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ABSTRACT

The presence of high and time-varying volatility of volatility and leverage effects bring
additional uncertainty in the tails of the distribution of asset returns, even though returns
standardized by (ex-post) quadratic variation measures are nearly gaussian. We argue that
in this setting modeling shocks to volatility is more relevant for applications than
extracting more precise predictions of the variable, as point forecasts differences are
swamped by the size of the volatility of volatility and rendered less informative by the
nongaussianity in the ex-ante distribution of returns. Using S&P 500 data, we document
that this volatility of volatility is subject to strong leverage effects, short-lived explosive
regimes and is strongly and positively related to the level of volatility. Starting from a
mixing hypothesis for volatility and returns, we propose a Monte Carlo method for
translating these features into refined density forecasts for returns from our conditional
volatility, skewness and kurtosis framework. We show how this method brings large
improvements over traditional approaches for density and risk forecasting.

Keywords: Realized volatility; Volatility of volatility; Value-at-risk; Expected shortfall;
Forecasting; Empirical finance
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l. INTRODUCTION

The advent of ultra high frequency stock market data and the subsequent introduction of realized volatil-
ity measures' represented a substantial step forward in the accuracy with which econometric models of
volatility could be evaluated (Andersen and Bollerslev, 1998) and allowed for the development of new and
more precise parametric models of time varying volatility. Several researchers have looked into the prop-
erties of ex post volatility measures derived from high frequency data and developed time series models
that invariably outperform latent variable models of the GARCH (Generalized Autoregressive Conditional
Heteroskedasticity) family of models (Andersen et al., 2003) on forecasting future volatility, to the point
that the comparison has been dropped altogether in recent papers.

As this new literature emerged. the leading property observed in realized volatility which served as the
main foundation for models that have been developed has been that of very high persistence observed in
those series, which consistently exhibit empirical autocorrelation functions with hyperbolic decaying pat-
terns; this empirical feature is referred to in a broad sense as long memory or long range dependence.
Motivated by early empirical work in macroeconomics and later in the GARCH and Stochastic Volatility
literature (for instance Baillie et al., 1996, Comte and Renault, 1996, and Breidt et al., 1998), the first
prominent references in the realized volatility literature (e.g., Andersen et al., 2003) turned to the econo-
metrics of fractional integration to establish a framework for modeling and forecasting realized volatility.
Fractionally integrated processes (I (d), where 0 < d < 1) can be seen as a halfway paradigm between
short memory ({0)) and infinite memory (I (1)) processes and are able to render hyperbolic decaying pat-
terns in autocorrelations and other properties that formally characterize a long memory model (see Baillie,
1996, for an exposition and formal definitions). Although no theoretical foundation has been developed to
substantiate the long memory specification or elucidate the high persistence from past shocks, I(d) pro-
cesses emerged as a consonant description of the data generating process of volatility series, becoming a
standard paradigm: modeling the long range dependence in the volatility of stocks and foreign exchange
rates is among the greatest empirical successes of fractionally integrated models.

As authors looked into modeling and forecast refinements that could be achieved by changing the long
memory specification and by considering additional regressors soon other models followed in the realized
volatility literature. As new theoretical results demonstrated how long memory properties are not distinc-
tive of fractionally integrated models but can be originated for example from stochastic regime switching
or occasional structural breaks that generate slowly decaying autocorrelations and other properties of I(d)
processes (see also Mikosch and Starica, 2004, Hillebrand. 2005), empirical work suggested that both
fractional integration and structural changes can describe the volatility of asset returns (Lobato and Savin,
1998, Martens et al., 2004, Beltratti and Morana, 2006, Morana and Beltratti, 2004, Hyung and Franses,
2002), some researchers begin to apply simpler time series models which are consistent with high persis-
tence in relevant horizons. even though they do not rigorously exhibit long memory (hence being labeled as

'Realized variance is defined as the sum of squared intraday returns sampled at a sufficiently high frequency. consistently approx-
imating the integrated variance over the fixed interval where the observations are summed. Realized volatility is the squared-root
of the realized variance. In practice, high frequency measures are contaminated by microstructure noise such as bid-ask bounce,
asynchronous trading.infrequent trading, price discreteness, among others; see Biais et al. (2005). Ignoring the remaining mea-
surement error, this ex post volatility measure can modeled as an “observable” variable, in contrast to the latent variable models.
See Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002) for the theoretical foundations of realized volatility. Sev-
eral recent papers have proposed corrections to estimation of RV in order to take the microstructure noise into account; see
McAleer and Medeiros (2008b) and Gatheral and Oomen (2007) for reviews. In this paper we refer to realized volatility as a
consistent estimator of the squared root of the integrated variance.



"quasi-long memory” models). Some examples are the MIDAS (mixed data sample, see for example Ghy-
sels et al., 2007) and HAR (heterogeneous autoregressive, Corsi, 2004) models, both of which explore data
sampled at different frequencies, and the unobserved ARMA component (UC) of Koopman et al. (2005).

Other contributions for the realized volatility modeling and forecasting literature are exemplified by
Martens et al. (2004), who develop a nonlinear (ARFIMA) model to accommodate level shifts, day-of-
the-week effects, leverage effects and volatility level effects, Andersen et al. (2007) and Tauchen and
Zhou (2005) who argue that the inclusion of jump components significantly improves forecasting perfor-
mance. McAleer and Medeiros (2008a) extend the HAR model to account for nonlinearities. Hillebrand
and Medeiros (2007) also consider nonlinear models and evaluate the benefits of bootstrap aggregation
(bagging) for volatily forecasting. Ghysels et al. (2007) argue that realized absolute values outperform
square return-based volatility measures in predicting future increments in quadratic variation. Scharth and
Medeiros (2006) introduce multiple regime models linked to asymmetric effects. Liu and Maheu (2007)
derive a bayesian averaging approach for forecasting realized volatility.

What are after all the characteristics of realized volatility series that can have significant impact for
risk management and other applications? This paper claims that despite not having received a great deal
of attention so far, an essential property of the observed realized volatility series is that they exhibit a
very large degree of volatility themselves and that this volatility of volatility is itself time varying: periods
of stable and more predictable volatility alternate with episodes where the series displays large swings
and assume values within a potentially broad range. This has important implications for the tails of the
distribution of returns,

We will explore in detail the reasons behind this claim. First, the presence of high and time-varying
volatility of volatility means high uncertainty in the tails of the distribution of daily returns. If the volatility
in the next day is relatively unpredictable, then a conditional expectation of this variable won’t contain
much information about what might happen in terms of very negative returns. Suppose a naive practitioner
calculates a point forecast of volatility and then obtains a given value-at-risk coverage assuming a normal
distribution for returns given volatility based on the empirical evidence that returns standardized by well
measured realized volatility are very closely normally distributed. With a large volatility of volatility, the
volatility itself may turn out to be much higher than the point forecast and extreme returns that would be
virtually impossible with the distribution based on the point forecast may be observed. Even though returns
standardized by (ex-post) quadratic variation measures are nearly gaussian, returns standardized by fitted
or predicted values of time series volatility models are far from normal. Given the uncertainty in volatility
this is expected and should not be seen as evidence against those models: explicitly modeling the higher
moment is necessary.

Second, we argue that forecasting improvements brought by the body of work discussed previously
are marginal and swamped by the size of the volatility of volatility. In an extreme example, Scharth
and Medeiros (2006) calculate that even a simple exponentially weighted moving average (EWMA) of
realized volatility delivers predictions which are very close to ARFIMA and HAR specifications; it is
crucial to account for the fact that the series is highly persistent, but the way this is done has very little
economic relevance. Hence, it is very easy to predict the level of volatility in relation to the history of
the series —but there is not much point to it given the uncertainty in the variable. We thus take the view
that even though point forecasts have been the main output from which volatility models in general have
been evaluated (extensive comparisons of forecasting performance like the one performed by Hansen and



Lunde (2005) are commen in the literature) those statistics do not necessarily convey much information
about the relative economic significance of the volatility models (see Fleming et al., 2001, 2003, W. Chan
and Kalimipalli, 2006, for empirical analysis of the economic value of volatility models). In particular, and
perhaps not surprisingly, small and possibly statistically insignificant forecasting performance differences
may overshadow important relative modeling qualities.

When high frequency data was not widely available, the volatility of volatility could not be observed and
latent volatility models were the only available option, the typical solution of the literature for volatility
models that did not generate normally distributed standardized returns was to assume an ad hoc distribution
for returns conditional on volatility that would sufficiently inflate the tails. The implications of the volatility
of volatility for the tails of returns were understood and this modification could account in part for the
mixing properties of volatility and returns. However, this is not entirely satisfactory when the volatility of
volatility is time varying and consequently the size of the tails is not constant. Hence, the first building
block of our analysis is to analyze the time series properties of the volatility of volatility of the S&P 500
index. To do so, we turn to a the concept of realized quarticity analyzed in Barndorff-Nielsen and Shephard
(2002, 2004, 2006) and Andersen et al. (2007), which can be seen as estimate for the variance of the return
variation, analyzing that the volatility of volatility is characterized by long memory properties, strong
leverage effects, short-lived explosive regimes and high correlation with the level of volatility. To the best
of our knowledge, the last three of these characteristics haven’t been documented in the literature so far.

The next step is to directly model both the volatility and the volatility of volatility. Corsi et al. (2008), in
the first paper to consider the volatility of realized volatility, implement a latent variable approach and ex-
tend the typical framework for modeling volatility by specifying a GARCH process to allow for clustering
in the squared residuals of those realized volatility models and assuming a normal inverse Gaussian (NIG)
distribution to accommodate fat tailedness and skewness in the distribution of the residuals (which as we
illustrate also cause excessive kurtosis on the ex-ante distribution of returns). This approach is shown by
the authors to enhance the properties of estimations of realized volatility models. We suggest, however,
that this approach should be extended to make use of the enhanced information available in the context
of high-frequency data. In particular, modeling the (possibly non-linear) relation between the volatility of
volatility and the level of volatility relevantly improve the realism of the model and the efficiency of the es-
timations. On the other hand, we show that despite being informative current realized quarticity measures
have little practical importance.

With the assumptions for the realized volatility process and following the evidence in assuming that
returns conditional volatility are normally distributed we have a mixing hypothesis that will enable us to
propose a straightforward two step Monte Carlo method for calculating value-at-risk, expected shortfall
and other density related measures for returns. The procedure consists in first simulating realized volatility
and then using each of these simulated values to simulate returns. The empirical distribution function of
the simulated returns can then be used for obtaining a prediction of value-at-risk and other density related
measures of interest.

Our empirical analysis uses tick-by-tick data from the S&P 500 index from 1996 to 2007 to analyze the
performance of the extended realized volatility with GARCH innovations model in conjunction with our
Monte Carlo method in the calculation of density forecasts, value-at-risk and expected tail loss measures.
The results suggest that the method of using only the point forecast of volatility is indeed not sufficient for
obtaining adequate coverage and systematically underestimates the VaR intervals, but the introduction of



the Monte Carlo method corrects this failure in the lower tail, albeit the results are significantly better when
intraday leverage effects are taken into account. In the case of expected shortfall, our method significantly
improves forecasts and the results strongly favor specifications with time varying volatility of volatility
and asymmetric effects. Our results are stronger than the ones obtained by Corsi et al. (2008) in that we
can conclude that ignoring time varying volatility of velatility and intraday leverage effects render risk
measures strongly biased and density forecasts inaccurate.

This paper is structured as follows. The next section presents our empirical setup, describing our data
and realized volatility measurement, our general time series model for realized volatility and then finally
proceeds to discuss the properties of the ex-ante distribution of the S&P500 returns when high-frequency
data information is available, which guides our subsequent analysis. Section three discusses the intro-
duction of time varying volatility of volatility into our general realized volatility time series model and
describes how Monte Carlo techniques can be used for translating the features of our conditional volatility,
skewness and kurtosis framework into refined density forecasts for returns. In section four we compare
the out-of-sample point forecasting, value-at-risk, expected tail loss and density forecasting performances
of different specifications. The implications of our analysis for the asset pricing and risk literatures are
discussed in the conclusion.

2. EMPIRICAL SETUP

2.1. Data and realized volatility measurement. The empirical analysis focuses on the realized volatility
of the S&P 500 index. The raw intraday data was obtained from the TaqTig/SIRCA (Securities Indus-
try Research Centre of Asia-Pacific) database and is constituted of tick-by-tick quotes originated in the
Chicago Mercantile Exchange futures market. The period of analysis starts in January 2, 1996, and ends
in March 29, 2007, providing a total of 2798 trading days. We start by removing non-standard quotes,
computing mid-quote prices, filtering possible errors, and obtaining one second returns for the 9:30am to
16:00 p.m. period. Following the results of Hansen and Lunde (2006), we adopt the previous tick method
for determining prices at precise time marks.

The search for unbiased, consistent and efficient methods for measuring realized volatility in the pres-
ence of microstructure noise has been one of the most active research topics in financial econometrics over
the last years. While early references such as Andersen et al. (2001) suggest the simple selection of an
arbitrary lower frequency (typically 5-15 minutes) to balance accuracy and dissipation of microstructure
bias, a procedure known as spuarse sampling, a number of recent articles developed estimators that dom-
inate this procedure. Those contributions falls in several categories: some examples are the selection of
optimal sampling frequency in sparse sampling Bandi and Russell (2005), subsampling (Zhang et al., 2005
and Ait-Sahalia et al., 2003), kernel-based estimators (Zhou, 1996, Barndorff-Nielsen et al., 2005) and MA
filtering Hansen et al. (2008). See McAleer and Medeiros (2008b) and Gatheral and Oomen (2007} for a
review and comparison of methods. In this paper, we turn to the theory developed by Barndorff-Nielsen
et al. (2007a,b) and implement a subsampled realized kernel estimator based on one minute returns and the
modified Tukey-Hanning kernel, which is consistent in the presence of microstructure noise.

2.2. Modeling Realized Volatility. Our general specification is given by:

(1) 9p(L)(1 — L) (RV; — p(We)) = XX + halhe_1, €61, Z4)es



where here d denotes the fractional differencing parameter, L the lag operator, ¢ is i.i.d with E(g;) = 0
and E(c?) = 1, ¢p(L) is a polynomial of order L, W} is a vector of variables affecting the mean of
RV;, X, is a vector of explanatory variables and Z; is a vector of variables that may affect the volatility of
volatility. We discuss below the specification for the conditional mean of volatility and the distribution of
the errors; we postpone the analysis of heteroskedasticity for subsequent subsections.

2.2.1. Autoregressive Fractionally Integrated specification. When —0.5 < d < (.5, we have the a sta-
tionary Autoregressive Fractionally Integrated model for the realized volatility. After running a battery of
specification tests centered on the Schwarz Information Criterion, we set q‘ap{L-) = (1 — ¢y L) (that is, a
ARFIM A(1,d,0) model) for our all estimations.

Such models have been extensively estimated for realized volatility, for example in Andersen et al.
(2003), Areal and Taylor (2002), Beltratti and Morana (2005),Deo et al. (2006), Martens et al. (2004),
Thomakos and Wang (2003), among others. Nevertheless, the estimation of ARFIMA models in the con-
text realized volatility has a few shortcomings. As remarked in the introduction, although I(d) processes
are a seemingly reasonable approximation for the data generating process of volatility series, there is no
underlying theory to formally support this specification. Instead, the results of Diebold and Inoue (2001)
and Granger and Hyung (2004) further challenge fractional integration as the correct long memory speci-
fication for realized volatility series. Statistical tests for distinguishing between those alternatives, such as
the one proposed Ohanissian et al. (2004), have been hampered by low power.

Additionaly, Granger and Ding (1996) and Scharth and Medeiros (2006) discuss how estimates of the
fractional differencing parameter are subject to excessive variation over time, occasionally causing very
poor in sample performance; this is less of a problem for forecasting, as long as the predictions come from
an updated estimation. Finally, another problem that often arises in empirical applications is the estimation
of highly non-stationary fractional differencing parameters, which in principle cannot be justified. Scharth
and Medeiros (2006) argue that this is due to the presence of multiple regimes, which increase the persis-
tence of the series and bias the d estimator up. Therefore, we keep in mind that the evidence casts doubt
on the use of fractionally integrated processes suggesting they are at least incomplete descriptions of the
conditional mean of volatility processes.

2.2.2. Heterogenous Autoregressive (HAR) specification. The HAR (Heterogeneous Autoregressive) model
proposed by Corsi (2004) is an unfolding of the Heterogeneous ARCH (HARCH) model developed by
Miiller et al. (1997). It is specified as a multi-component volatility model with an additive hierarchical
structure, leading to an additive time series model of the realized volatility which specifies the volatility as
a sum of volatility components over different horizons.

Turning to our general specification, letd =0 (under]mmg 1he view that the model does not genuinely

exhibit long memory) and ¢, (L) = 1 — ¢1L — oo Z Li— ¢ Z LE. Furthermore, consider the notation
=1 i=1

RV;; = ZE::—;,'H RV; ;/j. which will be used extensively in this paper. We can then write our HAR
model with daily, weekly and monthly components as:

(2) BV, = p(Wy) + 1RV + o RV o + ¢aRVi_y 5+ 4RV 09 + Xy + hy(Zy)e,

‘We can see that the HAR specification is an AR(22) model rendered parsimonious by several parameter
restrictions. Simulations reported in Corsi (2004) show that the generous number of autoregressive lags



renders the HAR model capable of reproducing the observed hyperbolic decay of the sample autocorrela-
tions of realized volatility series over not too long horizons. Moreover, the model displays forecasting per-
formance which is similar to that of ARFIMA models, which is generally true for any model that exhibits
high persistence (and not necessarily authentic long memory properties).” For its estimation simplicity, the
HAR-RV has been commonly favored in the high frequency econometrics literature (e.g, Andersen et al.,
2007). Nevertheless, it is difficult to further justify the HAR model. One of its drawbacks is that it tends
to estimate parameters that are generally inconsistent with each other when different direct forecasting
estimations are implemented.

2.2.3. Asymmetric Effects and Jumps. Bollerslev et al. (2006) and Scharth and Medeiros (2006) highlight
the impact of leverage effects on the dynamics of realized volatility. The latter argues for the existence
of regime switching behavior in volatility, with large falls (rises) in prices being associated with persistent
regimes of high (low) variance in stock returns. The authors show that the incorporation of cumulated daily
returns as a explanatory variable brings modeling advantages by capturing this effect, which can be quite
large; after analyzing certain stocks in the Dow Jones index, the authors document that falls in the horizon
of less than two months are associated with volatility levels that are up to 60% higher than the average of
periods with stable or rising prices. We estimate models with and without such effects. While Scharth and
Medeiros (2006) consider multiple regimes in a nonlinear model, we focus on a simpler linear relationship
to account for the large correlation between past cumulated returns and realized volatility. For reasons that
will become clear over the next sections, we also consider the relation between returns and volatility on a
same day; we shall refer to it as a volatility feedback effect.

Moreover, we consider jump components which have been receiving growing attention in the realized
volatility literature, Building on theoretical results for bi-power variation measures, articles such as Ander-
sen et al. (2007), Tauchen and Zhou (2005) and Barndortf-Nielsen and Shephard (2006) established related
frameworks for the non-parametric estimation of the jump component in asset return volatility by explicitly
considering the presence of less persistent elements in the volatility of stocks in contrast with the smooth
and very slowly mean-reverting part associated with long memory properties. Empirically, Andersen et al.
(2007) incorporates the distinction between jump and non-jump components into a forecasting model for
the DM/USD exchange rate, the S&P500 market index, and the 30-year U.S. Treasury bond yield realized
volatility series and find substantial performance improvements in daily weekly, and monthly predictions.
In this paper, we follow Ghysels et al. (2007) and take the realized absolute variation (denoted R AV}, cal-
culated as the sum of intraday absolute returns) as a more robust measure of the persistent component in
volatility, thus separating the effect of jumps. We find only the first lag of this variable to be significant,
yielding in the least parsimonious case:”

XeAd =M (g1 < O)reg + AT (141 > O)rgg + Al (11,5 < O)r¢ 15
(3) + A (ri—15 > 0)re_y 5+ AsT(1e—1,22 < 0)1¢_1.00 + AsI (re—1,22 > 0)r¢—1 22
+ MVRAV 1 + I(re < 0)(re/RVe) + I(r > 0)(r¢/RV2),

2In fact, Scharth and Medeiros (2006) document that even a simple moving average of realized volatility achieves the same result.
3n what follows, we will make use of the abbreviations AE. VF and RAV in the acronyms of the models which contain leverage
effects, volatility feedback and/or jumps respectively (for example, an HAR/AE model).



where the indicator functions have been included to reinforce the asymmetry between the effect of positive
and negative returns and 7¢ /RVj is to interpreted as an exogenous shock following the standard normal
distribution.

2.2.4. Day of the Week and Holiday effects. To reduce bias on our estimators and avoid distortions of the
error distribution, we control the mean of the dependent variable for day of the week and holiday effects.
Martens et al. (2004) and Scharth and Medeiros (2006) show that volatility sometimes tend to be lower on
Mondays and Fridays, while substantially less volatility is observed around certain holidays.

2.2.5. The Distribution of £¢. To account for the non—gaussianity of the error terms we follow Corsi et al.
(2008) and assume that the (unconditional) i.i.d. innovations =; are distributed normal inverse Gaussian
(NIG), which is flexible enough to allow for excessive kurtosis and skewness and reproduce a number of
symmetric and asymmetric distributions (including the normal itself). A more convoluted approach would
rely on the generalized hyperbolic distribution, which encompasses the NIG distribution and requires the
estimation of an extra parameter. On the other hand, typical distributions with support on the interval
(0, oc), which would be a desirable feature for our case, failed preliminary diagnostic tests. The density of
the NIG distribution is given by:

& (&-5(&1 + (u}z) -
(4 flza, B, 1, 8) = g ’ exp {d (\fo-ﬂ —-3248 (‘L ; B ))}
" i)

where K;(x)is the modified Bessel function of the second kind with index i; . € R denotes the location

parameter, 4 > 0 the scale, e > 0 the shape, and 7 € {—«a, ) the skewness parameter. Mean and variance
are given by

i (23
E{.L'JZ,L'-Fr

72
(5) a?
Var(r) = —,
(c2-2) (a2-32)*"
so that the distribution is standardized by setting p = —~—>—*and § = ———

2.2.6. Estimation. The parameters are estimated by maximizing the log-likelihood function:

T
€A, & B RVy.1, X117, Zy..7) = Tlog(a) — Tlog(m) + 3 _ log [ K1 (ad(1 + 7))
t=1

Y T
(6) ~0.53 log(1+47) + T6(a2 — 392 + 63 i
t=1 t=1
—0.5Y " log(/ 1;‘2)
t=1
where v = (a2 — 32)1/2 and §; = fc.a’?‘»i;—fe



In the case of the ARFIMA model, we employ a two-step estimation. In the first we apply the widely
used log periodogram estimator (GPH) of Geweke and Porter-Hudak (1983) to filter the data. The number
of ordinates £ used in each regression is selected by the plug-in method of Hurvich and Deo (1999). We
then apply the maximum likelihood estimator above for the filtered series.

2.3. The Ex-Ante Distribution of S&FP 500 returns. With our basic time series model for the realized
volatility defined, we are ready to state the empirical problem at the center of our analysis. Even though it
has been long recognized that the distributions of the stock returns scaled by realized standard deviations
are approximately gaussian (e.g., Andersen et al., 2001), Figure 1 and Table 1 reveal that this is far from the
case when we scale returns by the in-sample predicted values of our best fitting model in terms of in-sample
forecasts (the HAR model with leverage effects and the square root of the realized absolute variation as
explanatory variables). Despite the sizable forecasting gains made possible by volatility models based
on high frequency data, our descriptive results can be directly related to the failure of GARCH volatility
models to completely account for the excess kurtosis of returns (see for example Malmsten and Terésvirta,
2004, Carnero et al., 2004). The researcher or practitioner interested in evaluating the density of returns
from the perspective of a time series model still lives in a fat-tailed world and models of the conditional
expectation of volatility have little to say about it (see figure 2 for a visual example taken from the S&P
500 series).

In this paper, we do not interpret those facts as evidence against those models, but as a consequence
of high day-to-day unpredictability of the shocks that effect the volatility (causing excessive kurtosis) and
the intraday leverage effects (negative skewness). In the following section, we will argue that an adequate
volatility model for return density forecasting and risk management in this setting should illuminate the
dynamics of the higher moments. To pursue this objective, we will turn to the idea of time-varying volatility
of realized volatility (Corsi et al., 2008), which will allow for time-varying kurtosis on the general model
introduced previously.

A simple motivation for this method can be summarized as follows. Suppose we fit a fat-tailed distribu-
tion to past returns standardized by a certain estimate of the conditional mean of volatility and try to use
this framework for forecasting return densities in the future. This is the best possible alternative with latent
volatility modeling. The problem with this approach, besides inefficiently relying on an unconditional dis-
tribution, is that there does not exist a large enough sample of returns to reliably assess the magnitude of
the uncertainty in the tails of their distribution. We can say that the modeling qualities of our framework
are enhanced not only from what happened in the data, but also from what could have happened within
the much less strict limitations of our model. Extremely fat tailed days (i.e., days with high conditional
volatility of volatility) are far more frequent than days when returns actually realize on them.

TAaBLE 1. Descriptive Statistics for Returns Standardized by Realized Volatility Predictions.

Statistic Sample Estimate
Mean 0.012
Maximum 3.630
Minimum -7.251
Std. deviation 1.195
Skewness -0.384
Kurtosis 4,334




FIGURE 1. Empirical Density for Returns Standardized by Realized Volatility Predictions.
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3. VOLATILITY OF VOLATILITY

The theory of quadratic variation and integrated quarticity developed in Barndorff-Nielsen and Shephard
(2002, 2004, 2006) and Andersen et al. (2007) points that a realized quarticity measure can be seen as
estimate for the variance of the return variation. The initial point of our analysis is therefore to ask if
this variable is sufficient for incorporating time varying volatility of volatility to the model described in
the last section; if the realized quarticity is a good measure of the variance of realized variance, a more
efficient maximum likelihood estimation would use this variable directly instead of relying on the latent
variable (GARCH) approach implemented by Corsi et al. (2008). We begin by briefly reviewing the theory
of quadratic variation and integrated variance and examining the time series properties of the realized
quarticity measure.

3.1. Measuring the Realized Quarticity. Suppose that the logarithmic price of a financial asset, denoted
by p;, evolves according to the following stochastic volatility process:

t t
(7) pe = po + f il s)ds -I—f a(s)dW(s)
0 a



where p and o are cadlag: W is a standard Brownian motion; and o is assumed to be independent of V.
The quadratic variation process is defined as:

n—1

(8) QLT = pllm Z(‘pfj*'l = pﬁj+1 )2
=0

Letting sup (#;41 — tj41) — 0. The integrated quarticity is given by:

¢
9) IQ:/ o(s)tds
0

Different estimators of integrated quarticity based on the theory of power variation developed by Barndorff
Nielsen and Shephard (2002, 2004, 2006) have been proposed in the literature. So far these estimators deal
with microstructure noise difficulties on a less advanced level than the recent realized volatility literature
mentioned previously. Setting a day as a unit of measure, as usual, and sampling the continuously com-
pounded intraday returns of day ¢ at frequency M,

Tt = Pt—1+ji/M — Pt—14+(5—-1)/M;

the realized quarticity over day ¢ is defined by

M i

M 4 /' 4
Z Tegk — a(s)ds

3 =1 g

A more robust estimator in the presence of jumps is the realized tri-power quarticity estimator proposed
by Andersen et al. (2007):

RQ? =

RrQ, = MLU/2® :
o n—xeaZI Hllrtaliyal = f

Our preferred estimator has been suggestcd by Barndorff-Nielsen et al. (ZDD?a) and is given by:

9 -1 M ¢
— -A!2 —_— S 4 3
RQf_(1—M) D (2 — 207 (0 — 207) fea(ﬁjdh

Jj=3

where 2 is an estimate of the microstructure noise variance.

3.2, Dynamic Properties of the Realized Quarticity: a Full Sample Analysis. The time series and
empirical autocorrelation function of the square root of the realized quarticity estimator (the volatility of
volatility) for the S&P500 index are depicted in Figures 3 and 4. As with the realized volatility, the series
exhibit clustering behavior, alternating periods of stability which can last for years with periods where the
series is subject to large swings and extreme spikes. The autocorrelations by their turn suggest that the
volatility of volatility may also be characterized by long memory. However, we do not test this possibility
formally as it is well know that long memory testing require unrealistically large samples (Ohanissian et al.,
2004, see for example). GPH estimates for the fractional differencing parameter of the realized quarticity
and the square root of the realized quarticity are 0.199 and 0.447 respectively.

10



FIGURE 3. S&P 500 v RQ)

PSS LSS

FIGURE 4. S&P500 /RQ: autocorrelation.

The following HAR model is estimated by OLS from the full sample:

VRQ, =0.131 + 0.275\/RQ,_,

(0.029)  (0.022)

+0.083\/RG, 5+ 0276\/RQ,_yg

(10) (0.024) (0.047)
+?033372V RG99+t

R? = 0418, BIC = 2.900

It is also interesting to evaluate possible relations between the realized quarticity and the other variables,
The presence of markedly different patterns across different periods verified in Figure 3 suggest that the se-
ries can be described by multiple regimes. Following the the realized volatility specification and the results
of Scharth and Medeiros (2006), we consider the possibility that the regime switching behavior is linked
to asymmetric effects and can be accounted for by incorporating past cumulated returns as explanatory
variables. Simulation results in Scharth and Medeiros (2006) suggest that this effect can account for some
of the apparent long memory on the series.

The different estimations for the square root of the realized quarticity are given in Table 2, revealing
strong evidence that leverage effects indeed impact the volatility of volatility and can be a strong predictor
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for the variable. As in the realized volatility case, the realized absolute variation is also relevant. The
large sample correlation between realized volatility and the square root of the realized quarticity (0.899)
also renders the variable statistically significant. The last two cases are less interesting, however, as the
explanatory power of the realized absolute variation and the realized volatility can be simply explained by
the fact that they are less noisy explanatory variables than the lagged values of the realized quarticity.

TABLE 2. Realized Quarticity Estimations.
The table reports OLS estimations of linear models for /R consisting of (10) augmented by asymmetric effects,

realized volatility and the absolute realized variation (RAV) for the full sample (January 2. 1996 to March 29, 2007, in
a total of 2796 trading days.

Coef. SE Coel SE Coel. SE Coel. SE
Const. 0098 (0.035) 0354 (0.067) -0458 (0050) -0.024 (0.133)
VEQ, , 0.002 (0.023)  0.062 (0.035) 0014 (0.032) -0.293 (0.055)
VD, 4 0.050 (0.023) 0071 (0.024) 0053 (0.024)  0.032 (0.023)
VEQ, .- 0.194 (0.045) 0248 (0.046) 0242 (0.046)  0.167 (0.044)
VB0, s 0278 (0.036) 0121 (0.039) 0099 (0.038) 0221 (0.038)
I(re_q < 0y 0366 (0.034) - - - — 0356 (0.034)
I(re_y > O)r_s 0.044  (0.032) - = s - 0.041 (0.031)
Ire1s < Ori_ys 0163 (0.019) - - - - 0149 (0.019)
I(re1s>0re_1s  0.005 (0.016) » - - — 0010 (0.015)
I(re—122 < 0)ri_122 -0.068 (0.009) - _ - ~ 0063 (0.009)
I{re122 > 0)re_122  0.036 (0.008) » o = —  0.035 (0.008)
RAV;_, ~ ~ 0986 (0.122) i — 0041 (0.073)
RVZ, = = » - 0200 (0017) 0562 (0.075)
Rz 0.511 0.431 0.444 0.521

BIC 2742 2.879 2.856 2727

3.3. Modeling the Volatility of Volatility. In this section, we analyze the problem of incorporating the
volatility of volatility on model (1). While the general interpretation of the realized quarticity as the volatil-
ity of volatility may loosely suggest that we could simply set /; as some function of RQ:’IZ, this approach
suffers from a number of shortcomings. First, there is no theoretical justification for setting this variable
as the conditional variance of the errors of the time series model, even though it is a strong indicator of
much how the realized volatility is likely to fluctuate. Second, the realized quarticity estimator inherits
both the problems of fourth-moment estimators (i..e, large sensibility) and market microstructure noise,
with the latter being magnified in this case. In general, whenever realized quarticity is used by itself the
optimization of (6) is less stable and maybe subject to convergence problems.

Despite these problems, it may be not necessary to throw the information contained in R(); away. Hence,
we follow Corsi et al. (2008) in specifying a GARCH(1,1) model for the conditional heteroskedasticity of
the realized volatility, but evaluate the effects of adding R(); as a explanatory variable and letting the
estimation procedure determine the optimal way to weight the information contained in the residuals of the
model and the realized quarticity. Even though the the last section suggests that a long memory model of the
FIGARCH (Baillie et al., 1996) family maybe be more suitable, we find that this more complex to estimate
specification does not bring additional modeling qualities; moreover, the presence of R(Q); should account
for the long memory component if there is one. Initially, we consider the models hy = 8y + 81hs—y + 925?
and iy = 6o + B1he—1 + B227 + 03/R0Qy. For conciseness we omit the estimation which relies solely on
the realized quarticity for the conditional heteroskedasticity, which proved suboptimal at least with realized
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quarticity estimators which are currently available. The estimated models are displayed below:

Model 1: RV; = —0.034 +0. 116RAP1 1 —0.010 RV;_4
(0.017) 0.0 (0.020)

+ 'D.Dlﬂf RVi_o+ ?.331R11_1,5U.3}%RV;_1,22

0062 I(re-1 < O)re-1 ~0.014 T(re-1 > O)res

(0.010) (0.000)

—0.021 I(r¢—1,5 < 0)r4—1,5 —0.003 I(re—15 > 0)re—15
(11 (0.000) (0.000)

—0.008 I'({rs— 1'2‘2<U‘JH 122+0{]D3H11 1,22 = 0 122

(0.000)

+ Controls 4+ ¢
hf = 0.000 + 0.893h,_; + 0.082£,2

(0.000)  (0.014) (0.010)
a = 1.808, 3 =1.057, R? = 0.693, BIC = —1384.9
(0.136) (0.114)

Model 2: RV, = —0.062 +-0.134RAV;_; —0.029 RV;_,
(0017) = 0.014 (0.022)

+ 0.05TRV;—2 + 0.3T0RV; 150286]?11; 1,22

{0.017) {0.037) {0.028)
—0.063 I{r¢y_y < 0)rp_q —0.013 I{zy_q = 0)1p_4
(0.010) (0.000)
—0.021 I'{ri_15 < 0)ry—1,5 —0.003 I (7 1,5 =015
(12) {0.000) ' (0.000) '
—OUUSI[J; 122(0‘”1 122+0003If!1 122}0]?; 122
(0.000)

+ Controls 4 &,
hy = 0.001 + 0.8047,_; + 0.055¢.2 + 0.007/RQ,

(0.000)  (0.032) (0.014) (0.000)
=2.100, 3= 1209, R? = 0.696, BIC = —1439.6
(0.166) (0.140)

Even though the estimated volatility of volatility series for the pure GARCH(1,1) specification is fairly
correlated with the square root of the realized quarticity (0.45, against 0.52 for the specification with the
variable itself), the third model improves the efficiency of the estimation. The NIG parameters for the
models one and two imply a skewness of 1.48 and 1.43 and a kurtosis of 8 and 7.52 for the unconditional
distribution of the standardized residuals respectively. On an important note, the sample contemporaneous
correlation between the volatility of volatility as fitted by the last model and the realized volatility is 0.78.

The estimated volatility of volatility series for the second model (that is, \/Ef) is depicted in Figure
5. At this point, we reintroduce the findings of the last section to our analysis and also visualize the
relation between returns and the volatility of volatility. It is clear from the figure that as in the case of
the conditional mean, the spikes in the volatility of volatility are related to very negative returns over a
recent period. The variable then sharply falls back to average levels once positive returns are observed.
Since the relation may not be stable and depends on the recent history of a particular period, we let the
returns magnify or shrink the effect of past shocks over the volatility of volatility. Below, we estimate
he = 8y + O1hy_y + 227 + 03I (rs—y < O)ry_yhy_1 + 040 (r—1 > 0)ry_1hy_y as an example. Again,
the inclusion of the additional explanatory variables in the return equation improves the descriptive power

13



FIGURE 5. S&P500 Estimated Volatility of Volatility.

——alatility of Volatility

Twa Months Returps

of the model, as measured by the Schwarz Criterion. In this case, negative returns below the threshold
of around -1% generate an explosive regime in the volatility of volatility. This result is driven by more
negative returns and the spikes such as the one observed in Figure 5, which are more pronounced in this

estimation.
Model 3:RV; = —0.032 +0.116 RAV,_y —0.010 RV;_4
(0.017)  (0.010) (0.022)
+ 0.07T1RV; 5 + 0.298 RV, _, 50. 3291-?1@ 1,22
(0.017) (D.021) (0.02
—0.064 T{r¢_1 < 01y —DDIBI{;f 1> 0y
(0.010) (0.0
—0.023I(r;_15 < O)r4_15 —00041’(:1 15 >0 15
(0.000) (0.000)
(13) —(Eﬂgl)of(fz 1,22 < 0)ryq 99 + 0 003f(f1 122 > 0)re_y 20
+ Controls + &
he = 0.002 + 0.828h¢_1 + 0.063&2 — 0. 1371(:1 1< O)re—rhia
(0.000)  (0.017) (0.010) (0.020
—[(]'}DIDI{H 1> 01 hyq
(!
= 2.061, 3_ 1.299, R? = 0.698, BIC = —1391.2
(0.151)° (0.134)

To conclude this section, we examine the effects of directly modeling the relation between the condi-
tional expectation of the realized volatility and the volatility of volatility by considering the conditional
heteroskedasticity model iig = 8o + @1he—1 + f252 + 03( RV; — &¢) + Ba( RV; — & )°. The results are given
in equation (14), confirming the relevant relation between the two variables. Perhaps surprisingly, our es-
timations indicate that the predicted value of RV; for a given day is more informative for the volatility of
volatility than the ex posr realized quarticity measure.

14



Model 4:RV; = —0.072 +-0.141RAV,_; —0.020 RV;_;

(0.022)  (0.010) {0.028)
+ 0.058 RV;_3 + 0.347 RV;_ 50. Qb‘)ﬁ’h 1,22
(0.020) (0.039) (0.02
—0.075 T (re—1 < 0)ig—g —0.013 T{ry—1 > 0)re—a
{0.010) (0.000)
—0.026 I(T';_lj < 0:”'{—]_‘5 —0.006 I(L"g—l.s > 0)3';_1.5
(0.000) {0.000) ' '
(14) —0.010 I'(re—122 < O)re—1,22 + 0 DUJI[M 122 > O)re— 1,22
(0.000)

+ Controls + &
he = 0.016 + 0.177h;_ 1+UU"3C — 0.042(RV; — &¢)

(0.005)  (0.131) 0.023) (0.015)

— 0.072(RV; — &.)?
(0.015)

= 2207, 3=1.355, B2 =0. 702, BIC = —1449.8
(0.193)’ (0.163)

3.4. A Monte Carlo Method for Return Density Forecasting. In this section, we propose a method
that will enable the application of the modeling framework described previously when the ex-ante density
of daily returns is of interest. As the above discussion depicts, realized volatility series are subject to
intense variation from day to day; the typical unconditional coefficient of variation for the models analyzed
previously for the S&P 500 index lies in the 1/4 — 1/3 range. As we will illustrate below, this implies that
the distribution of returns standardized by the conditional mean of realized volatility departs significantly
from the normal distribution verified when the same returns are standardized by the realized volatility.

Unfortunately, an analytical solution for the density implied by our flexible normal variance-mean mix-
ture hypothesis (realized volatility is distributed normal inverse gaussian and returns given volatility are
normally distributed) is not available. We then turn to the following Monte Carlo method, which can be
easily implemented with any mixing hypothesis and that can be made very accurate with realistic compu-
tational power. Conditional on information up to day ¢t — 1, the forecasted empirical density function for
day ¢ for the case of no intraday leverage effects are calculated as follows:

(1) In the first step, the functional form of the model (equation 1) is used for the evaluation of predic-
tions of the realized volatility and the volatility conditional on past realized volatility observations,
returns, the estimated volatility of volatility series and shocks, and other variables.

(2) We randomly generate r shocks distributed as the standardized NIG with the parameters estimated
from the data as described in section 2.2.6, which multiplied by !;fl /? and added to RV ¢ originate
a vector of r simulated realized volatilities for day ¢, where 7; denotes a prediction of a generic
variable = for day ¢.

(3) Under the hypothesis that standardized returns are normally distributed, we employ each of these
n simulated volatilities to simulate 7 associated returns. Antithetic variables techniques can be
used, so that 12 should be at least 2. The empirical density function of the set of all the n x m
simulated returns yield our final density forecast.

For the case with intraday leverage effects, the procedure can be summarized as follows:
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(1) In the first step, n standardized shocks distributed as N(0,1) are generated. The functional form
of the model (equation 1, see also equation 3) is used for the evaluation of predictions of the
realized volatility and the volatility conditional on past realized volatility observations, returns, the
estimated volatility of volatility series and shocks, and other variables.

(2) We randomly generate » shocks distributed as the standardized NIG with the parameters estimated
from the data as described in section 2.2.6, which multiplied by .?1.11-”.2 and added to RV, originate a
vector of n simulated realized volatilities for day ¢.

(3) The simulated returns are given by the product of each simulated realized volatility with the respec-
tive standardized shock. The empirical density function of the set of all the » simulated returns
yield our final density forecast.

In Figures 6, 7 below we illustrate the impact of the volatility of volatility for the ex-ante distribution of
returns without the presence of intraday leverage effects. The assumed parameters for the NIG distribution
correspond to the ones estimated on (11) and in the second figure we arbitrarily assume the conditional
mean of realized volatility to be 1.2 (this is to rule out imperfections caused by the support of the NIG
distribution). For low values of the variance of of volatility (or more generally, for a low conditional
coefficient of variation) the distribution of returns is still very close to the gaussian case. This is consistent
with the evidence that returns standardized by the realized volatility are nearly normally distributed: since
the impact of the volatility of volatility is non-linear and grows slowly with the variable, the effect of errors
in the Barndorff-Nielsen et al. (20(7a) realized volatility estimator are not enough to generate pronounced
non-gaussianity on the scaled returns. Figure 6 also clarifies the consequences of the non-gaussianity on
the distribution of realized volatility shocks, showing that the excess kurtosis on the volatility amplify the
excess kurtosis on returns for a given volatility of volatility level, specially for higher values of the latter.

The case with intraday leverage effects is illustrated on Figure 8, where the parameters have again been
estimated from the data and the conditional mean of realized volatility is 1.2. This setting directly implies
that the ex-ante distribution of returns is visibly non-gaussian even for a very low volatility of volatility.
As the model is specified, the coefficient of skewness grows with the volatility of volatility, jumping from
-0.07 in the first panel (volatility of volatility = 0.1) to -0.93 in the last one (volatility of volatility = 0.55).
We have also estimated alternative models to relax this restriction and verified that the effect is in fact
present in the data, even though the skewness does not grow as much with the volatility of volatility.

4. APPLICATIONS

In this section we test our methods in a variety of applications favored in the literature. We base the
out-of-sample analysis on the eight last years of the sample, ranging from 2000 to 2007 and covering 1557
trading days. All implementations re-estimate the models daily using the full past data to calculate the
desired forecasts, which are all one step ahead.

4.1. Point Forecasting. Even though in the introduction to this paper we argued that point forecasting
may not be a powerful tool for comparing volatility models, predictions have been the main basis of com-
parison in the volatility literature and are the subject of extensive analysis (e.g., Hansen and Lunde, 2003).
Therefore, we start by analyzing the performance of the models described previously in this aspect as a
first layer of comparison. The evaluation of forecasts is based on the mean absolute error (MAE), the root

16



FIGURE 6. Kurtosis of the simulated distribution under the assumption that shocks to
realized have the NIG (black) and normal (grey) distributions.
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FIGURE 7. Densities for the simulated distributions (no volatility feedback).
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FIGURrE 8. Densities for the simulated distributions (with volatility feedback).
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where RV} 1s the observed realized volatility on day ¢ and jﬁ;ﬂt—l,i is the one-step-ahead forecast of model
¢ for the volatility on day ¢. If the model ¢ is correctly specified then &« = 0 and 5 = 1. We report the
(corrected) R2 of the regression as a measure of the ability of the model to track variance over time and test
of superior predictive ability (SPA) test developed by Hansen (2005). The null hypothesis is that a given
model is not inferior to any other competing models in terms of a given loss function.

The forecasting statistics are displayed on Table 3. The results suggest that whenever cumulated returns
are included in the conditional mean specification the respective model fares unambiguously better than
its counterpart without leverage effects (on all criteria). The same is valid for the inclusion of the realized
absolute variation (even though we include only one specification to our results to save space), though by a
smaller margin than has been reported in the literature.* In terms of the long-memory/quasi long-memory
specification, the results indicate that the HAR meodel performs unambiguously the best, especially when
leverage effects are not taken into account. Finally, the enhanced efficiency of the estimates that take
time-varying volatility of volatility into account does not prevent these specification from adverse results:
models with constant volatility of volatility perform significantly better, except in the case where we allow
for the relation between the forecasted volatility and the volatility of volatility (labeled augmented GARCH
model, which is (14) without R.AV}), which is the best one overall. Recalling one the argument from the
introduction, we remark that despite the statistical significance of the comparison between some models,
the typical size of the volatility of the volatility is more than 13 (and up to 30) times as large as the
difference in the MAE between the best model and the simplest HAR specification; forecasting differences
are swamped by the size of the noise.

Iwe hypothesize that jump issues as currently modeled are less relevant to forecasting when more efficient/less noisy realized
volatility estimators are implemented.
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TABLE 3. FORECASTING RESULTS.

The table reports the out-of-sample forecasting results for the S&P 500 daily realized volatility for
the period between 2000 and 2007 (1557 trading days), where each model is re-estimated daily
and used for one day ahead predictions. The specification for the conditional mean and conditional
heteroskedasticity are separated by dashes. AE. VF and RAV mean that the model is being estimated
with asymmetric effects, volatility feedback effects and the realized absolute variation respectively
(see equation 3). In the augmented GARCH model the predicted value of the realized volatility is a
explanatory variable for the volatility of volatility. RMSE is the root mean squared error and MAE
the mean absolute error. R? is the (corrected) R-squared of RV; = a + ,-'Bﬁf-";m_j,,; + ¢4, where
j':l;‘frﬂg_j,i is the prediction of model ¢ for the realized volatility on day ¢ and RV is the observed
realized volatility on that day. SPA is the p-value of the Superior Predictive Ability test developed
by Hansen (2003). The null hypothesis is that a given model is not inferior to any other competing
models in terms of a given loss function.

Model R-Squared RMSE MAE SPAin B? SPA in MSE
HAR 0.719 0.231 0.152 0.002 0.003
HAR/AE 0.763 0.212  0.143 0.333 0.431
HAR-GARCH 0714 0.244 0.167 0.002 0.005
HAR/AE-GARCH 0.750 0.227  0.160 0.000 0.111
HAR/AE/RAV-GARCH 0.760 0.213  0.141 0.492 0.603
ARFIMA 0.682 0.245  0.158 0.003 0.007
ARFIMA/AE 0.743 0.221  0.147 0.023 0.039
ARFIMA-GARCH 0.685 0.244 0.158 0.003 0.004
ARFIMA/AE-GARCH 0.721 0.231 0.154 0.002 0.008
HAR/AE/VF-GARCH 0.746 0.229 0.l1e2 0.000 0.036
HAR/AE-Augmented Garch 0.765 0211 0.141 0.981 0.983
Combination (all) 0.766 0.213 0.143 - o

4.2. Value-at-Risk. We now proceed to analyze the ability of different models and the Monte Carlo
method in forecasting adequate quantiles over the lower tail of the return distribution. We also introduce
a more standard method of density forecasting into our analysis, namely considering r; ~ N{0, RV,).
henceforth labeled point forecast method. We remark, however, that this is not intended as a “models race™
but rather as basis for reference that illustrates the dangers of relying excessively on point forecasts and
ignoring the velatility of volatility.

The evaluation of value-at-risk forecasts is based on the likelihood ratio tests for unconditional coverage
and independence of Christoffersen (1998). Our analysis is similar to Beltratti and Morana (2005), who
study the benefits of value-at-risk with long memory. Let fj‘tilt_l(a-} be the (1 — «) interval forecast of
model ¢ for day ¢ conditional on information on day ¢ — 1. In our application, we consider 95% and 99%
value-at-risk measures, i.e., & = 0.05 and o« = 0.01, respectively. We construct the sequence of coverage
failures for the lower « tail as:

-Fﬂ?—l = ! if}.tﬂ - Eﬂf“lg{a}
0 ifrigy > Zf;+1|c(°";’

where 7y is the return observed on day ¢. The unconditional coverage (UC) is a test of the null E(F ;) =
o against E(F ;) # o The test of independence is constructed against a first-order Markov alternative.

The value-at-risk performance of the models are organized and presented in Table 4. The results show
that as expected from the analysis of section 3.4, the method of calculating VaRs based only on the point
forecast of volatility is clearly biased towards underestimating the value-at-risk, failing to provide adequate
coverage at all intervals. On the hand, the tables provide some weak evidence that taking the time varying
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volatility of volatility into account in the estimation helps in reducing the bias of the point forecast method.
The Monte Carlo method, in turn, significantly reduces or eliminates the problem of excess violations for
all models (even though the experiment has in general no power in ranking them). In the 1% VaR case
we cannot reject the hypothesis that most models considered produce accurate VaRs, with the difference in
relation to the point forecasting method being significant in most cases (not reported in the table). For the
2.5% and 5% intervals, however, it becomes clear that the only model capable of generating a negatively
skewed distribution (the model with intraday leverage effects) is adequate, with the rest underestimating
possible losses.

4.3. Expected Shortfall. It is well known that value-at-risk measures suffer from a series of shortcomings
as a tool for assessing the risk of assets or portfolios, for example by failing to provide an estimate of how
large losses can be on the lower tail of the return distribution, relying instead on a threshold linked to
a certain probability. With roots in the theory of coherent risk measures (Artzner et al., 1997, 1999),
the expected shortfall (or conditional value-at-risk) is one of the concepts introduced to overcome this
deficiency. The expected shortfall for day ¢ is defined as

(15) ES, = E(ry|ry < Vard®)

where Varf® denotes the 99% value-at-risk for day t. Hence, the expected shortfall is defined as the
expected value of the tail, making it a particularly attractive means of assessing the modeling qualities of
different models with respect to the volatility of volatility, which as we have seen is directly linked to size
of the tails and consequently the conditional value-at-risk. To do so, we construct a specialized sequence
of standardized returns r; /RV;, where RV, is the average from all models of the predicted value of the
realized volatility, and compare the predicted expected shortfalls against the returns (74) associated to the
lowest percentile of this sequence. The reason why we do so, and do not consider say r /RV; < ¢~1(0.01)
(where ¢—1(.) is the inverse of the standard normal), is that it would make little sense to compare a statistic
based on an ex—ante distribution (the forecasted expected shortfall) with another one based on an ex-post
distribution. Therefore, low values of ./ RV} represent the most unpredictably low returns in our sample,
maximizing the degree of uncertainty that the models are being tested against.

The results for the point forecast based method and the Monte Carlo based method are displayed in
tables 5 and 6 respectively, where the the evaluation of forecasts is again based on the mean absolute error
(MAE), the mean squared error (MSE) and the estimation of the Mincer-Zarnowitz regression. We note
that the small number of observations that are left for this experiment (15) leaves the SPA method with low
power for statistically ranking models. For the point forecasted method, the analysis is related to that of
forecasting, with the inclusion of #AV; and asymmetric effects enhancing the quality of the specification
(significant in the case of the MSE) and the inclusion of the GARCH(1,1) effect being detrimental on
the Rs criterion and practically ineffective on the other criteria. On the other hand, the ARFIMA have
a relatively superior performance compared to the point forecasting analysis. The Monte Carlo method,
in its turn, importantly reduces the size of the forecasting errors (for the best model the reduction of the
MAE compared to the point forecasting method is of the order of 35%). In this case, asymmetric effects
(cumulated returns and volatility feedback effects), time varying volatility of volatility and the relation
between the level and the volatility of volatility improve the results, albeit the differences do not stand out
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TABLE 4. VALUE AT RISK ANALYSIS.

The table reports the out-of-sample value-at-risk results for the S&P 500 daily realized volatility
for the period between 2000 and 2007 (1557 trading days), where each model is re-estimated daily
and used for caleulating 1%, 2.5% and 5% wvalue-at-risk thresholds by the traditional VaR method
based only on the forecast of realized volatility and the Monte Carlo Method described in section
3.4. The specification for the conditional mean and conditional heteroskedasticity are separated by
dashes. AE, VF and RAV mean that the model is being estimated with asymmetric effects, volatility
feedback effects and the realized absolute variation respectively (see equation 3). In the augmented
GARCH model the predicted value of the realized volatility 15 a explanatory variable for the volatility
of volatility. The column failures indicates the proportion of days when returns over the next day in
the cv lower tail of the predicted distribution. UC and IND are the p-values of the likelihood ratio tests
for unconditional coverage and independence (against a first order Markov alternative) developed by
Christoffersen (1998).

1% VaR

Point Forecast VaR Monte Carlo Method
Failures UC IND U Failures UC  IND
HAR 0.021 0.000 0.239 0.015 0.077 0.417
HAR/AE 0.023  0.000 0.835 0.014 0.123 0.427
HAR-GARCH 0.019 0001 0.587 0.011 0.720 0.552
HAR/AE-GARCH 0.017 0008 0.472 0.014 0.189 0.271
HAR/AE/RAV-GARCH 0.021  0.000 0.668 0.014 0.123 0.427
ARFIMA 0.024 0000 0.012 0.017 0.015 0.069
ARFIMA/AE 0.023  0.000 0.226 0.014 0.123  0.438
ARFIMA-GARCH 0.023  0.000 0.008 0.016 0.027 0.400
ARFIMA/AE-GARCH 0.021  0.000 0.181 0.015 0.047 0.386
HAR/AE/VE-GARCH 0.019  0.002 0.548 0.007 0.219 0.692
HAR/AE-Augmented Garch ~ 0.022  0.000 0.202 0.014 0.123 0.366

2.5% VaR

Point Forecast VaR Monte Carlo Method
Failures UC IND % Failures UC  IND
HAR 0.048  0.000 0417 0.036 0.009 0.059
HAR/AE 0.051 0.000 0.39 0.041 0.000 0.796
HAR-GARCH 0.041  0.000 0.364 0.032 0.085 0.293
HAR/AE-GARCH 0.039  0.002 0.326 0.032 0.085 0.614
HAR/AE/RAV-GARCH 0.048  0.000 0417 0.037 0.004 0.929
ARFIMA 0.051  0.000 0.341 0.033 0.043 0.032
ARFIMA/AE 0.049  0.000 0.485 0.037 0.004 0.078
ARFIMA-GARCH 0.050  0.000 0.260 0.034 0.030 0.037
ARFIMA/AE-GARCH 0.046  0.000 0.354 0.033 0.061 0.027
HAR/AE/VE-GARCH 0.038  0.002 0.350 0.019 0.092 0.548
HAR/AE-Augmented Garch ~ 0.048  0.000 0.371 0.033 0.061 0.580

5% VaR

Point Forecast VaR Monte Carlo Method
Failures  UC IND % Failures UC  IND
HAR 0.084  0.000 0.472 0.076 0.000  0.489
HAR/AE 0.083 0.000 0.364 0.077 0.000 0.419
HAR-GARCH 0.079  0.000 0.261 0.077 0.000 0.194
HAR/AE-GARCH 0.076  0.000 0.483 0.073 0.000 0.662
HAR/AE/RAV-GARCH 0.084 0.000 0.794 0.076 0.000 0.250
ARFIMA 0.082  0.000 0.145 0.078 0.000 0.133
ARFIMA/AE 0.084  0.000 0.941 0.080 0.000  0.945
ARFIMA-GARCH 0.082  0.000 0.145 0.077 0.000  0.105
ARFIMA/AE-GARCH 0.082  0.000 0.569 0.076 0.000 0.707
HAR/AE/VE-GARCH 0.074 0.000 0.587 0.048 0.739 0.096
HAR/AE-Augmented Garch 0,082 0.000 0.880 0.076 0.000 0.729
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statistically due to the testing limitations commented on previously (except for comparing specifications
with or without asymmetric effects).

TABLE 5. POINT FORECAST BASED EXPECTED SHORTFALL.

The table reports the out-of-sample expected shortfall results for the S&P 500 daily realized volatility
for the period between 2000 and 2007, where each model is re-estimated daily. The expected shortfall
of model @ is defined as E'S; ; = E(r|r: < Va r‘a‘fg), where 1-’11:‘,0,'39 denotes the 99% value-at-
risk of model 7 for day ¢. The forecasts are compared only against returns that satisfy being below
the first percentile of the sequence 7/ RV, where RV is the average from all models of fitted
in-sample value of the realized volatility. The specification for the conditional mean and conditional
heteroskedasticity are separated by dashes. AE, VF and RAV mean that the model is being estimated
with asymmetric effects, volatility feedback effects and the realized absolute variation respectively
(see equation 3). In the augmented GARCH model the predicted value of the realized volatility is a
explanatory variable for the velatility of volatility. RMSE is the root mean squared error and MAE
the mean absclute error. R? is the R-squared of vy = o + ,-'iE_.S-'m_j,,; + s 4. where Egg|;_jlﬁ is
the prediction of model ¢ for the expected shortfall on day . SPA is the p-value of the Superior
Predictive Ability test developed by Hansen (20035). The null hypothesis is that a given model is not
inferior to any other competing models in terms of a given loss function.

Model R-Squared RMSE MAE SPAin R SPA in MSE
HAR 0.528 1085  0.792 0.147 0.030
HAR/AE 0.643 0.973 0.730 0.128 0.438
HAR-GARCH 0.509 1.058  0.763 0.221 0.040
HAR/AE-GARCH 0.633 0.947 0.686 0.136 0316
HAR/AE/RAV-GARCH 0.555 1.093  0.822 0.096 0.108
ARFIMA 0.609 0.887 0.619 0.602 0.411
ARFIMA/AE 0.673 0.841  0.604 0.808 0.858
ARFIMA-GARCH 0.595 0.889 0.624 0.538 0.290
ARFIMA/AE-GARCH 0.645 0.847 0613 0.829 0.725
HAR/AE/'VE-GARCH 0.644 0.928 0.667 0.633 0.499
HAR/AE-Augmented Garch 0.686 0.908 0.678 0.460 0.921

4.3.1. Plausibility Check. On table 7 below we conduct a brief counterfactual analysis of the lower tail
performance of selected models under the Monte Carlo density forecasting. We display the inverse of the
forecasted cumulative density functions evaluated at the ten lowest observed returns on the out-of-sample
period (1557 trading days). This quantity can be interpreted as the expected number of days the model
predicts for such a CDF (or lower) to occur. If no lower simulated returns were observed on the conditional
Monte Carlo sample, > 105 is indicated. This simple analysis proves most realized volatility models to
be implausible and provide further evidence that time accounting for the volatility of volatility and the
possibility of next-day leverage effects(conditional skewness) is crucial for robustness.

4.4. Whole Density Forecasts. After evaluating the specific region of the forecasted return densities more
critical to risk management, we turn now to a diagnostic test for the complete densities. We rely on the
theory of density forecasting evaluation developed by (Diebold et al., 1998). The method consists of
considering the predicted cumulative density functions evaluated at the observed returns, which originate a
sequence of random variables which would be distributed as U(0,1) and i.1.d. if the forecasts were 1dentical
to the true densities. Table 8 shows the p-values of Kolmogorov-Smirnorv tests of the U(0,1) hypothesis
for the forecasted densities of all models, with a strong result: the model with intraday leverage effects is
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TABLE 6. MONTE CARLO METHOD BASED EXPECTED SHORTFALL.

The table reports the out-of-sample expected shortfall results for the S&P 500 daily realized volatility
for the period between 2000 and 2007, where each model is re-estimated daily. The expected shortfall
of model @ is defined as ES, ; = E(rre < Va }E: ), where Va J‘Efg denotes the 99% value-at-
risk of model ¢ for day . The forecasts are compared only against returns that satisfy being below
the first percentile of the sequence J‘cf."Fc, where RV, is the average from all models of fitted
in-sample value of the realized volatility. The specification for the conditional mean and conditional
heteroskedasticity are separated by dashes. AE, VF and RAV mean that the mode] is being estimated
with asymmetric effects, volatility feedback effects and the realized absolute variation respectively
(see equation 3). RMSE is the root mean squared error and MAE the mean absolute error. R? is
the R-squared of 1 = o + _-'BETS'm_j,,; + ¢4, where :ﬁ'm_ﬁ 15 the prediction of model 7 for
the expected shortfall on day t. SPA is the p-value of the Superior Predictive Ability test developed
by Hansen (2005). The null hypothesis is that a given model is not inferior to any other competing
models in terms of a given loss function.

Madel R-Squared RMSE MAE SPAin B* SPA in MSE
HAR 0.536 0.852  0.586 0.133 0.036
HAR/AE 0.648 0.769 0496 0.173 0.373
HAR-GARCH 0.525 0.800  0.538 0.249 0.045
HAR/AE-GARCH 0.688 0.656  0.462 0.887 0.090
HAR/AE-GARCH/RAV 0.607 0.829  0.564 0.198 0.169
ARFIMA 0.611 0.773  0.504 0.318 0.438
ARFIMA/AE 0.673 0.695 0.4d6d 0.678 0.664
ARFIMA-GARCH 0.523 0.965 0.562 0.222 0.124
ARFIMA/AE-GARCH 0.582 0.861 0.510 0.482 0.228
HAR/AE/VF-GARCH 0.717 0.624 0530 0.708 0.836
HAR/AE-Augmented Garch 0.721 0.645 0434 0.873 0.932

TABLE 7. Plausibility Check: Inverse of the Forecasted Empirical CDF at Low Observed Returns

The table reports the inverse of the forecasted cumulative density functions (using the Monte Carlo Method)
evaluated at then lowest observed returns in the period between 2000 and 2007 (1557 trading days). The speci-
fication for the conditional mean and conditional heteroskedasticity are separated by dashes, with a G indicating
a GARCH maodel (that is, time varying volatility of volatility). AE. VF and RAY mean that the model is being
estimated with asymmetric effects, volatility feedback effects and the realized absolute variation respectively (see
equation 3).In the angmented GARCH model the predicted value of the realized volatility is a ex planatory variable

for the volatility of volatility.

Date Return HAR HAR/AE HAR-G HAR/AE-G HAR/AEVF-G HAR/AE-AG
3/12/2001 453 1333 606 952 667 189 488
4/3/2001 -3.60 1538 690 645 426 256 198
9/17/2001  -4.97  =10° = 10° = 10° 1538 606 833
102002 346 46 27 69 50 31 48
719/2002  -4.22 56 19 100 35 22 34
712272002 -3.39 28 8 47 11 10 13
8/5/2002  -3.56 37 18 32 21 22
9/3/2002  -4.28 156 168 235 323 129 190
3/24/2003 358 204 714 351 952 230 426
212772000 -338 = 10° = 10° > 10° = 107 4355 7540

the only one to pass this test, with all the rest being strongly rejected both at the peoint forecast and Monte

Carlo methods.

4.5, Excessive Conservativeness? An Application with Capital Charges. The 1980s and 1990s were
characterized by a series of financial disasters, many of which could be attributed, entirely or in part, to
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TABLE 8. Density Forecasts

The table reports the p-values of Kolmogorov-Smirnov tests for the
null hypothesis that the sequence of forecasted cumulative density
functions evaluated at observed returns in the period between 2000
and 2007 (1557 trading days) are distributed as U(0,1), where each
model is re-estimated daily and used for one day ahead predic-
tions. The specification for the conditional mean and conditional
heteroskedasticity are separated by dashes. AE, VF and RAY mean
that the model is being estimated with asymmetric effects, volatility
feedback effects and the realized absolute variation respectively (see
equation 3).In the augmented GARCH model the predicted value of
the realized volatility is a explanatory variable for the volatility of

volatility.
Model PF Method Monte Carlo
HAR 0.002 0.000
HAR/AE 0.001 0.000
HAR-GARCH(1,1) 0.021 0.007
HAR/AE-GARCH(1,1) 0.043 0.011
HAR/AE-GARCH(1,1 YRAV 0.001 0.001
ARFIMA 0.004 0.001
ARFIMA/AE 0.004 0.003
ARFIMA-GARCH(1,1) 0.003 0.002
ARFIMA/AE-GARCH(1.1) 0.006 0.005
HAR/AEVE-GARCH 0.055 0.227
HAR/AE-Augmented Garch 0.001 0.000

poor risk management. The high levels of integration in modern financial markets do not permit a laissez-
faire approach to the regulation of financial institutions, as systemic risk could lead to serious problems
in the financial system. The groundbreaking Basel Capital Accord, originally signed by the Group of Ten
(G10) countries in 1988, but since largely adopted by over 100 countries, requires Authorized Deposit-
taking Institutions (ADIs) to hold sufficient capital to provide a cushion against unexpected losses, where
the value-at-risk is the procedure designed to forecast the maximum expected loss over a target horizon.
Initially, the Basel Accord stipulated a standardized approach which all institutions were required to adopt
in calculating their VaR thresholds. This approach suffered from several deficiencies, the most notable of
which were its conservatism (or lost opportunities) and its failure to reward institutions with superior risk
management expertise.

Following much industry criticism, the Basel Accord was amended in April 1995 to allow institutions to
use internal models to determine their VaR and the required capital charges. However, institutions wishing
to use their own models are required to have the internal models evaluated by the regulators using the
backtesting procedure. The Basel Accord penalizes institutions which use models with a greater number
of violations than would be expected, given the statistical 1% level of confidence, this procedure is known
as backtesting. Daily capital charges are given by

t—1
(16) (3 + k)Min (Vm-f, > Va.r-z-fﬁﬂ)

i=t—60
where Vars 1s the reported value-at-risk at day ¢ and the penalties % applicable to violations of this
quantity are given in Table 9.
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TABLE 9. Basel Accord Penalty Zones.

Zone Number Violations &

Green Otod 0.00
Yellow 5 0.40
6 0.50
7 0.65
8 0.75
9
0

0.85

Red 10+ 1.00

Since the incorporation of the volatility of velatility invariably expands the forecasted value-at-risk, it is
not immediately clear that this approach would be interesting in the case of a risk manager also interested
in maximizing the amount of capital that could be freed for profitable investments. In fact, it could be the
case that the better lower tail properties of our model are simply explained by forced conservativeness. To
examine this possibility, we make a further illustration of the methods discussed previously by considering
what would happen if we apply the volatility of volatility framework for the decision of choosing a VaR
threshold optimally (in the sense of minimizing capital charges) for the S&P 500 index. Suppose that we
start from a (+ x 100)% VaR for day ¢ (denoted V'ar}') and consider raising the threshold to Var} ™. The
expected cost of doing this is determined by the increase in the probability of the returns falling bellow the
VaR (p) and the higher future penalties:

4252
(17 p(ARE ( Z vm-f)

i=t+1
And benefit is the amount of capital that is freed at this particular date (in percentage points) and the
expected benefit of a reduced average for the next 60 days:

&0 i—1
(18) (Var] —Vary™) 14 (1/60)E | 3. I |Var; < Y. Varj/60
i=t+1 j=i—60

Empirically, our optimization method consist in obtaining value-at-risks for different values of ~ and
applying the above comparison sequentially, where the size of the sequence depends on a choice of p. Of
course, when p — () the solution of the discrete problem converges to the solution of the optimization of
capital charges that would arise if we had a continuous density. The expectations in (17) and (18) introduce
a difficulty in that they require that we consider the same optimization problem in the future. To circumvent
this problem in the case of the first equation we just make a forecast based on the time series of past VaRs,
where the in-sample thresholds are set as the 1% VaRs, and exclude the out-of-sample first year as an
initialization period. In the case of the second equation, we substitute the expectation for the historical
average of the number of days where 021 . Var; /60 < Var,.

The results for the point forecast and Monte Carlo methods are organized in Tables 10 and 11 respec-
tively. In the first case, we can see that modeling refinements that were seem to be an improvement on
previous analysis, considering asymmetric effects and time varying volatility of volatility, become counter-
productive is most cases. Overall, the model that allows for correlation between the level and the volatility
of volatility is the best over the point forecast method, even though all models are very similar. We remark
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that the superior performance of the optimal method in this case rests on there being small punishments
for excess violations. As might be expected, the Monte Carlo without optimization leads to an increase
in capital charges. However, the optimal method unambiguously improves the result, providing evidence
against the conjecture of excessive conservativeness.

TaBLE 10. Capital Charges: Point Forecast Based Method.

The table reports the out-of-sample capital charges results for the
S&P 500 daily realized volatility for the period between 2000 and
2007 (1557 trading days), where each model is re-estimated daily
and used for one day ahead predictions. The specification for the
conditional mean and conditional heteroskedasticity are separated
by dashes. AE, VF and RAV mean that the model is being esti-
mated with asymmetric effects, volatility feedback effects and the
realized absolute variation respectively (see equation 3). In the aug-
mented GARCH model the predicted value of the realized volatility
is a explanatory variable for the volatility of volatility. The capital
charges are calculated according to equation (16). The seconds col-
umn displays the average daily capital charges with the 99% VaR
and the last column shows capital charges when the optimal method
of equations (17) and (18) is imple mented.

Model Mean Daily CC  Optimal
HAR 6.426 6.417
HAR/AE 6.592 6.521
HAR-GARCH(1.1) 6.658 6.433
HAR/AE-GARCH(1.,1) 6.607 6.443
HAR/AE-GARCH(1,1/RAV 6.467 6.408
ARFIMA 6.830 6.390
ARFIMA/AE 6.652 6.472
ARFIMA-GARCH(1,1) 6,752 6.541
ARFIMA/AE-GARCH(1,1) 6.675 6.340
HAR/AE/VE-GARCH 6.763 6.522
HAR/AE-Augmented Garch 6.381 6.266

5. CONCLUSION

As exemplified by the long memory property case, the volatility literature grows in the middle of a
theoretical gap. There currently exists no fully compelling theoretically parametric model of asset returns
and the theoretical underpinnings of the patterns observed in volatility processes are poorly understood. In
this paper, we embrace the view that the uncertainty surrounding tail events significantly affects economic
decisions and focus on the objective of trying to measure this risk adequately by starting from the simplest
paradigm (returns standardized by the realized volatility are normal), again without examining the under-
lying theoretical implications of time varying volatility of volatility. Despite the evidence about outcomes
on the tails being by definition limited, large tails days are far more frequent then actual extreme events
(the probability of a realization on the tail is low after all), so that by modeling the volatility of volatility
with the methods discussed in the paper we are able to understand and manage this risk better.

We have argued that the existence of a large and time varying volatility of volatility is an important
stylized times series fact of realized volatility. Far from exhausting the analysis of the empirical properties
of this volatility of volatility, we have documented that this variable is subject to strong leverage effects

26



TABLE 11. Capital Charges: Monte Carlo Method.

The table reports the out-of-sample capital charges results for the
S&P 500 daily realized volatility for the peried between 2000 and
2007 (1557 trading days), where each model is re-estimated daily
and used for one day ahead predictions. The specification for the
conditional mean and conditional heteroskedasticity are separated
by dashes. AE, VF and RAY mean that the model is being esti-
mated with asymmetric effects, volatility feedback effects and the
realized absolute variation respectively (see equation 3). In the aug-
mented GARCH model the predicted value of the realized volatility
is a explanatory variable for the volatility of volatility. The capital
charges are calculated according to equation (16). The seconds col-
umn displays the average daily capital charges with the 99% VaR
and the last column shows capital charges when the optimal method
of equations (17) and (18) 1s implemented.

Model Mean Daily CC  Optimal
HAR 6.745 6.107
HAR/AE 6.790 6.025
HAR-GARCH(1.1) 6.869 6.114
HAR/AE-GARCH(1,1) 7.004 6.150
HAR/AE-GARCH(1,1/RAV 6.749 6.108
ARFIMA 6.833 6.039
ARFIMA/AE 7.050 6.078
ARFIMA-GARCH(1.1) 6.929 6.049
ARFIMA/AE-GARCH(1.1) 7.021 6.137
HAR/AE/VE-GARCH 7.623 6.371
HAR/AE-Augmented Garch 6.763 6.003

and short-lived explosive regimes and is highly positively related to the conditional mean of volatility. We
have also shown that the size of the day to day unpredictability in volatility is such that it swamps typical
differences on average in out of sample forecasting performances, adding to the skepticism over the practice
of evaluating and comparing volatility models by means of their explanatory power (Fleming et al., 2001,
2003). We have shown that when high-frequency data is available significant modeling gains are obtained
when the realized volatility framework is extended with the concept of volatility of volatility so as to model
both the conditional volatility and the kurtosis of returns. Our analysis also indicates that accounting for
asymmetric effects (both those related to the recent history of asset prices and volatility feedback effects)
are extremely important for the accuracy of the general model.

Our analysis has also important potential implications for the asset pricing literature. First. at the same
time our analysis may relate to the interest in the volatility premium (see for example Bakshi and Kapadia,
2003, who finds a negative volatility risk premium using a sample of S&P 500 index options), the strong
positive relation between the conditional mean and volatility of volatility suggests that additional work may
be needed to disentangle it from the risk premium. Second, our findings raise several questions about the
implications of the observed properties of the volatility of volatility (time variation, long memory, leverage
effects, correlation with the level of volatility) and the non-gaussianity of the shocks to realized volatility
for options pricing, all of which are steps moving away from the Heston (1993) workhorse model of
stochastic volatility. Finally, the pervasiveness of leverage effects, which significantly impacts the volatility,
skewness and kurtosis of the return distribution of S&P 500 returns and are inextricably linked to virtually

27



all episodes of high volatility and tail events on our sample, may call for more theoretical investigation on
the mechanisms behind asymmetric effects.
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