noisy
Series).
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Fig. C.8 CCM test results for Bcd and Cad at cleavage cycles 10-14A (Filtered Series).
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Fig. C.9 CCM test results for Bcd and Kr at cleavage cycles 10-14A (Noisy Series).
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Fig. C.10 CCM test results for Bcd and Kr at cleavage cycles 10-14A (Filtered Series).
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Fig. C.11 CCM test results for Cad and Kr at cleavage cycles 10-14A (Noisy Series).
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(a) Filtered-t13-ccm
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(b) Filtered-t14(1)-ccm

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

cad xmap kr
kr xmap cad

(c) Filtered-t14(2)-ccm
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(d) Filtered-t14(3)-ccm
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(f) Filtered-t14(5)-ccm
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Fig. C.12 CCM test results for Cad and Kr at cleavage cycles 10-14A (Filtered Series).
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