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USING GRAPHIC METHODS TO CHALLENGE CRYPTOGRAPHIC 

PERFORMANCE 

 
Brian Cusack, Erin Chapman 

Digital Forensic Research Laboratories, AUT 
brian.cusack@aut.ac.nz, erinchapman@xtra.co.nz 

 

Abstract 
Block and stream ciphers have formed the traditional basis for the standardisation of commercial ciphers in the 

DES, AES, RC4, and so on. More recently alternative graphic methods such as Elliptic Curve Cryptography (ECC) 

have been adopted for performance gains. In this research we reviewed a range of graphic and non-graphic 

methods and then designed our own cipher system based on several graphic methods, including Visual 

Cryptography (VC). We then tested our cipher against RC4 and the AES algorithms for performance and security. 

The results showed that a graphics based construct may deliver comparable or improved security and performance 

in many of the required areas. These findings offer potential alternative avenues for post-quantum cryptographic 

research. 
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INTRODUCTION 

The demand for cryptographic methods has always been strong. The ever-expanding use of technology for 
communications, banking and financial transactions of diverse types, secure communications, and many other 
Internet applications is driving current demand for security and performance. The consumers of cryptography 
products require ever-increasing protection at lower cost (Thakur et al., 2011). Algorithms must maintain the 
confidentiality of communications, the integrity of the messages, and the accessibility of information to the users. 
The requirement for privacy of information has become increasingly challenging, caught in inter-jurisdictional 
debates of legality and the ability of developers to provide the levels of protection required (Bhat et al., 2015). The 
implementation of cryptographic algorithms in modern networked systems is crucial to ensure the users of 
information are satisfied with the service they receive. Many standardised algorithms have come and gone as 
vulnerabilities have been exploited to make algorithms unusable in the current cryptographic climate.  
Events such as the theoretical cracking of the data encryption standard (DES), revisions including triple DES, and 
the major competition that resulted in the adoption of the Advanced Encryption Standard (AES) (Fluhrer et al., 
2011; Singhal & Raina, 2011), illustrate the constant evolution of cryptography. While much research has been 
done to improve the security of traditional ciphers such as the AES and the now-defunct Rivest Cipher 4 (RC4) 
(Klien, 2008), there are opportunities for the development and improvement of alternative ciphers (Ustimenko, 
2007). Our research focused on the potential of graphic methods. Encryption using Visual Cryptography (VC) and 
Elliptic Curve Cryptography (ECC), is well-established and has been shown to give high levels of security, 
improved performance, and reduced resource requirements. It also shows that that alternative competitors can be 
found in graphic schemes. To demonstrate that there are alternative approaches to achieve secure methods for the 
ever-expanding online world we constructed a word-oriented symmetric stream cipher. It was tested against AES, 
RC4, ECC, and VC algorithms, and the results demonstrated that alternatives are possible using graphic schemes.  

The proposed system was termed Coordinate Matrix Encryption (CME) to reflect the graphic construct behind the 
algorithm (Galbraith & Menezes, 2005; Hou et al., 2014). It was implemented in Java along with the four competing 
algorithms, and we tested both graphic-based and traditional cryptographic algorithms against our construct. The 
algorithms were all tested for security, efficiency and resource consumption. The comparative results show the high 
levels of security achievable by alternative graphic-based ciphers and the potential for alternative innovations. The 
resistance of the proposed 8-bit CME system to brute force attacks was shown to be 157,899 orders of magnitude 
higher than that of a 128-bit key in traditional ciphers such as AES. Examination of the avalanche effect of the CME 
scheme showed that less than 0.5% of all bytes within the cipher text remained in the same position when a single 
bit of the plaintext was altered. While the RC4 scheme offered the best efficiency in terms of time required to 
encrypt and decrypt the data, it has been proven vulnerable; and the CME comparison showed lower memory 
requirements and faster setup execution. This offers the potential for research, testing and implementation of 
different approaches to make traditional cryptography adaptable to the new high-speed cyber connected world 
(Vigila et al., 2009; Tawalbeh et al., 2013). 
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GRAPHIC METHODS 

Graphic-based systems rely on group theory and graph theory to create secure algorithms for encryption. Some of 
the more popular graphic-based methods are ECC (Akhter, 2015) and VC (Blundo et al., 2006). However, there are 
other algorithms that take advantage of the innate properties of group theory and families of graphs (Cohn, 2000; 
Polak et al., 2013). These graphic methods for encryption exploit particular traits of certain types of graphs, such as 
those using families of graphs of large girth, for example Cayley graphs. A Cayley graph is defined as a graph 
G(G,S) where S is a non-empty subgroup of the group G, such that S is equal to its own inverse , and the 

set of vertices is equal to G, V=G, and the set of edge elements is:  

 
A Cayley graph constructed in this manner is a regular graph, and the underlying algebraic structures of the family 
of Cayley graphs can be exploited for use in encryption (Priyadarsini, 2015).   

Another family of graphs providing a possible route for cryptographic research is the family of directed graphs of 
large girth. The fact that there are only three families of undirected graphs of arbitrarily large girth limits their use, 
however there are infinite numbers of algebraically constructed families of such graphs. These can be converted to 
equivalent Turing machines of basic construction. The basic finite automaton is equitable to a directed graph, if the 
memory component is ignored. These graphs are part of the expander family of graphs. Cayley graphs can be used 
to describe a linear automata, while other graph families can be used to result in non-linear systems for encryption. 
Encryption systems based around groups of graphs such as Cayley or expander families use sequences of vertices or 
graph-colourings to create a cipher text. Others opt for using strongly regular graphs to generate a Hadamard matrix 
for encoding images (Davidoff et al., 2003). Some systems use the vertices to represent the plaintext space and the 
path within the graph becomes the password. Systems such as these based around walks along graph edges can be 
used in the construction of stream ciphers. Expander graphs are also of interest in cryptography; they are sparse, 
finite, and highly connected. Ramanujan graphs are a brand of expander graphs that are often used for encryption 
(Agnarsson & Greenlaw, 2007).    

 
Figure 1. A simple Cayley graph described by G=Z/6Z,S={1,-1} 

New systems have been proposed that utilise group theory and rings to create encryption that relies on the 
combining of two group elements. The reversing of these processes is impossible and hence establishes their 
cryptographic value. Multivariate cryptography is the set of cryptosystems which use polynomials and finite 
commutative rings for encryption, and these are part of the post-quantum cryptography movement (Ustimenko & 
Romanczuk, 2013). The concepts of quantum cryptography have been used and applied to theoretically break many 
standard cryptographic algorithms including the RSA. Post-quantum cryptography involves systems that are 
theoretically resistant to adversaries using quantum attacks. Graphic methods have hence been explored as 
possibilities in the post-quantum world, with the potential to define non-standard cryptographic methods that are 
better and stronger than the new adversaries. New developments in graphic methods have used the injection of 
algebraic geometry into the field of multivariate public key cryptosystems with outstanding effect (Blakley & 
Kabatiansky, 2011). The structures are a set of multivariate quadratic polynomial equations over finite fields and 
parameterised matrices for systems of para-unitary equations that deliver the cryptographic solution. Multivariate 
polynomials are a solution to the problems of RSA and an alternative to systems like ECC, using multivariate 
systems of equations over small fields, such as  where m is some small number. The use of multivariate 

polynomials is a proposed solution to the issues with key size and set up time, both of which are high in 
computational complexity and require large amounts of data to communicate. Multivariate systems generally use 
quadratic polynomial fields. The multivariate systems rely on their own version of the one-way problem, in this case 
called the MQ problem, based on the computational complexity of solving many different quadratic equations over 
multiple different fields using many different variables (Chen et al., 2012; Sutter et al., 2013). The complexity of the 
MQ problem has led to these graphic methods being proposed as a possible quantum-resistant encryption method.  
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ISSUES WITH GRAPHIC METHODS 

Encryption systems that use graphs for encoding, like those based around VC, can have very high computational 
overhead, due to the size of the graphs required to achieve the required levels of security (Klein & Wessler, 2007). 
Also, those encryption methods that base themselves around the special colourings of vertices and edges are 
vulnerable to cubical linearization attacks, which make decryption possible, and are costly in practice. For those 
graph-based systems that also rely on the DLP, the same vulnerabilities encountered by ECC encryption apply. The 
biggest problem within graph based systems is implementation challenges. Representing a graph within a computer 
program can be broken down into four possible objects for management: the adjacency list; the adjacency matrix; 
the incidence list; and the incidence matrix. Each object lists either vertices or edges, and they are either enumerated 
fully – in a matrix – or only where a connection occurs. These implementations affect the use of a particular system, 
especially with larger connected graphs, with many entries in its matrix or list (Riaz & Ali, 2011).  
The security of ECC relies on computational complexity to assure that it is intractable to compute the Elliptic Curve 
Discrete Logarithm Problem (ECDLP) (Yan, 2008). This reliance means that the security would be severely 
compromised should the ever-increasing speed of technology provide a method of computing the solution to the 
ECDLP in less than the current exponential time. On the realization of quantum computers, the Elliptic Curve 
Discrete Logarithm problem will no longer be computationally infeasible to compute and exposing the algorithm to 
an intractable vulnerability (Kramer, 2015). The weakness surrounding ECC in a post-quantum world is based on 
Shor’s algorithm, operating on a quantum computer, which is capable of solving problems such as discrete 
logarithms in minimal time. Aside from the possibility of breaking the Discrete Logarithm Problem, ECC also has 
disadvantages in its implementation. It is highly complex to implement, and the resulting cipher text message is 
increased in length from the original plaintext significantly (Akhier, 2015).  

Advances in fields such as index calculus and number-field sieves have shown possible weaknesses in systems 
based around the problem of computing discrete logarithms (Joux & Vitse, 2012). Index calculus, as a method of 
computing discrete logarithms using probability and field arithmetic, which has been used by mathematicians to 
exploit characteristics of groups and to then solve the original discrete logarithm problem (Agnarsson & Greenlaw, 
2007). While classic index calculus has not been implemented successfully against general ECC systems, and 
exponential time square root attacks are more efficient against these general ECC algorithms, the reduction in 
computing time for solving the discrete logarithm problem in other systems may suggest weakness in the overall 
computational complexity of DLP-based systems.  

VC schemes encounter difficulties due to pixel expansion, the number of subpixels required to encode the correct 
level of contrast in each share (Shyu et al., 2007). This expansion greatly affects the required overhead of VC 
schemes, and as such is the target of much research. While there have been schemes proposed that give a constant 
pixel expansion, such as graph-based extended VC (Lu et al., 2011), many schemes require linear, or even 
polynomial pixel expansion based on the number of nodes within the scheme, making them infeasible for larger 
implementations. Within the schemes which ensure pixel expansion remains constant, the overhead for the encoding 
of the shares is still computationally high for large images with a greater numbers of pixels. These systems which 
constrain pixel expansion also degrade the contrast of an image, as there are fewer subpixels differentiating dark and 
light in the image, making it more difficult for the human eye to visually decode. Once multiple colours are 
introduced to the scheme, pixel expansion becomes even more complex, and overall image contrast is lowered 
further (Liu et al., 2008). A colour VC scheme will also require higher overall time complexity, as each colour 
within the image must have a different threshold for contrast.  

VC is also open to malicious man-in-the-middle attacks, during the transfer of shares to participants. If the shares 
are intercepted, the malicious intermediary could keep the original share, and forward a new, false share to the 
intended participant. The interception of the share would as such result in the security of the scheme being 
completely undermined. Attacking a VC scheme in this manner is generally referred to as cheating. While this risk 
can be decreased by the implementation of a filter where each participant is assigned a specific target image, 
cheating is still possible, by a malicious participant. Cheating prevention VC schemes have been proposed that use 
specific basis matrices in the generation of both the secret shares, and a set of verification shares, to counter the 
ability to generate fake shares. These matrices add an extra column to the original matrices and hence extra cost. 
The problem still remains however, that these basis matrix schemes are not immune to cheating. To prevent this 
type of cheating, it is necessary to introduce multiple extra zero columns into the basis matrices that adds further 
costs. As a result, cheating prevention VC schemes result in higher overheads and increased pixel expansion when 
compared regular VC algorithms, which delivers a lower level of utility in real-world application. The proposal of 
adding tags to individual shares to allow for the identification of false or forged shares may offer additional 
protection against cheating, however it is still vulnerable to attack if an attacker is in possession of a genuine share, 
and can therefore find and replicate the security tag (Wang & Hsu, 2011). 
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ALGORITHM DESIGN 

The algorithm design for the CME scheme was based around a square coordinate matrix and transformations in a 
finite Galois field  (Martin, 2012; Martinez & Encinas, 2013). The coordinate matrix design was structured by 
the concepts delivered in error-correcting codes, in which sparse matrices and code words are used to eliminate 
noise from the transmissions. In addition, security principles from VC were applied. The main encryption process 
uses a randomized coin toss style procedure, which is similar to the VC method of choosing whether a given pixel is 
black or white. This coin toss decides if the next section of the cipher text is to be a blank padding section, or if it is 
the next section of the plaintext message. If it is a blank padding section, one of the locations containing an empty 
entry is picked at random from a blank list, and the binary or integer coordinates (depending on the implementation) 
of that location are then input as the next part of the cipher text. Else, if the section is a part of the plaintext 
message, then a location containing that bit string is randomly chosen from the list of locations for the string. The 
location is then translated into the corresponding coordinates and concatenated to the cipher text. The scheme 
involves the addition of exactly the same number of blank coordinates as enciphered message coordinates. As a 
result of the addition of padding characters, the resulting cipher text is exactly four times the length of the plaintext, 
with two coordinates for every message or padding character, and exactly the same number of padding and message 
characters. The style of encryption means that the total length of the outputted cipher text is fixed at exactly four 
times the length of the plaintext, which may prove to result in undesirable overheads for transmission.  

 

 

Figure 2: A randomly generated key matrix for a 3-bit coordinate CME matrix scheme. 

The use of multiple locations for each bit string and the addition of an equal number of padding coordinates at 
random locations in the ciphertext provide resistance to cryptanalysis, and particularly to known and chosen 
plaintext attacks, as the encryption process therefore results in a non-singular mapping. This non-singular mapping 
means each plaintext input has many possible ciphertext outputs for any one key matrix. The multiple locations also 
result in far more of the overall matrix being taken up by bit strings than would be the case if each string appeared 
only once. Again, this helps prevent cryptanalytic attacks, as it increases the likely occurrence of the same of 
padding coordinates appearing more than once, which is helpful in further confusing any analysis of the resulting 
data. A sample of a 16-bit plaintext and the corresponding 64-bit ciphertext resulting from encryption using a 4-bit 
coordinate matrix scheme is shown in Figure 3. 

 

Figure 3. Example plaintext ciphertext pair output from a 4-bit CME scheme. 

The decryption process uses the same key matrix as in the encryption process and looks up each of the coordinates. 
If a given coordinate is an empty padding variable, it is discarded. If not, the value of the coordinate is combined 
with the next character of the key string using exclusive-OR, and the resulting value is added to the plaintext output. 
In this manner, the extra noise generated by the encryption process to ensure security is efficiently removed during 
decryption. Because each step of the decryption process consists only of simple entry check and exclusive-OR 
operation, the overall efficiency for decrypting the ciphertext is theoretically higher than that of the encryption 
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process. 

TESTING AND RESULTS 

The algorithm implementations were tested using Java, on an Intel i7 3.1GHz machine with 16GB of RAM. All 
algorithms were tested for resistance to brute force, avalanche effect, set up requirements and encryption/decryption 
time. Equation 1 shows the brute force analysis based on the key space for traditional 128-bit keys, while Equation 
2 compares the resistance of the CME 8 and 4 bit schemes, based on the key space of the relevant matrix sizes. The 
results of avalanche effect testing showed that when the 8-bit CME algorithm was trialled against RC4 and AES it 
not only performed very well but outperformed the traditional algorithms, demonstrating the resilience of the CME 
algorithm, shown in Table 1. Table 2 shows the results of avalanche testing of 4-bit CME against VC, in which both 
algorithms achieved the maximum Hamming distance. Table 3 shows the set up time and memory requirements for 
ECC, 8-bit CME, AES, RC4, and Table 4 shows the set up time and memory for VC and 4-bit CME. 
Encryption/decryption times are given in Table 6 for AES, RC4, and 8-bit CME, and in Table 6 for 4-bit CME and 
VC. These results appear to show CME as a potential competitor for streaming encryption. 

Equation 1    

Equation 2    

 

Table 1: Comparative avalanche effect results with AES and RC4 

Data Size 

(bits) 
Same Bytes (%) Same Position (%) 

RC4 AES CME RC4 AES CME 

304 97.668 37.767 44.839 97.368 24.779 0.414 

928 99.472 62.777 84.026 99.145 38.905 0.388 

3024 99.940 87.935 99.713 99.735 45.857 0.422 

4408 99.979 94.276 99.984 99.819 48.227 0.404 

8144 99.997 99.100 100 99.902 48.593 0.395 

 

Table 2: Comparative avalanche effect results with 4-bit CME and VC 

Data Size (bits) % of Bits Unchanged 

VC CME 4-bit 

16 49.275 50.319 

32 50.169 50.619 

64 50.005 50.499 

128 49.934 50.286 

256 49.981 50.337 

512 50.072 50.120 
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Table 3: Set up and memory requirements for 8-bit CME, AES, ECC and RC4 

 ECC CME AES RC4 

Time taken (ms): 359.5 80.13 409 258.5 

Memory used (MB): 1.192 1.217 2.364 2.340 

 

Table 4: Set up and memory requirements for 4-bit CME and VC 

 4-bit CME VC 

Memory used (MB): 0.448 0.456 
Time taken (ms): 21.44 0 

 

Table 5: Encryption/decryption time for AES, RC4 and 8-bit CME 

Data Size 

(bits) 

Encryption (ms) Decryption (ms) 

AES Byte CME RC4 AES Byte CME RC4 

304 0.199 0.031 0.014 0.17 0.012 0.022 

928 0.142 0.059 0.027 0.182 0.023 0.025 

3024 0.173 0.136 0.023 0.179 0.065 0.016 

4408 0.185 0.173 0.02 0.196 0.05 0.045 

8144 0.148 0.262 0.024 0.25 0.093 0.032 
 

Table 6: Encryption/decryption times for 4-bit CME and VC schemes 

Bit String 

Length 

Encryption (ms) Decryption (ms) 

VC 4-bit CME VC 4-bit CME 

16 0.056 0.02 0.01 0.02 
32 0.08 0.066 0.014 0.036 
64 0.196 0.104 0.052 0.06 

128 0.368 0.214 0.088 0.074 
256 0.868 0.369 0.214 0.136 
512 2.822 1.13 0.492 0.328 

 

CONCLUSION AND FURTHER RESEARCH 
Further research into alternative graphic methods is required to explore the applications of alternative systems such 
as CME. The security offered by the proposed CME scheme makes it a potential candidate for post-quantum 
cryptographic research. The system’s alternative key structure and non-singular mapping allow for resistance to a 
large key space and superb avalanche effect, while maintaining competitive efficiency. These features require 
further exploration. Comparative analysis between traditional and graphic-based ciphers is required to determine 
whether alternative graphic methods are able to offer higher security for lower overheads. Optimization of these 
schemes requires further research to ensure a lasting competitive advantage, and suitability for implementation in 
application development. There is currently little standardisation in stream ciphers to replace RC4, and as such the 
opportunity exists for an optimized version of CME to assist in this particular space in applications such as TLS that 
utilize stream ciphers for encryption on a day-to-day basis. 
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