
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Generic Communications Module for Cooperative 3D
Visualization and Modelling over the Internet: the
Collaborative API
Conference or Workshop Item
How to cite:

Pedrinaci, C.; Aguado, J.; Azpiazu, J.; Bernaras, A.; Garcia-Alonso, A. and Sanchez, H. (2004). A Generic
Communications Module for Cooperative 3D Visualization and Modelling over the Internet: the Collaborative API. In:
6th Virtual Reality international conference IEEE-VRIC 2004, 11-16 May 2004, Laval, France.

For guidance on citations see FAQs.

c© 2004 Unknown

Version: Version of Record

Link(s) to article on publisher’s website:
http://people.kmi.open.ac.uk/carlos/wp-content/uploads/downloads/2010/09/Collaborative-API-VRIC2004.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/82079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://people.kmi.open.ac.uk/carlos/wp-content/uploads/downloads/2010/09/Collaborative-API-VRIC2004.pdf
http://oro.open.ac.uk/policies.html

A Generic Communications Module for Cooperative 3D Visualization and
Modelling over the Internet: the Collaborative API

C. Pedrinaci1, J. Aguado1, J. Azpiazu1, A. Bernaras1, A. García-Alonso2, H. Sánchez3

1Parque Tecnológico de San Sebastián, 2Universidad del País Vasco, 3Universidad de
Extremadura

{carlos, jessica, jon, amaia}@miramon.net, agalonso@si.ehu.es, sasah@unex.es

Abstract

Cooperative three-dimensional visualization and

modeling applications allow a distributed group of
users to work together with a model they share. To
implement this kind of applications the underlying
communications system must provide reliable and
ordered multicast of users interactions. Due to the high
complexity that characterizes the models, network
bandwidth requirements have limited their use to
intranets or in a few cases to very high-speed Internet
connections.

In this paper we present a communications module
that solves this problem. The library exposed, which is
called Collaborative API, supports the creation of very
efficient cooperative 3D visualization and modeling
applications by optimizing the use of the network
resources.

The Collaborative API, implements a new
communications architecture: the dynamic
client/server. The communications module presented in
this paper is illustrated by two examples of
applications that use it to provide cooperative 3D
visualization over the Internet.

1. Introduction

Cooperative visualization over the Internet of three-
dimensional models allows a geographically distributed
group of persons to share the view of one or several
three-dimensional objects. Cooperative modelling can
be seen as an extension of Cooperative visualization
where it is also possible to dynamically modify the
shared model.

Every cooperative visualization or modelling
application for Internet must satisfy a set of
requirements. First of all, they must provide reliable
multicast groups communication. Moreover, these
applications have to work in a globally ordered way
among the interactions performed by the members of
the collaborative session. Also, it is required to have a
failure recovery mechanism, that is to say, it must have
tolerance to errors. Next, as a consequence of the

previous requirements but also as an added value for
the application, it is necessary to have a group
membership control system. Last, the use of Internet
for establishing communications adds networks
bandwidth difficulties. Therefore applications must
optimize the communications management to adapt to
low bandwidth situations.

There are already several applications that offer
cooperative visualization or modeling. However, none
is prepared for its use across the Internet, and require
high or even very high-speed connections. As a result
only the main companies in the world benefit from the
use of such kind of applications.

The same way, many efficient group communication
libraries are available nowadays. This is the case of
JGroups [1], Spread [2] or Ensemble [3], to name a
few. Unfortunately, these libraries don’t satisfy the
requirements collaborative applications have. In
particular, establishing a global order between user’s
interactions is not achieved.

To solve all these difficulties we have developed a
communications library that allows developers to
implement cooperative visualization or modeling
applications over the Internet: the Collaborative API.

We first present an overview of its main
characteristics. Next, we explain the underlying
architecture that supports it. Afterwards, we expose the
different steps required for creating a cooperative tool
and we finally illustrate its use with two applications
that are currently using the library.

2. The Collaborative API

The Collaborative API is an efficient, reliable and
versatile groups communication library suitable for
creating cooperative 3D visualization or modelling
applications over the Internet.

The whole library has been written in Java. Thus, it
is platform independent and avoids the compatibility
issues associated to the Internet’s heterogeneity. It is
encapsulated in a 63KB jar, which makes it suitable for
its use in applets and even in PDA’s. Moreover, it has
been optimized in a way that allows home users to

profit from collaborative work benefits, as it does not
require any additional hardware or high-speed network
connections.

2.1 The dynamic client/server architecture

The Collaborative API implements a new
communication architecture we have called the
dynamic client/server. It uses the most appropriate
features of the client/server and distributed
architectures, applying a peer-to-peer approach. The
result is a new architecture suitable for supporting
cooperative visualization or modeling over the Internet.

In the client/server architecture, the server
centralizes the information and serves it to the clients.
Thus, the server is the main component of the
architecture and usually does all the processing work.
Using such architecture for collaborative visualization
or modeling applications facilitates establishing a
global order between users interactions. However, it
has some drawbacks associated. First of all, the fact
that a server failure provokes the whole system to fall
down does not provide errors tolerance. Next, this
approach requires having a very powerful computer
acting as the server. Last, sending models to client
machines establishes very high restrictions over the
network bandwidth to be used. As an example of such
an approach SGI has created the OpenGL Vizserver [4]
where the hardware and network requirements are
excessive even for medium-size companies.

In the distributed architecture, the information is
distributed among all the hosts. This solution is harder
to manage but provides tolerance to errors.
Nevertheless, in that case it is very difficult to establish
a global order among users’ interactions.

To benefit from both architectures advantages we
have created a new architecture that allows the server
role to be switched in run-time (see Figure 1). Like in
peer-to-peer [5] approaches, the Collaborative API
implements both the client and the server and acts
accordingly depending on the situation. Again, the
server (also referred as controller in this paper) is a
critic node, thus, the library implements a replacement
mechanism that automatically transfers the server role
to an active host.

The dynamic client/server architecture offers the
possibility of a new paradigm for collaborative
applications management. The applications can follow

a distributed architecture by replicating the information
among the hosts. That way, the whole system is error
tolerant but what is more important, communications
can be optimized. Applications can use a short
messages protocol. As a consequence the messages
interchanged during a cooperative session are very
small and their transfer is fast even with low bandwidth
connections.

2.2 The communications support

To be able to apply this new paradigm for managing

cooperative visualization and modelling applications,
the underlying communications technology must
satisfy some requirements.

First, it has to provide reliable multicast capabilities.

This includes loss less transmission of messages to the
participants of a cooperative session. Moreover, the
order between the messages must be kept. Finally, for
ensuring coherence between all the member’s
workspaces, the system must satisfy the principle of
atomicity. In other words, a message has to be received
by all the participants or none.

Second, as a consequence of the principle of
atomicity, the communications technology has to
provide a robust group membership control. It is
necessary to keep track of the systems that are taking
part in the cooperative session.

The communications architecture relies on TCP/IP
for establishing the connections. This way, thanks to
the protocol features, the Collaborative API provides
reliable communication. In particular, TCP/IP grants
loss less and ordered transmission [6]. Moreover, it
deals with packet fragmentation and reassembly
whenever the message's size exceeds the maximum
supported. It is true that TCP requires a three-way
handshake connection, which is not required in UDP.
However, given that control switch will only happen
whenever a new user requires or wants to interact with
the system, the network bandwidth and time spent in
establishing connections is negligible compared to the
benefits associated to the use of TCP. Moreover, the
use of UDP for multicasting, that is, the use of IP
multicast, requires multicast routers and class D IPs.
Such a requirement is unacceptable if we want let home
users take part on a collaborative session. Thus, the
Collaborative API extends the reliable unicast
transmission TCP offers, to reliable multicast by
replicating messages. This represents an overhead on
the controller side, which is minimized by handling
every connection by a thread. This solution has proven
to be efficient for the applications we want to support
as the number of members in a session rarely exceeds
ten users.

Figure 1. Dynamic client/server architecture

The collaborative module we have developed
provides a robust group membership management
control. Thanks to its internal data structures, every
Collaborative API instance keeps track of all the
members that are taking part in a session as well as
their associated IP and listening port, improving the
time spent when switching the controller node.
Moreover, every new connection, even those that are
refused, are notified to the participants of the session.
The same way disconnections are also notified to the
members of the collaborative session. Finally, the
internal data structures do also provide the means for
reacting upon controller failures, by automatically
selecting a substitute for the server node. This is
performed by selecting the next active node from the
members list.

Another important characteristic concerning the
communications module is the fact it is based on well-
known design patterns [7]. These confer to the API a
modularity that results in an easier maintenance and
development. In particular the patterns are used in the
messaging mechanism but are also used for providing a
very powerful and versatile feedback mechanism for
cooperative application developers.

Regarding the messaging mechanism, the
collaborative module has been developed in a way that
allows modifying or replacing a particular message
independently from the rest of the API. The same way,
it allows cooperative application developers to easily
implement their own application protocol.
Programmers do not have to worry about the
underlying communications mechanisms as the
Collaborative API transparently handles it. The
messages are divided in two sets. The first set is formed
by all the internal messages of the communications
library, like for example DisconnectionMessage,
ConnectionMessage or TakeControlMessage. The
second set concerns the application's messages and
does only provide the means for developers to
implement their own messaging policy based on the
application requirements.

The Collaborative API provides the mechanisms
needed to inform applications about every situation that
may take place during a collaborative session. Thus,
the API users, that is collaborative application
developers, are informed any time a message arrives
and have available a simple interface to treat them.
This allows providing procedures that are triggered
every time a particular message arrives. In addition, the
API provides methods for obtaining all the information
an application may require concerning the collaborative
session, like the users connected, the current controller,
etc.

To better illustrate the characteristics presented but
also to present the steps required for integrating the

Collaborative API, in the next section we briefly
explain how to use the API.

3. Using the Collaborative API

As we have previously explained, thanks to the
dynamic client/server architecture, the Collaborative
API allows optimizing the use of network resources.
For that, collaborative applications that make use of
this communications library must follow a short
messages policy. Using an approach similar to the use
of client-side scripts in the web, the server node only
needs to send a particular command when the user
interacts. Client nodes, receive the message, interpret it
and apply it to their own working memory. Given that
the communications module we have developed
provides reliable multicast communication, every
participant’s workspace is consistent with the rest of
the session members.

A direct consequence associated to the use of a short
messages policy, is to remove the need for a central
server with high processing power. Instead, the
workstations that are usually used for visualization or
modeling tasks can be employed for cooperative
visualization or modeling work.

It is also important to say that the short messages
policy encourages the modularization of applications
functionality. Software Engineering has proven the
benefits of modularization in software applications,
concerning maintenance or improvement tasks. Thus,
the use of the Collaborative API indirectly improves
the applications that integrate it.

The API we have developed is characterized by its
ease of integration into collaborative visualization
applications. Integrating the communications module
into an application is as simple as extending the
CollaborativeInterface class and creating a set of
messages.

The CollaborativeInterface encapsulates all the
functionality of the communications module. It
abstracts the developer away from collaborative session
management. At the same time, it provides all the
utilities the collaborative application developer may
require, like JoinSession, BroadcastMessage, etc. Only
the feedback mechanism has to be implemented if
needed. Implementing application behavior based on
the messages (internals to the API or belonging to the
application that uses it) received during a collaborative
session, just requires programming the associated
abstract method. The internal mechanisms of the
Collaborative API directly take care of triggering the
appropriate method in run-time. Therefore, no active
waiting is required and the developer is given the
possibility to treat every message reception.

The creation of application specific protocols is also
very simple. Every message needs to extend the
App_Message class. This class ensures the message
transferred contains all the information about the
sender. The developer of a collaborative application is
thus, abstracted away from the communication internal
details but still has the data required for implementing
an application protocol. It is worth noting that
applications do not require implementing any message
for providing chat capabilities. Given that this is a
typical feature in collaborative applications, it has
already been integrated in the API.

To illustrate the use of the Collaborative API, we
present in the next section two applications that use it.

4. Use cases

The Collaborative API has been used in two
applications to benefit from its cooperative
communication capabilities. The first one is a
cooperative 3D visualization for CAD models. The
second one implements a new paradigm for visiting
virtual 3D worlds modeled in VRML.

4.1. 3DShared

3DShared [8][9] is a freeware cooperative
visualization application platform independent. It uses
the Collaborative API to provide real time visual
exploration and multiple-user interactions over three-
dimensional models among geographically remote
users. It allows engineers, modelers and customers to
view the virtual design of products through its three-
dimensional replica. Its user interface is presented in
Figure 2.

3DShared is composed of two modules: 3D API and
the previously described Collaborative API. The 3D
API takes care of the aspects related with the
visualization of three-dimensional models. The
Collaborative API ensures the correct communication
among the members of the cooperative session. As the
design and implementation of both modules is
independent, 3DShared offers the functionalities of
both modules in the same interface. Consequently, the
cooperative visualization of three-dimensional models
is allowed.

3DShared benefits from the capabilities offered by
the Collaborative API and the dynamic client/server it
implements. To do so, it uses a short messages policy.
That way, the use of network resources is optimized.
During a collaborative session, the controller host
communicates the interactions its user is performing

over the model. The Collaborative API of every

participant host receives the messages. These messages
are then handled by 3DShared, which ensures they are
correctly interpreted by the 3D visualization module.
This communication process can be seen in the Figure
3.

To better support collaboration 3DShared has three

communication tools. The first one is a chat tool. Its
functionality being directly offered by the
Collaborative API. The second one is a file transfer
tool. This is used on session establishment for
transferring models to the session members. The same
way, every time a new user joins the ongoing session,
the current state of the model is transferred. Finally, the
3D-window where the virtual models are rendered
represents the main communication utility between the
users.

Several experiments have been made to measure the
speed in the transfer of the graphics file and the
updating messages of the scene among several hosts.
These experiments have shown that the Collaborative
API optimizes network bandwidth use as 3DShared has
been used with 56Kbps modems [9].

Figure 3. 3DShared communication process

Figure 2. 3DShared user interface

4.2. Guided visit through a 3D virtual world

Traditional virtual 3D tours consist on a fixed path,

established when designing the virtual world. When
entering the world, or activating a sensor within it, the
user's avatar is automatically taken through a sequence
of fixed points, allowing the creator of the world to
make greater emphasis in the areas that he or she
decides. But this paradigm shows two clear drawbacks:
on the one hand, the lack of interactivity of the user,
who is limited to watch what is being showed to him,
with no possibility of changing the course of the visit.
On the other hand, the path will have been defined at
the moment of designing the world, reason why it will
be the same one for all the users who visit the world,
that is to say, is not customizable or adaptable to the
needs of the visitor.

The guided visit is a new navigation paradigm in
virtual 3D worlds over Internet [10]. It allows making
real-time adaptable visits through a virtual 3D world.
Moreover, it improves usability by allowing users to
control the system.

In the guided visit paradigm, users are connected to
a master user that guides them through the virtual
world. The guide knows the world, and can move
freely through it. All the movements performed by the
guide are automatically reproduced in the guided
systems.

In order to improve the usability of virtual 3D
worlds visits, the guided visit must allow to
dynamically interchange the role of guiding between
the users connected. That is, every user that is being
guided through the world should have the possibility to
become the new guide, and start guiding the rest of the
users involved.

The Collaborative API provides the appropriate
communications system by means of the dynamic
client/server architecture it implements. Moreover, the
system does not require additional hardware (as a
specialized server or multicast routers) or software to
be used.

The guided visit (see Figure 4), has been developed
integrating the Collaborative API. It uses the concept of
a collaborative session to set up a group of users
visiting a virtual 3D world over Internet: Miramon
virtual. In [11] it is possible to perform a guided visit of
San Sebastian’s Technology Park using this approach.

The whole system is packed as an applet, thus, it can
be used with a web browser. Once the applet and the
virtual world have been downloaded to the client
computers, communications are performed directly
between the users involved. In low bandwidth
environments the system has proven to be very
efficient thanks to the use of a short messages policy in
order to reduce the size of transmissions.

5. Conclusions

To provide an appropriate communications system
for cooperative 3D visualization and modelling
applications we have developed the Collaborative API.
It is a platform independent, generic, efficient and
versatile communications library.

The Collaborative API implements a new
communications architecture called dynamic
client/server. This new communications architecture is
based on the client/server architecture but distributes
the information between the members of the
collaborative session. As a consequence, the server role
can be switched in run-time among the different
participants of a cooperative session. Moreover, the
library provides reliable multicast communications and
a reliable groups management system.

Applications that use the Collaborative API benefit
from an ordered dynamism between users interactions
allowing them to better work in cooperation. In
addition the communications infrastructure allows the
use of short messages policies in collaborative
applications for optimizing the use of network
resources.

The library has been integrated in two applications
that provide cooperative 3D visualization facilities over
the Internet. The applications developed have proven
the benefits of the communications paradigm, but also
the power of the library that encloses it. The small size
and the efficiency of the library, make of the
Collaborative API a suitable utility for providing
collaborative capabilities to applications that have to be
used across the Internet, without any additional
hardware and with low bandwidth.

6. References

[1] B. Ban, “JGroups – A Reliable Multicast Communication
Toolkit for Java”, Project Home Page:
http://www.cs.cornell.edu/Info/Projects/JavaGroupsNew/inde
x.html (Last visited: November 2003).

Figure 4. Guided visit through 3D worlds

[2] Y. Amir, C. Danilov, and J. Stanton, “A Low Latency,
Loss Tolerant Architecture and Protocol for Wide Area
Group Communication”, International Conference on
Dependable Systems and Networks (FTCS-30, DCCA-8),
New York, June 25-28, 2000.

[3] T. Clark, “Ensemble – Distributed Communication
System”, Project Home Page:
www.cs.cornell.edu/Info/Projects/ensemble, (Last visited:
November 2003).

[4] J. Lefaucheux, “Visualisation avancée pour un travail
collaboratif”, MICAD 2003, April 2003.

[5] D. Clark, “Face-to-Face with Peer-to-Peer Networking”.
Computer, vol. 34, nº. 1, January 2001, pp. 18-21.

[6] A.S. Tanenbaum, Computer Networks, Prentice-Hall, Inc.,
1996.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

[8] D. Borro, I. Recio, C. Pedrinaci, H. Sánchez, A. Garcia-
Alonso, “Peer-to-peer techniques applied to the cooperative
visualization of CAD models”, MICAD 2003, April 2003.

[9] D. Borro, I. Recio, A. García-Alonso, H. Sánchez, L.
Matey, “CSCW for foundry design using Java3D”,
Demonstration at ACM 2000 Conference on Computer
Supported Cooperative Work, Philadelphia, 2000.

[10] J. Azpiazu, C. Pedrinaci, J. Aguado, A. García-Alonso,
A. Bernaras"A new navigation paradigm for virtual reality:
the guided visit through a virtual world"to be published in the
Proceedings of the IEEE-VRIC 2004, Laval-Virtual, Laval,
France, 2004

[11] J. Azpiazu, C. Pedrinaci, J. Aguado, A. Bernaras,
Miramón Virtual, Home page:
http://www.miramon.net/miramon_virtual.html, (Last visited:
April 2004)

