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Abstract: Chronic neurodegenerative diseases are now associated with obesity and diabetes and
linked to the developing and developed world. Interests in healthy diets have escalated that
may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global
metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major
disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS)
on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are
linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated
with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein
metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with
close connections to neurological diseases. The influence of diet on mycotoxin metabolism has
accelerated with the close association between mycotoxin contamination from agricultural products
such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane
cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism.
Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest
with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid
metabolism of mycotoxin to the liver with the prevention of neurodegeneration.
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1. Introduction

Interests in lowering peripheral cholesterol levels to reduce the risk of Alzheimer’s disease
(AD) have been the focus of many research studies, with particular impact for the regulation
of brain amyloid beta (Aβ) metabolism that is closely connected to neurodegenerative disease.
Neurodegeneration and brain cholesterol disorders have been the subject of intense research by
many laboratories [1–3] since the peripheral metabolism of cholesterol is not linked to brain
cholesterol metabolism. Cholesterol cannot pass through the blood brain barrier (BBB) with brain
cholesterol homeostasis maintained by cholesterol excretion in form of oxysterols. The brain must
obtain cholesterol from de novo synthesis with astrocytes, and oligodendrocytes mainly involved
in cholesterol synthesis and neurons account for only a small amount of the brain cholesterol [4].
Brain cholesterol homeostasis is maintained by cholesterol excretion in the form of 24S-hydroxysterol
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(24S OHC), accomplished by the cytochrome P450 species, and in man the brain release approx.
6 mg of 24S OHC into the periphery each day is removed predominantly by the liver [4]. In
AD patients studies have shown that cholesterol metabolism is disturbed with elevated 24S OHC
levels possibly related to neuronal death and neurodegeneration [4]. An integrated approach to
advance our knowledge require the identification of toxic dietary components such as bacterial
lipopolysaccharides (LPS) and fungal mycotoxins that have become of importance to neuron
apoptosis in neurodegenerative disease, versus the brain cholesterol dyshomeostasis that is linked to
Aβ oligomerization, that determines neuron survival for the treatment of neurodegeneration and AD.

The interests in hypercholesterolerolemia with low high density lipoproteins (HDL) and high
low density lipoproteins (LDL) in the plasma of AD patients [4] has increased with relevance
to diet, nutrition and assessment of insulin resistance (obesity, diabetes)/atherosclerosis with
elevated phospholipid transfer activity (PLTP) [5–7] associated with neurodegeneration and AD.
Diets that are healthy stabilize insulin resistance, increase HDL, and promote neuron and synapse
maintenance in the brain [1,4]. The consumption of mycotoxins by mycotoxin contamination in
food [8–16] has adverse human health [17] effects and now has become of global interest. Mycotoxin
contamination has been found in cereal/grains, coffee (ochratoxin A), apples, apple juice, nuts, and
nut products [8–17]. Mycotoxins are the toxic secondary metabolites of molds and fungi and many
of which are pathogenic to humans. Mycotoxins enter the body through the skin, digestive tract, or
through respiration and when the body with aging accumulates a few milligrams [8–17] the lethal
effects of mycotoxins have been associated with various organs.

Diets high in cholesterol (Figure 1) may promote rapid absorption of various mycotoxins
with increased membrane cholesterol that sequester mycotoxins [18]. Sequestration of mycotoxins
by a cholesterol model system has now become an important technology to prevent mycotoxin
toxicity [18]. Furthermore, mycotoxin levels are associated with hypercholesterolemia and
have detrimental effects on liver cholesterol metabolism by effects on cholesterol synthesis [19].
Mycotoxins have been shown to bind to lipoproteins in human and animal plasma and induce
hypercholesterolemia [20]. The effects of ingestion of a cholesterol diet involve intestinal transport
of cholesterol in lipoproteins such as chylomicrons and chylomicron remnants with delivery of
cholesterol to the liver [21,22]. The liver synthesizes very low density lipoprotein (VLDL) and
transports cholesterol to peripheral tissues [23].
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Figure 1. Links between diet and neurodegeneration has escalated with the involvement of bacterial 
lipopolysaccarides and fungal mycotoxins in amyloid beta (Aβ) homeostasis. Nutrition and food 
science with diets that promote the low absorption of lipophilic LPS and mycotoxin into lipoproteins 
with the rapid hepatic metabolism of LPS/mycotoxins to the liver, have become important to prevent 
early neurotoxicity and to promote the survival of neurons with age. 

These lipoproteins have generally spherical structures consisting of a neutral lipid core of 
cholesteryl esters and triglycerides and a surface layer of phospholipids, unesterified cholesterol and 
various apolipoproteins such as apolipoproten E and apoliprotein AI [24]. Mycotoxins are lipophilic 

Figure 1. Links between diet and neurodegeneration has escalated with the involvement of bacterial
lipopolysaccarides and fungal mycotoxins in amyloid beta (Aβ) homeostasis. Nutrition and food
science with diets that promote the low absorption of lipophilic LPS and mycotoxin into lipoproteins
with the rapid hepatic metabolism of LPS/mycotoxins to the liver, have become important to prevent
early neurotoxicity and to promote the survival of neurons with age.
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These lipoproteins have generally spherical structures consisting of a neutral lipid core of
cholesteryl esters and triglycerides and a surface layer of phospholipids, unesterified cholesterol
and various apolipoproteins such as apolipoproten E and apoliprotein AI [24]. Mycotoxins are
lipophilic [25] and after ingestion of fat and cholesterol can be incorporated into lipoproteins
(Figure 1) with sequestration by cholesterol in the surface of lipoprotein particles. Interests in
lipoprotein sequestration may allow reduction in mycotoxin toxicity [19]. The effects of delivery
of mycotoxins to the liver [25] interfere with the VLDL and HDL cholesterol metabolism and
are responsible with hypercholesterolemia and atherosclerosis [19]. In various studies in animals
the role of mycotoxins in neurological disease [26–30] have indicated effects on oxidative stress
pathways involved in neurotoxicity [31]. Mycotoxins such as macrocyclic trichothecenes [32–34]
and ochratoxin A (OTA) have been shown to induce apoptosis of neuronal cells [35–37] and
contribute to the pathogenesis of neurodegenerative diseases such as AD and PD. Other cells such
as hepatocytes, platelets (cholesterol levels), macrophages, endothelial cells, and astrocytes are
susceptible to mycotoxin toxicity. Mycotoxins have an acute or chronic effect in man and depend on
the nature of mycotoxin and the composition of the diet that are associated with the development of
diseases of the liver (cancer), kidney, lungs, reproductive system, and gastrointestinal tract that may
also involve the immune system and hormone imbalances. Interests in the effects of mycotoxin and
its transport to the brain have accelerated with the current global NAFLD epidemic with corruption
of mycotoxin clearance by the liver with relevance to accelerated neurodegeneration and amyloidosis.

The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia indicate that the abnormal
clearance and metabolism of fungal mycotoxins in lipoproteins are linked to hypercholesterolemia
and neurodegeneration (Figure 1). The synergistic effect of LPS and mycotoxins interfere
by post transcriptional and post translational modifications to cells and disturb cholesterol
interacting proteins, lipoprotein metabolism, and membrane apo E/Aβ interactions relevant to
hypercholesterolemia with close connections to Alzheimer’s disease. Hypercholesterolemia is one
of the major causes of NAFLD and blood brain barrier disease (BBB) and with aging the plasma
oxysterol levels increase in chronic diseases [38–43] that accelerate the transport of HDL to the
brain [44]. HDL is closely linked to oxysterol induced cell damage and as oxysterol contents increase
in HDL the prevention of oxysterol damage to peripheral cells and neurons occurs. In AD brain
oxysterol levels are increased and disturb the BBB associated with increased Aβ production [45,46].
Hypercholesterolemia and NAFLD induce BBB disease with increased LPS and mycotoxin transport
to the brain with neurodegeneration. Individuals with insulin resistance such as obese and diabetic
individuals have BBB disease [47] and transport of LPS and mycotoxin corrupt BBB disease important
to drug therapy associated with accelerated brain aging. The cholesterol lowering drug Simvastation
has been shown to block disturbed BBB disease induced by hypercholesterolemia [48].

In AD BBB disease has been reported and its early detection has become important to the
prevention of neurodegeneration [49,50]. The BBB microvasculature is composed of a capillary
basement membrane containing endothelial cells, astrocyte end feet, and pericytes inside the
basement membrane. Transport of mycotoxins that are non-polar cross the BBB rapidly in vivo [51,52]
or may involve LPS induced BBB permeability [53,54] to mycotoxin transport across BBB membranes.
Myoctoxins such as T-2 or HT-2 toxin cause BBB disruption by the influence on the tight junction in
the BBB [55]. Mycotoxins may corrupt BBB membranes by their incorporation into the membranes
that induce membrane changes and lipid peroxidation [31]. LPS induced BBB permeability has been
shown and involves increased reactive BBB opening with the transport of proteins across the BBB
such as insulin [54] and with the impairment of the BBB transport of Aβ from the brain [56,57] with
corruption of the peripheral Aβ clearance pathway. Hypercholesterolemia induced BBB permeability
that involve oxysterols are also linked to LPS and mycotoxin induction of BBB disease in NAFLD
and neurodegeneration.

Diets that contain alcohol, fat, and carbohydrate stimulate the absorption of LPS [58–61]
that can rapidly insert into cell membranes, with a preference for insertion and partition into
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cholesterol/sphingomyelin domains in lipoproteins and cell membranes [62,63] with relevance to
mycotoxin transport. LPS has been shown to effect cholesterol efflux, with effects on hepatic
lipoprotein metabolism and dyslipidemia [64–68]. LPS administration in mice are closely linked with
connections to insulin resistance with effects on NAFLD, systemic inflammation and the metabolic
syndrome. The importance of LPS on the regulation of cholesterol and Aβ homeostasis [69–71]
involve apolipoprotein E (apo E-PLTP) that are closely linked to NAFLD [64–68] and involve the
metabolism of liver mycotoxins [25,26]. The synergism of LPS and mycotoxin on NAFLD involve
the corruption of peripheral Aβ metabolism [69–71], associated with increased plasma cholesterol,
oxysterol, mycotoxin levels, and low HDL levels involved with early neurotoxicity in various
neurodegenerative diseases.

2. Mycotoxin and LPS Regulate Cholesterol and Aβ Metabolism

The role of cholesterol in modulating the expression of amyloid precursor protein (APP) and the
levels of cell Aβ have been reported [4,7] and Aβ metabolism connected to the low density lipoprotein
receptor (LDLr) family [4]. Cholesterol modulates Aβ levels and Aβ acts on lipid metabolism
by effects on cholesterol synthesis that may play an important role in sphingomyelin/ceramide
metabolism [4]. In the brain and liver, the LDLr family play an important role in the metabolism of
cholesterol and Aβ with the LDL receptor related protein 1 (LRP1) closely linked to AD [72–74]. LRP1
and LDLr acts on the blood brain barrier (BBB), and regulate the transport of Aβ to the periphery
from the brain [72–74]. The corruption of LPS of peripheral and brain Aβ transport [69–71] involve
disturbed membrane cholesterol homeostasis with membrane cholesterol involved in mycotoxin
sequestration [19,25].

Cholesterol is an essential membrane component that influences hepatocyte and neuron function
and in neurons, cholesterol is critical for the maintenance of synaptic connections. Membrane
lipids such as cholesterol play an important role with cholesterol related proteins in neurons that
conduct electrical impulses in association with membrane proteins. In membranes the association
of phospholipids, glycosphingolipids such as ceramide or gangliosides, and glycerophospholipids
(plasmalogen) with cholesterol have marked effects on membrane protein structure and function with
the regulation of ion pumps [4,7]. Mycotoxins such as patulin in cultured cells have been shown to
interfere with membrane function and ion channels involved in the transduction of extracellular an
intracellular signals [25,75]. Interactions with membrane cholesterol involve mycotoxin sequestration
and LPS that bind to the cholesterol/sphingomyelin domains in membranes [62,63].

LPS are endotoxins and essential components of the outer membrane of all Gram-negative
bacteria. Bacterial LPSs are dimeric molecules consisting of a polysaccharide moiety linked to a lipid
core termed Lipid A which is anchored within the cell membrane. Lipid rafts/caveolae containing
sphingomyelin and cholesterol form microdomains in cell membranes for the recruitment of lipid
modified proteins such as Aβ oligomers. LPS may influence membrane cholesterol by binding to
cell membranes and lipoproteins and its packing in the membrane allows the increased interaction
or displacement of the Aβ peptide, that leads to electrostatic Aβ oligomer formation and fibril
formation [69].

LPS disturbance in cell cholesterol efflux involve the liver X receptor and ATP-binding cassette
transporter proteins (LXR-ABCA1) interactions [76]. Furthermore, LPS interference with cholesterol
interacting proteins such as caveolin-1, which is a major component of caveolae (membrane
microdomains, 50–100 nm), involve corruption of cellular cholesterol endocytosis [77–88]. LPS
has been shown to effect caveolin expression [89,90], apo AI [91–93] and apo E [69] with effects
on neutralization of cholesterol efflux that involve ABCA1 [94–96]. The effects of LPS on plasma
cholesterol metabolism involve HDL metabolism with neutralization of apo AI [91–93] associated
with low HDL levels. Increased membrane cholesterol levels induced by LPS delay hepatic
mycotoxin metabolism in membranes. Increased cholesterol levels in membranes have been
associated with increased Aβ oligomers with toxic effects on membrane lipid peroxidation [69–71,97]
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that may involve cholesterol interacting proteins such as the GPCRs [98–103]. LPS effects on
caveolin-1 expression involve ABCA1 and insulin receptor levels with effects on Aβ production and
relevance to AD [104–111].

3. LPS/Mycotoxin Interactions Interfere with Apolipoprotein E/Aβ Peptide Interactions and
Determine Neuron Survival

Novel information on dietary components that perturb the interactions between two key
peptides (apo E and Aβ) has the potential to considerably improve brain (neuron) and liver Aβ

metabolism with relevance to insulin resistance and neurodegeneration [112]. The understanding
of specific toxins such as bacterial LPS and mycotoxins that interfere with the transport of apo E
mediating Aβ clearance in the brain and liver is clearly needed. The integrated approach will advance
our knowledge of the importance of diet [4] in this transport process relevant to cholesterol/Aβ

homeostasis, that provide insights in relation to the toxic process that leads to neurodegeneration
and AD.

Apo E is an important apolipoprotein in lipid metabolism with multiple roles in cell
biology [112]. Interactions of apo E isoforms with the Aβ peptide have been studied in various
laboratories [112] to understand how apo E4 promotes risk for neurodegeneration. The hypothesis
that the interaction between these peptides is determined by the nature of associated lipids such
as cholesterol which alters their conformation and determines the cellular uptake of the apo E/Aβ

complex is important to the field of AD. The role of the apo E (E2, E3, E4) isoforms and their specific
interactions with the Aβ peptide have been reported and integrates cholesterol metabolism with
AD [112].

The kinetics of binding between apo E and Aβ are determined by different isoforms of apo E
and LPS has now been shown to neutralize apo E-PLTP activity [69–71] with the corruption of the
apo E-Aβ interaction [69–71,112]. Apo E4 and its association with protein misfolding of Aβ has
been studied extensively and cell membrane LPS and mycotoxin contents have become important to
apo E3 individuals with relevance to susceptibility to Aβ oligomer formation and neurodegeneration
(Figure 2). Membrane-bound and soluble proteins have been shown to bind LPS such as LPS binding
protein (lipoproteins), toll-like receptor (TLR), GPCR, and CD14 receptor. In the central nervous
system, systemic LPS injection initiates the acute phase response and upregulates membrane CD14
receptor that controls TLR4 endocytosis [59,113] and induces microglial activation that results in
neurodegeneration and Parkinson’s disease (PD) [114]. The CD14 receptor is referred to as the LPS
receptor and is involved in the phagocytosis of the Aβ peptide [115–118]. Mycotoxins have also
been shown to be involved in CD14 receptor expression in macrophages [119]. LPS induction of
APPs [69,70] are linked to the CD14 receptor with the levels linked to liver inflammation and NAFLD.
LPS and the mycotoxin patulin have been shown to effect hepatic genomic stability [69] with effects
on reverse cholesterol transport in macrophages and with macrophage activation that involve LPS
and mycotoxin [59,113,119].

LPS in brain cells improves the scientific understanding of membrane cholesterol and Aβ

oligomer formation in the brain. Astrocytes have been shown to accumulate neuronal Aβ to prevent
Aβ plaque development [120–123]. In the brain the HDL are the major lipoproteins involved in
the turnover of brain cholesterol [124]. The astrocyte synthesizes apo E-PLTP with apo E-PLTP that
play an important role in cholesterol and Aβ metabolism [125–128] that determine neuron synapse
formation. The disturbances in brain HDL (apo AI) lipoprotein metabolism induced by LPS [91–93]
also effect astrocyte apo E [69] and the LDLr [129] with increased brain cholesterol linked to poor
neuron survival with connections to electrostatic Aβ oligomer formation [130]. Furthermore, LPS
corruption of the apo E and hepatic Aβ metabolism are associated with disturbed brain cholesterol
levels relevant to disturbed apo E-PLTP activity involved in the regulation of Aβ [130]. Furthermore,
LPS regulated cholesterol sequestration of mycotoxins in cell membranes displace Aβ peptides with
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abnormal effects of mycotoxin such as patulin on various biological functions that regulate membrane
fluidity and ion channel function in cells from various tissues [25,131–135].

LPS and mycotoxins regulate acute phase proteins such as serum amyloid protein A [69,112,136]
and C reactive protein [137,138] involved in amyloidosis in AD. LPS has been shown to reduce the
release of albumin from the liver in man with relevance to the principal role of albumin in peripheral
and brain Aβ aggregation [70]. In rats, patulin had marked effects on liver albumin and the plasma
protein fraction that was found to be markedly decreased was albumin [139]. Therefore the peripheral
effects of LPS and patulin nullify the albumin mediated Aβ and apo E mediated transport from the
brain [70].
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Figure 2. Bacterial LPS and mycotoxin promote dyslipidemia, electrostatic Aβ oligomer formation via 
post translational or post transcriptional modifications. (1) Bacterial LPS and mycotoxin induce 
dyslipidemia and NAFLD; (2) LPS and mycotoxin alter cell and membrane cholesterol homeostasis 
with increased Aβ formation; (3) Defective Sirtuin 1 (Sirt 1) post transcriptional regulation and post-
translational modifications of cholesterol interacting proteins by LPS/mycotoxin neutralize apo E and 
increase Aβ oligomerization with connections to insulin resistance and AD; (4) Electrostatic Aβ 
oligomer formation may be independent of the early neuron apoptosis associated with neurotoxicity 
in individuals with insulin resistance and neurodegenerative diseases (Parkinson’s disease and 
Alzheimer’s disease). 

4. Patulin and LPS Effect Electrostatic Aβ Oligomer Formation via Post Translational or Post 
Transcriptional Modifications 

Specific amino acids such as cysteine are involved in post-translational modifications that 
include oxidation, nitrosylation, or disulfide bond formation [140,141] with electrostatics that have 
and play important roles in biology such as toxic Aβ oligomer formation. Cysteine residues are 
important to many protein functions and patulin has been shown to induce cysteine intra and inter 
molecular crosslinks that effect many cholesterol interacting proteins such as GPCR receptor 
activation, apo AI-ABCA1 cholesterol dependent efflux, LRP-1 associated LPS/mycotoxin 
metabolism, LDLr binding of lipoproteins, apo E (E2, E3, E4)/Aβ interactions, and phospholipid 
transport protein synthesis/secretion that effects apo E-PLTP activity [138,142–152]. The mycotoxin 
patulin has been shown to be neurotoxic and in mice patulin has been shown to induce brain damage 
[153,154]. Patulin has been shown to induce intra- and intermolecular protein crosslinks in vitro of 
other amino acids such as lysine, histidine side chains, and alpha-amino groups [155]. These three 
amino acids (cysteine, lysine, histidine) are found in Aβ [156–160] with effects of patulin on these 
amino acids that possibly are responsible for Aβ electrostatic nature and promotion of Aβ oligomer 
formation. 

Interest in dietary regulation of liver LPS and mycotoxin metabolism involves Sirtuin 1 (Sirt1). 
Sirt 1 is one of the nuclear receptors known to regulate several cell functions by deacetylating both 
histone and non-histone targets [161,162]. Sirt 1 is a NAD(+)dependent class III histone deacetylase 
protein that targets transcription factors to adapt gene expression to metabolic activity, insulin 
resistance and inflammation in chronic diseases [163,164]. Nutritional regulation (calorie restriction 

Figure 2. Bacterial LPS and mycotoxin promote dyslipidemia, electrostatic Aβ oligomer formation
via post translational or post transcriptional modifications. (1) Bacterial LPS and mycotoxin induce
dyslipidemia and NAFLD; (2) LPS and mycotoxin alter cell and membrane cholesterol homeostasis
with increased Aβ formation; (3) Defective Sirtuin 1 (Sirt 1) post transcriptional regulation and
post-translational modifications of cholesterol interacting proteins by LPS/mycotoxin neutralize apo
E and increase Aβ oligomerization with connections to insulin resistance and AD; (4) Electrostatic Aβ

oligomer formation may be independent of the early neuron apoptosis associated with neurotoxicity
in individuals with insulin resistance and neurodegenerative diseases (Parkinson’s disease and
Alzheimer’s disease).

4. Patulin and LPS Effect Electrostatic Aβ Oligomer Formation via Post Translational or Post
Transcriptional Modifications

Specific amino acids such as cysteine are involved in post-translational modifications that
include oxidation, nitrosylation, or disulfide bond formation [140,141] with electrostatics that have
and play important roles in biology such as toxic Aβ oligomer formation. Cysteine residues
are important to many protein functions and patulin has been shown to induce cysteine intra
and inter molecular crosslinks that effect many cholesterol interacting proteins such as GPCR
receptor activation, apo AI-ABCA1 cholesterol dependent efflux, LRP-1 associated LPS/mycotoxin
metabolism, LDLr binding of lipoproteins, apo E (E2, E3, E4)/Aβ interactions, and phospholipid
transport protein synthesis/secretion that effects apo E-PLTP activity [138,142–152]. The mycotoxin
patulin has been shown to be neurotoxic and in mice patulin has been shown to induce brain
damage [153,154]. Patulin has been shown to induce intra- and intermolecular protein crosslinks
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in vitro of other amino acids such as lysine, histidine side chains, and alpha-amino groups [155].
These three amino acids (cysteine, lysine, histidine) are found in Aβ [156–160] with effects of patulin
on these amino acids that possibly are responsible for Aβ electrostatic nature and promotion of Aβ

oligomer formation.
Interest in dietary regulation of liver LPS and mycotoxin metabolism involves Sirtuin 1 (Sirt1).

Sirt 1 is one of the nuclear receptors known to regulate several cell functions by deacetylating both
histone and non-histone targets [161,162]. Sirt 1 is a NAD(+)dependent class III histone deacetylase
protein that targets transcription factors to adapt gene expression to metabolic activity, insulin
resistance and inflammation in chronic diseases [163,164]. Nutritional regulation (calorie restriction
and high fat feeding) of Sirt1 is involved in neuron proliferation with effects on cellular cholesterol
closely linked to Aβ clearance in AD [165–167]. In mammalian cells, patulin has been shown to
have toxic effects in the nucleus [153,154] with posttranslational modification of cysteine residues by
patulin relevant to the nutrient sensing nuclear receptor Sirt 1 that contains a zinc centre (activator)
co-ordinated by four cysteine residues that are critical for its function [168]. Many mycotoxins such
as patulin interfere with DNA repair in liver cells [169] and override Sirt 1’s involvement in DNA
repair and telomere maintenance in cells [170]. Patulin and its toxic effects on cysteine cross links in
Sirt 1 dysfunction may be relevant to the corruption of nitric oxide and neural pathways [171]. LPS
and mycotoxins are involved with disturbed cellular nitric oxide homeostasis with relevance to nitric
oxide dyshomeostasis and Aβ metabolism [171]. Nitric oxide neurotoxicity [171,172] induced by LPS
and mycotoxins may generate the strong oxidant peroxynitrite [173,174] involved in the inhibition of
Sirt 1 binding to zinc [168,175].

Sirt 1 is involved in the regulation of nuclear liver X receptors linked to ABCA1 (cholesterol
metabolism) targets in the liver and brain [4]. The interest in neuron glucose metabolism has
accelerated with the role of Sirt 1 and its role in transcriptional regulation of p53 [176,177] linked
to p53 transcriptional regulation of caveolin 1 expression [178–180] associated with insulin receptor
transport and activity [105–108]. LPS has been shown to repress Sirt 1 [177,181] and caveolin
expression [89,90] with implications to class B, type I scavenger receptor [67] involved in cholesterol
trafficking and HDL levels. Sirt 1 downregulation in the liver and brain prevents mycotoxin
metabolism with effects on NAFLD and neurodegeneration. Injections with L-cysteine prevented
the effect of LPS in liver injury [182] with apo AI and HDL linked to LPS neutralization [91–93].

Synergism of LPS and mycotoxin interactions in cells involving accelerated inflammation
and patulin levels should be monitored to prevent complete neuron apoptosis and brain Aβ

oligomerization with implications to shifts in protein homeostasis (Figure 2). The effects of LPS on
inflammation in the BBB have been reported to involve caveolin-1 and α-synuclein [183–186]. LPS
and relevance to Aβ/α-synuclein transport and insulin resistance has escalated [71] with relevance
to BBB permeability and corruption of the neuronal Aβ transport across the BBB to the periphery for
metabolism by the liver. The effects of LPS on the release of acute phase proteins [69,70,112] involve
interactions with Aβ and α-synuclein oligomers to delay or promote Aβ oligomerization.

LPS and α-synuclein involve corruption of membrane cholesterol flux to HDL and mycotoxin
transport from peripheral cells/neurons by binding of α-synuclein to membrane cholesterol (isooctyl
chain) to prevent cholesterol metabolism [187]. The LPS repression of Sirt 1 [181] promotes
defective cholesterol efflux in the periphery and brain with increased levels of alpha synuclein and
Aβ (Figure 2). α-synuclein effects on increased BBB permeability induced by LPS/α-synuclein
interactions [69–71] promote the transport of mycotoxins into the brain and in the absence of LPS the
BBB transport of mycotoxins may not be relevant. In the aging process, the increased concentrations
of LPS are transported to the brain (LPS mediated) and its neurotoxic effect on apelin-Sirt 1
interactions induce alterations in NO homeostasis [167] and determine neuron survival [188].
Furthermore, patulin [155] may have direct toxic effects on the inhibition of the apo E and Aβ

cysteine interaction in membranes and determine Aβ oligomer formation and NO toxicity [189,190]
in the brain with early aging and AD. Furthermore, electrostatic Aβ oligomer formation may
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involve α-synuclein (cysteine, histidine) by the effects of patulin on intra and intermolecular
protein crosslinks involving cysteine, lysine, and histidine side chains [155] involved in protein
oligomerization [71,191,192]. Patulin effects on lipid-protein interactions may also involve disturbed
crosslinks that involve Aβ histidine 13 binding to ganglioside [193] associated with Aβ aggregation.

5. Nutritional Diets Reduce Neurotoxins and Allow Effective Drug Treatment Programs

LPS dysregulation of nuclear Sirt 1 [177,181] has become important with relevance to
hepatic cholesterol metabolism [76–78] that are now closely connected to cellular mycotoxin (ng–µg)
and Aβ metabolism [71]. As aging occurs Sirt 1 is dysregulated [194–196] in the developing
world with Sirt 1 downregulation now associated with various chronic diseases. Diets that are
healthy do not contain LPS [197,198] or mycotoxin [10,11,15,25] with both components involved with
disturbed cell cholesterol homeostasis/Aβ metabolism and absence of these components from the
human plasma allow effective drug therapy such as statin drug treatment that may maintain proper
synaptic function and neuron survival. Statins, patulin, and Aβ have been shown to inhibit protein
prenylation [199–201] with effects on cell cholesterol sequestration and Aβ oligomer formation.

Food patulin levels should be reduced with relevance to the toxic effects of patulin [202] in
peripheral tissues. Patulin levels [203] have been measured and daily intake can be high and found
in foods such as fresh and dried fruits, processing stages of bread, apple (apple juice concentrates
50 µg/kg), and cereals. Patulin levels in apple juice concentrates, blue cheese, and cereals have
been clearly documented. Bacterial lipopolysaccharides are also found in unpasteurized fruit juices,
ciders, bread (oven baked poorly), and fruits (diverse bacterial populations) [197,198] and toxic
effects of patulin may involve LPS interactions. Strict surveillance of apple ripening and cheese
making/ripening has to be implemented to ensure patulin levels are low with increased levels
associated with the aging process.

Consumption of apples and cheese are a rich source of pyruvic acid (amino acid metabolism)
and leucine and ingestion of these nutrients has been associated with activation of Sirt 1 [195]. The
potent effects of apple and cheese spoilage that produces patulin is concentrated in the liver with
the induction of NAFLD in the developing world. The OTA that is found in the rind and inner part
of the cheese and in alcohol (beer, wine) rise in the blood plasma with NAFLD linked to increased
OTA transport to the brain. Alcohol (apple cocktail, beer, wine) promotes the intestinal absorption
of LPS/patulin/OTA and alcohol is a Sirt 1 inhibitor [170]. Alcohol contains patulin/OTA [204] with
relevance to the hepatic metabolism of mycotoxin and Aβ.

The failure of the anti-obese drug program in Western countries [205] with central acting CNS
drugs may be better understood with high fibre diets that activate Sirt 1 in the liver with the
maintenance of hepatic fatty, cholesterol, glucose metabolism that is closely connected to hepatic
LPS/mycotoxin metabolism. The antipsychotic/antidepressants used to treat neurodegeneration
interact with cell membranes [181] and the role of patulin and LPS interactions (nitric oxide
toxicity) may be involved with ineffective drug therapy in the brain. High fibre diets that
contain both fruits and vegetables (phystosterols) improve Aβ metabolism [4] but mycotoxin/LPS
contamination [10,11,15,25,197,198] disrupt membrane phytosterol therapy with LPS/mycotoxin
contamination associated with the packing, storage, transportation, handling, and processing of fresh
produce to the final destination. Phytosterol consumption regulates hepatic cholesterol metabolism
with the liver involved with rapid detoxification (hepatic biotranformation enzymes, cytochrome
p450) of mycotoxins by elimination into bile in animals and man [206].

In developing countries, the increase in xenobiotics [207] in polluted environments such as
drugs, drug metabolites, synthetic pesticides, and herbicides may delay mycotoxin metabolism
with mycotoxin related neurotoxicity. Diets that activate the Sirt 1/pregnane X receptor pathway
respond by the expression of cytochrome p450 that may allow rapid metabolism of xenobiotics (food,
air, water) and mycotoxins (food, air, water) [207] with reduced neurotoxin transport to the brain.
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The xenobiotics consumed may corrupt the hepatic elimination of mycotoxins (vice versa) with the
induction of NAFLD that is now closely linked to neurodegeneration.

Interests in increased hepatic cholesterol metabolism and transport to the bile has increased with
phosphatidylinositol (PI) doses [208] essential for lowering liver cholesterol with increased plasma
apo AI (HDL levels). The cell membrane carries a net negative surface charge with the presence
of anionic lipids, which constitute 10% of the total lipids in the plasma membrane [112]. PIs in
cell membranes consist of 1% of the lipids that are physiopathological modulators of membrane
cholesterol and amyloid homeostasis [112]. LPS and patulin effects on cell membranes corrupt
PI and Aβ membrane interactions [112]. The addition of PI (2–5 gm/meal) accelerated liver
cholesterol metabolism over a two-week period [208] with relevance of PI ingestion to improve
hepatic LPS/mycotoxin metabolism. Mycotoxins/LPS are closely connected with platelet function
and appropriate PI consumption is required to assist with platelet cholesterol levels, Aβ production,
and prevention of platelet aggregation [32,33,209–212]. The importance of consumption of nuts as
a rich source of PI has accelerated with relevance to doses of PI ingestion that override caveolin-1
downregulation (Sirt 1) that is a phosphatidylinositol 3-kinase sensitive [213] with the prevention
of hypercholesterolemia, NAFLD, and amyloidosis [7,176,177,194–196]. However, nut consumption
should be carefully monitored with relevance to NO composition and mycotoxin content [15].

6. Conclusions

Food and nutrition guidelines for the handling and processing of fresh fruit, bread, and
vegetables are essential and fresh produce may require cold preservation procedures to prevent
minimal bacterial and fungi contamination of food. In the developing world, the food content of
LPS/mycotoxin levels determine nuclear receptor defects such as Sirt 1 downregulation involved in
the survival of neurons. Small amounts of LPS/mycotoxin in food/alcohol that are absorbed into the
plasma, are rapidly cleared by the liver when liver Sirt 1 is under circadian regulation. The diabetes
epidemic (Sirt 1 senescence) in the developing world may related to the appetite dysregulation, with
absorption of higher contents of LPS/mycotoxins that induce early insulin resistance and cholesterol
efflux disturbances associated with NAFLD and neuron dysfunction relevant to various chronic
diseases. Diets that are Western style (high calorie, cholesterol) may promote increased absorption
of xenobiotics that induce NAFLD and neurodegeneration. Drugs and xenobiotics consumed (drug
regime) by various obese and diabetic individuals should be assessed since common pathways
shared with xenobiotics/LPS/mycotoxins may not allow hepatic metabolism of LPS/mycotoxins
(dyslipidemia) with increased delivery of ochratoxin A (coffee), patulin (apple), and LPS (cheese,
fruit, vegetables) to the brain, associated with early neurodegeneration and independent of the
structural conversion to electrostatic Aβ oligomer formation.
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