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Measurement Precision, Test Construction and Best Test Design 

Abstract 

This article examines the precision of measurements obtained from using the Rasch 

Dichotomous Model to analyse test data. Considering tests in which the item difficulties are 

uniformly spaced from easiest to most difficult, permits the derivation of an alternative 

expression for the standard error of measurement. This expression is sufficiently simple to 

enable the precision properties of uniform tests to be readily described and to enable a 

variety of problems oftest construction to be solved. One particular problem is that of best 

test design. Regarding measurement precision as a property of the test only, we show that 

the best uniform test of a given length and a given target interval is the one that satisfies a 

minimax condition on the standard error. We illustrate the solution to this problem and 

describe properties of best tests. 

Key words: Rasch model, standard error, test construction, best test design. 



Measurement Precision Test Construction and Best Test Design 

1. Introduction 

The precision of a measurement is its degree of accuracy or exactness. All measurements are 
imprecise, each subject to an error due to the limitations of the measuring instrument used. 
A social scientist administering an educational or psychological test is measuring a person or 
set of persons with respect to the variable defined operationally by the test items. Thus the 
measurements obtained by the scientist are likewise imprecise, each subject to an error due 
to the limitations of the test itself and the limitations in transforming the test data into 
measurements. 

Item response theory assumes that the observed data can be regarded as the outcome of an 
item response model, a statistical model of all possible responses of all persons to the test 
items. A particular set of test data is then transformed into a measurement on each person 
by obtaining the best estimate of the model parameter for each person consistent with the 
test data. Each measurement is thus a statistical estimate and subject to a random or 
statistical error. The extent of this error is usually given by the value of the standard error. 
Questions concerning the precision of the measurements obtained from using the test can 
then be answered by an appropriate calculation and interpretation of the standard error of 
measurement. 

The simplest response format records only two levels of performance on each test item. 
These levels are usually referred to as 'wrong', 'incorrect' or 'fail' scored level zero (0), and 
'right', 'correct' or 'pass' scored level one (I). Test items with this response format are 
termed dichotomous items. Most of the literature of item response theory is concerned with 
models for the analysis of dichotomous test data. Of this literature on dichotomous models, 
a significant proportion is concerned with the Rasch Dichotomous Model (RDM). Rasch 
(1960) introduced this model to analyse a set of data arising from a military group 
intelligence test. Since then, it has been widely applied to the analysis of test data and to the 
development of item banks (see, for example, Wright & Stone, 1979). 

2. The Rasch Dichotomous Model 

The Rasch Dichotomous Model (RDM) specifies that the dichotomous response xni of the 
person n; n = I, 2, ... , N ;. to the test item i ; i = I, 2, ... , L ;  depends on the value of the 
ability parameter �D Of the person n and the difficulty parameter �j Of the item i only through 
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the value of their difference 0ni - �n - 6 i . These parameter values are real numbers and 
thus may be represented as points on a continuous line or continuum as in Figure 1. This 
line represents the test variable and shows the relationships between persons and items with 
respect to the test variable. 

less of item i 
variable difficulty 

i 
......... 

6 i 

person n 
ability 

i • 

y _J 

eni �n 

more of 
variable 

variable 

Figure 1: The test variable together with persons and items. 

The dichotomous response xni of the person n to the item i is modelled with the probability 
function. 

P (xni ; �n• 6J = ex.,;&.,; / (1 +eeni) ; {I) 

eni = �n - oi ; 
xni = 0, 1. 

As the difference 0ni = �n - oi is in the exponent of an exponential term, the scale unit of 
the variable is a logarithm unit, usually contracted to logit. 

Dropping the subscripts n and i designating the particular person and the particular item, the 
expected value of the response of the person to the item, as a function cl> of the person-item 
difference 0 - � -o, is given by 

cl> (0) = E [ x ; 0 - � - o ] 

= P{x = l ;  0 • �-o) 
= e9 I {l + e9

) 

{2) 

The function cl> is referred to as the characteristic function of the RDM while the graph of cl> 
against 0 is referred to as the characteristic curve. 

The information I about the value of the person parameter � contained in a single response x 
of the person to an item is then (Lord, 1980, 70-73; Rao, 1973, p.309; Wright & Stone, 
1979, p.135 ) given by 
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I (0) = E [ { d lnP I de } 2 
; 0 = 13 -6 ] = <I>' (0) = e9 I (1 + e9 )2 (3) 

The information I specifies the extent to which uncertainty concerning the unknown value of 
0 and hence that of the person parameter 13, is reduced as a consequence of an observed 
response of the person to a single test item. The greater the value of this information I, the 
greater is the reduction in uncertainty and the more precise is the subsequent measurement 
for 13. 

The value I (0) of the item information function I is given by the rate of change ct>' (0) of the 
characteristic function <I> for each value of the person item difference 0 = 13 -6. The graph 
ofl against 0, the item information curve of the RDM, is unimodal with horizontal 
asymptote I = 0. The graph is symmetric about 0 = 0 with a maximum turning point at 
0 = 0, I = .X. Thus maximum information I about the value of the person parameter 13 
arising from an observed response of the person to a single item, occurs when the item 
difficulty 6 is equal to the person ability 13. We interpret such an item as being targeted on 
the person. 

The information J about the value of the person parameter 13 contained in a set of L 
responses is obtained by summation. Under the assumption of local independence, the 
responses of the person to each of the test items are independent variables and the 
information in each response contributes additively to the total test information. Thus 

J = J (l3;6162, . .  ,, 6L) = � 1 (0ni) ;  

where I (0) = e9 / (1 + e9 )2 

e = eni - 13n -6 i - 13 -6 i . 

(4) 

The test information J about the value of the person parameter 13 specifies the precision of 
" 

the subsequent measurement 13 of 13 as a consequence of a set of observed responses of the 
person to the test. The greater the value of J the greater is the precision of measurement and 

" 
the smaller is the likely error between the measurement 13 and the unknown value of the 
parameter 13. 

" " 
The error of measurement is the difference 13 -13 between the measurement 13 of the 
person parameter and the unknown value 13. In practice, we have a single measurement 13 
for each person arising from the analysis of the particular set of test data. As the true value 
13 of the person parameter is unknown, that of the error � -13 is likewise unknown. 
However, we may conceive the RDM as modelling infinitely many responses of the person to 
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the test, giving not just a single measurement 13 but a distribution of infinitely many possible 
values. This distribution may be referred to as the sampling distribution of the measurement 
A 

tl , and depends on the model and the estimation procedure used to obtain the measurement 
" 
tl from the test data. 

Maximum likelihood estimation theory ( Anderson, 1980, p.60; Habermann, 1977; 
" 

Swaminathan, 1983, p.30 ) ensures that the sampling distribution of the measurement tl has 
asymptotic normal distribution with mean fl, variance 1-1 and standard deviation r

112
• It 

A 

follows that the random error fl - fl is asymptotically normal with mean zero and standard 
deviation r112

• Thus the likely size of the random error is specified by the standard 
A 

deviation r
112

, referred to as the standard error (SE) of the measurement 13. It follows 
from (4) that 

SE = SE(�;6162
, . . .  ,6.) = { t 1(0,,) r• , (5) 

where 

The smaller the value of the standard error of measurement SE for 13, the greater is the 
A 

precision of the measurement 13 of 13 and the shorter are the confidence intervals 
A 

tl + z SE for tl using critical standard normal z values. 

In practice, the standard error of measurement SE (tl; 6162 , . . .  , 6L ) is estimated by 
A A A A 

substituting the estimates tl, 61 , 62 , ••• , bL for tl, 61 , 62 , • • •  , bL respectively in ( 5) and 
A A A A 

evaluating SE (tl ; 61 , b2 , • • •  , bL ). Thus the standard error SE is a property of the 
A A 

measurement tl and the test specified by the item difficulties 61 , 62 , • . • , 6L . Its value does 
not depend on the parameter values tl of other persons taking the test, nor on the fit or lack 
of fit between the data and the item response model. However, the focus of this study is on 
the standard error of measurement as given by (5) rather than its estimated value from a 
particular data set. 

Theoretically, the value of the person parameter tl is merely an arbitrary point on the 
continuum representing the test variable. Thus the standard error SE may be regarded � a 
property only of the test, indicating the degree of precision of a potential measurement tl at 
any point fl, rather than just those obtained from a particular data set. Rasch (1960) 
appreciated this point well when he stated that 
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the precision or reliability of a test is conceived as an intrinsic 
property of the test - not as a property of the "population", or any 
other collection of testees, to which the test has been applied on 
some occasion (p .33). 

Thus the target of the test is merely a set of possible values of the parameter fl. No 
assumption concerning the distribution of these values need be made. Like the process of 
item calibration, measurement precision may therefore be described as being 'distribution­
free'. Although the target of the test may potentially be the whole continuum 
{ fl I - oo < fl < oo } , it is more usual to consider a finite target interval 

B = [ - �o, �o ] = · { � .1 - �o � � � �o } 

for some finite value �o of �. 

Finally, we note that ( 5) shows that the precision of measurement achieved by the test 
depends on the test only through the values 61 62 , •• •  , 6L of the set of item difficulties. 
However, before we use this to describe precision properties of tests and to solve problems 
of test construction, we make a simplifying assumption about the distribution of these item 
difficulties. 

3. Uniform Dichotomous Tests 

We now consider tests comprising a set of dichotomous items in which the item difficulties 
are uniformly spaced from easiest to most difficult. We choose this simplifying assumption 
of the distribution of item difficulties for two reasons. First, the spread of item difficulties in 
practice often can be approximated by a uniform distribution. Secondly, the experimental 
evidence on test construction suggests that, although information maximisation depends on 

· both the distribution of persons and that of items, the uniform test is either the best or 
equivalent to the best for all practical purposes. Wright and Stone ( 1979, p.134 ), in 
summarising the evidence, recommend that "the best all purpose test is the uniform test". 

.
1( 

w 
), 

I A I L\ I I ,A I > 61 62 6
3 

0 6
L-1 6

L 
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Consider the L item difficulties 61 62
, • • •  , 6L ordered from easiest 61 

to most difficult 6L . 
With uniformly spaced item difficulties, the test is then specified by the test length L given by 
the number of dichotomous items, the test width . W = 6L - 61 

being the range of the L item 
difficulties, and the item spacing A - W I (L -1) between consecutive item difficulties. 
These three test attributes are related as each can be expressed in terms of the other two as 
follows. 

A - W /(L - 1) W - A (L -1) ; L - 1 +WI A . (6) 

As the sum of item difficulties is usually set to zero, we set the centre of the uniform test 
( 0

1 + oL ) I 2 as zero. It follows that 

= = W/2 = A (L -1)/2 

and hence, for i = 1, 2, . . .  , L, that 

6 i = 0
1 

+ A (i -1) = A (2i - L - l)/2 

Substituting now for 0
1 
0

2
, ... , oL into (4) and (5), it follows that the precision of the 

uniform test at a point � is now a function of the value of � and any two of the three test 
attributes, length L, width W and spacing A. However the constant item spacing A permits 
us to exploit the connection between the item information function I and the characteristic 
function <I>. 

As the item spacing A is constant, the product of the test information I with the item spacing 
A, namely 

where 

0ni = � - 6 i = � - A (2i - L - 1) I 2 , 

�ay be represented graphically. This product is the sum of the areas of L contiguous 
rectangles on the item information curve of the ROM as in Figure 2. The ith rectangle has 
base A centred at 0ni and height 1 (0ni ). 
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��--�--�------.....__..., ____________ .._.._���--+e 
-4 -3 -2 -1 2 3 4 

Figure 2: The product of the information J with the spacing A 

The particular example illustrated in Figure 2 has L = 11, W = 5, A = 0.5, � = 1.75 and 
8n1 , 8n2 , . . .  , 8nL = 4.25, 3.75, ... , -0.75, respectively. 

P rovided the item spacing A is small, the sum of the areas of these rectangles may be 
approximated by the area below the item infonnation curve between appropriate limits. As 
the item infonnation function I is the derivative <I>' of the characteristic function <I>, this area 
has the following simple fonn. 

f 1 (8) d8 = J <I>' (8) d8 = <1>+ - <I>-

where 

<1>+ = <1>+ (0n1 + A I 2) 
<I>- = <I>- (8nL - A I 2) 

It follows that the test infonnation I may be approximated as 
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namely a scaled difference between two values of the characteristic function <I>. This 
expression is equivalent to that given by Douglas (1974, p.135, formula 32 ). We now 
derive an explicit expression for <1>+ -<I>- and hence I and SE, for the RDM. 

Using 
0nl + fl.12 = � + fl (L -1 ) I 2 + fl I 2 = � + fl.Ll2 = � + ro, 

and 
0nL -fl.I 2 = � -fl. (L-1 )12 - fl.12 = � - fl.Ll2 = �-ro , 

where 
(1) = fl LI 2 = (W + A )  I 2 

it is convenient to introduce ro as another test attribute. As ro is slightly greater than Wl2, 
we term it the adjusted half width (AHW ) of the test. Then 

<1>+ -<I>- = <I> (� + ro) - <I> (� -ro) 

= ell+co I (1 + ell+co) - ell""" I (1 + ell-co) 

= (e'° - e-(0 ) I (e11 + e-11 + e'° + e-'°) 

= sinh ro I ( cosh � + cosh ro) 

where 

sinh z = (e2 
- e-2 )12 

cosh z = (e2 + e-2 )12 
tanh z = sinh z I cosh z 

are the hyperbolic trigonometric functions. 

It follows that the test information I and the standard error of measurement SE of a uniform 
test are given by 

and 
I = J (�) = I{�; L, W, fl, ro)  = K1 sinh ro I ( cosh � + cosh ro)  (7) 

SE = SE(�) = SE (�;L, W,fl.,ro) = {fl. (cosh � + coshro) lsinhro } 112 
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We thus have an explicit expression for the standard error of measurement SE of a uniform 
test in terms of standard scientific functions. 

To illustrate, consider the calculation of the standard error SE for the particular example 
illustrated in Figure 2. Using (7), as � = 1.75, L = 11, W = 5, it follows that A= 0.5, 
oo = 2. 75 and 

SE = SE (1. 75) 
= SE(l.75; 11, 5, 0.5, 2.75) 
= { 0.5 (cosh 1.75 + cosh 2.75) I sinh 2.75 } 112 

= 0.8333 

Using the earlier expression (5), the value of the standard error is found to be SE= 0.8327 . 
Thus the discrepancy in using (7) rather than (5) for SE is 0.0006 or less than 0.1%. 

The alternative expression (7) for the standard error of measurement of a uniform test gives 
virtually the same result as ( 5) for all practical purposes. We can see from Figure 2, that for 
a uniform test of a reasonable length L, the item spacing A is small and the two areas are 
virtually equal. A computer program was written to explore the discrepancy in standard 
error between the two expressions for uniform tests of length L :i!: 10 and width W =s 10 
over the range - 4 =s t} =s 4 of the continuum. These bounds were chosen to be 
somewhat greater than would normally occur in practice. The maximum absolute 
discrepancy in standard error between ( 5) and (7) for uniform tests of different lengths is 
given in Table 1. 

Table 1 
Maximum absolute discrepancy in SE; - 4 =s t} =s 4 ,  W =s 10. 

Test length Maximum discrepancy 
L 

L :i!: 10 4 .6 x 10-3 

L :i!: 20 8.0 x IO-" 

L .!: 50 8.0 x 10-s 

L .!: 100 1.5 x 10-s 
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These results demonstrate that, for all practical purposes, (7) gives the same result as ( 5) for 
uniform tests. However, (7) has the advantage of simplicity and provides a ready means of 
studying the precision of measurement with the RDM. In particular, we can examine how 
the test attributes such as test length and width affect the size of the standard error of 
measurement. 

4. Measurement Precision with Uniform Tests 

Questions concerning the precision of a test comprising uniformly spread dichotomous items 
can now be answered readily using (7). We illustrate this first with a numerical calculation, 
and secondly by examining how test attributes affect the precision of the test. 

&ample: 

Solution: 

We have constructed a test with 45 items uniformly spread 
over a range of 4 /ogits. How precise are the measurements 
for persons 
(i) on target at the centre of the test? 
(ii) J /ogitfrom the centre of the test? 
(iii) 3 logits from the centre of the test? 

As L = 45, W = 4, !l. =WI (L - 1) = 0.091, ro = !l. L/ 2 = 2.045 and hence, 
(i) SE (0) = 0.343 
(ii) SE (1) = 0.362 
(iii) SE (3) = 0.579 

These calculations are readily performed on a scientific calculator, preferably a 
programmable one with the formula for SE stored as a program. 

Consider now the measurement precision at the centre of a uniform test. This has been 
studied by Woodcock (1992) who used (5) to construct a Test Design Nomograph, graphs 
of SE against width W for tests of various lengths L and item spacings !l.. P utting � - 0 in 
(7), and using the identity that 

sinh ro I (1 + cosh ro) = tanh (co/2) 

it follows that the test information J and the standard error of measurement SE at the centre 
of a uniform test are given by 



and 
J = J (O) = J (O; L, W, A, ro) 

11 

= K1 tanh (ro/2) 

SE = SE(O) = SE(O; L, W, A, ro) = { AI tanh (ro/2) } 112 

This formula can now be used to replace all applications of the Woodcock Test Design 
Nomograph. 

(8) 

Although the precision at the centre of a test is determined by the values of both the item 
spacing A and the adjusted half width (AHW) ro, it is relatively insensitive to variation in oo 
provided ro is reasonably large. Specifically, as 

0 � tanh z � I for all z > 0 
and 

tanh z - as z - oo 

it follows that 

SE(O) :i!!: A112 

.. A112 if W is large ; 
A = WI (L-1) . 

We conclude that, when a test comprises a number of dichotomous items with item 
difficulties uniformly spread over a wide range, the precision at the centre of the test is 
essentially a function of the item spacing A only. 

(9) 

We now examine how the precision of a uniform test varies over the continuum. From (7), 
it follows that, for a given test, the test information function J is an even function of �- The 
graph of J against �. the test information curve, is symmetric about � = 0 with a maximum 
turning point at � = 0, J = J (O). Furthermore, like the item information curve of the ROM, 
the test information curve is unimodal with horizontal asymptote J = 0. Similarly, the 
standard error curve, the graph of SE against �. is U-shaped, symmetric about � = 0 with a 
minimum turning point at � = 0, SE = SE(O). 

Consider now the precision of a test at each point � on the continuum relative to the 
precision at the centre of the test. Combining (7) and (9), it follows that the relative 
information and relative standard error at � is given by 



and 
J (l3) I J (O) 

12 

= (I + cosh co) I (cosh 13 + cosh co) 

SE(l3) I SE(O) = { (cosh 13 + cosh co) I (1 + cosh co) } 112 

(10) 

From (10), we see that the precision of a test relative to the precision at the centre of the test 
depends on the test attributes only through the value of the AHW co. Recall that as 
ro = (W + A.) I 2,  the relative precision is essentially a function of test width W only. The 
greater the width W of a uniform test, the greater is the relative information J (l3) I J (O) and 
the flatter is the test information curve. Equivalently, the greater the width W of a uniform 
test, the smaller is the relative standard error SE(l3) I SE(O) and the flatter the standard 
error curve. 

Furthermore, at the extreme of the test where 13 = co, 

SE (co) I SE (0) = { 1 + tanh2 (ro/2) } 2 
< ../2 .  

It follows that 
SE (co) I SE (0) < ../2 if 

Thus when -ro � 13 � ro over the test itself, the relative standard error is bounded above by 
../2 ensuring that the standard error curve is reasonably flat. 

Flat information curves have been the aim of test designers as the result is a test instrument 
with constant precision over the target interval. Samejima (1983) achieved this aim with her 
constant information model for dichotomous data, a model with a constant information 
function over a finite range. Our results in this section demonstrate that this ideal can be 
approximated with the RDM when the test comprises a large number of items with difficulty 
values uniformly spread over a wide range. However, there needs to be a trade-off between 
test width W and test length L. For uniform tests of a given length L, the greater the width 

. W the flatter the information curve. But increasing the test width W increases the item 
spacing A. and decreases the measurement precision at the centre of the test. We address the 
task of balancing these conflicting requirements in later sections when we consider the task 
of constructing uniform tests and best test design. 

To summarise the results of this section, (7) permits the calculation of the standard error of 
measurement at any point of the continuum of a test comprising uniformly spread 
dichotomous items. The standard error is a minimum at the centre of the test and increases 
the further the point 13 is away from the centre. At the centre of the test, the precision of 
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measurement is essentially a function of the item spacing A only. Elsewhere on the 
continuum, the precision of measurement relative to the precision at the centre of the test is 
essentially a function of test width W only. 

5. Measurement Precision with Non-uniform Tests 

The theoretical ideal of a uniform spread of item difficulties can, at best, only be 
approximated in practice. We need to consider how to apply the results of the previous 
sections to tests comprising dichotomous items with a non-uniform spread of item 
difficulties. First, when the item difficulties are approximately uniform, the item spacings 
62 - 61 ,63 - 62 , ... , 6L - 6L-l are approximately constant and the approximations 

test width W • 6L - 61 

item spacing L\ ... (6L - 61
) I (L - 1) 

can be expected still to be valid. Substituting for W and L\ into the expressions (7) - (10), we 
can expect to obtain suitable results for the precision of measurement for any given test. The 
question then is how best to approximate the item spacing L\, and hence the test width W, 
when the item spacings are no longer constant. 

Evidence of non-uniformity in the distribution of item difficulties is likely to be in the 
extremes. Woodcock (1992) recommended using the values of the two smallest item 
difficulties 6 1 , 62 and the two largest bL_1 , bL to give 

W • { (62 - bJ + (bL_l - bi } (L - 1) / (L - 3)} / 2 

obtained by averaging the two approximations 

W • bL - 61 

w = L\ (L - 1) - (bL-1 - bi } (L - 1) I (L - 3) 

There are however, alternative approximations for W and L\ based on the four item 
difficulties 6

1
, 62 , bL-t • bL . We prefer to consider all 6 = 4 (4 - 1) I 2 differences between 

pairs, namely 
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Ii = 62 - 61 

Ii (L - 2) = 6L-1 - 61 

Ii (L - 1) = 6L - 61 

Ii (L - 3) = 6L-1 - 62 

Ii (L - 2) = 6L - 62 

Ii = 6L - 6L-1 

Averaging these six expressions gives the approximations 

Ii - (36L + 6L-l - 62 - 361 ) I 4 {L - 2) 
w - (36L + 6L-1 - 62 - 361 )(L - 1)/4 (L - 2) 

These approximations for Ii and W are very similar to Woodcock's approximations, differing 
only in the weightings of the item difficulties. The logical extension is to consider the values 
of all item difficulties 61 , 62 , . . .  , 6L in determining an approximation for the item spacing Ii. 
For each pair of item difficulties 6j , 6; ,  the difference in difficulty gives the approximation 

1 :s: i < j :s: L. 

Summing all L (L - 1) I 2 expressions gives 

L 
Ii L {L2 - 1) I 6 • � (2i - L -1) 6 i 

and the approximations 

L 
fl .. 6 I L{L2 - 1) � (2i - L - 1) 6i 

w - 6 I L(L + 1) � (2i - L - 1) 6 i 

There is another interpretation of this latter approximation for fl as an average item spacing. 
It is the slope of the least squares regression line fitting the L points with coordinates (i, 6i ); 
i = 1, 2, . . .  , L ; in the Cartesian plane. 

The usefulness of these approximations for the item spacing Ii and test width W depends not 
only on the nature and extent of the non-uniformity of the item difficulties, but also on the 
degree of accuracy required for the standard error. This issue is not pursued further in this 



15 

article. The usefulness of expressions (7) - (10) in describing the precision of measurement 
of non-uniform tests would make a valuable research project. 

6. Test Construction 

A test is a suitable set of items specified by the set of L item difficulties 61 , 62 , . . .  , 6L that 
forms the measuring instrument. Test construction involves determining an appropriate set 
of item difficulties that satisfies the required conditions on measurement precision over the 
target interval. The process of test construction, determining the test given the precision 
requirements, is in the opposite direction to that of understanding the precision of a given 
test, determining the precision properties on the target interval given the test. This 
relationship between precision properties and test construction is best conveyed 
diagrammatically as in Figure 3. 

Test 
6 1 , 62 , . . .  , 6L 

P recision properties 
--------,;> 

<,,--------

Test construction 

P recision on 
target interval 

Figure 3: Relationship between precision properties and test construction 

We now illustrate the use of (7) in solving problems of test construction, constructing tests 
with required precision requirements. The solution to each problem is best described 
through a numerical example. All numerical calculations required can be performed on a 
scientific calculator, preferably a programmable one. 

Problem 1: Construct a test given the precision at both the centre and at 
the extreme of the target interval. 

Example: Construct a test for which SE(O) = 0.3 and SE(2) = 0.4 

Solution: From (10) 

SE (2) I SE(O) = { (cosh 2 + cosh ro) I (1 + cosh ro) } 112 = 0.4 I 0.3 



Squaring, 

16 

(cosh 2 + cosh ro) I (1 + cosh ro) = 16 I 9 

and solving for cosh ro gives 

cosh ro = (9 cosh 2 - 16) I 7 = 2.551 
ro = 1.589 

From (8), it follows that 

Hence 

and 

A = SE(0)2 tanh (ro/2) = 0.059 

L = 2ro/A = 2(1.589) I 0.059 = 53.42 

W = A (L - 1) = 0.059 (53.42 - 1) = 3.1 18 

Rounding up the test length L to L = 54, the required test has 54 dichotomous items with 
difficulties uniformly spaced from -1.559 logits to 1.559 logits at intervals of 0.059 logits. 
Note that, with L = 54, W = 3.1 18, SE(O) = 0.298 and SE(2) = 0.398. 

Problem 2: Construct a test given the range of item difficulties and the 

precision at the centre. 

Example: Construct a test for which W = 5 and SE(O) = 0.3. 

Solution: ro = A L/2 = (W + A) / 2 .... W/ 2 

it follows from (8) that 

A = SE(0)2 tanh (ro/ 2) .... (0.3)2 tanh (5/ 4) = 0.076 
and hence 

L = 1 + W/ A .... 1 + 5/ 0.076 = 66.49 
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Furthermore ro > W/ 2, A >  0.076 and hence L < 66.49. Using (8 ), we find when L = 66, 
that SE(O ) = 0.300. The required test then has 66 dichotomous items with difficulties 
uniformly spaced from -2. 5 logits to 2.5 logits at intervals of 0.077 logits. 

Problem 3: Construct a test given the range of the item difficulties and 
the maximum standard error over the target interval. 

Example: Construct a test for which W = 5 and SE(�) :s; 0.5 for -3 :s; � :s; 3. 

Solution: To ensure SE(�) :s; 0.5 for all -3 :s; � :s; 3, we require SE(3 ) = 0.5. 
Using ro - W / 2, it follows from (7 ) that 

Hence 

A = SE (�)2 sinh ro I ( cosh � + cosh ro)  
- 0.52 sinh 2.5 I (cosh 3 + cosh 2.5 ) 
= 0.093 

L = 1 + W/ A ... 1 + 5 I 0.093 = 54.55 

Using (7 ), we find that, when L = 53, SE(3 ) < 0.5 but when L = 52, SE(3 ) > 0.5. The 
required test then has 53 dichotomous items with difficulties uniformly spaced from -2.5 
logits to 2.5 logits at intervals of 0.096 logits. We note further that this test has standard 
errors SE(3 ) = 0.500 and SE(O ) = 0.335. 

Problem 4: Construct a test of a given length that measures as precisely 

as possible over a given target interval. 

Example: Given L = 50, -2. 5 :s; � :s; 2. 5, determine W that minimises the maximum 
standard error over -2.5 :s; � :s; 2.5, namely SE(2.5 ). 

Solution: Although we could find W by trial and error, repeatedly calculating SE(2.5 ) 
for various W, it is better to proceed as follows. Substituting 2 ro/L for A in (7 ) and 
rearranging, we have that 

SE(�)2 L/ 2 = ro(sinh rot1 (cosh � + cosh ro)  = F(ro) 

Hence SE(� ) is  minimised for a given test length L and for a given � when F(ro) is 
minimised, namely when the derivative F ' ( ro )  = 0. Differentiating, it follows that 
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F ' ( ro) sinh 2 ro = sinh ro ( cosh � + cosh ro) -ro ( 1  + cosh � cosh ro) 

and hence SE(�) is a minimum when 

sinh ro ( cosh � + cosh ro) -{I) ( 1 + cosh � cosh ro) = G( ro) = O ( 1 1) 

For our example, � = 2.5 and cosh 2.5 = 6. 132. As G (3) = -25.92 and 
H (4) = 238. 74, the value of the AHW ro that satisfies ( 1 1) and minimises SE(2.5) lies 
between 3 and 4. To solve for ro, we use 

G' (ro) = sinh ro (2 sinh ro -ro cosh �) 

and Newton-Raphson iteration 

as follows 

ffio = 4 

(1)1 = 3.709 
(1)2 = 3.510 
003 = 3.418 
00 4  = 3.400 
ffis = 3.399 

(1)6 = 3.399 

to obtain the solution ro = 3.399. It follows that the required test width is given by 

W = 2ro (L - 1) I L  = 2 (3. 399) 49/ 50 = 6.66 

The required test, with width W = 6.662, has 50 dichotomous items with difficulties 
uniformly spaced from -3.331 logits to 3.331 logits at intervals of 0. 136 logits. The 
maximum standard error over the target interval -2. 5 :s: � :s: 2. 5 ,  namely SE(2.5) is 
minimised to SE(2. 5) = 0.43 8 for all tests of 50 items. This test has standard error at the 
centre of the target interval SE(O) = 0.38 1. We note further that the 95% confidence 
interval � ± 1. 96 SE(�) for the person parameter � associated with a measurement 
� = 2. 5 is ( 1.64, 3 .36) while that of a measurement � .. 0 is (-0. 75, 0. 75). 



19 

This last problem, constructing a test of a given length that measures as precisely as possible 
over a given target interval, may be referred to as constructing a best test. This concept of 
best test design will be developed further in the next section. Finally, we note that in solving 
problems of test construction, we have assumed that we have access to an infinitely large 
bank of suitable items, enabling us to select an item of any given difficulty. In practice 
however, an item bank is finite and we can at best only approximate any theoretical solution. 

The results of this section demonstrate the advantage of uniform tests. Traditionally, a trial 
and error procedure (see Lord, 1980, p.72) has been used to select test items such that the 
resultant. test has some predetermined information or standard error function. Uniform tests 
of dichotomous items are specified with only two test attributes, the length L and width W. 
Furthermore, specifying only a target interval rather than a target distribution of person 
abilities �. simplifies the concept of a target to the extent that not only can problems of test 
construction be well defined, they are sufficiently tractable to be readily solved. 

7. Best Uniform Test 

The solution to problem 4 in the previous section illustrates the construction of a best 
uniform test, the test of a given length that measures as precisely as possible over a given 
target interval. It satisfies the criterion for a best test described by Wright and Stone {1977) 
as follows. 

A best test is one which measures best in the region within which 
measurements are expected to occur. Measuring best means 
measuring most precisely. (p .13 3) 

The region within which measurements are expected to occur is the target interval 
B = [-�0 , �0 ] specified by the extreme value �0 of the parameter �- How well any 

. given test measures in the region is specified by the least precise measurement in the interval, 
namely 

max SE(�) 
�in B 

which for uniform tests, is given by the standard error SE{�
0
) at the boundary of the interval. 
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Note that we make no assumption about the distribution of target persons, only the boundary 
value of the interval in which they are expected to be located. The best uniform test, the one 
that measures most precisely, is the one that mini.mises this maximum standard error. Now 
(7) shows that, for a given test width W, SE(f30) can be made arbitrarily smaU by making 
the test length L arbitrarily large. In practice, we make a test as long as is feasible within the 
constraints of available time and the attention span of the target persons. Hence the length L 
of a best test needs to be specified. Finding the best uniform test is then finding the test 
width W, or equivalently the adjusted half width ro, that minimises this maximum standard 
error as follows. 

min max SE(t}) = minSE(f30) 

0) f3 in B 0) 

Thus the best uniform test satisfies a 'minimax condition' on the standard error of 
measurement. It is the best uniform test of a given length on a given interval. Specifying 
only a target interval B rather than a target distribution of person abilities and restricting the 
possible tests to those with a uniform distribution of item difficulties, permits a ready 
solution to the problem of constructing a best test. Following the procedure illustrated in 
problem 4, for any given target interval B and test length L, we can always determine the test 
width W and so construct the best uniform test of length L on the interval B. We now 
describe further properties of best uniform tests. 

First, we note that the width W of the best uniform test need not coincide with the width of 
the target interval B. For example, the solution to problem 4 in the previous section 
considers a target interval [-2. 5, 2. 5] of width 5, and shows that the best uniform test of 
length L = 50 has width W = 6.662. Thus the extreme item difficulties �

1 
and �so lie 

outside the target interval. For some examples, the item difficulties of the best uniform test 
may be expected to lie entirely within the target interval, for others the extreme item 
difficulties may be expected to lie outside the target interval. The relationships between the 
best test and target interval is illustrated in Figure 4. 
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Figure 4: Relationship between the target interval and the best test 

This refines the conclusion of Wright (in the afterword of Rasch, 1960,) 

a uniform distribution of item difficulty from one end of the target 
to the other, approximates the best possible test design in most real 
situations. (p.194) 

that the intervals will coincide. 

) 

Rarely will the extremes of the target interval and those of the item difficulties of the best 
uniform test coincide. We now obtain the relationship between the boundary value �0 of 
the target interval B = [ -�

0
, �

0 
] and the adjusted half width roof the best uniform test on 

B of a given length L. From ( 1 1) it follows that 

cosh �0 = (sinh ro cosh ro -ro) I (ro cosh ro -sinh ro) (12) 

Thus the AHW ro of the best uniform test depends only on the target interval B and not on 
the length L. Equivalently, all best uniform tests of different lengths L on the same target 
interval B have the same value of the AHW ro. 

Consider now the solution defined by (12) for narrow best tests with arbitrary small values of 
the AHW ro. As ro-+ 0, the value of the right hand side of (12) and hence that of 
cosh �0 -+ 2 .  It follows that {12) provides a solution to the best uniform test provided that 
cosh �0 > 2; or equivalently, �o > cosh-1 2 = 1.317. If the target interval B has boundary 
value �

0 
� cosh-1 2, the best uniform test obtained by minimising SE(�) on B, has AHW 

ro = 0. Hence, ro = .!\ = W = 0 and, irrespective of test length L, the best uniform test on B 
has all L items of equal difficulty, 01 - 02 - • . •  - oL - 0, located at the centre of the target 
interval. 
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The boundary value �
0 

of the target interval B = [ -�
0 , �

0
] is equal to the AHW ro of 

the best uniform test when 

cosh ro = (sinh ro cosh ro -ro) I (ro cosh ro - sinh ro) 

namely �o = ro = 1.606. Now from (12), cosh �
0 

is an increasing function of ro and hence 
ro is an increasing function of cosh �

0 
and therefore of �

0 , �
0 

> 0. It follows that, if 
cosh- 1 2 = 1.3 17 � �o < 1.606, ro < �o and the best uniform test lies entirely inside the 
target interval. For wider target intervals with �o > 1.606, ro > �o and the extreme item 
difficulties of the best uniform test will lie outside the target interval. 

To summarise, specifying a distribution-free target interval B rather than a target distribution 
of person abilities � has simplified the concept of a target. Restricting our consideration of 
tests to those with a uniform distribution of item difficulties has led to a concept of a best 
uniform test as the test that satisfies a 'minimax condition' on the standard error of 
measurement. This concept leads to a unique best uniform test that can readily be found in 
practice. 

8. Summary 

This article has examined the precision of measurements obtained from using the Rasch 
Dichotomous Model to analyse test data. Considering tests in which the item difficulties are 
uniformly spaced from easiest to most difficuli, permits the derivation of an alternative 
expression for the standard error of measurement. This expression is sufficiently simple to 
enable the precision properties of uniform tests to be readily described and to enable a 
variety of problems of test construction to be solved. One particular problem is that of best 
test design. Regarding measurement precision as a property of the test only, we have been 
led to consider a 'distribution-free' target interval. The best uniform test of a given length on 
a given target is the one that satisfies a minimax condition on the standard error. We 
illustrated the solution to this problem and described properties of best tests. 

However, there is not much comfort to be gained from this best test design. Our example in . 
Section Four determined the best uniform test of 50 items on the target interval [ -2. 5, 2. 5]. 

That the minimum width for a 95% confidence interval for a measurement � = 25 at the 
end of the interval is as large as 3. 36 - 1. 64 = 1. 72 logits should be a matter of concern 
for researchers who wish to obtain precise measurements. This limitation in precision arises 
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not from the Rasch Dichotomous Model as such, but rather the dichotomous 0/1 format of 

item responses. 

Samejima ( 1969 has shown that the use of more than two ordered categories for item 

responses provides more information about the value of each person parameter than 

dichotomously scored items. This result suggests that the use of more than two ordered 
categories for item responses should result in greater precision of measurement for a test of 

the same length. Item response models for the analysis of partial credit data have been 
developed. (De Ayala, 1993) but properties of measurement precision arising from the use of 

such models are not yet understood. Extending the methods developed in this article from 

the Rasch Dichotomous Model to such partial credit models should not only assist in 

understanding their properties, but also show the way to researchers seeking to construct 

tests with greater measurement precision. 
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