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Critical temperature for entanglement transition in
Heisenberg Models

Hongchen Fu†, Allan I Solomon† and Xiaoguang Wang‡
† Quantum Processes Group, The Open University, Milton Keynes, MK7 6AA,
U.K.
‡ Department of Physics, Macquarie University, Sydney, New South Wales 2109,
Australia

Abstract. We study thermal entanglement in some low-dimensional Heisenberg
models. It is found that in each model there is a critical temperature above which
thermal entanglement is absent.

1. Introduction

Entanglement[1] plays an important role in quantum computation and quantum
information processing. With appropriate coding, a system of interacting spins, such
as described by a Heisenberg hamiltonian, can be used to model a solid-state quantum
computer. It is therefore of some significance to study thermal entanglement in
Heisenberg models. We find that for each model there is a corresponding critical
temperature for transition to the entanglement regime, and the entanglement only
occurs below this critical temperature.

2. Measures of entanglement

A pure state described by the wave function |Ψ〉 is non-entangled if it can be factorized
as |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉. Otherwise, it is entangled. A typical example of an entangled
state is the Bell state for a bipartite system of two qubits:

1√
2
(|01〉 − |10〉) (1)

For such a bipartite system the most popular entanglement measure is the
entanglement of formation. For a pure state the entanglement of formation is defined
as the reduced entropy of either subsystem[2].

For the two-qubit system one can use concurrence[3] as a measure of the
entanglement. Let ρ12 be the density matrix of the pair which may represent either a
pure or a mixed state. The concurrence corresponding to the density matrix is defined
as

C12 = max {λ1 − λ2 − λ3 − λ4, 0} , (2)

where the quantities λi are the square roots of the eigenvalues of the operator

%12 = ρ12(σ
y
1 ⊗ σy

2 )ρ∗12(σ
y
1 ⊗ σy

2 ) (3)
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in descending order. The eigenvalues of %12 are real and non-negative even though %12

is not necessarily Hermitian. The entanglement of formation is a monotonic function
of the concurrence, whose values range from zero, for an non-entangled state, to one,
for a maximally entangled state.

3. Heisenberg models

The general N -qubit Heisenberg XYZ model in a magnetic field B is described by the
Hamiltonian

H =
1
2

N∑
n=1

(
σx

nσx
n+1 + σy

nσy
n+1 + σz

nσz
n+1

)
+

N∑
n=1

Bnσz
n (4)

where we assume cyclic boundary conditions N + 1 ≡ 1. The Gibbs state of a system
in thermodynamic equilibrium is represented by the density operator

ρ(T ) = exp(−H/kT )/Z, (5)

where Z = tr[exp(−H/kT )] is the partition function, k is Boltzmann’s constant which
we henceforth take equal to 1, and T is the temperature.

As ρ(T ) represents a thermal state, the entanglement in the state is called thermal
entanglement. At T = 0, ρ(0) represents the ground state which is pure for the
non-degenerate case and mixed for the degenerate case. The ground state may be
entangled. At T = ∞, ρ(∞) is a completely random mixture and cannot be entangled.

4. Thermal entanglement in the 2-site Heisenberg model

The density matrix can be obtained[4] as

ρ(T ) = A




e−B/T

cosh(J/T ) − sinh(J/T )
− sinh(J/T ) cosh(J/T )

eB/T


 (6)

where A = (2 cosh(J/T ) + 2 cosh(B/T ))−1, and the concurrence

C = max
{

sinh(J/T )− 1
cosh(J/T ) + cosh(B/T )

, 0
}

. (7)

As the denominator is always positive, the entanglement condition is

sinh(J/T )− 1 > 0 or T < 1.134J. (8)

from which we conclude that

• There is a critical temperature Tc ∼ 1.134J . The thermal state is entangled when
T < Tc.

• The critical temperature is independent of the magnetic field B.
• Entanglement occurs only for the antiferromagnetic case (J > 0).
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5. Thermal entanglement in the 3-site Heisenberg model

We now consider pairwise entanglement in the 3-site Heisenberg model with uniform
magnetic field, and also in the presence of a magnetic impurity[5]. The reduced density
matrix of two sites can be written as

ρ12 =
2

3Z




u
w y
y w

v


 (9)

The concurrence may be readily obtained as

C =
4

3Z
max

{|y| − √uv, 0
}

, (10)

In the case of a uniform magnetic field, the entanglement between any two sites is
the same due to cyclic symmetry. We therefore need only consider the entanglement
between sites 1 and 2. Then

u(B) = v(−B) =
3
2
e3βB +

1
2
eβB(2z + z−2)

w = cosh(βB)(2z + z−2)
y = cosh(βB)(z−2 − z)
Z = 2 cosh(3βB) + 2 cosh(βB)(2z + z−2). (11)

where (z = exp(βJ)).
If B = 0, one can easily find that the sites 1 and 2 are entangled if and only if

2|z−2 − z| − 3− 2z − z−2 > 0 (12)

from which we conclude that

• There is no entanglement when J > 0;
• Entanglement occurs when J < 0 and T < Tc, where the critical temperature is

given by −1.27J = 1.27|J |.
• The maximal concurrence is 1/3, which occurs for T → 0.

Fig.1 plots the concurrence against τ for different B. From these graphs we see
that there exists a critical temperature above which the entanglement vanishes. It
is also noteworthy that the critical temperature increases as the magnetic field B
increases.

We now consider the case of a single impurity field on the third site; thus
B1 = B2 = 0 and B3 = BJ > 0. In this case the cyclic symmetry is violated
and we have to consider the entanglement between sites 1 and 2, and between sites 1
and 3, separately.

Fig.2 plots the concurrence C12 and C13 against scaled temperature τ = kt/|J |
for different magnetic fields B. From Fig.2(a) we see that when the magnetic field
is located at the third site both the antiferromagnetic and ferromagnetic cases are
entangled in the range 0 < τ ≤ τc, where the critical temperature τc depends on
B. Fig.2(a) also suggests that the concurrence C12 tends to 1, namely that the
(1, 2) entanglement becomes maximal, when τ → 0 for large enough B, in both the
antiferromagnetic and ferromagnetic cases.

In contrast to the (1, 2) case, the entanglement between sites 1 and 3 increases to
a maximum with increasing B and then decreases. The lower the τ , the smaller the
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Figure 1. Concurrence as a function of T for different magnetic fields B = 1(solid
line), 3/2(dashed line), and 2(circle point line).
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Figure 2. Concurrence C12 C13against τ for different B. For antiferromagnetic
case (dotted line), B = 10.

B at which the concurrence reaches its maximum value. For smaller B, entanglement
occurs only in the ferromagnetic case (J < 0), while for large enough B (e.g. B = 10 in
our units), weak entanglement occurs in both the antiferromagnetic and ferromagnetic
cases.
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