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ABSTRACT 

Mediterranean-type ecosystems (MTEs) are among the most vulnerable to land use and 

climate change and many attempts are in place to restore these ecosystems. Therefore, it 

is necessary to assess differences in plants’ ability to withstand water-stress, including 

biotic interactions. Such knowledge helps us understand community assembly, which is 

crucial for ecological intervention. This study involved: (1) reviewing the literature on 

traits that can differentiate functional types; (2) adapting the methodology to measure 

leaf water potential at turgor loss point (πtlp) for small-leaved species; (3) using these 

traits to quickly identify water-use strategies of adult plants from Southwest Australia; 

(4) identifying the water-use strategies that juveniles have to survive first summer 

drought; and (5) determining whether there is facilitation between a deep-rooted species 

and seedlings through hydraulic redistribution. 

The selection of functional response traits was based on their association with 

water-stress, with effect traits, and on methodologies that are easy, inexpensive and 

applicable for Mediterranean species. Relevant traits were identified from the literature, 

including: leaf carbon isotope composition, leaf nitrogen and phosphorus contents, leaf 

mass per area, πtlp, and xylem vessel morphology. Measurements of πtlp through 

osmometry of extracted sap and through Pressure-volume curves were compared. 

Selected traits were then measured for 15 species from different eco-hydrological 

habitats. Drought resistance of juveniles was assessed by measuring water relations, 

rooting depth/pattern and carbon reserves use of species from different eco-hydrological 

habitats. Lastly, seedlings were grown isolated or near donor plants. Water status and 

growth were measured, and stable isotopes were used to investigate water pathways 

within and between plants. 

A strong correlation between the methodologies for measuring πtlp was found. 

With analysis of these traits, it was possible to cluster adult species, from the Swan 

Coastal plain, into five functional groups that corresponded to their rooting depths. 

During drought, Banksia seedlings reduced stomatal conductance and appeared to use 

carbon reserves, whereas Gompholobium tomentosum seedlings tolerated higher water 

deficits, despite reduced stomatal conductance. Lastly, although seedlings were able to 

absorb hydraulically redistributed water, they grew, transpired and survived more when 

isolated from the deep-rooted plant. 
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In the literature review, theoretical analyses on functional traits and speculations 

on functional groups were made through a conceptual diagram. The osmometry 

technique is a suitable replacement for Pressure-volume curves since its estimations of 

πtlp were accurate in small and large-leaved species. The functional traits approach can 

be transferable to other MTEs for application by restoration practitioners, as the traits 

selected were effective in determining functional groups, and were relatively easy and 

cost effective. The seedlings’ responses to summer drought were consistent with their 

habitats and root-depth, which is an important factor for niche differentiating and 

community assembly. Competition between seedlings and deep-rooted plants supported 

the updated stress-gradient hypothesis. In conclusion, analyses of water-use strategies of 

Mediterranean species during summer allow predictions of differences in drought 

resistance. When this functional approach is applied for ecological intervention, 

restoration practitioners can select species with a better match to future environmental 

conditions of MTEs, particularly in large species sets. 
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CHAPTER ONE: GENERAL INTRODUCTION 

 

1.1 INTRODUCTION 

Worldwide, ecosystems have been disturbed on unprecedented scales, through 

processes such as extensive land use change, species invasion, climate change, and 

altered biogeochemical cycles (Dentener et al., 2006; Foster et al., 2003; McLauchlan, 

2006). Under new conditions, the process of restoring a disturbed ecosystem to its 

previous state is challenging and, in many cases, impracticable (Harris et al., 2006; 

Suding, 2011). Thus, restoration projects should consider that current systems have 

already been transformed and may well continue changing in the future, due to climate 

and other global changes (Hobbs et al., 2006; Seastedt et al., 2008). It has been 

proposed that restoration projects should: (1) understand ecosystem dynamics; (2) 

diagnose damage; (3) set goals in a changing environment; and (4) incorporate 

socioeconomic aspects (Hobbs, 2007). Studies of ecosystem dynamics allow us to 

understand how ecosystem composition, structure and function respond to disturbances, 

including how they respond to restoration itself (Hobbs, 2007). Also, considering that 

ecosystems will continue changing, there may not be a unique and “correct” state to aim 

for in restoration. However, the predictions of future climate change and other abiotic 

conditions can be used to plan ecological intervention, in which it may be more 

appropriate to aim for intervention that re-establishes function and/or at least a subset of 

endemic species. This approach can lead to more successful outcomes than aiming for 

“complete” restoration of the ecosystem to an unsustainable original state. Therefore, 

understanding ecosystem dynamics and setting realistic restoration goals can 

successfully contribute to reinstating essential processes and establishing a ecosystem 

that is resilient and/or resistant to future changes (Hobbs, 2007). Moreover, 

understanding how natural communities function helps us to evaluate intervention 

success and guides intervention decisions. Therefore, the first step of ecological 

intervention projects should focus on understanding ecosystem dynamics, functionality 

and assembly. 

An integrated view of community assembly proposes that ecological filters 

imposed by biotic and abiotic conditions determine which functional traits will be 
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selected for a particular environment (Díaz et al., 1999; Hobbs and Norton, 2004; 

Leibold et al., 2004). Filters select the species whose traits are most suitable for a 

particular community. Understanding the interaction between these filters and the 

species pool is becoming extremely important for biodiversity conservation in an era of 

intense ecosystem fragmentation, habitat loss and climate change (Funk et al., 2008). 

Such knowledge would also be helpful in selecting appropriate species for ecological 

intervention projects (Sandel et al., 2011).  

Water availability may function as an ecological filter in ecosystems that 

experience drought periods, selecting species with traits that enable them to survive 

times when water availability is low. In such communities, one of the factors that allows 

the co-existence of several plant species is a diversity of water-use strategies that results 

in niche differentiation and reduced competition (Walter, 1971). Plants can access water 

from different soil horizons (Meinzer et al., 2007; Walter, 1971), as well as use this 

resource in different ways (Cunningham, 2004; McDowell et al., 2008), including the 

ability to “avoid” or “tolerate” drought (Levitt, 1972). This is the case for 

Mediterranean-type ecosystems (MTEs), which experience hot, dry summers and mild, 

wet winters (Aschmann, 1973). Consequently, soil water availability during the dry 

summer represents a major environmental limitation under Mediterranean climate 

conditions (Castri, 1973). At the same time, MTEs are highly diverse (Cowling et al., 

1996), containing plant species with quite different types of functional responses to 

assimilation of carbon and water use. There are species with different hydraulic 

architecture, specialized leaf physiology and morphology, efficient control of stomatal 

conductance, deep roots and specialized root morphology (Hernández et al., 2010; 

Mitchell et al., 2008; Vilagrosa et al., 2013; West et al., 2012).  

Mediterranean ecosystems, however, are some of the most highly modified 

ecosystems on Earth (Hobbs et al., 1995) and are under risk of future droughts as a 

consequence of climate change (IPCC, 2014; Klausmeyer and Shaw, 2009). Enhanced 

seedling mortality due to water stress under Mediterranean conditions is already one of 

the main causes of low success in intervention projects, only 53% of success in sites of 

South Western Australia (Hallett et al., 2014; Lloret et al., 2005; Mendoza et al., 2009; 

Rokich, 2016; Vallejo et al., 2012). This scenario is likely to be aggravated under drier 

conditions predicted for MTEs. Therefore, we need to know more about strategies that 

plants employ to cope with the water stress that is already experienced in summer. This 
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knowledge is relevant to identifying species whose traits enable them to survive in a 

drying environment, particularly in drying climates, as well as to detect important 

interactions that affect community assembly.  

The characterization of plant responses to water stress, in terms of functional 

response types, is a promising approach for identifying the strategies important to 

summer drought survival (Gondard et al., 2003). Species can be classified into 

“hydraulic functional types” (HFTs), according to their specific hydrological functions 

within the ecosystem (Mitchell et al., 2008), and independently of taxonomic groups 

(Shugart and Woodward, 1997). In order to identify the HFTs in MTEs, analyses of 

functional traits of vast species sets are needed. Plant functional traits are attributes of 

organisms that are considered important for their responses to the environment, and can 

be used to define a species ecological role or function (Dı́az and Cabido, 2001; Lavorel 

and Garnier, 2002; Wright et al., 2004). 

The first step in screening plant functional types for tolerance of seasonal drought 

in MTEs is the selection of key physiological and anatomical traits related to water 

stress. A variety of reproductive, life- history and morphological traits have been used 

in ecological intervention projects (Ostertag et al., 2015; Pywell et al., 2003; Weiher et 

al., 1999). Some of these are linked to resistance to water deficits, and hence are used to 

identify HFTs (Mitchell et al., 2008). Furthermore, studies focusing on functional traits 

that can be measured efficiently, allow for multiple species to be assessed, which is 

important for diverse systems like MTEs.  

Another important factor in ecological intervention of MTEs is that abiotic and 

competitive stress can be severe at the recruitment stage (Hallett et al., 2014; Lloret et 

al., 2005; Mendoza et al., 2009; Rokich, 2016; Vallejo et al., 2012). Therefore, the 

comparative ability of seedlings to cope with water deficits during establishment is also 

important for understanding community assembly and functioning (Pigott and Pigott, 

1993; Zavala and Zea, 2004). Particularly during the first summer drought, as in 

Mediterranean ecosystems, the first exposure to prolonged drought represents a critical 

period for the establishment of seedlings (Cowling et al., 1987; Davis, 1991; Enright 

and Lamont, 1992a; Frazer and Davis, 1988). The ability to grow deep-roots, reduce 

stomata conductance, accumulate and use non-structural carbohydrates (NSC), and to 

tolerate high tensions in xylem vessels, are all strategies that, individually or in 

combination, can improve plant resistance to summer drought (Aroca, 2012; Chaves et 
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al., 2003). Improving seedling establishment and survival, by selecting species 

appropriate for site hydrological conditions, has become particularly important for 

ecological intervention (Resco de Dios et al., 2006). Therefore, studies that include 

analyses of resistance to water deficits of adult, as well as of juveniles, will provide 

more complete information on how the community is functioning.  

Seedlings of some species may survive the water deficits during their first 

summers by benefiting from interactions with already established plants. The rationale 

for this is that germination usually takes place in the first winter following fire, 

corresponding with the rainy season (Bond, 1984; Le Maitre and Midgely, 1992; Miller 

and Dixon, 2014). Thus, seedlings may have not yet developed the root systems that are 

capable of maintaining access to soil moisture during their first summer drought and/or 

may have not yet formed a robust hydraulic system able to tolerate high water deficits. 

Indeed, facilitation — positive interactions between individuals in which at least one 

benefits from the interaction (Stachowicz, 2001) — plays an important role in many 

plant communities (Callaway and Walker, 1997a). Facilitation acts to reduce the 

negative influences of a stressful environment, leading to multiple outcomes (Callaway, 

1995). For instance, it can alter species distribution patterns, increase species 

coexistence and enhance diversity and productivity, all of which greatly influence 

ecosystem structure and function (Callaway, 1995).  

Some species, whose roots are accessing water in deep layers, can facilitate access 

to water for neighbouring plants through “hydraulic redistribution” (HR: Caldwell et al., 

1998; Pang et al., 2013; Yu and D’Odorico, 2015). Hydraulic lift is the passive 

movement of water upward from deep wet layers to shallow drier layers within plant 

root systems driven by a water potential gradient (Burgess et al., 1998; Richards and 

Caldwell, 1987). This is particularly relevant for systems where there is significant 

storage of water in deeper soil layers that can be potentially moved by hydraulic lift and 

redistribution. Some of this water if redistributed to the shallow soil layers may 

facilitate seedling growth and survivorship. Therefore, knowledge of the potential 

effects of facilitation on community assembly can help in identifying the species that 

require assistance during the first summer droughts, as well as in establishing the role of 

key species in restoration (Bruno et al., 2003).  
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1.2 AIMS 

In order to assist with the conservation, management and ecological intervention of 

MTEs under increased risk of climatic drought, there is a need for novel and robust 

theory-based approaches. I propose the use of functional traits, and ultimately the 

classification of species into hydrological functional types, to assess responses of adult 

plants to water deficits in MTEs. Such knowledge can highly contribute to our 

understanding of community assembly and function, especially if associated to specific 

investigations on the strategies that juveniles use to survive first summer drought, 

including important interactions. This type of information will enable more accurate 

selection of plant species whose traits are more advantageous under changing 

environmental conditions. In a broad sense, the main question that inspired this thesis 

was: what water-use strategies enable Mediterranean plant species (adult and juveniles) 

to survive summer drought (Fig.1.1)? In order to address this question, I conducted five 

studies with species from southwest Australia. In three of these studies (Chapter 1, 2 

and 3), I focused in identifying key functional traits, improving their methodology and 

measuring these traits in adult plants to assess their different strategies to survive 

summer drought. In the other two studies (Chapter 5 and 6), I focused in the strategies 

that juveniles have to survive summer drought, including important interactions 

(Fig.1.1). The specific aims were to:  

 

1) Review functional traits that are relevant to drought resistance under 

Mediterranean conditions. In Chapter 2, a literature review was conducted in order to 

identify response traits that were associated with drought resistance, and that could be 

efficiently measured in a timely fashion and in a diverse of leaf shapes and sizes. These 

attributes are important since many plant species need to be assessed in diverse 

ecosystems such as MTEs. 
 

2) Improve and test the methodology for the measurement of one of the selected 

traits, allowing rapid, efficient and accurate measurements of small-leaved species. 

In Chapter 3, I compared a standard methodology for measuring leaf water potential at 

turgor loss point (Pressure-volume curves) to an alternative methodology (osmometry 

of extracted sap). This alternative methodology has the potential to be more efficient 
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and suitable for small and large-leaved species, which is beneficial for assessment of 

diverse MTEs due to the high number of small-leaved species. 
 

3) Assess and compare the different strategies that adult plants use to survive 

summer drought in Southwest Australia. In Chapter 4, I applied the trait-based 

framework proposed in Chapter 2, and measured the selected functional traits in species 

from contrasting eco-hydrological habitats within Southwest Australia. 
 

4) Determine the strategies that juveniles use to survive first summer drought in 

southwest Australia. In Chapter 5, I focused in juveniles as they are under severe 

abiotic and competitive stress during their first summer drought. I conducted two 

greenhouse experiments and analysed water relations, accumulation and use of non-

structural carbohydrates, and rooting depth/pattern of four species from two contrasting 

eco-hydrological habitats on the Swan Coastal Plain.  
 

5) Determine the importance of facilitation through hydraulic redistribution (HR) 

for the establishment of seedlings during their first summer drought in southwest 

Australia. In chapter 6, I grew seedlings of two species in field conditions and 

controlled (+/-) their root interaction with a plant able to hydraulic lift water (referred to 

as a donor plant). I also simulated this experiment under glasshouse conditions. In both 

experiments, I monitored survival, growth and water relations of seedlings and donor 

plants, and used deuterium as a tracer of water movement within and between plants.  
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Figure 1.1 The structure of this thesis, with the main question in the centre surrounded by the 
three studies conducted to explore possible answers (Chapters 4, 5 and 6). These three chapters 
were designed during the propose stage and executed as planned. Chapters 2 and 3 were 
designed after the proposal stage as complementary studies that were needed to supported study 
4. Blank arrows represent the relationship between chapter 2 that was first needed, followed by 
Chapter 3 that was also necessary in order to undertake the study in Chapter 4. 

Chapter 4 

Functional approach on water-
use strategies of adults to 
survive summer drought  

Literature review on key 
d ro u g h t r e s i s t a n c e 
functional traits 

Methodology extension to 
measure smal l - leaved 
species 

Facilitation through HR 
between deep-rooted 
plants and seedlings  

Water-use strategies 
of juveniles to survive 
first summer drought 

Chapter 3 Chapter 2 

Chapter 5 Chapter 6 

What water-use strategies 
enable Mediterranean species 

(adults and juveniles) to 
survive summer drought? 
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CHAPTER TWO: SELECTION OF KEY PLANT 
WATER DEFICIT RESISTANCE TRAITS FOR 
ECOLOGICAL INTERVENTION: AN OVERVIEW 
FOR MEDITERRANEAN-TYPE ENVIRONMENTS  

 

2.1 ABSTRACT 

 

Drought is likely to increase in intensity and frequency across most of the 

Mediterranean areas due to climate change. There is thus an urgent need to assess 

differences in the ability of plants to withstand water stress, especially when selecting 

appropriate species for ecological intervention. This study focused on Mediterranean-

type ecosystems (MTEs) and reviewed and identified plant traits associated with 

drought resistance that are key in differentiating plant functional types, which is 

important when selecting species for ecological intervention in drying environments. 

Plant response traits were reviewed from the literature based on the following criteria – 

association with water stress, association with effect traits, and methodologies that are 

scalable, easy, inexpensive and applicable for Mediterranean species. I included carbon 

isotope composition of leaves (δ13C, as a proxy for water-use efficiency, WUE), leaf 

nutrient contents ([N] and [P]), leaf mass per area (LMA), water potential at leaf turgor 

loss point (πtlp) and density and size of xylem vessels. In order to assist in the first step 

of this selection process, I put forward a Cartesian framework to classify species into 

functional types, where carbon assimilation is plotted against water deficits. Through 

this framework, analyses of these morphological and physiological traits allowed for 

theoretical identification of functional groups, when the traits were analysed in 

combination. The identification of functional groups in a community is the first step 

towards effective ecological intervention, as it allows for selection of species that will 

likely persist under drier conditions. 

 

Key- words: drought resistance, ecological intervention, plant traits, water relations, 

plant functional types 
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2.2 INTRODUCTION 

Mediterranean-type ecosystems (MTEs) experience seasonal drought 

characterized by hot, dry summers followed by mild, wet winters (Aschmann, 1973). 

Soil water availability during the dry summer is a major environmental limitation under 

Mediterranean conditions (Castri, 1973) and can lead to water deficits within leaf tissue 

and xylem vessels critically affecting physiological processes and overall plant 

performance and survival (Hsiao, 1973). MTEs also support a high diversity of 

uniquely-adapted plant species (Cowling et al., 1996) that present a wide range of 

functional responses to water use and carbon assimilation (Hernández et al., 2010; 

Mitchell et al., 2008a; Vilagrosa et al., 2013; West et al., 2012). Such responses include 

enhanced rooting depth, e.g. phreatophyte; efficient stomatal conductance, e.g. 

isohydric species; robust hydraulic architecture, e.g. species that can tolerate high xylem 

tension; and adaptations in leaf physiology and phenology, e.g. osmotic adjustment and 

leaf movements. 

The high diversity of MTEs, however, is under threat as they represent some of 

the most highly altered ecosystems on the planet (Hobbs et al., 1995). In addition, 

climate change predictions suggest that temperature and rainfall variability will increase 

significantly, resulting in most MTEs becoming drier in the future (IPCC, 2014; 

Klausmeyer and Shaw, 2009). Within this context, there is a need to restore degraded 

and abandoned lands in order to maintain biodiversity and critical ecosystem functions. 

Ecological restoration has become an important and promising field of research 

(Dobson, 1997; Young, 2000) as its objective is to assist the recovery of degraded 

ecosystems with respect to their health, integrity and sustainability (Hobbs, 2007). In 

MTEs, however, water deficit stress is the principal cause of failure of many restoration 

projects (Mendoza et al., 2009; Vallejo et al., 2012), with seedling mortality being high 

especially over the first dry summer (Hallett et al., 2014; Lloret et al., 2005); and this 

scenario is expected to be exacerbated by the drier conditions projected for the future.  

Designing and implementing ecological intervention plans based on purely 

historical information however can be inappropriate since species currently live under 

already modified environmental conditions with predictions of “no-analogue futures” 

due to climatic changes (Fox, 2007; Hobbs and Cramer, 2008; Seastedt et al., 2008). 

New approaches are required in ecological intervention to improve the success of future 

efforts within drying Mediterranean-type landscapes. To facilitate these new 
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approaches, a better understanding of how plants function is needed, particularly the 

species traits likely to become critical for persistence in a drier future (Hobbs, 2007; 

Hobbs et al., 2011). Such knowledge is relevant in predicting change in ecosystem 

assembly and long-term success in MTE intervention projects subject to change in water 

availability. 

Ecological filters of local biotic, e.g. plant and animal interactions, and abiotic 

variables, e.g. water and nutrient availability and climate, determine which functional 

species traits or trait values will facilitate survival under prevailing environmental 

conditions (Díaz et al., 1999; Temperton et al., 2004). Over time, changes in climate 

variables will alter ecological filters and consequently plant communities will be 

represented by species with physiological traits that enable them to persist and 

reproduce under the new conditions. Understanding the interactions between ecological 

filters, like water deficits, and the species pool is becoming extremely important for 

biodiversity conservation in the face of climate change (Funk et al., 2008; Myers and 

Harms, 2009, Figure 2.1). The selection of species with traits or traits values that 

provide an adaptive advantage under changing hydrological conditions should be an 

important goal for projects in MTEs under risk of climatic drought. 

Plant functional traits are attributes relevant to the life- history and resource use of 

a species and can be used to define its ecological role or function (Dı́az and Cabido, 

2001; Lavorel and Garnier, 2002; Reich, 2014) and its response to environment change 

(Lavorel et al., 1997). Consequently, there is increasing interest in using traits (Cadotte 

et al., 2011; Gondard et al., 2003; Pywell et al., 2003; Sandel et al., 2011) as well as the 

genetic diversity and adaptability of species (Prober et al., 2015) to guide ecological 

intervention. For example, the potential for success of a intervention project can be 

increased by ensuring the maintenance or enhancement of diversity of functional types, 

particularly if there is uncertainty about future environmental states (Funk et al., 2008). 

In MTEs, where ecological intervention is increasingly necessary due to the large 

amount of degraded and abandoned lands, and combined with a future scenario of 

severe climate changes, there is an urgent requirement to use plant functional traits as 

the basis for change analysis and species selection. A diverse field of reproductive, life- 

history and morphological traits have been used in ecological intervention (Ostertag et 

al., 2015; Pywell et al., 2003; Weiher et al., 1999); but, to my knowledge, there has 

been no synthesis of water stress-related physiological and anatomical traits associated 
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with tolerance of seasonal drought in MTEs. Therefore, the aim of this study is to 

review the key physiological and anatomical functional traits that can be used for 

measuring and screening species for functional intervention in MTEs under threat of 

climate change. 

 

2.3 FUNCTIONAL INTERVENTION 

Restoration practitioners require novel, robust and theory-based approaches to maintain 

essential ecosystem processes and functions and to facilitate response to changing 

abiotic conditions, rather than restoration based on a historical assembly that may not 

persist in a rapidly changing world (Cramer et al., 2008; Seastedt et al., 2008). Plant 

functional traits vary across resource availability gradients in predictable ways, and 

hence can be linked to ecosystem properties and services (Lavorel, 2013). 

Consequently, functional traits are a valuable tool for exploring ecological strategies of 

species and overall community assembly and function (Reich, 2014).  

Functional traits are classified as “response traits”, those that determine how 

organisms respond to environmental conditions; or “effect traits”, those that determine 

the effect of organisms on ecosystem functions (Laughlin, 2014). Response traits are 

often subjected to ecological filters and play an important role in community assembly 

and species interactions (Laughlin, 2014), whereas effect traits influence ecosystem 

processes through nutrient recycling and storage, modifications of soil water holding 

capacity, grazer efficiency, litter decomposition and primary production (Eviner and 

Chapin III, 2003). The community assembly comprising individuals with appropriate 

response traits, however, is what will determine effects on ecosystem properties (Grime, 

2006).  

Under the environmental filtering framework, ecological filters act at multiple 

scales to determine community composition, by filtering out species from the regional 

pool (Díaz et al., 1999). In MTEs, current land degradation and predicted changes in 

climate can alter physiological filters, removing species of the local community that 

lack trait values that confer a better match to changing environmental conditions. 

Species with appropriate attributes for the prevailing or future conditions, from both 

local and regional communites, can be identified and selected for ecological 
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intervention, whereas mediation may be needed to maintain species that no longer 

possesses an advantage (Fig. 2.1).  

Analyses of functional traits of species from both regional and local communities 

will then expand existing knowledge of current responses to drought that are present in 

the ecosystem. It will also allow for subsequent estimations of more advantageous 

strategies and trait values in line with future predictions of climate. Thus, finding such 

trait values will depend on the functional types present in both local and regional 

communities, on the type of alterations the ecosystem has had in the past, and on future 

predicted changes. In this way, different strategies to survive drought can be successful 

or not depending on the environmental changes. For example, in areas where the 

groundwater is declining, having deep roots to access groundwater may no longer be an 

advantage and species that have traits for tolerating prolonged water deficit may become 

more successful under the new conditions (Sommer and Froend, 2011).  
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Figure 2.1 (a) Ecological filters act at multiple scales to determine community composition, by 
filtering out species from the regional pool that lack the appropriate traits (in dashed grey) and 
select the ones that possess such attributes (in blue). Historical, physiological and biotic filters 
are related to the arrival of species to a certain area as well as to their capacities to germinate, 
grow, survive, reproduce, compete and defend themselves. (b) Modifications of soil and climate 
will alter physiological filters, selecting only the species with the physiology that provides a 
better match to changing hydrological conditions (in blue). Thus, those that lack such trait 
values will be filtered out (grey). On the other hand, species from regional community that were 
filtered out previously may become compatible with the new conditions (in black). The species 
with the approppriate attributes can then be used for ecological intervention of equivalent areas 
(in blue and black), whereas mediation is needed to include species that lack such attributes (in 
white). This figure was modified from Funk et al., (2008). 

2.4 RESISTANCE TO DROUGHT 

Terrestrial plants experience a trade-off between carbon fixation and water loss 

since gas exchange and transpiration are processes mediated by stomatal behaviour. 

Therefore, plants have to cope with the fact that they must lose water in order to get a 

gain in carbon, as described in the Cowan-Farquhar model (Farquhar et al., 1980). 

However, it is soil water availability and the capacity of plants to absorb water and 

transport it from the roots to leaves that determines the magnitude to which transpiration 

leads to dehydration of leaf tissue.  
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Under drought, some plants reduce stomatal conductance to regulate the 

transpiration water losses as soil water potentials decrease and atmospheric conditions 

dry –these are known as isohydric plants (McDowell et al., 2008; Tardieu and 

Simonneau, 1998). Conversely, anisohydric plants do not reduce stomatal conductance 

under drought (McDowell et al., 2008; Tardieu and Simonneau, 1998). There is, 

however, a larger number of additional physiological and structural traits that may 

confer a resistance to water stress by either avoiding or tolerating it (Levitt, 1972).  

Drought avoiders adopt strategies such as: increasing stomatal and cuticular 

resistance; changing the anatomy, surface area and orientation of leaves (Brodribb et al., 

2003; Morgan, 1984); achieving a quiescent stage (dormant plants: Volaire and Norton, 

2006; Volaire et al., 2001); having specialised water-storing tissues (succulent plants: 

Ogburn et al., 2010); growing deep roots to access deep water (phreatophytes: Meinzer, 

1927); dying back to below ground parts or to seeds (annual species and seeders: 

Gutterman, 1994); and resprouting (Bond and Midgley, 2001; Keeley, 1986; Verdú, 

2000). Drought tolerant plants are able to maintain hydraulic and stomata conductance, 

photosynthesis and growth during periods of low water availability (Sack et al., 2003). 

The understanding and identification of such strategies –that can be detected by 

functional traits– can assist in selecting species for intervention projects of 

Mediterranean ecosystems. 

2.5 SELECTION OF PLANT TRAITS RELEVANT TO DROUGHT RESISTANCE IN MTES 

To be efficient, the use of response traits as a basis for planning and monitoring 

ecological intervention of biodiverse MTEs would necessitate a focus on a small 

number of traits. Selection of the principal response traits for MTEs vegetation, 

therefore should: 1) consider measured traits that reflect responses to the key factors, i.e. 

water deficit stress rather than other abiotic/ biotic factors; 2) include response traits that 

are linked (at least conceptually) to functional effects on ecosystem services; 3) offer 

efficacy of measurement across multiple species; and 4) use methodologies that can be 

applied to the wide range of leaf types, stem characteristics and plant habits of MTEs 

plant species (Mooney et al., 1973, Table 2.1). It should however be noted that a 

number of plant traits can be associated with drought adaptation, therefore it is crucial 

to select the ones that allow for uncomplicated and inexpensive measurement of 

multiple species.  
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Seven response traits were selected from the literature based on the criteria listed 

above. For instance, leaf δ13C is a predictor of water-use efficiency (Farquhar et al., 

1982; Farquhar and Richards, 1984) and can be used across species with a diverse array 

of leaf types to indicate their ability to respond to water deficits, without having to 

measure transpiration rates, which is time consuming. At the same time, leaf δ13C is 

associated with carbon assimilation, primary productivity and efficient resource use and 

acquisition, all of which may positively affect intervention of ecosystems (Table 2.1). 

For example, species with high leaf δ13C are using water more efficiently, thus less 

water is lost through transpiration and may be available for other organisms, or less 

water will be required if irrigation is needed during the intervention process; e.g. in a 

study about irrigation applied for ecological intervention of desert areas, the estimative 

is of 1-8 l of water per plant per month (Bainbridge, 2002). Similarly, leaf [N] and [P], 

LMA, πtlp and wood density and anatomy are all associated with the ability of plants to 

resist water deficits and can be efficiently measured in species with a wide range of leaf 

types (Table 2.1).  

Essentially, plants that had their stomata closed for long periods will likely 

present relatively higher leaf δ13C, lower concentrations of [N] and [P] and lower Amax 

compared to those that maintain stomata open. So, through the measurements of these 

leaf traits it is possible to identify plants’ strategy to cope with water stress (Table 2.1 

and Fig. 2.2). Similarly, plants that show more negative values of πtlp and high hydraulic 

safety are able to maintain metabolism under conditions of low water availability. They 

can lower leaf πtlp by accumulating solutes in their cells, and resist high tensions in their 

xylem vessels through greater mechanical support (Table 2.1 and Fig. 2.2). Leaf mass 

per area is a product of thickness and of density and, therefore, integrates both carbon 

and water-use capacity (Niinemets, 2001). High LMA is associated with hydraulic 

safety, low stomata conductance and leaf turgor maintenance (Table 2.1 and Fig. 2.2). 
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Figure 2.2 Conceptual graphic for plant drought resistance of Mediterranean-type ecosystems 
under the risk of climate drought, via a functional intervention approach. It includes a 
combination of seven key response traits that are related to resistance to drought and are 
valuable indicators of existing functional types, “strategies”. Leaf water potential at turgor loss 
point, πtlp, and hydraulic safety (combination of wood density and wood anatomy) are a proxy 
for “water deficits”. Maximum photosynthesis rates and stomatal conductance measured as leaf 
[P] and [N] and δ13C respectively are a proxy for “Carbon assimilation”. Leaf mass per area 
(LMA) is related to both axes. 

The conceptual diagram assembled in this study (Fig. 2.2) provides us with a 

broad screening of species’ functional profiles in relation to water deficit resistance, 

where the x-axis represents increasing water deficits and the y-axis represents 

increasing levels of carbon assimilation, so that the different functional groups can be 

discriminated by the four hypothetical quadrants in the graphic, classified as “type I”, 

“type II”, “type III” and “type IV”. The first quadrant (“type III”) is characterised by 

low values for both axes, i.e. plants with low values of -πtlp (closer to zero, because πtlp 

is represented as a negative value), low hydraulic safety, low leaf [N] and [P] and high 

δ13C. Drought deciduous species are an example of such a group as they lose leaves and 

enter dormancy under low water availability (Volaire et al., 2001). 

At the other extreme, where both axes have high values (“type II”), species resist 

drought by having higher values of -πtlp, high hydraulic safety, high leaf [N] and [P] 
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and low δ13C. For example, some shallow rooted species, such as some Eucalyptus 

species from shallow soils from South Western Australia, are able to maintain gas 

exchange and possibly growth under low water availability. The combination of high 

values of water deficits and low values of carbon assimilation constitutes the quadrant 

composed of plants which maintain low -πtlp, high hydraulic safety, low leaf [N] and 

[P], and high δ13C, (“type IV”). Resurrection plants are an example of such group, as 

they maintain cell integrity during dehydration by accumulating specific carbohydrates 

in the leaves, and have narrow reticulate xylem vessels (Scott, 2000). Finally, in the top 

left corner of the diagram, high values of carbon assimilation and low water deficits 

result in plants that have high leaf [N] and [P], low δ13C, higher values of -πtlp and low 

hydraulic safety, (“type I”). Phreatophytes are an example of this group, since they can 

access water from deep layers thus avoiding drought and maintaining photosynthetic 

gas exchange (Meinzer, 1927). 

It is expected that many species present intermediary and more complex 

combinations of responses to drought than is represented here, nevertheless, the 

conceptual model presented (Fig 2.2) is a simple way to visualize and categorise key 

drought resistance strategies relevant to ecological intervention of MTEs. Where 

available, plant response trait values can contribute to and be ultimately sourced from 

global databases of plant traits e.g. “Plant Trait Database-TRY” project (Kattge et al., 

2011) once sufficient records are available for MTEs. With this type of data available, 

restoration practitioners can use the approach proposed in this study by plotting the data 

as suggested in Fig. 2.2 to identify the functional groups present in the community. 

Once the functional strategies to survive summer drought is known, it is possible to: 

select species with the most appropriate traits to future climate conditions, to interfere 

when a species is not able to maintain itself without human intervention, or at least to 

understand why certain species may fail. This first examination of the community allow 

for more effective planning and can create more sustainable ecosystems, i.e. 

communities that will likely persist in face of future climate and other global changes.  
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2.6 CONCLUSION 

 

Trait-based approaches enable a better understanding of linkages between biodiversity 

and ecosystem functioning. Within the response–effect framework (Lavorel and 

Garnier, 2002), trait-based studies are needed to predict how environmental changes 

influence ecosystem services which can be explored via identification of response traits 

that simultaneously determine community responses to environment and ecosystem 

function (Lavorel, 2013; Lavorel et al., 2011). This review focused on identifying single 

or groups of response traits that are efficient to measure and that will benefit ecological 

intervention in MTEs by enabling the selection of species assemblages that may persist 

under drier environments. In addition, the persistence of viable populations and 

assembly will also potentially maintain ecosystem services through links to effects 

traits. Finally, I suggest that this approach should be seen as a preliminary step that 

restoration practitioners could take towards prioritized intervention of MTEs under a 

changing climate followed by final decisions on species selection that consider other 

ecological aspects that influence ecological intervention success such as interactions 

with animals, fire resistance and seed/seedling costs. 
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CHAPTER THREE: APPLICATION OF AN 
OSMOMETER TECHNIQUE TO RAPIDLY PREDICT 
TURGOR LOSS POINT IN SMALL SCLEROPHYLL 
LEAVES 
 

3.1 ABSTRACT 

Leaf water potential at turgor loss point has been recognized as a key functional trait 

related to tolerance to water deficits. The methodologies developed to measure this trait, 

however, are either time consuming or impractical for small-leaved species. For 

Mediterranean-Type Environments (MTEs), where a large number of small-leaved 

species occur, there is an urgent need to find a suitable method to quantify leaf πtlp that 

is efficient. I collected samples from 11 plant species (n=4), from a range of leaf sizes, 

and simultaneously measured them with two techniques: pressure-volume curves (P-V 

curves) and osmometry of extracted sap (SE osmometry). The first approach allows for 

the measurement of water potential at turgor loss point (πtlp), water potential at full 

turgor (π0), cell elasticity (ε) and apoplastic water (af); and the second is a potential 

alternative technique, which measures only π0. Since SE osmometry is a more simple 

method and π0 is known to be highly correlated with πtlp, I investigated its application to 

small leaved plants. I also used two rehydration treatments (no rehydration and one hour 

rehydration) to investigate possible problems associated with SE osmometry technique. 

No differences between hydration treatments were found for P-V parameters and 

osmometer π0 (osm.π0). Values of osm.π0 were correlated with P-Vπ0 for non-rehydrated 

(r2 = 0.465; p = 0.018) and rehydrated treatments; (r2 = 0.655; p = 0.002) and highly 

correlated with πtlp for non-rehydrated (r2 = 0.803; p = 2.75 x 10-4) and rehydrated 

treatments (r2 = 0.719; p = 5.93 x 10-4). I conclude that the SE osmometry technique is a 

suitable replacement for the time consuming P-V curves since it gave accurate 

estimations of πtlp in both small and large leaved species. Although ε had support roles 

in the maintenance of low πtlp, P-Vπ0 alone was an excellent predictor of πtlp. I finally 

suggest that field measurements of osm.π0 be done without pre-hydration treatments and 

during contrasting periods of water availability. 
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Key-words: drought resistance, small leaved-plants, water relations, rehydration, plant 

functional traits 

Abbreviations: A, leaf area; AWF, apoplastic water fraction; D, leaf density; ε, cell 

wall elasticity; LDMC, leaf dry mass content; RWC, relative water content = RWD, 

relative water deficit; P-V curves, pressure-volume curves; P-Vπ0, water potential at full 

turgor measured through P-V curves; osm.π0, water potential at full turgor measured 

through a osmometer; πtlp, water potential at turgor loss point; SLA, specific leaf area; 

SWF, symplastic water fraction; SE osmometry, osmometry of sap extracted; T, leaf 

thickness. 

 

3.2 INTRODUCTION 

Plant functional traits are measurable chemical, physiological, morphological and 

phenological attributes of plants that respond to biotic and abiotic factors in the local 

environment (Dıaz and Cabido, 2001; Lavorel and Garnier, 2002). Studies of plant 

functional traits are important for ecosystem management and planning, and for 

designing and monitoring intervention (Gondard et al., 2003). Such knowledge is 

especially needed for intervention and management of Mediterranean-type 

environments (MTEs) since they are predicted to be at the highest risk of climate 

change, particularly water deficits (IPCC, 2014; Klausmeyer and Shaw, 2009; 

Rapacciuolo et al., 2014). Water potential at turgor loss point, πtlp, has been recognized 

as a key functional trait related to tolerance to water deficits since cell turgor is essential 

for maintaining membrane integrity, transport of photosynthate, cell expansion and 

overall plant growth (Blackman and Overall, 2001; Cleland, 1971; Frensch and Hsiao, 

1994; Roberts and Oparka, 2003). This measure gives a good indication of leaf and 

plant tolerance to water deficits by providing leaf water potential values at which leaves 

are able to maintain turgor and function (Lenz et al., 2006; Sack et al., 2003).  

It has been suggested that there might be three ways through which plants lower 

πtlp including: (i) through the accumulation of osmotically active compounds; (ii) by 

reallocating water from inside to outside cell walls to reduce symplastic water content; 

and (iii) by increasing cell wall elasticity. Relationships between low πtlp and changes in 

elasticity of cell walls and in reallocation of water (Joly and Zaerr, 1987; Moore et al., 
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2008) as well as in osmotic adjustment (Merchant et al., 2007; Morgan, 1984) have all 

been found in plants experiencing water deficits. Bartlett et al. (2012), however, 

suggested that differences within and across species in πtlp are entirely attributable to 

osmotic potential at full turgor (πo) and, therefore, measurements of πo alone can 

provide accurate predictions of πtlp. 

The most common way to measure πo and πtlp is through the pressure-volume (P-

V) curve technique, which requires the sequential measurement of leaf water potentials 

of dehydrating plant tissue (Tyree and Hammel, 1972). This method enables the 

estimation of other physiological parameters, such as cell elasticity, capacitance and cell 

apoplastic and symplastic fractions. However, the technique is time consuming with 

only 4-6 individuals analysed in a day (Bartlett et al., 2012a). Thus, other 

methodologies have been developed to determine πo more quickly, including the use of 

a thermocouple psychrometer, also known as an osmometer. This technique measures 

osmotic potentials of extracts of freeze-thawed leaf discs, sap extracted from crushed 

tissues, and hot water extractions from fresh tissues (Callister et al., 2006; Kikuta and 

Richter, 1992; Turner, 1981). Of these, the freeze-thawed leaf discs methodology has 

been described as the most robust since dilution of the symplastic fraction with 

apoplastic water is minimized by excluding the primary and secondary veins when 

cutting discs from the leaves (Callister et al., 2006; Kikuta and Richter, 1992). Support 

for the technique has been provided by Bartlett et al., (2012a), who found that osm.π0 

measurements were strongly correlated to P-Vπo (r2= 0.80) and to πtlp (r2= 0.86). 

The use of freeze-thawed leaf discs however poses a problem when used on 

species with sclerophyllous and/or very small leaves, cladodes and other “non-laminar 

shaped leaves”, since leaf discs cannot be obtained from such leaves. This limits the 

applicability of the technique when assessing certain ecosystems such as MTEs since 

these ecosystems have a wide range of leaf types and sizes, stem characteristics and 

plant habits (Pate et al., 1984). For instance, Mooney et al., (1973) and Orsham ( 2012) 

classified 429 common species, from an eco-region of Southwest Australia known as 

“kwongan”, by the frequency of leaf shape forms (terete, broad flat, long flat, dissected 

flat and minute scale leaves), size of leaves (within 9 categories from smaller than 0.10 

to larger than 1640 cm2), and consistency of leaves (malacophyll, sclerophyll, resinous 

succulence and water succulence). This diversity of leaf morphology results in 37%, 
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54% and 68% of species excluded from measurements of leaf πtlp and πo through the leaf 

disc technique because of leaf shape, size and consistency differences respectively. 

Osmometer measurement of sap extracted from freeze-thawed leaves is more 

appropriate since it can accommodate a diversity of leaf types. Another advantage of 

this method, particularly for small-leaved plants, is the ability to press several leaves 

together in order to get sufficient sap for osmometer readings. Leaf πtlp and πo values 

measured through SE osmometry of leaves without their mid veins have been shown to 

be strongly correlated with those from P-V curves, and that such values are not 

dependent on the proportion of sap extracted from samples (Callister et al., 2006). Still, 

the determination of πtlp and πo by SE osmometry needs further testing for small leaves 

in which the separation of mid veins is impractical and several leaves need to be often 

crushed together so as to obtain enough sap for the osmometer.  

The standard protocol for both the P-V curve and osmometer techniques includes 

an initial rehydration treatment to ensure that measurements of πo are undertaken at full 

hydration. It is known, however, that prolonged rehydration can lead to hydration of 

airspaces thereby reducing the precision of πo measurements, known as “plateau effect”  

(Kubiske and Abrams, 1991a, 1990). There is also evidence that results of rehydrated 

samples cannot be extrapolated to field studies, in which plants experience a broad 

range of tissue water potentials, and that non-rehydrated samples can be used (Kubiske 

and Abrams, 1990; Meinzer et al., 2014). Therefore, there is a need to investigate the 

accuracy of SE osmometry in response to rehydration treatments applied prior to 

measurements of πtlp and πo.  

The main objective of this study was to identify a technique suitable for 

measuring leaf πtlp and πo that is quick and efficient across a range of small-leaved 

species characteristic of MTEs, producing results that are strongly correlated with those 

obtained from the widely accepted but time consuming P-V curve technique. Based on 

published evidence that supported the use of SE osmometry (Callister et al., 2006), I 

hypothesized that values of πo determined from extracted sap measured with an 

osmometer (osm.π0) will be strongly correlated with P-V curve measurements of πo (P-

Vπo) and πtlp for species with large and small leaves, despite the inclusion of veins 

during the sap extraction process. To test this hypothesis, I constructed P-V curves and 

performed SE osmometry on non-rehydrated and rehydrated shoots of eleven species 

from the MTE of Australia. 
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3.3 MATERIALS AND METHODS 

Study site and species selection 

Plant material was collected from sites on the Gnangara Mound in Southwest Australia 

(Thackway and Cresswell, 1995). Gnangara Mound has a Mediterranean-type climate 

with mild, wet winters and hot, dry summers and contains several different aquifers 

(Thackway and Cresswell, 1995). Eleven species from four different taxonomic families 

were selected based on their high abundance. For each species, four individuals were 

used as replicates (Appendix 1).  

 

Plant material collection and preparation 

In September, which corresponds to the period of highest soil moisture, rainfall 

accumulated of approximately 430 mm from June to September of 2014, healthy 

looking branches (20-40 cm) were collected from each individual shortly before sunrise 

(predawn) and immediately sealed in humidified plastic bags to minimize water loss. 

Upon arrival at the laboratory, four smaller branches were excised from each replicate 

and split in two pairs; paired branches were either used in the original hydrated state or 

subjected to a rehydration treatment. For the rehydration treatment, branches were recut 

under water and the bases were kept in this water in dark cool place for one hour. Tests 

were undertaken to evaluate the time necessary for branches to reach full hydration 

without oversaturating them. Oversaturation was indicated by a gradual decline in 1/ψ 

as relative water deficit (RWD) increases during the P-V curves (Abrams and Kubiske, 

1990; Dichio et al., 2003; Parker and Pallardy, 1987). To minimize the impact of 

oversaturation, the portions of stems that had been under water were also removed prior 

to determination of P-V curves.  

From the two pairs of branches, one pair containing a non-rehydrated and a 

rehydrated branch was used to construct the P-V curves while the second pair was used 

for the osmometer readings. Samples were always kept in two humidified plastic bags 

inside a refrigerator at 4-5°C prior to analysis. Two replicates of each species were 

processed on the day of collection and the other two replicates on the following day due 

to time constrains.  

  



 

  
26 

Pressure-volume curves 

P-V curves were constructed following the bench drying method described by Sack et 

al. (2003) in which a pressure chamber (Plant Moisture Stress Model 1000, Corvallis, 

Oregon) was used to determine water potential at regular intervals for material drying 

on the bench. Plots of fresh weight versus water potential for both treatments were 

undertaken to determine whether oversaturation has occurred. A correction was applied 

to samples where this phenomenon was detected, which involved eliminating the first 

points in which the plateau was evident (Sack et al., 2010). Plots of 1/ψ versus RWD 

were constantly updated during the P-V curve determination to ensure that three to five 

data points on the linear portion of the curve had been obtained. Osmotic potential at 

full turgor (MPa), osmotic potential at turgor loss point, relative water content at turgor 

loss point and modulus of elasticity at full turgor (ε, MPa) were all calculated for each 

sample following the methods of Sack et al., (2010). Finally, symplastic water fraction 

(SWF) was estimated from the extrapolation of the regression equation of the linear part 

of the P-V curve (-1/water potential x relative water content) to the x-axis. Apoplastic 

fraction (AWF) was calculated by 1- SWF (Tyree and Hammel, 1972). 

 

Osmometer measurements 

Leaves were rapidly picked from sample branches and folded in aluminium foil, placed 

in liquid nitrogen for two minutes and allowed to thaw for one hour before the 

extraction of leaf sap. A leaf press (Markhart leaf press LP-27, Wescor) specifically 

designed for vapor pressure osmometers was used for extracting cell sap straight to a 

filter paper disc that matches the diameter of the Wescor vapor pressure osmometer 

(VAPRO 5600) 10 µl chamber well. The saturated filter paper was then sealed in the 

osmometer chamber. The machine recorded measurements of leaf osmolality 

approximately every three to four minutes until equilibrium was indicated by an 

increase between successive measurements of < 5 mmol/kg. The osmometer was 

calibrated following the manufacturer instructions at the start of each day and after 

every 6-8 hours of intense use. Osmolality values were transformed into osmotic 

potential values (ψ) through a simplification of the Van’t Hoff relation as given by the 

manufacturer’s manual: 

 

ψ(MPa) ~ -0.0025 (m3·MPa·mol−1) x osmolality (mol m−3) 
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Leaf traits 

All leaf traits measurements were performed on the non-rehydrated samples since the 

species selected were sclerophyllous plants, which are not expected to show much 

variation between different hydration treatments. A scanner consisting of a digital 

camera (Hitachi-KP-D40) and a computer program (Windias, Version 2.0) was used to 

measure leaf area, A, on ten to forty leaves, depending on their size, for each individual 

replicate. An electronic digital calliper (Absolute Digimatic, series 500) was used to 

measure leaf thickness, T, from the middle of six random leaves for each replicate. 

Leaves were then placed in a drying oven at 70°C for 72 hours prior to dry mass 

determination and calculation of leaf dry mass content, LDMC, (dry mass/fresh mass) 

and specific leaf area, SLA, (leaf area per dry mass, cm2 g-1). Leaf density, D, was 

determined by 1/SLA*T (g cm-3). 

 

Data analysis 

Linear mixed effect models, lmer() from package “lme4” (R, version 3.0.2), were 

performed to investigate if the hydration treatments (rehydration versus non 

rehydration) affected each of the ε, πtlp, P-Vπ0 and osm.π0 individually. Comparisons 

between rehydrated and non-rehydrated samples were undertaken on the non-corrected 

data, so that the effect of the hydration treatments could be determined. For 

comparisons between osmometer and P-V curves, the P-V curves that presented the 

plateau effect were corrected according to Sack et al. (2010). Therefore, comparisons 

between P-V parameters and osmometer measurements included P-V values that were 

corrected for plateau effects.  

Linear mixed modelling was applied to investigate whether the parameters P-Vπ0 

and ε could be used to predict πtlp and to test whether osm.π0 was a good predictor for P-

Vπ0 and πtlp. Akaike information criterion corrected for low n (AICc) was used to select 

the most parsimonious models (the models with the lowest AICc) and differences >2 in 

AICc values are considered meaningful (Burnham and Anderson, 2004, 2002). I 

included species as a random factor and hydration treatments and leaf traits individually 

(T, A, D, LDMC and SLA) as fixed factors. Leaf traits were incorporated to explore the 

relationship between P-V parameters and to investigate whether the prediction of P-Vπ0 

and πtlp by osmometer could be improved by taking into account differences in leaf 

structure. I subsequently performed liner regressions to explore relationships between 
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P-Vπ0 and πtlp, ε and πtlp as well as between osm.π0 and each of the P-V parameters, P-

Vπ0 and πtlp for both non-rehydrated and rehydrated treatments. Finally, I explored the 

discrepancy between osm.π0 and P-Vπ0 by studying relationships between AWF and πtlp 

and between ε and πtlp using regression analysis. 

 

3.4 RESULTS 

The oversaturation phenomenon was detected in 43% of rehydrated samples, despite the 

short hydration period of 1 hour and the removal of sections of the stem that had been 

submerged. More surprisingly, 17% of the samples that were not rehydrated also 

showed a plateau effect. Despite these findings, no differences between the non-

rehydrated and rehydrated treatments were found for the P-V parameters, P-Vπ0 (lmer, p 

= 0.22, Fig. 3.1a), πtlp (lmer, p = 0.24, Fig. 3.1b), AWF (lmer, p = 0.22, Fig. 3.1c), ε 

(lmer, p = 0.38, Fig. 3.1e), with an exception of SWF (lmer, p = 0.02, Fig. 3.1d). The 

osmometer values of π0 for non-rehydrated and rehydrated samples were also similar 

(lmer, p = 0.12, Fig. 3.1f, Appendix 2).  

Among the models constructed to predict πtlp, the best-fit model had both P-Vπ0 

and ε included (Table 3.1). Values of P-Vπ0 were also well correlated with πtlp for both 

non-rehydrated (linear regression, r2 = 0.90, p = 0.0000181, Fig. 3.2) and rehydrated 

(linear regression, r2 = 0.88, p = 0000116, Fig. 3.2) treatments. Values of ε were 

negatively related to πtlp for non-rehydrated (linear regression, r2 = 0.21, p = 0.09, Fig. 

3.3) and for rehydrated (linear regression, r2 = 0.66, p = 0.00152, Fig. 3.3) treatments. 

The two best-fit models found to predict P-π0 included only osm.π0 and both leaf 

area (A) and osm.π0 (Table 3.1). Values of P-Vπ0 and osm.π0 were correlated for non-

rehydrated (linear regression; r2 = 0.465, p = 0.018; Fig. 3.4) and rehydrated treatments 

(linear regression; r2 = 0.655; p = 0.002, Fig. 3.4). For the prediction of πtlp the best-fit 

model included only osm. π0 (Table. 3.1) and both parameters were well correlated for 

non-rehydrated (linear regression; r2 = 0.803; p = 0.000275, Fig. 3.5) and rehydrated 

treatments (linear regression, r2 = 0.719, p = 0.000593, Fig. 3.5). Finally, AWF was 

positively correlated to πtlp for non-rehydrated treatments when the outlier Pultenaea 

reticulata was removed (linear regression, r2 = 0.44, p = 0.031) and for rehydrated 

treatments (linear regression, r2 = 0.67, p = 0.001). For ε, there was no correlation with 

πtlp for non-rehydrated treatments (linear regression, r2 = 0.215, p = 0.099), but these 
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parameters were correlated for rehydrated samples (linear regression, r2 = 0.66, p = 

0.001).The following general equation was generated from data from all species studied 

with a variety of leaf sizes and shapes and uses osmometer measurements of π0 of non-

rehydrated samples to predict πtlp (r2 = 0.803; p = 0.000275, Fig. 3.5): πtlp = 0.98 osm.π0 

-0.17. 

Table 3.1 Summary of the models created through the Akaike information criterion corrected 
for low n (AICc) to investigate whether osmotic potential at full turgor measured through an 
osmometer (osm.π0) could predict the pressure-volume parameters: osmotic potential at full 
turgor (P-Vπ0) and osmotic potential at turgor loss point (P-Vπtlp) alone or in combination with 
leaf traits and with the hydration treatment applied to samples prior to the analyses. A similar 
approach was used to test whether P-Vπ0 was a good predictor of P-Vπtlp. The best models of 
each analysis plus the null model are represented in this table. Abbreviations as per text. “K” 
refers to degrees of freedom and AICc to Akaike information criterion for low sample size. 
Models K AICc ΔAICc Weight Cumulative Weight Log-likelihood 
Predicting P-Vπ0 through osm.π0  
Osm + A  5 15.86 0.00 0.41 0.41 -0.93 
Osm 4 16.25 0.39 0.33 0.74 -2.88 
Osm + LDMC 5 19.30 3.44 0.14 0.77 -2.65 
Osm + D 5 19.47 3.61 0.12 0.75 -2.74 
Osm + SLA 5 19.67 3.81 0.12 0.90 -2.83 
Osm + T 5 19.69 3.83 0.12 0.90 -2.85 
Null 3 29.14 13.28 0.00 1.00 -10.86 
Predicting P-Vπtlp through osm.π0  
Osm 4 7.35 0.00 0.53 0.53 1.58 
Osm + A 5 9.36 2.01 0.19 0.72 2.32 
Osm + D 5 9.99 2.64 0.15 0.71 2.01 
Osm + SLA 5 10.78 3.43 0.12 0.91 1.61 
Osm + LDMC 5 10.84 3.49 0.11 0.90 1.58 
Osm + T 5 10.85 3.50 0.11 0.91 1.58 
Null 3 20.90 13.55 0.00 1.00 -6.75 
Predicting P-Vπtlp through P-Vπ0  
PV + ε  5 -22.73 0.00 0.53 0.53 18.36 
PV 4 -20.50 2.23 0.17 0.70 15.50 
PV + A 5 -19.18 3.55 0.25 0.73 16.59 
PV + T 5 -18.50 4.23 0.19 0.70 16.25 
PV + D 5 -18.41 4.32 0.19 0.73 16.20 
PV + LDMC 5 -17.55 5.18 0.14 0.90 15.77 
PV + SLA 5 -17.26 5.47 0.12 0.90 15.63 
Null 3 20.21 42.94 0.00 1.00 -6.40 
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Figure 3.1 Differences in pressure-volume parameters between hydration treatments: a) 
osmotic potential at full turgor (P-Vπ0, lmer, p= 0.22), b) osmotic potential at turgor loss point 
(P-Vπtlp, lmer, p=0.24), c) apoplastic water fraction (P-V AWF, lmer, p=0.22), d) symplastic 
water fraction (P-V SWF, lmer, p=0.02), e) cell elasticity (P-Vε, lmer, p=0.38), and f) osm.π0 
(lmer, p=0.12) measured in 11 plant species from Gnangara Mound in Southwest Australia 
(lmer, n=11, p = 0.24, p = 0.22, p = 0.38, p = 0.08, p = 0.04 and p = 0.12 respectively). 
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Figure 3.2 Relationship between osmotic potential at turgor loss point (P-Vπtlp) and osmotic 
potential at full turgor (P-Vπ0) measured through pressure-volume curves, with 11 Southwestern 
Australian species for (a) non-rehydrated (n=10; r2 = 0.90; p = 0.0000181) and (b) rehydrated 
(n=11; r2 = 0.88; p = 0.0000116). Grey shade is 95% confidence intervals and error bars 
represent standard errors of the means. 

 

Figure 3.3 Relationship between osmotic potential at turgor loss point (P-Vπtlp) and cell 
elasticity (ε) measured through Pressure-volume curves, with 11 Southwestern Australian 
species for (a) non-rehydrated (n=10; r2 = 0.21; p = 0.10) and (b) rehydrated (n=11; r2 = 0.66; p 
= 0.00152). Grey shade is 95% confidence intervals and error bars represent standard errors of 
the means. 
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Figure 3.4 Relationship between osmotic potential at full turgor measured through pressure-
volume curves (P-Vπ0) and an osmometer π0 (osm.π0), with 11 Southwestern Australian species 
for (a) non-rehydrated (n=10; r2 = 0.465; p = 0.018; P-Vπ0= 0.49osm.π0 -0.42) and (b) 
rehydrated (n=11; r2 = 0.655; p = 0.002; P-Vπ0= 0.74osm.π0 -0.079). Grey shade is 95% 
confidence intervals and error bars represent standard errors of the means. 
 

 

Figure 3.5 Relationship between turgor loss point measured through pressure-volume curves 
(πtlp) and osmotic potential at full turgor measured through an osmometer (osm.π0) with 11 
Southwestern Australian species for (a) non-rehydrated (n=10; r2 = 0.803; p = 0.000275; πtlp = 
0.98osm.π0 -0.13) and (b) rehydrated (n=11; r2 = 0.719; p = 0.000593; πtlp = 0.98 osm.π0 -0.17). 
Grey shade is 95% confidence intervals and error bars represent standard errors of the means. 
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3.5 DISCUSSION 

Sap-extracted osmometry technique as an alternative method 

The osmometry technique has advantages over the P-V curve method since it enables 

30-40 rather than 6-8 samples to be analysed in a day. It also allows for species with 

leaves varying in size (approximately 5 to 150 mm) to be measured for π0 and πtlp. 

Values calculated using this osmometry technique are consistent with those derived 

from P-V curves as a strong linear relationship (r2 = 0.465; p = 0.018) was found 

between the two suggesting that the time consuming P-V curve determination of π0 and 

πtlp can now be rapidly and accurately undertaken with SE osmometry. The leaf 

parameters π0 and πtlp are strongly associated with plant tolerance of water deficits 

(Bartlett et al., 2012b), and are thereby important for understanding current and 

potential future plant distributions in areas of significant climate change. Knowledge of 

leaf water relations’ parameters such as π0 and πtlp would also assist in the selection of 

species used for management and planning of ecological intervention projects.  

While values of P-Vπ0 and osm.π0 were correlated, yet they were not equal. There 

was a discrepancy from 1:1 between both methodologies, similar to what Bartlett et al. 

(2012a) found when comparing osm.π0 readings of leaf discs with P-Vπ0 of 30 species 

from different biomes. Values of osm.π0 were at one extreme less negative for values 

closer to zero, and more negative for the other extreme. In Bartlett’s study, this bias was 

explained by apoplastic dilution and cell wall dissolution, since species with higher 

osmotic concentrations tended to have greater cell wall investment. This means that the 

apoplastic dilution was weakly offset by the cell wall dissolution for values closer to 

zero and increasingly became offset by it with increasing osmotic concentration. The 

current study supports this finding, AWF was higher for species with less negative 

values of P-Vπtlp and ε was higher for species with more negative values of P-Vπtlp. 

Species with the lower P-Vπtlp also showed high ε and therefore higher cell wall 

investment. When samples were frozen in liquid nitrogen and subsequently crushed for 

the extraction of sap, symplastic water was likely influenced by both components: 

dilution by apoplastic water and concentration by cell wall dissolution. This 

relationship, however, only applies for rehydrated samples. Nevertheless, osmometer 

values of π0 were well correlated to πtlp regardless of the hydration treatment.  

 

Determinants of water potential at turgor loss point 



 

  
34 

Values of P-Vπ0 and πtlp were also strongly correlated and this result is consistent with 

the meta-analysis of Bartlett et al. (2012b) in which osmotic potential at full turgor was 

described as the major driver of leaf water potential at turgor loss point. Values of ε 

were also correlated with π0 and πtlp. Indeed, the best-fit model for the prediction of πtlp 

included both P-V parameters: P-Vπ0 and ε. It is also known that very negative values of 

π0 and πtlp might result in very low values of relative water content at turgor loss point, 

RWCtlp, which can induce shrinkage and possibly interrupt cell metabolic processes 

(Bartlett et al., 2012b). To maintain constant RWCtlp, live cells can modify the elasticity 

of their cell walls in order to become more rigid and withstand turgor pressure, avoiding 

threshold shrinkage, known as the “cell water conservation hypothesis” (Cheung et al., 

1975; Jones, 1992). Although ε clearly had a support role in the maintenance of πtlp in 

this study, π0 alone was enough to reliably predict πtlp and thus show differences in 

tolerance to drought among species. This enables the use of SE osmometry to calculate 

plant tolerance to drought (speculated through πtlp estimations) since the only leaf 

parameter that can be measured through SE osmometry is π0, which in turn was highly 

correlated to πtlp in this study. 

 

Effects of hydration treatments 

Samples from both hydration treatments had to be corrected for oversaturation, which 

suggests that this phenomenon can happen naturally when water is freely available to 

plants and oversaturation has previously been recorded for non-rehydrated samples 

(Evans et al., 1990; Kubiske and Abrams, 1991a; Parker and Pallardy, 1987). Other 

studies also found that rehydration treatments can lead to shifts in P-V curves resulting 

in incorrect calculations of πtlp, P-Vπ0, and ε parameters, due to the fact that solutes can 

leak from symplastic to apoplastic water in addition to air spaces within the leaf 

becoming filled with water (Kubiske and Abrams, 1991b; Meinzer et al., 2014; Parker 

and Pallardy, 1987). Although I found the plateau effect in some of the samples and 

therefore their P-V curves were shifted, I did not find differences between hydration 

treatments for πtlp, P-Vπ0, ε and osm.π0. Therefore, the one-hour rehydration treatment 

did not markedly affect the values of P-V parameters and osmo.π0 (Fig. 3.1). The 

apoplastic water fractions, on the other hand, were influenced by the rehydration 

treatment (Fig. 3.1). However, the calculation of symplastic and apoplastic parameters 
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through P-V curves can be imprecise because it may require extrapolation beyond the 

range of the data (Andersen et al., 1991; Wardlaw, 2005).  

It has been suggested that P-V curves should be constructed immediately after 

sampling, without any hydration treatment (Kubiske and Abrams, 1990; Yan et al., 

2012) in samples comprising a range of hydration levels (Meinzer et al., 2014). In this 

study, samples were collected before dawn during spring, which corresponds with the 

wettest time of the year. Thus, a rehydration treatment was not necessary since the 

majority of samples were naturally fully hydrated. For MTEs, where summers are dry 

and winters wet, measurements of osm.π0 and estimations of πtlp can be obtained by 

sampling the wettest and driest periods of the year. In this way it is possible to 

investigate natural seasonal trajectories of water relations that are associated with leaf 

physiological functions without the confounding effect of rehydration treatments. 

 

3.6 CONCLUSION 

I suggest that SE osmometry of extracted sap is an appropriate technique for the measurement 

of leaf water potential at turgor loss point and at full turgor for a range of leaf types. This is 

significant for MTEs in which a large percentage of species have small, sclerophyllous leaves, 

which are not able to be measured using the leaf disc method. The more rapid SE osmometry of 

extracted sap is a suitable replacement for the time-consuming P-V curves to accurately and 

efficiently determine leaf water potential at turgor loss point and at full turgor. The application 

of SE osmometry without rehydration is preferable, particularly if plants are well hydrated in 

the field, such as in spring as no marked differences were found between treatments, with 

exception for SWF. Further seasonal work can be undertaken to fully understand the accuracy 

of this technique when leaf tissues will be naturally dehydrated. Finally, the use of SE 

osmometry allows for the rapid assessment of drought tolerance of plant species with a diverse 

of leaf shapes and sizes, making it useful across a range of ecosystem types within MTEs. 
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CHAPTER FOUR: A FUNCTIONAL ECOLOGICAL 
APPROACH TO IDENTIFY PLANT RESISTANCE TO 
WATER DEFICITS IN A MEDITERRANEAN-TYPE 
ECOSYSTEM 

4.1 ABSTRACT 

Mediterranean-type ecosystems (MTEs) have been highly modified and are predicted to 

become drier in the future. In this context, my objective was to develop an approach to 

identify plant water-use strategies through analysis of functional traits to assist 

intervention projects in selecting drought resistant species. I selected six areas across a 

gradient of water availability; including areas prone to waterlogging, areas with high 

depth to water table (>10 m), and areas with shallow soil and no water table. I then 

measured twelve functional traits associated with water use in fifteen plant species. 

Next, I applied multivariate analyses to examine how traits varied in relation to each 

other, grouping species based on these traits and investigating similarities within and 

between functional groups and sites. Functional trait correlations were consistent with 

the worldwide leaf and wood economic spectra, among the twelve traits measured, six 

appear to be most important to explain trait variation –maximum diameter of xylem 

vessels (Dmax), number of xylem vessels per mm-2 (Ds), leaf mass per area (LMA), WD 

(stem density), foliar carbon isotope composition (δ13C), and leaf water potential at 

turgor loss point (TLP). Species were clustered into five different functional groups that 

corresponded to their different rooting depths. Differences within and between 

functional groups and sites are reported through their Euclidean distances. Analyses of 

functional traits provided insights into the water-use strategies of native plants, 

revealing those species with greatest potential to resist water deficits. It can also enable 

the formation of a more functionally diverse assembly of species bearing 

complementary traits, which in turn can be used to strengthen resistance to invasion in 

restored communities. This functional ecological approach is transferable to other MTEs 

and for application by restoration practitioners since the traits selected are relatively 

easy and cheap to measure and require only simple analytical approaches. 
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Key-words: resistance to water deficits, plant functional traits, water availability, plant 

functional types, Mediterranean-type ecosystem. 

4.2 INTRODUCTION 

 

A great many species live under modified environmental conditions due to climatic and 

other global changes (Fox, 2007; Hobbs and Cramer, 2008; Seastedt et al., 2008). In a 

world of constant and extensive change, there is a need for novel and robust theory-

based approaches to ecological intervention aimed at maintaining essential ecosystem 

processes under changing abiotic conditions, rather than applying methods based on 

historical assembly that may not persist in a rapidly changing world (Cramer et al., 

2008; Seastedt et al., 2008). 

Plant functional traits are attributes relevant to the life history and resource use of 

a species, and can be used to help define its ecological role or function (Dı́az and 

Cabido, 2001; Lavorel and Garnier, 2002; Reich, 2014). They are a valuable concept for 

identifying ecological strategies in an ecosystem, as well as understanding community 

dynamics and assembly (Reich, 2014). Indeed, there is increasing interest in using 

functional traits to guide intervention (Gondard et al., 2003; Laughlin, 2014; Pywell et 

al., 2003; Sandel et al., 2011), and to support agricultural (Wood et al., 2015) and 

ecosystem management (Cadotte et al., 2011; Kahmen et al., 2002). 

Mediterranean-type ecosystems represent some of the most highly altered 

ecosystems on the planet (Hobbs et al., 1995) and are consequently under threat, 

requiring better management and intervention projects. Mediterranean ecosystems 

typically experience seasonal drought during the hot, dry summers followed by mild, 

wet winters (Aschmann, 1973) and therefore soil water availability during the dry 

summer represents a major environmental limitation (Castri, 1973). Summer drought 

can lead to water deficits in leaf tissues and within xylem vessels, critically affecting 

physiological processes and overall plant yield and survival (Hsiao, 1973). Climate 

change predictions suggest that temperature and rainfall variation will increase 

significantly, resulting in most MTEs becoming drier with potentially more regular and 

extensive periods with plant water deficits (IPCC, 2014; Klausmeyer and Shaw, 2009). 

 Many plants from MTEs possess a broad range of functional traits related to 

water use and carbon assimilation that includes deep roots, specialized root 
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morphology, control of stomatal conductance, hydraulic architecture, and leaf 

physiology and phenological attributes (Hernández et al., 2010; Mitchell et al., 2008a; 

Vilagrosa et al., 2013; West et al., 2012). This diversity of strategies maintains efficient 

water use and niche partitioning, which is directly associated with community assembly 

(Hobbs and Norton, 2004; Weiher et al., 1998). Therefore, knowledge of water-use 

strategies of native plants has the potential to allow ecological intervention and 

management projects to design sustainable assemblies of species in a drying 

environment. 

Species perform specific hydrological functions within an ecosystem and may 

hence be classified into hydraulic functional types (HFTs, Mitchell et al. 2008) 

independent of taxonomic groups (Shugart and Woodward, 1997). Such a functional 

classification may be relevant to screening species for planning MTE intervention in 

changing environments. There are several functional traits that have been linked to 

resistance to water deficits, as well as used to identify HFTs (Mitchell et al., 2008). 

Some of these traits can also be measured efficiently, enabling species datasets to be 

developed in a short period of time (Chapter 2 of this thesis). For instance, water 

potential at turgor loss point (πtlp) has been recognized as a key functional trait, since it 

directly quantifies leaf and plant tolerance to water deficits by providing leaf water 

potential values at which leaves are able to maintain turgor and function (Bartlett et al., 

2012b).  

Functional traits associated with hydraulic architecture are also relevant as they 

represent potential for resistance to high tensions in xylem vessels generated by water 

deficits. Among these, wood density (WD), xylem vessel density (Ds) and average and 

maximum vessel diameter (Dave and Dmax) have been linked to tolerance to water 

deficits (Chave et al., 2009; Hacke and Sperry, 2001; Tyree et al., 1994). Additionally, 

functional traits associated with carbon assimilation and photosynthesis capacity (Amax) 

also play an important role in resistance to water deficits. From these, carbon isotope 

composition of leaves (δ13C) can be used as a proxy for water-use efficiency (Farquhar 

et al., 1989, 1982; Sinclair et al., 2009; Smith and Griffiths, 1993), whereas 

concentrations of nitrogen ([N]) and phosphorus ([P]) in the leaves can be used as a 

proxy for Amax (Ellsworth et al., 2014; Kattge et al., 2009; Reich and Schoettle, 1988; 

Wright et al., 2004). Finally, leaf mass per area (LMA) is a functional trait that consists 

of two variables, leaf density and thickness, and is positively related to global solar 
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radiation, from adaptive modifications in thickness to water limitations from increases 

in density (Niinemets, 2001, 1999; Reich et al., 1999; Witkowski and Lamont, 1991). 

Although measurements of leaf water potential at pre-dawn and mid-day require a 

significant time investment during data collection, they are valuable traits that can 

represent maximum and minimum leaf water status (Bhaskar and Ackerly, 2006). 

Nitrogen isotope composition of leaves (δ15N) can also be associated with soil water 

availability (Amundson et al., 2003; Craine et al., 2009; L. Handley et al., 1999). All of 

these functional traits are valuable indicators of plant resistance to water deficits and 

provide complementary information about plant strategies to cope with water deficits 

when analysed in combination (Chapter 2 of this thesis). 

With low success in introducing plants due to drought stress during summer 

months (Davis, 1991; Vallejo et al., 2006, 2012), new approaches are required for 

ecological restoration and management in MTEs, since they are under increased risk of 

climatic drought. Studies comprising analysis of functional traits expand existing 

knowledge of current responses to water deficits and contribute to our understanding of 

community assembly. Such knowledge will also facilitate estimations of the most 

advantageous strategies and trait values under changing environmental conditions. 

Furthermore, studies focusing on functional traits that can be efficiently measured allow 

large species sets to be assessed, which is important for highly diverse ecosystems like 

MTEs. Therefore, the aims of this study were to: (1) investigate how the above 

mentioned functional traits covary across gradients of water availability in a MTE; and 

(2) to identify the principal traits associated with each HFT and their distribution along 

the water gradient.  

 

4.3 MATERIALS AND METHODS 

Study site and species selection 

The study was conducted in Southwest Australia, a region characterized by a 

Mediterranean-type climate with mild, wet winters and hot, dry summers (Aschmann, 

1973; Gentilli, 1972). Six sample sites were selected, with four located on the Swan 

Coastal Plain (SCP; annual average rainfall of 868/771 mm; Table 4.1) and two on the 

Eneabba Sandplain (ES; annual average rainfall of 495 mm; Table, 4.1). The SCP sites 

were situated approximately 38 km north of Perth city in an area on the Bassendean 
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Dune System; which consists primarily of quartz sand with negligible silt and clay, and 

thus the soils have a very low water-holding capacity (McArthur and Bttenay, 1960; 

McArthur, 1991; Table 1). There is also a wide range in depth (3 to 30m) to the water 

table (Thackway and Cresswell, 1995) across the dunal landscape. Mesic habitats with 

shallow depths to the water table are located lower in the landscape whereas drier 

habitats with no accessible water table are located on dune crests. Associated with this 

gradient in water availability are differences in species assembly and tolerance to water 

deficit (Beard, 1990; Froend and Sommer, 2010).  

The two ES study sites were located near Eneabba, approximately 245 km north 

of Perth. None of these sites had accessible permanent water tables and, therefore, 

plants were dependent on retention of meteoric water in the unsaturated zone. Variation 

in depth of the unsaturated soil profile at Eneabba is suggested as the determinant of 

plant available water, with dune crest plants having greater available water due to 

increased storage capacity of the deep sandy profile (Lamont and Bergl, 1991). In 

contrast, inter-dunal swales of the ES are underlain by a shallow sandy horizon over an 

impermeable clay pan, which restricts root growth and available water during the dry 

summer months (Table 4.1).  

At each study site, the five most dominant plant species (by percentage cover) 

were determined within 10 x 10 m quadrats and selected for sampling. A total of fifteen 

species from three different taxonomic families were selected, with five plants used as 

replicates for each species. The species selected were: Adenanthos cygnorum Diels., 

Banksia attenuata R.Br., Banksia carlinoides (Meisn.) A.R.Mast & K.R.Thiele, Banksia 

hookeriana Meisn., Banksia ilicifolia R.Br., Banksia menziesii R.Br., Beaufortia 

elegans Schauer, Eremaea beaufortioides Benth., Eremaea pauciflora (Endl.) Druce, 

Hibbertia subvaginata (Steud.) F.Muell., Melaleuca leuropoma Craven, Regelia inops 

(Schauer) Schauer., Scholtzia laxiflora Benth., Scholtzia involucrata Endl and 

Verticordia nitens (Lindl.) Endl. (Table 1). Species’ root depths were from Froend R. H. 

and Sommer B. unpublished raw data. Samples were collected in March, which 

corresponds to the period of the year with the lowest available soil water. 

 

Plant material collection and preparation 

Branches (20-40 cm) were collected in the evening, between 1600-1700h, and 

immediately sealed in humidified plastic bags to minimize water loss. Upon arrival at 
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the laboratory, branches were recut under water and kept in a dark cool place overnight. 

Samples were rehydrated following a standard method (Bartlett et al., 2012a; Sack et 

al., 2010, 2003), kept in humidified plastic bags and refrigerated at 4-5°C for a 

maximum of two days prior to analysis.  
 

Table 4.1 Water availability at the five contrasting eco-hydrological habitats in relation to 
rainfall and depth to ground water. 

Habitat Mean Annual 
Rainfall  

Depth to 
Ground Water  Water Availability Site 

Name 
Gnangara  
dampland 
and 
midslope 

868*/771# 
(mm) 3-4.5^ (m) Perennially high water availability 

due to shallow water table.  
GNSW        
GNMS 

Gnangara  
midslope 

868*/771# 
(mm) 12^ (m) Perennially high water availability 

due to shallow water table.  GNMD  

Gnangara            
Dune 
Crest 

868*/771# 
(mm) 30+^ (m) 

No access to water table. Reliant on 
water in unsaturated zone, which 
receives rainfall recharge in winter 
months, but little recharge over 
summer. 

GNHD 

Eneabba             
Dune 
Crest  

495& (mm) 
N/A. Soil profile 
is deep sands 
(approx. 15 m) 
over clay pan± 

Deep sandy soil profile, reliant on 
water in unsaturated zone, which is 
recharged in winter, although there is 
less rainfall and higher evaporation 
compared with Gnangara sites.  

ENHD 

Eneabba               
Clay Pan 
Swale 

495& (mm) 
N/A. Soil profile 
is shallow sands 
(approx. 1 m) 
over clay pan± 

Shallow sandy soil profile provides 
minimal soil water storage, therefore 
limited water availability, 
particularly in summer months with 
little rainfall and high rates of 
evaporation.  

ENSW 

* Represents long-term mean from 1876-1992 Perth Regional Office; #, mean from 1944-2015 
Perth Airport; &, mean from 1972-2015 Eneabba station (Bureau of Meteorology 2015); ^ 
information used from Canham et al. (2009); and ±, from Canham et al (in prep.). 

 

Osmometer measurements 

For each branch, leaves were rapidly picked, wrapped in aluminium foil and placed in 

liquid nitrogen for two minutes. Samples were then allowed to thaw for one hour before 

the extraction of leaf sap. A leaf press (Markhart leaf press LP-27, Wescor), specifically 

designed for vapor pressure osmometers, was used to extract cell sap straight to a filter 

paper disc that matches the diameter of the Wescor vapor pressure osmometer (VAPRO 

5600) 10µl chamber well. The saturated filter paper was then sealed in the osmometer 
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chamber. Measurements of leaf osmolality were taken approximately every three to four 

minutes, with the chamber sealed, until equilibrium was indicated by an increase 

between measurements of < 5 mmol/kg. The osmometer was calibrated following the 

manufacturer instructions at the start of each measuring day and after every 6-8 hours of 

use. Osmolality values were transformed into osmotic potential values (ψ, MPa) 

through a simplification of the Van’t Hoff relation: 

ψ(MPa) ~ -0.0025 (m3·MPa·mol−1) x osmolality (mol m−3) 

Leaf water potential at turgor loss point (TLP) was estimated using values of 

osmotic potential at full turgor (Ψ0) through the equation developed in Chapter 3, as 

follow: 

TLP = 0.98Ψ0 -0.17 
 

Leaf and stem traits 

A scanner, a digital camera (Hitachi-KP-D40) and Windias v2.0 software were used to 

calculate leaf area (A) of ten leaves from each replicate. Leaves were then placed in a 

drying oven at 70°C for 72 hours to determine dry mass and leaf mass per area (LMA g 

m2) was calculated. For each replicate, dry material was ground and analysed for foliar 

nitrogen and phosphorus (leaf [N] and [P], mg g-1) as well as for foliar carbon and 

nitrogen isotope composition (δ13C and δ15N). Leaf [P] was measured through 

nitric/perchloric digest followed by analysis on the inductively coupled plasma atomic 

emission spectroscopy, whereas δ13C and δ15N was measured through a continuous flow 

isotope ratio mass spectrometer (PDZ Europa 20-20, Sercon Ltd., Cheshire, UK), a 

procedure that also enabled measurements of leaf [N].  

Fresh stem sections of approximately 5 cm long were excised from the base of the 

branches and their bark removed before their stem-specific densities (WD, g cm-3) were 

measured using the water-displacement method (Pérez-Harguindeguy et al. 2013). For 

analyses of stem anatomy, standard methods were followed for embedding transverse 

sections of stem in paraffin wax using an Auto Tissue Processor and for sectioning in a 

microtome. Slides were assembled and stained following Ruzin (1999). 

Microphotographs were taken with an Olympus BX51 photomicroscope and analysed 

using the image analysis software ImageJ to count the number of xylem vessels per 

mm2 (vessel density, Nº mm-2, Ds) and to measure the average (Dave) and maximum 

diameters (Dmax) of 100 xylem vessels per replicate (µm), following Scholz et al. 

(2013). Leaf water potential of two leaves per replicate plant (five individual plants per 
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species per site) was measured at predawn (PD, between 04:00h and 06:00h) and 

midday (MD, 11:00h and 13:00h). Measurements were made using a Scholander-type 

pressure chamber (PMS Instruments, Oregon, USA, Model 3005), with samples cut, 

bagged in a humidified plastic bag and measured in the field within 3 mins of sampling.  
 

Data analysis 

A number from one to six was attributed to each of the fifteen plant species used in this 

study, representing each of the six sites: Eneabba dune crest (ENHD), Eneabba clay pan 

swale (ENSW), Gnangara dune crest (GNHD), Gnangara dune crest and mid-slope 

(GNMD), Gnangara damp-land and mid-slope (GNMS), Gnangara damp-land (GNSW), 

respectively. I then transformed the values of TLP, PD, MD and δ13C traits in positive 

by multiplying them by -1, applied natural log transformations on WD, [P], [N], TLP, 

PD and MD, and then standardized (scale to zero mean and unit variance). These 

transformations were necessary to make these values comparable between each other, as 

standardization best preserves distances between the variables; and traits with negative 

values were transformed in positive to facilitate interpretation. Pearson’s correlations 

were used (R version 3.02, 2013) to test whether the coefficients of two-way trait 

relationships of the 15 plant species, were significantly different from 0, using 95% 

confidence intervals. Principal Component Analysis (PCA) was used to visualize 

similarity between species. 

Primer-E (v6, Plymouth, UK) was used to perform a “Linktree” analysis, a non-

parametric form of multivariate regression tree, to assess the degree of separation of 

groups in high-d space and determine which variables or traits are responsible for the 

greatest dissimilarity between groups created in each split (Clarke and Gorley, 2006). A 

one-way SIMPER routine was used to analyse variation between and within sites, as 

well as to explore the traits that most contributed to the variation. A similar approach 

was employed to investigate similarities and dissimilarities between and within 

functional groups previously determined through Linktree. Such analyses have been 

used in similar ecological studies and provided clear visualization of ecological groups 

and responses (Clarke et al., 2008; Mitchell et al., 2008). To visualize the functional and 

root-type groups within the first two principal components (based on site of occurrence 

for Eneabba and Gnangara), the R function “ordiellipse” was used to draw lines or 

polygons for dispersion ellipses using the standard error of the (weighed) average of 

scores, with the (weighed) correlation defining the direction of the ellipse principal axis. 
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4.4 RESULTS 

 

Trait variation and correlations 

Leaf mass per area was negatively correlated with leaf [N], [P] and δ15N (Pearson’s r = 

-0.63, -0.65 and -0.69, respectively); TLP was positively correlated with PD and MD 

(Pearson’s r = 0.69 and 0.77, respectively); and Ds was correlated with Dmax, Dave and 

WD (Pearson’s r = -0.49, -0.50 and -0.48, respectively; Fig. 4.1, Fig. 4.2 and Table 4.2). 

In the PCA analysis, the first three principal components accounted for 75.94% of 

the variation in traits. Based on the first two components (60.08% of trait variation), it 

was possible to visualize four main clusters of traits that were correlated to each other 

(Fig. 4.3): one corresponding to LMA and Ds; a second group comprising leaf [N] and 

[P], and δ15N; a third group comprising Dmax and Dave; and a fourth group including 

TLP, MD, and PD (Fig. 4.2, Fig.4.3 and Table 4.2). Wood density, on the other hand, 

did not clearly group with any other trait, although it was weakly correlated with leaf 

[N], δ15N, PD, MD and Ds (Fig. 4.2. Fig. 4.3 and Table 4.2). While [P], [N], δ15N, PD, 

MD, TLP, LMA, WD loaded strongly on the first two components, δ13C, Dmax and Dave 

were better represented in the third component.  

Table 4.2 Pearson’s correlation of all the twelve functional traits measured — average and 
maximum diameter of xylem vessel, number of xylem vessels per mm2 (Dave and Dmax and Ds, 
respectively), leaf mass per area (LMA), wood density (WD), leaf concentration of phosphorus 
([P]) and of nitrogen ([N]), leaf isotope composition of nitrogen (δ15N) and of carbon (δ13C), 
water potential at turgor loss point (TLP), pre-dawn (PD) and mid-day (MD) water potentials. 
The values of TLP, PD, MD and δ13C traits were transformed in positive by multiplying them 
by -1. Significant correlations (p< 0.05) are indicated in bold. 

  Dave Dmax Ds LMA WD [P] [N] δ15N δ13C TLP PD 
Dmax 0.95           
Ds -0.50 -0.49          
LMA -0.21 -0.10 0.53         
WD -0.22 -0.23 -0.48 -0.29        
[P] 0.03 -0.02 -0.28 -0.65 0.20       
[N] 0.05 -0.02 -0.27 -0.63 0.42 0.77      
δ15N 0.04 -0.01 -0.53 -0.69 0.48 0.52 0.53     
δ13C -0.19 -0.10 -0.05 -0.15 -0.04 0.10 0.00 -0.03    
TLP -0.38 -0.40 0.40 0.36 0.08 -0.40 -0.37 -0.13 -0.24   
PD -0.23 -0.31 -0.01 0.00 0.56 -0.06 0.08 0.29 -0.45 0.69  
MD -0.28 -0.37 0.12 0.06 0.44 -0.10 0.07 0.17 -0.29 0.77 0.94 
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Figure 4.1 Scatter plots of selected functional traits based on their correlations. Leaf m
ass per area (LM

A) w
as correlated w

ith leaf isotope com
position of 

nitrogen (δ
15N

; Pearson’s correlations; r = -0.69 and p < 0.0000), w
ith leaf concentration of phosphorus ([P]; r = -0.65 and p < 0.0003) and w

ith nitrogen 
([N

]; r = -0.63 and p < 0.0001). The num
ber of xylem

 vessels per m
m

2 (D
s ) w

as reasonably correlated to w
ood density (W

D
; r = -0.48 and p < 0.0089), w

ith 
m

axim
um

 diam
eter of xylem

 vessel (D
m

ax ; r = -0.49 and p < 0.0070), and w
ith average diam

eter of xylem
 vessels (D

ave ; r = -0.50 and p < 0.0063). W
ater 

potential at turgor loss point (TLP) w
as not correlated to leaf isotope com

position of carbon (δ
13C

; r = -0.24 and p < 0.2157) but w
ell correlated w

ith both, 
pre-daw

n (PD
; r = 0.69 and p < 0.0000) and m

id-day (M
D

; r = 0.77 and p < 0.0000) w
ater potentials. Solid lines represent significant values of Pearson’s 

correlation coefficients (p<0.05), grey shade is 95%
 confidence intervals and error bars represent standard errors. 
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Identification of hydraulic functional types  

Linktree analysis separated the species into five different groups. The first group (group 

A, Fig. 4.2) comprised H. subvaginata, R. inops and S. involucrata, all occurring at the 

GNMS site, based on leaf [N], leaf [P] or LMA. The second group comprised M. 

leuropoma, B. carlinoides and B. elegans (group B, Fig. 4.2), all occurring in ENSW 

and ENHD, based on TLP, MD, or PD. The third split used Ds to aggregate A. 

cygnorum, E. beaufortioides, E. pauciflora, V. nitens, S. laxiflora, S. involucrata (group 

C, Fig. 4.2) from all sites, with the exception of S. involucrata, which was from GNSW 

only. The next split grouped B. attenuata and B. hookeriana (group D, Fig. 4.2) 

occurring in ENHD, and B. attenuata, B. menziesii and B. ilicifolia from all different 

sites (group E, Fig. 4.2), based on δ13C, δ15N, WD, PD or Ds. 

 

 

Figure 4.2 Linktree analysis using all 12 traits measured on the 15 plant species occurring in the 
6 different sites. Species are written as Adenanthos cygnorum (Ac), Banksia attenuata (Ba), 
Banksia carlinoides (Bc), Banksia hookeriana (Bh), Banksia ilicifolia (Bi), Banksia menziesii 
(Bm), Beaufortia elegans (Be), Eremaea beaufortioides (Eb), Eremaea pauciflora (Ep), 
Hibbertia subvaginata (Hs), Melaleuca leuropoma (Ml), Regelia inops (Ri), Scholtzia laxiflora 
(Sl), Scholtzia involucrate (Si) and Verticordia nitens (Vn). Species’ names are followed by a 
number corresponding to the occurrence site as per legend. First split occurred at 89.7% B value 
and was based on one of the three traits: leaf mass per area (LMA), leaf concentration of 
nitrogen [N], and of phosphorus [P]. Second split occurred at 72.9% and was based on one of 
the three traits: water potential at turgor loss point (TLP), pre-dawn (PD), and mid-day (MD) 
water potentials. Third split occurred at 50.7% and was based on the density of xylem vessels 
per square millimeter (Ds) only. The last split falls under the 50% (36.2%) and therefore there is 
a high uncertainty about the separation. This split was based on one of the following traits: leaf 
carbon (δ13C) and nitrogen (δ15N) isotope composition, wood density (WD), PD, and Ds. Traits 
shown in the figure were selected based on their efficiency of measurement. 
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Sites, groups and associated functional traits  

Analysis of trait variation within sites showed that the sites ENHD, ENSW and GNMD, 

had the smallest values, i.e. these sites had greater within-site similarity of trait values 

among the 15 species sampled (SIMPER, Table 4.3). For site ENHD, MD, LMA and 

δ13C accounted for 56.02% of the trait variation; for ENSW, LMA, [N] and TLP 

accounted for 70.85%; and for GNMD, Ds, LMA, δ15N, and WD accounted for 66.03% 

(Table 4.3). The Gnangara sites, GNHD and GNSW, presented intermediary values, 

indicating reasonable similarity between trait values among the 15 plant species 

measured (Table 4.3). For GNHD, Ds, LMA, Dmax, δ15N, WD accounted for 79.59% of 

trait variation; and for GNSW, Ds, Dave, δ15N and WD accounted for 55.81%. The site 

GNMS had the highest value, indicating lowest similarity between trait values among 

the 15 species sampled. The traits- Dave, Dmax, [N] and [P]- accounted for 60.16% of 

GNMS trait variation (SIMPER, Table 4.3). The site ENSW displayed greater variation 

when compared to the Gnangara sites, followed by ENHD (SIMPER, Table 4.3). The 

two Eneabba sites were highly similar to each other; whereas Gnangara had sites that 

were also similar to one another (GNHD, GNSW and GNMD) and one site that was 

dissimilar to the other sites (GNMS when compared with the other sites, GNHD, 

GNMD and GNSW; Table 4.3). 

Table 4.3 One-way SIMPER routine used to investigate the best-associated traits (higher contribution) 
with each site and functional group. Also, the differences within and between sites and within and 
between groups, in which numbers represent averaged square distances based on Euclidean distances. 

Trait contribution to site (%) Trait contribution to group (%) 
 ENHD ENSW GNHD GNMD GNMS GNSW  A B C D E 
Ds 0.90 4.22 23.27 20.28 6.45 15.45 Ds 2.23 2.60 2.26 2.49 6.07 
Dave 4.12 3.56 9.09 7.28 16.44 11.64 Dave 39.83 3.73 13.00 30.2

9 
7.95 

δ13C 14.69 1.31 2.90 1.11 3.40 5.68 δ13C 7.64 3.10 10.75 7.80 17.06 
LMA 18.46 18.37 11.39 15.85 9.45 9.57 LMA 0.40 25.72 7.92 27.6

0 
8.38 

Dmax 4.42 1.71 14.11 5.58 13.20 9.15 Dmax 29.01 1.49 11.21 18.2
1 

20.57 
MD 22.87 0.99 0.87 2.04 1.82 0.93 MD 0.46 0.82 1.97 0.00 7.15 
[N] 8.15 25.84 3.94 6.38 13.37 8.69 [N] 1.08 22.60 12.44 3.72 4.69 
δ15N 2.58 4.03 13.15 16.71 6.96 14.95 δ15N 0.83 6.42 9.24 0.00 14.10

6 [P] 2.21 3.18 0.72 3.56 17.15 5.55 [P] 4.30 3.31 7.92 7.11 4.45 
PD 8.76 1.15 1.02 1.44 1.64 1.05 PD 0.79 1.37 2.17 0.28 2.51 
TLP 7.42 26.64 1.90 6.56 1.34 3.58 TLP 0.05 21.00 1.98 0.06 5.52 
WD 5.44 9.00 17.64 13.19 8.77 13.77 WD 13.38 7.86 19.14 2.44 1.49 

Euclidean distances within and between sites Euclidean distances within and between groups 
 ENHD ENSW GNHD GNMD GNMS GNSW  A B C D E 
ENHD 6.25      --- --- --- --- --- --- 
ENSW 15.68 5.02     A 14.30     
GNHD 22.01 34.71 8.69    B 49.07 4.35    
GNMD 21.37 32.91 13.90 6.57   C 30.95 33.63 5.66   
GNMS 31.47 43.21 28.28 23.72 14.35  D 44.40 20.22 26.38 2.04  
GNSW 26.08 26.08 16.89 14.90 25.49 8.91 E 44.57 28.98 20.99 15.9

8 
2.51 
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Among the functional groups, group A had the lowest similarity within group, i.e., 

comprised of species whose trait values were more different to each other. The 

functional traits Dave, Dmax and WD accounted for 82.22% of trait variation within group 

A (Table 4.3). On the other hand, groups D and E had the highest values within group 

similarity. For group D, the functional traits Dave, LMA and Dmax accounted for 76.01% 

of trait variation, whereas for group E, δ13C, Dmax and δ15N accounted for 51.79% (Table 

4.3). Groups B and C presented intermediate values, indicating that the species had 

reasonably similar trait values. For group B, the leaf traits LMA, [N] and TLP accounted 

for 69.32% of trait variation, whereas for group C, the leaf traits Dmax, δ13C, Dave, [N] 

and WD accounted for 66.54% of variation (Table 4.3). In regards to differences among 

sites, group A was the most distinct group, while group D was more similar to the other 

three groups (B, C and E); i.e. the relative distances between group A and the other 

groups were the highest, whereas distances between group D and groups B, C and E 

were the lowest (Table 4.3). Group B was also distinctly different from groups E and C, 

which in turn were reasonably similar to each other (Table 4.3). Species were also 

grouped in relation to root depth through the “ordiellipse” function, as: “shallow-

rooted”, “medium-rooted” and “deep-rooted” from Gnangara and Eneabba sites, thus 

corresponding with six root-depth groups (Fig. 4.3). 

 

4.5 DISCUSSION 

 

Associations between functional traits 

The negative correlation of LMA and [N], [P] and δ15N (Table 4.2, Fig. 4.1 and Fig. 

4.3) has been previously described under the “leaf economics spectrum” concept 

(Wright et al., 2004), in which plants can present a “fast-growing” or “slow-growing” 

strategy, reflecting adaptations to environmental gradients at small and broader scales 

(Reich et al., 1999, 1997; Westoby and Wright, 2006; Wright et al., 2004). These 

relationships can also be associated with drought resistance (Niinemets, 2001, 1999). 

The rationale for this is that LMA consists of two variables: leaf density (D; mass per 

unit volume) and thickness (Witkowski and Lamont, 1991). It is known that 

photosynthetic capacity scales negatively with D (Reich et al., 1999; Syvertsen et al., 
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1995), which in turn increases with increasing soil water limitation (Maksimov and 

Yapp, 1929; Shields, 1950). Foliar [N] and [P] are indirectly associated with 

photosynthetic capacity. This is because the majority of nitrogen in the leaves is 

associated with the RUBISCO enzyme as well as other components of the 

photosynthetic machinery (Field and Mooney, 1986; Lambers et al., 2008), while 

phosphorus is a major component of nucleic acids, sugar phosphates, ATP and 

phospholipids, all of which play important roles in photosynthesis (Bieleski, 1973). 

Thus, photosynthetic capacity is commonly highest in leaves with high nitrogen and 

phosphorus concentrations, at least for species with similar LMA (Ellsworth et al., 2014; 

Kattge et al., 2009; Reich et al., 2009, 1998). Lastly, leaf δ15N is shown to be positively 

correlated to leaf [N] (Craine et al., 2009; Stock and Evans, 2006) and negatively with 

rainfall (Austin and Sala, 1999; Craine et al., 2009; Handley et al., 1999; Schulze et al., 

1998). 

The relationships found between Ds, Dmax, Dave and WD (Table 4.2, Fig. 4.1 and 

Fig. 4.3), although not strongly related, are also in agreement with those reported in the 

literature. The “wood economics spectrum” (Chave et al., 2009) is based on the 

relationships of wood density with mechanical and hydraulic properties. In a similar 

way, fast-growing species form an inexpensive hydraulic system with low wood density 

and large vessels, all of which results in a large hydraulic capacity. On the other 

extreme, slow-growing species form structurally expensive vessels with high wood 

density and small vessels, which leads to great safety and hence high survival, because 

the hydraulic system is robust and can resist pathogens, herbivores, cavitation and 

physical damage (Chave et al., 2009). Indeed, studies have shown a correlation between 

wood density and stem hydraulic properties (Chave et al., 2009; Markesteijn et al., 

2011; Meinzer et al., 2008; Meinzer et al., 2008; Poorter et al., 2010; Russo et al., 2010; 

Zanne et al., 2010). 

 The balance between soil water availability and atmospheric evaporative demand 

determines plant water status, which is indicated by either leaf or xylem water 

potentials. Thus, the minimum water potential, a measure of plant water potential at the 

driest period, is a good proxy for plant water status since it reflects the maximum xylem 

tension that a plant must tolerate to maintain function (Bhaskar and Ackerly, 2006). 

Water potential at turgor loss point in turn represents the water potential value at which 

leaf cells lose turgor and function (Blackman et al., 2010; Brodribb and Holbrook, 
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2003; Cheung et al., 1975) and it is directly determined by osmotic potential at full 

turgor (Bartlett et al., 2012b). Therefore, plants may lower leaf water potential through 

osmotic adjustments under dry conditions to maintain adequate leaf water status. The 

relationship of plant water status and leaf osmotic adjustment is supported in my 

findings, since water potential at TLP, PD and MD were all well correlated (Table 4.2, 

Fig. 4.1 and Fig. 4.3).  

The six leaf traits measured — Dmax, Ds, LMA, WD, δ13C, and TLP — appear to be 

key traits underlying plant strategies in relation to water use, as they were relevant for 

explaining trait variation. These six traits were correlated to other important traits, i.e. 

Dmax was well correlated with Dave, LMA with leaf δ15N, [N] and [P], and TLP with PD 

and MD, and therefore can be used as substitutes; Ds, WD and δ13C together were 

reasonably correlated with LMA, leaf [N], leaf δ15N, TLP, PD, MD, Dave, Dmax, (Table 

4.2 and Fig. 4.1 and Fig. 4.3).  

 

Plant water-use strategies and HFT identification 

The Linktree analysis was consistent with the Pearson’s correlation results and the PCA 

also supported the findings that at least the traits Ds, LMA, WD, and TLP are important 

parameters underlying plant water relations. The groups created were based on 

similarities in relation to these traits, rather than on taxonomic relationships. 

Interestingly, one species (B. attenuata) presented different strategies depending on the 

site, i.e. in the site with shallow soils, wood density was higher than when growing in 

soils where deep water was available (Fig. 4.2). Although plasticity has been shown to 

influence species drought responses (Lázaro-Nogal et al., 2015; Martorell et al., 2015; 

Mclean et al., 2014), measurements of these functional traits can provide a reasonable 

simplification for characterizing resistance to water deficits for many species or 

communities (Albert et al., 2010; Bartlett et al., 2014; Garnier et al., 2001; Rose et al., 

2013). Still, there is a need to better understand the roles that plasticity may be playing 

in plant resistance to water deficits (Shipley et al., 2015) in order to make predictions of 

species responses to climate change more precise. 

 Linktree group E included the three Banksia species, B. attenuata, B. menziesii 

and B. ilicifolia (all of which are able to form deep-roots; Groom, 2004) across all sites. 

Thus, it is likely that they were all accessing deep water and hence presented similar 
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responses, including hydraulic properties less associated with safety, such as high Ds 

and low WD. At the same time, these species presented high LMA, δ15N and low [N] 

and [P], which can be associated with “slow-growing” strategies possibly due to 

adaptations to low availability of nutrients in the soils (Laliberté et al., 2013). However, 

B. attenuata and B. hookeriana occurring at the ENHD site (group D) presented a 

different strategy, with intermediate trait values. Although B. attenuata and B. 

hookeriana are able to access deep water through the formation of deep-roots, the site 

did not have an accessible water table and therefore these plants were likely 

experiencing higher water deficits when compared with plants from Gnangara system. 

Indeed, leaf water potentials at pre-dawn measured in B. attenuata and B. hookeriana 

occurring at the ENHD site were more negative than those of Banksias from Gnangara 

system (Appendix 3).  

Group B contained the shallow-rooted species occurring at the Eneabba sites. 

These species experienced the highest xylem tensions, indicated by more negative 

values of PD and MD, and presented a hydraulic system that is associated with safety 

— lower values of Dmax and Dave — while maintaining more negative values of TLP. 

These species can be interpreted as “drought tolerators”, as under low water availability 

plants with more negative TLP values and a robust hydraulic system are able to sustain 

stomatal and hydraulic conductance, photosynthetic gas exchange and growth.  

Group A was composed of species that presented lower values of LMA, δ15N, and 

Ds and high values of [P], [N] and WD, and are known to form shallow-roots (Groom, 

2004). Interestingly, leaves of some individuals of H. subvaginata and S. involucrata 

turned yellow/brown at the end of summer, which may be related to tolerance of leaf 

dehydration and damaging radiation while stomatal conductance is low. These pigments 

enable leaves to persist over dry periods and to subsequently recover function when 

water availability increases over winter and spring (George, 2002; Lambers et al., 

2014). Group C included species with medium depth roots from the Gnangara sites that 

had intermediate values of Dmax, Dave, δ13C, [P], [N] and WD and low values of δ15N, 

LMA, Ds, TLP, MD and PD.  

Changes to groundwater accessibility is known to significantly impact Banksia 

woodland vegetation, characteristic of the Swan Coastal Plain (SCP) as it is an 

important water source to both overstorey and understorey components of the 

vegetation (Groom et al., 2000; Zencich et al., 2002). Species from SCP differ in their 
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abilities to access groundwater due to differences in their rooting pattern (Groom et al., 

2000; Zencich et al., 2002). Not surprisingly, the response traits when analysed in 

combination revealed the important role that root depth plays in this community. This 

was clear because functional groups, clustered due to trait similarities, were analogous 

to root-depth groups, which in turn were clustered due to similarities in root-depth. 

Thus, in Gnangara and Eneabba systems, root depth is a suitable surrogate for water 

availability and consequently it is strongly related to functional traits that are associated 

with plant resistance to water deficit (Groom, 2004).  

 

Species selection for ecological intervention projects 

These different trait combinations represent alternative ecological strategies for 

balancing the costs that a plant incurs for the construction of a leaf and a hydraulic 

system versus the benefits in terms of carbon fixation via photosynthesis and water 

transport and safety (i.e. rapid resource acquisition vs. greater resource conservation). In 

this way, functional traits can be linked to ecosystem properties and services as they 

commonly vary across gradients of resource availability in predictable ways (Lavorel, 

2013). Thus, these traits are a valuable tool for exploring individual ecological 

strategies of species and overall community assembly and functioning (Reich, 2014). 

However, concerns have been raised regarding these assumptions of trait-based ecology, 

which calls for more testing is needed to: i) reinforce that functional traits accurately 

indicate predictable relationships in measurable gradients of resource availability; ii) 

reinforce that they can be associated with individual fitness; and iii) establish when 

intraspecific variation can be disregarded (Shipley et al., 2016). Despite these caveats, 

studies that use a functional ecology approach for ecological intervention projects could 

succeed in meeting a number of intervention objectives, such as increasing survival or 

seedling recruitment of native species (Ostertag et al., 2015), predicting the success of 

particular restoration practices (Sandel et al., 2011), predicting the likely performance of 

species in restored vegetation (Pywell et al., 2003), and providing an indication of the 

potential for success of the completed restoration project (Engst et al., 2016). 

Results of this study have demonstrated the range of plant water-use strategies 

found in a summer arid Mediterranean ecosystem in Southwest Australia through 

measurements of few functional traits — [P], [N], δ15N, δ13C, PD, MD, TLP, LMA, 
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WD, Dmax, Dave and Ds. The traits Dmax, Ds, LMA, WD, δ13C, and TLP are sufficient to 

determine functional types as they explained well trait variation. An understanding of 

the role of the different groups of functional traits should enable the selection of species 

suitable for ecological intervention projects, which account for potential future climate 

change. The results of this study also showed how similar (redundant) or dissimilar 

(complementary) the different functional groups were through the application of a 

simple Principle component analysis.  

Knowledge of the different functional groups is also important for increasing 

invasion resistance, since the selection of native species whose traits are more dissimilar 

could fill the different niches available and prevent the establishment of invasive 

species (Funk et al., 2008). For this to happen, it would also be necessary to define the 

weed functional traits to then align to the native aspect. Finally, restoration practitioners 

can apply this approach with relatively little effort, since the analyses of these 

functional traits provides an early screening of a species’ functional profile in relation to 

drought resistance. Final species choices for any intervention project will have to 

account for complex issues and practical concerns beyond just water deficit resistance 

such as fire resistance, pollination, fruit/seed dispersal, culturally important species, 

plant establishment cost, and seed availability. Thus, species selected following this trait 

based approach will likely persist under drier conditions expected for MTEs. 

 

4.6 CONCLUSION 

In conclusion, this functional trait approach has provided valuable information about 

ecological strategies that plants employ to survive summer drought. It allowed the 

identification of functional groups in which traits associated with each group could be 

demonstrated. With the information provided from a small suite of traits and reasonably 

simple analyses undertaken in this study, it was possible to show that the functional trait 

approach is highly suitable for ecological intervention in a changing world, since it 

provides a rigorous approach for the selection of species that will enhance the success 

of intervention projects.  
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CHAPTER FIVE: SEEDLING RESPONSES TO FIRST 
SUMMER DROUGHT OF FOUR SOUTHWESTERN 
AUSTRALIAN SPECIES 

 

5.1 ABSTRACT 

 

Mediterranean summer drought can severely affect the recruitment stage of plants. The 

different responses that seedlings employ to survive summer drought may be a key 

factor for community assembly and ultimately for assisting management and 

intervention of ecosystems. I investigated the water-use strategies that four 

Mediterranean species presented during their first summer. I conducted two greenhouse 

experiments with Southwestern Australian species, in which seedlings grew in 

treatments that varied in water availability: with a shallow water table; with addition of 

rainwater; and without both, water table and rainwater. The first experiment focused on 

the ability of seedlings to grow deep roots, whereas the second experiment, on the 

accumulation and use of non-structural carbohydrates (NSC). I found two contrasting 

strategies for drought resistance in this study. The first strategy was associated with the 

reduction of stomatal conductance rates, accumulation and use of NSC, and growth of 

deep roots (Banksia seedlings). The second strategy was associated with the tolerance to 

higher water deficits and reduction of stomatal conductance rates (G. tomentosum 

seedlings). The information found can assist in determining seedlings’ requirements to 

surviving drought, which is relevant for ecological intervention. Still, more studies are 

needed to investigate more specifically such mechanisms to drought resistance as well 

as the possibility for generalizations of drought response for similar species. 

 

Key words: Root depth, non-structural carbohydrates, stomatal conductance rates, 

groundwater, and Mediterranean ecosystems 
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5.2 INTRODUCTION 

 

The differing abilities of seedlings to cope with water deficits during the establishment 

stage is important for community assembly, dynamics and functioning, especially in 

ecosystems prone to drought periods (Pigott and Pigott, 1993; Zavala and Zea, 2004). 

Mediterranean-type ecosystems (MTEs) are characterized by having mild, wet winters 

and hot, dry summers (Aschmann, 1973), and thus water availability during summer 

drought represents a major environmental limitation under Mediterranean conditions 

(Castri, 1973). Indeed, seedling mortality is extensive over the first summer in 

rehabilitated communities in MTEs (Hallett et al., 2014; Lloret et al., 2005; Rokich, 

2016; Standish et al., 2012) and water stress is one of the main causes of low success of 

intervention projects in MTEs (Mendoza et al., 2009; Vallejo et al., 2012). Furthermore, 

climate change is predicted to severely impact MTEs, with predictions of temperature 

increasing of 1 to greater than 2ºC and rainfall variability increasing significantly 

causing drier conditions, which will potentially aggravate the current scenario (IPCC, 

2014). Therefore, there is a need to better understand current species distributions, 

where they occur as well as associated traits that allow for their survival in such areas, 

both currently and under future scenarios, which will assist in selecting the most 

appropriate species for intervention of ecosystems that have greater potential to persist 

under drier conditions. To achieve this goal, the identification of seedling functional 

responses and implied trade-offs across gradients of resource availability is thus critical 

(Körner et al., 2005; Lloret et al., 2004). 

Mediterranean-type ecosystems sustain a high diversity of uniquely-adapted plant 

species (Cowling et al., 1996) that present a wide range of functional responses to water 

use and carbon assimilation (Hernández et al., 2010; Mitchell et al., 2008; Skelton et al., 

2015; Vilagrosa et al., 2013; West et al., 2012). For instance, some plants can grow 

deep roots to access deep water (Meinzer, 1927), some of which rely on permanent 

access to deep water, called obligate phreatophytes (Eamus et al., 2006; Le Maitre et al., 

2000), whereas others access groundwater only when it is available, known as 

facultative phreatophytes (Zencich et al., 2002). Under Mediterranean climate 

conditions, rapid early growth of deep roots is thus critical for survival of seedlings of 

deep-rooted species (Groom, 2004; Padilla and Pugnaire, 2007).  
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Increasing stomatal resistance is another strategy that some plants employ to cope 

with drought conditions (Brodribb et al., 2003). Although in reality there is a continuum 

of stomatal regulation in relation to water status, plants are commonly classified into 

one of two categories: isohydric or anisohydric (McDowell et al., 2008; Tardieu and 

Simonneau, 1998). Under low soil water potentials and dry atmospheric conditions, 

isohydric plants are able to reduce stomatal conductance, maintaining relatively 

constant midday water potentials regardless of drought conditions. Anisohydric species, 

on the other hand, keep stomatal conductance relatively high, allowing midday water 

potentials to decline under drought conditions (McDowell et al., 2008).  

Drought-tolerant plants adopt anisohydric regulation and are able to maintain 

hydraulic and stomatal conductance, photosynthesis and growth by having high solute 

concentrations in their cells during periods of low water availability (Abrams and 

Kubiske, 1990; Baltzer et al., 2008; Sack et al., 2003). These plants commonly have a 

robust hydraulic system that can tolerate high tensions in their xylem vessels (Hacke et 

al., 2006; Jacobsen et al., 2007; Tyree and Sperry, 1989). They are however at risk of 

hydraulic failure when extensive cavitation takes place in their xylem vessels such that 

desiccation can no longer be reversed (McDowell et al., 2008). 

At the other extreme, photosynthesis rates can drop to near zero as a consequence 

of stomatal conductance reduction in plants with isohydric regulation. These plants can 

eventually face carbon starvation or attacks from biotic agents, such as insect herbivory. 

The reduced ability to defend against herbivores and pathogens is a consequence of the 

depletion of carbohydrates reserves used to sustain primary metabolism while 

photosynthesis rates were low (McDowell et al., 2008). Recent studies have 

documented a decrease in the carbon reserves of some species during the summer 

period in Mediterranean climate regions, suggesting that such reserves might play a key 

role for survival under drought conditions (Adams et al., 2013; Galiano et al., 2012; 

Maguire and Kobe, 2015; Sanz-Pérez et al., 2009).  

One proposed drought mortality mechanism suggests that an increase in Non-

structural carbohydrates (NSC) can only be detected if growth is reduced faster than 

photosynthesis (McDowell, 2011; Muller et al., 2011; Tardieu et al., 2011). Prolonged 

drought, however, will eventually deplete the reserves for the maintenance of 

respiration and metabolism under inhibited photosynthesis, as found in recent studies 

(Adams et al., 2013; Galiano et al., 2011; Mitchell et al., 2013). Carbohydrates are 
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necessary for phloem transport, turgor maintenance as well as for refilling embolized 

xylem vessels (McDowell, 2011). Water deficits and carbon limitation will reduce 

hydraulic conductance and together will decrease defensive capacity (McDowell et al., 

2011). For species that present isohydric regulation of their stomata, accumulation and 

use of carbon reserves may be crucial for survival during first summer drought whereas 

for anisohydric seedlings, the ability to tolerate higher tensions in their xylem vessels 

might be more appropriate. In the case of phreatophytes, the growth of deep-roots to 

access deep water is probably the key for survival. These are three possible strategies 

for seedlings to survive summer drought in MTEs, but it is well known that many 

species employ a combination of strategies (Mitchell et al., 2013, 2008). 

Studies that investigate deep root growth, non-structural carbohydrate dynamics 

and associated water relations over summer may reveal water-use strategies employed 

by seedlings to survive drought in Southwest Australia (SWA). These factors have been 

investigated but there are no studies that have examined these strategies in combination. 

Thus, this project focussed on the combinations of water-use strategies of seedlings of 

four SWA species, known to occur in two different eco-hydrological habitats, one area 

with shallow water table and another with deep water table, during their first summer 

drought. The study aimed to determine the ability of these species to grow deep roots, to 

control stomatal conductance and to seasonally use carbon reserves, both individually 

and in combination. More specifically, it focused on the responses of seedlings to 

drought conditions as in MTEs abiotic and competitive stress can be most severe at the 

seedling or juvenile stages. Therefore, niche differentiation determined by different 

responses to drought can be found at these young stages. This type of information is 

essential to understand the assembly and functioning of communities, which in turn is 

critical for intervention and management of more sustainable ecosystems that are under 

risk of future climate drought. 

 

5.3 MATERIALS AND METHODS 

 

Study species  

Seeds of Banksia attenuata (R.Br.) and Banksia littoralis (R.Br.) from the Proteaceae 

family and of Gompholobium tomentosum (Labill.) and Pultenaea reticulata (Sm. 
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Benth.) from the Fabaceae family were bought from Nindethana Seed Company, 

Western Australia. These species were selected because they occur abundantly in the 

South–West Botanical Province of Western Australia and particularly on the Swan 

Coastal Plain (SCP, “FloraBase—the Western Australian Flora,” 1998). They were also 

selected because they are known to occur in two different eco-hydrological habitats on 

the SCP. B. attenuatta and G. tomentosum occur across a gradient of water availability, 

except areas prone to waterlogging, but are able to survive in drier habitats; whereas B. 

littoralis and P. reticulata have a more restricted distribution, occurring mainly down-

slope of the water availability gradient, in winter water-logged habitats (“FloraBase—

the Western Australian Flora,” 1998 and Groom, 2004). The experiments were 

conducted in a shade-house at the Edith Cowan University, Perth. Temperature and 

humidity data were acquired from Bureau of meteorology website (“Bureau of 

Meteorology,” 2016) of two adjacent stations within 35 km (Hillarys Boat Harbor, 

station 009265) and 12 km (Wanneroo, station 009105) of the study site. 

 

Experiment 1– deep roots and water relations 

Experiment set up and treatments 

The first experiment focused on the seedlings’ ability to develop deep roots during early 

development until their first summer drought, as well as associated leaf morphological 

and physiological response traits. In August 2013, four plastic linings (of approximately 

90 mm in diameter and 2 m in length) made of soft plastic with a weed mat bottom were 

placed inside of four 90 mm PVC pipes of 2 m long. The four pipes were then 

assembled inside a 190 l plastic drum and each plastic lining was filled with white-

washed sand (Fig. 5.1). The top 10cm of sand from each pipe was replaced with topsoil 

collected from Bassendean dune system of the SCP, where the study species occur 

abundantly. There were 36 drums, so 12 of them could be assigned to a “shallow” water 

table treatment, in which drums were kept full (water column of approximately 80cm 

from the ground). Twelve were assigned to the “dry” treatment, in which drums were 

kept dry by previously drilling holes in their base to let water out. The last 12 blocks 

also had holes in the base of the drums, but were assigned to the “wet” treatment, in 

which pipes received 200 ml of previously collected rainwater three times a week to 

keep soil hydrated throughout the experiment. This experiment was set in September 

2013 in a way that blocks, constituted of four pipes, had all the four species, each 
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planted into one of the four pipes (Fig. 5.1). I used four seeds of each of the four species 

to increase the chances of having at least one seedling per pipe, in case germination was 

low. 

All blocks were kept wet until the end of October by automatic irrigation set to 

three times a week, as well as any incipient rainfall. In November, I removed extra 

seedlings that germinated, allowing only two seedlings to grow in each pipe and started 

the water table treatments. The “shallow” and “dry” treatments were entirely dependent 

on rainfall, which is extremely low during the Perth summer as it is for all 

Mediterranean regions (Fig. 5.2; Aschmann, 1973; Gentilli, 1972). The “wet” treatment 

received 200 ml of water three times a week.  

 

Plant measurements 

In December, January and February, seedling growth (length) was measured with a ruler 

and stomatal conductance rates were measured from sunrise to sunset every two hours 

with a Porometer (Ap4 Delta-T devices, UK). In March 2014, pre-dawn (from 0400 to 

0530 h) and mid-day (from 1100 to 1230 h) water potential measurements were taken 

from leaves of all the four species, with the exception for G. tomentosum, as there were 

not enough replicates for midday measurements, with a Scholander-type pressure 

chamber (PMS Instruments, Oregon, USA, Model 3005). After the measurement of 

water potentials all leaf and stem material was harvested, weighed for determination of 

fresh mass, and then placed in a drying oven at 70°C for 72 hours and weighed again for 

dry mass measurements. The pipes were removed from the glasshouse, placed 

horizontally on a bench and plastic linings were removed by carefully cutting it open 

without disturbing the roots. Root length was measured with a ruler and roots were 

collected at three different depths (0–60cm, 61–120cm and 121–180cm). Cluster-roots 

of Banksias were measured independently as they are more related to the acquisition of 

nutrients (Shane and Lambers, 2005a). Finally, soil water content was measured at the 

surface and then at every 20 cm depth intervals using a gravimetric method.  

 

Experiment 2– non-structural carbohydrates and water relations 

Experiment set up and treatments 

 The second experiment focused on the ability of seedlings to accumulate carbon 

reserves and some associated leaf morphological and physiological response traits, 
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during early development until their first summer drought. In June 2014, the same pipes 

were cut to 50 cm long and filled with a shorter version of the soft plastic linings. 

Barrels were also cut to 40 cm in height and each of them received eight pipes. Plastic 

tubes inside the pipes were filled with white-washed sand and their top 10cm with 

native topsoil collected from the same area used in the previous experiment. This block 

was replicated 20 times, so that: i) ten could be assigned to a “dry” water table 

treatment, in which barrels had holes; and ii) ten to a “shallow” treatment, in which 

barrels were kept full (water column of approximately 20 cm from the ground; Fig. 5.1). 

Next, I used similar design of Experiment 1 for planting seeds, but this time each block 

had 8 pipes, so that two pipes were used for each species (Fig. 5.1). For the “dry” 

treatment, no surface water was provided and plants relied entirely on rainfall during 

winter, spring and summer, which was above 150 mm for each winter month and less 

than 10 mm for each summer month (Fig. 5.2). For the “shallow” treatment, seedlings 

relied on rainfall and on a water table.  

 

Plant measurements 

At the end of November, I performed the first set of measurements of growth and 

stomatal conductance rates from sunrise to sunset every two hours with a Porometer 

(Ap4, Delta-T devices, UK) on one seedling per pipe, with exception for G. 

tomentosum, whose measurements were done in two seedlings due to their small size. 

At the beginning of December, I removed the extra seedlings that germinated from all 

pipes. I also measured pre-dawn (from 0400 to 0530 h) and mid-day (from 1100 to 1230 

h) water potentials from leaves of Banksia seedlings and from shoots of P. reticulata 

and of G. tomentosum with a Scholander-type pressure chamber (PMS Instruments, 

Oregon, USA, Model 3005). Next, i harvested four to six pipes containing each species 

from each treatment and determined their shoot and root length, fresh and dry mass. 

Cluster-roots of Banksias were measured separately. Leaf material was ground for 

analysis of carbon reserves. Growth and stomatal conductance rates were also measured 

in January and April so that changes in these parameters could be monitored over the 

driest part of the year.  

In April, a scanner, a digital camera (Hitachi-KP-D40) and the Windias v2.0 

software were used to calculate leaf area of 6-10 leaves from each individual plant. 

Leaves were then placed in a drying oven at 70°C for 72 hours to determine dry mass 
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and calculate leaf mass per area (LMA; g m2). Fresh stem sections of approximately 5 

cm long were excised from the base of the plants and their bark removed before using 

the water-displacement method to determine their stem-specific density (g cm-3; Pérez-

Harguindeguy et al. 2013). Fresh and dry mass was determined for all remaining plant 

material, including roots. Three to four replicates from each of all species and 

treatments harvested in December and in April were oven dried for 2-3 days at 70ºC, 

finely ground and analysed at Cumberland Valley Analytical Services (Pennsylvania, 

US) for starch and water-soluble sugars. The analysis consisted of three steps: in the 

first, samples were extracted with water; in the second, phenol and sulphuric acid were 

added for digestion; and, in the third, measurements of photon absorbance were taken 

with a spectrophotometer. ACS grade sucrose was used as a standard. I also collected 

and analysed seedlings that died during the experiment (harvested when seedlings 

presented signs of death, this was when they were brown and dry looking) to investigate 

whether these seedlings had consumed all their carbon reserves.  

 

 

Figure 5.1 Experimental design of “Experiment 1”, in which seedlings of four species (Banksia 
attenuata, Banksia littoralis, Gompholobium tomentosum and Pultenaea reticulata) were 
growing in each of the four pipes subjected to three different treatments. Treatment “shallow” 
had a water table at approximately 110-120 cm from the soil surface; treatment “dry” had no 
water table and relied entirely on rainfall during summer months; treatment “wet” was kept 
moist throughout the experiment. “Experiment 2” was a shorter version of “Experiment 1”, in 
which seedlings from the same four species were subjected to two treatments. Treatment 
“shallow” had a water table at approximately 30 cm from the soil surface and treatment “dry” 
had no water table and relied entirely on rainfall during summer months. While “Experiment 1” 
focused in the growth of deep roots, “Experiment 2” focused in the storage and use of non-
structural carbohydrates during summer months. 

Experiment 1 

Experiment 2 

Dry Shallow water 
table 

20
 c

m
 

50 cm
 

Wet Dry Shallow water 
table 

80 cm
 

200 cm
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Weather conditions 

Most of the rainfall occurred during the period from July to September 2013, with a 

total of 513 mm falling, which corresponded to approximately 89.5% of rain during the 

period that Experiment 1 was conducted (August 2013 to March 2014; Fig. 5.2). Winter 

temperatures ranged from 10ºC to 19ºC. The rainfall was extremely low for the period 

from December 2013 to March 2014 (total of 2.02 mm), which corresponded to only 

2.3% of the rainfall received in Experiment 1. Summer temperatures ranged from 18ºC 

to 30ºC (Fig. 5.2). In Experiment 2 (June 2014 to April 2015), the period from June to 

September had a total rainfall of 394.1 mm, which corresponded to 66.8% of the rainfall 

received. From December 2014 to April 2015 rainfall was 125.2 mm, corresponding to 

21.2% of the rainfall during Experiment 2. Temperatures ranged from 11 to 20 ºC 

during the winter months and from 16 to 29ºC for the summer months (Fig. 5.2).  

 

Figure 5.2 a) Mean of maximum and minimum temperature from July 2013 to June 2015, 
period when the two experiments were conducted, error bars are shown. Data was obtained from 
Hillarys Boat Harbor (station 009265). (b) Data of total rainfall from July 2013 to June 2015 
was obtained from Wanneroo (station 009105). 
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Data analyses 

Experiments “1” and “2” were analysed using R (version 3.0.2) with linear mixed 

effects modelling, function lmer() from the package ‘lme4’ (Bates et al., 2015). For all 

analyses, “treatment” refers to the different treatments seedlings were submitted: “dry”, 

“shallow” and “wet” (Experiment 1; Fig. 5.1a) and “dry” and “shallow” (Experiment 2; 

Fig. 5.1b). “Month” refers to the three periods when the shoot length and stomatal 

conductance measurements were taken (December, January and February-April). 

“Time” refers to the time of the day when stomatal conductance rates were measured 

(5:30-7:30, 7:30-9:30, 9:30-11:30, 11:30-13:30, 13:30-15:30, 15:30-17:30 and 17:30-

19:30). “Period” refers to the time of the day that water potential measurements were 

made (pre-dawn and mid-day). “Species” refers to the four species used, B. attenuata, 

B. littoralis, G.tomentosum and P. reticulata (“BA”, “BL”, “GT” and “PR”). In addition 

the identities of the individual seedlings measured and the barrel were included as 

random factors. Including “barrel” as a random factor was necessary because the 

experiments were set up as blocks, so the analysis could account for which block 

seedlings were growing in. On the other hand, “individual” was included as random 

factor when individual plants were measured more than once, which means that these 

observations were not independent. For all linear mixed models, the Akaike information 

criterion corrected for low n (AICc) was used to select the most parsimonious models 

(being the model with the lowest AICc), and differences >2 in AICc values are 

considered meaningful (Burnham and Anderson, 2004, 2002). 

For “Experiment 1”, I used the function lmer() to investigate differences between 

the treatments in growth (seedling length) and stomatal conductance rates over three 

periods of the year, for each species independently. In this analysis, I included “month”, 

“treatment” and “time” (“time” being only applied for stomatal conductance analysis) as 

fixed factors. Then, I compared stomatal conductance rates between species with a 

subset of the data that included only data from the “dry” treatment of February. This 

subset was necessary because it allowed to specifically investigate differences between 

species under the driest conditions. Next, I used linear mixed modelling approach again 

to investigate differences in soil water content, shoot dry mass, root dry mass, root 

depth, and water potential, in which “treatment”, “species” and “period” were used as 

fixed factors for water potential analysis whereas “treatment” and “species” for all the 

other analyses. For G. tomentosum, water potential measurements were only taken at 
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pre-dawn due to low number of replicates and because shoots were very small. Lastly, 

pair-wise comparisons were made to investigate differences between species for water 

potentials, stomatal conductance rates and root depth. For all pair-wise comparisons, I 

used the function glht() from the package ‘multcomp’ (Hothorn et al., 2008). 

For “Experiment 2”, shoot dry mass, stomatal conductance and NSC were 

analysed using the function lmer() for each species individually, in which “treatment” 

and “month” (here referring to December and April measurements) were used as fixed 

factors. Stomatal conductance data was averaged for daily stomatal conductance, rather 

than using the extended version that included measurements for every two hours from 

sunrise to sunset. This was necessary to facilitate comparisons with shoot dry mass and 

non-structural carbohydrate data. Water potentials were analysed for each species 

individually with “month”, “period” and “treatment” as fixed factors.  

5.4 RESULTS 

Experiment 1 

The model that best explained soil water content included: treatment, species, depth to 

ground and the interaction between depth to groundwater and treatment (Appendix 4; 

Fig. 5.3). In the dry treatment, soil water contents for the depths 0-80, 81-180 and 181-

200 cm were of approximately 0,71%, 2,48% and 10,8% respectively for B. attenuata; 

0,80%, 2,58% and 11,0%, for B. littoralis; 0,86%, 2,87% and 8,19% for G. tomentosum; 

1,18%, 2,79% and 9,32% for P. reticulata; and of 2,11%, 3,21% and 10,1% for pipes 

without any plant (Appendix 4; Fig. 5.3). In the shallow treatment, soil water contents 

for the depths 0-80 and 81-120 cm were of approximately 0,87% and 2,34% 

respectively for B. attenuata; 0,77% and 3,34% for B. littoralis; 1,22% and 3,58% for 

G. tomentosum; 0,90% and 3,76% for P. reticulata; and of 2,00% and 3,39% for pipes 

without any plant (Appendix 4; Fig. 5.3). In the wet treatment, soil water contents for 

the depths 0-180 and 181-200 cm were of approximately 3,32% and 8,32% respectively 

for B. attenuata; 3,35% and 10,41% for B. littoralis; 3,33% and 9,47% for G. 

tomentosum; 3,25% and 13,05% for P. reticulata; and of 3,75% and 8,95% for pipes 

without any plant (Appendix 4; Fig. 5.3). At 200cm of pipes that were subjected to the 

wet treatment, water accumulated a little at the bottom, despite the holes made for 

drainage and hence soil water content was very high. 
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B. attenuata seedlings formed roots that were deeper than roots of G. tomentosum 

and P. reticulata, whereas B. littoralis formed roots that were similar in length to all 

species (Appendix 4; Fig. 5.3)The most parsimonious model that best explained growth 

of deep roots included species only, and there were no marked differences in root length 

between treatments. The model that included both treatment and species, however, was 

equally good (Appendix 4; Fig. 5.3).  
 

 

Figure 5.3 (a) Gravimetric water content of the soil profile for each of the four species, Banksia 
attenuata (BA), Banksia littoralis (BL), Gompholobium tomentosum (GT), and Pultenaea 
reticulata (PR); from each treatment, no water table and no rainfall addition (dry), shallow 
water table provided (shallow), and rainfall addition (wet). n= 3–6, with the exception for PR in 
the “shallow” treatment, which n=2. “N.A.” was data collected from three pipes of each 
treatment that had no plants growing. (b) Root length of each species from each treatment. 
Lower case letters represent pair-wise comparisons between species. For the boxplot graphs, 
boxes represent the interquartile range of the distributions, horizontal dark lines inside them 
represent the medians, whiskers represent approximately 2 SDs of the distributions, and open 
circles represent outliers. 

Stomatal conductance of all species was influenced by treatment, month and time 

of the day that the measurement was taken, as well as by interactions between time and 

month and between time and treatment (Appendix 4, Fig. 5.4). For B. attenuata 

seedlings, however, the best model included month, time, treatment and the interaction 

between month and treatment only (Appendix 4, Fig. 5.4). Banksia seedlings presented 

similar behaviour, in December, stomatal conductance rates were relatively high in all 
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three treatments, averages of 512.55 mmol m-2 s-1 for B. attenuata and 266.92 mmol m-2 

s-1 for B. littoralis; with greater values from 0930 to 1130 am, which varied from 277.40 

to 545.00 mmol m-2 s-1. In January, stomatal conductance rates greatly declined in the 

“dry” and “shallow” treatments, reaching average values of 78.83 mmol m-2 s-1 for B. 

attenuata and of 97.69 mmol m-2 s-1 for B. littoralis. In February, averages of stomatal 

conductance rates for B. attenuata and B. littoralis (respectively) were higher in the 

“wet” treatment, 226.88 and 248.29 mmol m-2 s-1; followed by the “shallow”, with 

averages of 155.11 and 104.58 mmol m-2 s-1; and the “dry”, with values of 33.25 and 

67.06 mmol m-2 s-1 (Fig. 5.4). In December, seedlings of G. tomentosum and P. 

reticulata from all treatments had similar stomatal conductance rates, being in average 

of 151.52 mmol m-2 s-1 and 127.35 mmol m-2 s-1 respectively. While in January and 

February, seedlings from the “wet” treatment presented higher stomatal conductance 

rates than seedlings from “shallow” and “dry” treatments. Values for G. tomentosum 

and P. reticulata (respectively) were in average of: 144.76 and 84.40 mmol m-2 s-1 for 

the “wet” treatment, 67.03 and 36.77 mmol m-2 s-1 for the “shallow” treatment, and 

65.68 and 34.46 mmol m-2 s-1 for the “dry” (Fig. 5.4).  

The best model for the subset of the stomatal conductance data (with “dry” 

treatment in February only) included “species” and “time” (Appendix 4, Fig. 5.4). 

Values were lowest for seedlings of P. reticulata and increased for B. attenuata, G. 

tomentosum and B. littoralis respectively, PR ≤ BA ≤ GT ≤ BL (glht(); pairwise 

comparisons, Table 5.1).  

Table 5.1: Pairwise comparisons (function “glht ()”, from the package ‘multcomp’, R version 
3.0.2) of a subset of the stomatal conductance rates data. It includes only measurements taken 
on seedlings of the four species from the “dry” treatment measured during February.  

Comparisons Estimate Standard Error Z-value p-value 
BL X BA 30.896 11.460 2.696 0.035 
GT X BA 21.762 10.509 2.071 0.161 
PR X BA -5.196 9.372 -0.554 0.945 
GT X BL -9.133 12.095 -0.755 0.874 
PR X BL -36.091 11.122 -3.245 0.006 
PR X GT -26.958 10.139 -2.659 0.039 

 

Banksia seedlings grew more over January than over February, (Appendix 4, Fig. 

5.5). Shoot length of G. tomentosum and P. reticulata were influenced by month, 

treatment and their interaction (Appendix 4, Fig. 5.5). They also produced most of their 

growth during January, with the exception of seedlings subjected to the “wet” treatment 

that showed similar growth throughout the summer months. Overall, seedlings from 
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these two species had lowest shoot growth in the “dry” treatment, displayed 

intermediate growth in the “shallow” treatment and highest growth in the “wet” 

treatment (Fig. 5.5).  

Seedlings of B. attenuata had higher shoot dry mass than the other three species 

and both Banksia seedlings grew more in the “wet” treatment, followed by the 

“shallow” and the “dry” (Appendix 4, Fig. 5.5). Seedlings of G. tomentosum and P. 

reticulata grew more in the “wet” treatment, whereas growth in shoot dry mass was 

similar in “shallow” and “dry” treatments (Appendix 4, Fig. 5.5). The model that best 

explained variation in water potential included species, treatment and the period of the 

day that measurements were taken (Appendix 4 and Table 5.2). The “dry” treatment 

was different from treatment “wet” (glht, Table 5.2 and 5.3) and “shallow” was similar 

to both “wet” and “dry” treatments (glht, Table 5.2 and 5.3). Pre-dawn values were 

different from mid-day values (glht, Table 5.2 and 5.3). Water potential values of B. 

attenuata, B. littoralis and P. reticulata were similar (glht, Table 5.2 and 5.3). However, 

water potential values of G. tomentosum were different from all the other species (glht, 

Table 5.2 and 5.3).  
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Table 5.2: Leaf water potential measurements made at pre-dawn and mid-day for both 
experiments in all four species. The four species used were: Banksia attenuata (BA), Banksia 
littoralis (BL), Gompholobium tomentosum (GT), and Pultenaea reticulata (PR). Treatments 
were: no water table and no rainfall addition (dry), shallow water table provided (shallow), and 
rainfall addition (wet). Averages and standard errors are shown (n=3–12). 

Experiment 1 
Species Treatment Pre-dawn Mid-day 

BA Dry -0.77 ± 0.16 -1.27 ± 0.39 
BL Dry -0.75 ± 0.05 -1.72 ± 0.98 
GT Dry -1.99 ± 0.50  
PR Dry -1.23 ± 0.25 -1.20 ± 0.36 
BA Shallow -0.47 ± 0.04 -1.18 ± 0.37 
BL Shallow -0.53 ± 0.48 -1.33 ± 0.68 
GT Shallow -1.45 ± 0.36  
PR Shallow -1.30 ±0.33  
BA Wet -0.45 ± 0.07 -1.25 ± 0.21 
BL Wet -0.53 ± 0.16 -1.35 ± 0.40 
GT Wet -0.74 ± 0.02  
PR Wet -0.42 ± 0.07 -1.05 ± 0.09 

Experiment 2- December 
Species Treatment Pre-dawn Mid-day 

BA Dry -0.30 ± 0.05 -1.00 ± 0.28 
BL Dry -0.29 ± 0.02 -1.46 ± 0.12 
GT Dry -0.63 ± 0.07 -1.38 ± 0.14 
PR Dry -0.32 ± 0.05 -0.99 ± 0.04 
BA Shallow -0.35 ± 0.05 -1.38 ± 0.34 
BL Shallow -0.40 ± 0.02 -1.55 ± 0.04 
GT Shallow -0.48 ± 0.05 -0.98 ± 0.09 
PR Shallow -0.28 ± 0.03 -0.76 ± 0.08 

Experiment 2- April 
BA Dry -0.28 ± 0.04 -1.23 ± 0.13 
BL Dry -0.28 ± 0.03  
GT Dry -0.31 ± 0.04 -1.14 ± 0.06 
PR Dry -0.20 ± 0.00 -1.10 ± 0.10 
BA Shallow -0.24 ± 0.01 -1.38 ± 0.20 
BL Shallow -0.29 ± 0.04 -1.78 ± 0.12 
GT Shallow -0.30 ± 0.03 -1.34 ± 0.07 
PR Shallow -0.23 ±0.03 -1.00 ± 0.06 

 
Table 5.3: Pairwise comparisons (function “glht ()”, R version 3.0.2) of the leaf water potential 
data between treatments, periods and species, for data collected in Experiment 1. 

Factors Estimate Std. Error Z-value p-value 

Treatment 
shallow X dry 0.147 0.178 0.827 0.686 
wet X dry 0.518 0.168 3.088 0.006 
dry X shallow 0.371 0.171 2.174 0.076 

 
Period mid-day X pre-dawn -0.599 0.130 -4.598 0.000 

Species 

 
BL X BA -0.123 0.205 -0.603 0.931 
GT X BA -0.770 0.209 -3.680 0.001 
PR X BA -0.229 0.185 -1.241 0.600 
GT X BL -0.647 0.221 -2.921 0.018 
PR X BL -0.106 0.199 -0.531 0.951 
PR X GT 0.541 0.201 2.694 0.035 
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Figure 5.4 “Experim
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Figure 5.5 Data collected from “Experiment 1” for each of the four species (Banksia attenuata 
“BA”, Banksia littoralis “BL”, Gompholobium tomentosum “GT” and Pultenaea reticulata 
“PR”) from each of the three treatments. Treatment “shallow” had water table at approximately 
110-120 cm from the surface, “dry” had no water table present and relied entirely in rainfall, 
and “wet” was kept moist throughout the experiment. (a) Shoot length measured in December, 
January and February. (b) Shoot dry mass measured in February. (c) Root dry mass measured in 
February. For the boxplot graphs, boxes represent the interquartile range of the distributions, 
horizontal dark lines inside them represent the medians, whiskers represent approximately 2 
SDs of the distributions, and open circles represent outliers. 
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Experiment 2 

Seedlings of B. attenuata had low stomatal conductance rates when subjected to the 

“dry” treatment and higher when subjected to the “shallow” treatment in December. In 

April, this pattern repeated but with much higher values for seedlings from the 

“shallow” treatment; the model that best explained this variation included month and 

treatment (Appendix 5, Fig. 5.6). For B. littoralis seedlings, the best model included 

only treatment; stomatal conductance rates were lower for seedlings from the “dry” 

treatment and were equally high for seedlings from the “shallow” treatment (Appendix 

5, Fig. 5.6). Seedlings of G. tomentosum had low stomatal conductance rates for both 

treatments during both months; the best model was the null, demonstrating no 

appreciable effects of treatment and month of measurement (Appendix 5, Fig. 5.6). 

Seedlings of P. reticulata had highest stomatal conductance rates in April. Although the 

best model included only month (Appendix 5), seedlings from the “shallow” treatment 

had marginally higher stomatal conductance rates than seedlings from the ‘dry” 

treatment in April (Fig. 5.6).  

The model that best explained the shoot dry mass of B. attenuata seedlings 

included month, treatment and the interaction of both (Appendix 5, Fig. 5.6). Their dry 

mass was equal between treatments in December and higher in April, especially for 

seedlings from the “shallow” treatment (Appendix 5, Fig. 5.6). Seedlings of B. littoralis 

and of G. tomentosum visually followed a similar pattern to B. attenuata seedlings but 

with lower values; the most parsimonious model, however, was the null for both species 

(Appendix 5, Fig. 5.6). Seedlings of P. reticulata grew more in April than in December, 

and, although the best model included only month (Appendix 5), seedlings from the 

“shallow” treatment had marginally higher values of dry mass than seedlings from the 

“dry” treatment (Fig. 5.6). 

The model that included “month” and the null model were equally good at 

explaining the percentage of NSC in shoot dry mass of B. attenuata seedlings 

(Appendix 5, Fig. 5.6). However, the percentage of NSC decreased in seedlings 

subjected to the “dry” treatment from December to April, but it did not change for the 

seedlings from the “shallow” treatment (Fig. 5.6). For B. littoralis, the model that best 

explained the percentage of NSC was the one that included month, treatment and the 

interaction of the two. The percentage of NSC for B. littoralis decreased from 

December to April for seedlings subjected to the “dry” treatment. Similarly, seedlings 
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from the “shallow” treatment presented a decrease from December to April, but in a 

smaller scale (Appendix 5, Fig. 5.6). Seedlings of G. tomentosum increased the amount 

of NSC in their tissues in both treatments from December to April, but there were no 

differences between treatments –the best model included only month (Appendix 5, Fig. 

5.6). P. reticulata seedlings did not change the percentage of non-carbohydrate in their 

tissues –the best model was the null (Appendix 5, Fig. 5.6).  

Lastly, measurements of water potential on B. attenuata seedlings were different 

between pre-dawn and mid-day and, mid-day values were slightly more negative for 

April (Fig. 5.6); the best model, however, included period only (Appendix 5 and Table 

5.2). In contrast, B. littoralis water potential values were influenced by month, treatment 

and the interaction of the two (Appendix 5 and Table 5.2). Water potentials measured in 

seedlings of G. tomentosum were influenced by time, month, treatment and the 

interaction of month and time and of month and treat. Mid-day values were slightly 

more negative in April, whereas pre-dawn values were slightly more negative in 

December (Appendix 5 and Table 5.2). Similarly, time, month, treatment and the 

interaction of month and time influenced water potential measurements of P. reticulata 

(Appendix 5 and Table 5.2). 
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Figure 5.6 Data collected from “experiment 2” for each of the four species (Banksia attenuata 
“BA”, Banksia littoralis “BL”, Gompholobium tomentosum “GT” and Pultenaea reticulata 
“PR”) from each of the two treatments, no water table and no water addition (dry) and a 
shallow water table provided but no water addition (shallow). (a) Shoot dry mass, (b) average of 
daily shoot stomatal conductance adjusted by leaf area, and (c) non-structural carbohydrates 
(starch and sugars in % of dry mass). Data was collected from three to four individuals from 
each species from each treatment; with exception for BL and PR that the “dry” treatment had 
only two replicates. For the boxplot graphs, boxes represent the interquartile range of the 
distributions, horizontal dark lines inside them represent the medians, whiskers represent 
approximately 2 SDs of the distributions, and open circles represent outliers. 
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5.5 DISCUSSION 

 

Growth of deep roots 

Seedlings of B. attenuata grew roots to approximately 112.5 cm deep and were thus 

able to access water from deeper layers and probably from the capillary fringe which is 

a zone that contains groundwater held by capillary action, sitting just above the water 

table (Eamus et al., 2006; Freeze and Cherry, 1979). This was reflected in higher 

stomatal conductance rates of seedlings that were kept moist as well as the ones that had 

access to deep water compared to those in the “dry” treatment. At the same time, under 

drier conditions, B. attenuata seedlings could reduce stomatal conductance to under 50 

mmol m-2 s-1, thereby avoiding severe desiccation as shown in their leaf water potentials 

that were relatively high. Such contrasting water use responses of plants able to access 

deep water have been observed for B. attenuata adults and juveniles in field and under 

glasshouse conditions (Canham et al., 2012; Enright and Lamont, 1992b; Groom, 2004). 

Seedlings of B. littoralis were also able to grow relatively deep roots and to reduce 

stomatal conductance in drier conditions, although stomatal conductance rates were still 

higher than the other species in similar conditions. They had, however, lower mid-day 

water potentials under drier conditions, suggesting that they may have a greater 

desiccation tolerance response than B. attenuata seedlings. Indeed, B. littoralis has 

previous been described in the literature for having relatively high stomatal conductance 

rates and lower water potentials under drier conditions (Groom, 2004, 2002).  

Seedling roots of G. tomentosum did not reach the water table or capillary zone, 

which was approximately at 100 to 120 cm, only growing to 69.2 cm in length and the 

species showed low stomatal conductance rates during the driest summer months, being 

under 100 mmol m-2 s-1 for the “dry” treatment, as well as for the “shallow” treatment in 

which seedlings had no access to deep water due to their inability to reach the water 

table. At the same time, it appears that seedlings were slightly more drought stressed in 

the “dry” treatment, as pre-dawn water potential values were increasingly lower for 

“shallow” and “dry” treatments. This response suggests that these seedlings were losing 

more water than seedlings from the other species, and they displayed higher tensions in 

their xylem vessels. Seedlings of P. reticulata presented similar responses to G. 

tomentosum. However, they had even lower stomatal conductance rates over the driest 

summer month (< 50 mmol m-2 s-1) and less negative water potentials. This suggests 



 

  
78 

that they were better hydrated than G. tomentosum seedlings. Although P. reticulata 

occurs in areas where water tables are at medium to shallow depths, they appeared to 

avoid water loss under dry conditions. The responses of P. reticulata to drought in the 

field are unknown, however it is shown that surface water or water accumulated in 

deeper layers (0.3–1.2 m) is sufficient to maintain some medium-rooted species under 

summer drought (Groom, 2004; Zencich, 2004).  

Shoot and root growth was highest in seedlings from “wet” followed by “shallow” 

treatments for Banksia seedlings and higher in the “wet” treatment for the other two 

species. Thus, it is possible that a winter with sufficient rainfall to recharge groundwater 

and/or the presence of water at depth facilitates the establishment of seedlings. This is 

because it allows for more extensive root growth, which is able to progressively access 

more water from deeper layers as the near-surface soil water content decreases with 

increasing summer drought. Indeed, there has been evidence for increased establishment 

of seedlings early in the season as germination and early growth take place during a 

longer period of water availability (Padilla et al., 2007; Quintana et al., 2004) and 

perhaps that enables roots to reach deeper layers. 

Soil water content in shallow layers (approximately to 60 cm below the surface) 

was different between treatments, with “dry” and “shallow” holding less water than the 

“wet” treatment. Although there were differences between species, in deeper layers, soil 

water content was similar between treatments, being approximately 2.11% to 3.76% to 

180 cm depth and then reaching soil water capacity 8-11%). This result suggests that 

drought period from December to February was not sufficient to complete dry out the 

200 cm long pipes subjected to the “dry” treatment. In a study conducted on the Swan 

Coastal Plain, soil water content was closer to 1% at 2 m depth (Zencich et al., 2002), 

whereas in this experiment, soil water content was approximately 4% from 120 cm to 

180 cm and below this was fully hydrated. Therefore, seedlings could have had access 

to some deep water in all treatments while in the shallow layers water availability was 

substantially different between the “wet” and other two treatments. 

 

Accumulation and use of non-structural carbohydrates 

For B. littoralis seedlings, the accumulation and use of NSC likely played an important 

role in the maintenance of metabolism under dry conditions. This is due to the fact that 

seedlings consumed the reserves but did not grow as much as seedlings from “shallow” 
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treatment, which had accumulated lower reserves, despite reasonably high stomatal 

conductance in April. The response of B. littoralis seedlings is in agreement with other 

studies (Adams et al., 2013; Galiano et al., 2011; Mitchell et al., 2013), which also 

found that, under dry conditions, accumulation and consumption of NSC was associated 

with metabolism maintenance. Under drier conditions, seedlings of B. attenuata stored 

NSC for later use in growth, as they accumulated more reserves and grew less; whereas 

under moist conditions, they did not accumulate NSC but grew more. The survival and 

growth during summer drought of G. tomentosum and P. reticulata seedlings are not 

related to storage and use of NSC. This is due to the fact that G. tomentosum 

accumulated more non-structural carbon reserves in April, independent of the treatment; 

and growth and stomatal conductance were not affected by either month or treatment 

(the null model was the best in both cases). Additionally, stomatal conductance and 

growth of P. reticulata were affected by month, independent of the treatment; and 

accumulation of NSC was not influenced by month nor by treatment.  

 

Combined responses to summer drought 

Across a gradient of water availability, B. attenuata is known to be able to survive 

in xeric environments and is considered a facultative phreatophytic species (Zencich et 

al., 2002). It uses water from deep sources during dry summer and early autumn 

months, and from the upper zone of the soil profile as winter rainfall recharges 

shallower zones (Zencich et al., 2002). In this study, B. attenuata seedlings used a 

combination of strategies to survive summer drought: they were able to grow deep roots 

in their first 6 months accessing relatively deep water, and they were able to reduce 

stomatal conductance rates when conditions were dry. Although results of the 

accumulation and use of NSC were less evident, they suggest that these reserves may 

also play a role in drought resistance since accumulation and use of carbohydrates were 

needed to at least support growth of B. attenuata seedlings under drier conditions. B. 

littoralis is almost exclusively dependent on shallower groundwater all year around 

(Zencich et al., 2002; Zencich, 2004) and it thus may lack the ability to quickly reduce 

water loss under prolonged dry conditions, being at risk of hydraulic failure if soil water 

content falls under 1% (Dodd et al., 1984; Groom, 2002). This species was able to 

survive summer drought by also growing roots to relatively deep soil layers and by 

reducing stomatal conductance rates, although less efficiently than B. attenuata 
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seedlings. Surprisingly, accumulation and use of carbohydrates seems to be important 

for drought resistance of B.littoralis seedlings, as seedlings from the “dry” treatment 

accumulated and consumed more reserves, while stomatal conductance and growth 

were lower than seedlings from the “shallow” treatment. 

Gompholobium tomentosum has been described to form medium roots (1– 2m; 

Groom et al., 2000) and therefore it is more dependent on rainfall than deep-rooted 

species. Under drier conditions, G. tomentosum seedlings were able to grow roots to 

medium depths, but did not reach the water table, which was 120 cm deep. They could, 

however, tolerate relatively higher water deficits, despite low stomatal conductance 

rates. Accumulation and use of NSC, on the other hand, was not important for drought 

resistance of G. tomentosum seedlings. Therefore, they are more likely to tolerate 

drought and eventually face hydraulic failure under prolonged drought, as also predicted 

by McDowell et al., (2008). Although seedlings of P. reticulata presented relatively 

similar responses to G. tomentosum, the mechanisms by which these seedlings survived 

summer drought were not as clear. NSC seems not to be important since no variation 

were detected across summer months for drought resistance of P. reticulata seedlings, 

at the same time, stomatal conductance rates and water potentials were relatively low. 

The different strategies of these four Mediterranean species to survive summer 

drought as seedlings are complex and a combination of responses were involved. There 

was evidence of at least two strategies that these seedlings employed to survive drought. 

One strategy was to access water from deep soil layers combined with stomatal 

regulation and possibly use of NSC (Banksia seedlings). The second strategy appears to 

involve tolerance to water deficits, at least for G. tomentosum, despite reasonably low 

stomatal conductance rates. This last strategy suggests that these plants might tolerate 

drought by photosynthesizing the minimum necessary to maintain metabolism, and 

possibly slowing their metabolism down during summer drought (George, 2002). 

Seedlings of G. tomentosum and P. reticulata presented little changes in NSC dynamics 

and reduced stomatal conductance rates. Indeed, leaves of adults of G. tomentosum have 

been observed to turn yellow during summer and re-green when water availability 

increases in field conditions (George, 2002), which suggests that this species lowers its 

metabolism during drought. Responses of P. reticulata, however, were less clear with 

no previous observations found in the literature. In order to investigate desiccation 
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tolerance characteristics, however, it is necessary to measure or document cell 

desiccation, which is outside of the scope of this study.  

5.6 CONCLUSION 

This study found evidence of two strategies to survive summer drought employed by 

seedlings of Southwestern Australian species, including: (1) reduction of stomatal 

conductance rates, accumulation and use of non-structural carbohydrates, and growth of 

deep roots; and (2) reduction of stomatal conductance rates despite no accumulation and 

use of non-structural carbohydrates. This information can indicate seedlings’ 

requirements to survive drought, which is important when selecting species for 

ecological intervention as well as when predicting future scenarios. I acknowledge that 

my observations on the accumulation and use of non-structural carbohydrates by 

seedlings during summer drought remain preliminary and were limited as only shoots 

were analysed. Besides, my study was not designed to investigate characteristics related 

to dormancy and resurrection. It is also possible that there is trait plasticity, i.e. 

individuals from a drier area perform differently to those from wetter environments. 

Thus, further research is needed to examine if my results are generalizable to other 

similar species or situations within MTEs, which is required for more appropriate 

management and intervention of such areas. 
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CHAPTER SIX: CAN HYDRAULICALLY 
REDISTRIBUTED WATER ASSIST SURVIVAL AND 
GROWTH OF SURROUNDING SEEDLINGS DURING 
SUMMER DROUGHT? 

 

6.1 ABSTRACT 

 

Studies of plant interactions allow a better understanding of the role of key species in 

ecosystems, which can assist in the conservation, management and intervention of 

natural resources. Among the interactions, facilitation and competition are known to 

strongly affect ecosystem structure and function. In this study, I investigated whether 

there is facilitation between a deep-rooted species and surrounding seedlings through 

hydraulic redistribution during their first summer water deficit in a Mediterranean-type 

ecosystem. I conducted a field experiment, in which seedlings from two different 

species were isolated or not from donor plants, known to be able to hydraulically 

redistribute water. In addition, I conducted a glasshouse experiment, in which seedlings 

were growing with donor plants that were either accessing or not accessing the water 

table, or growing without a donor tree. Donor trees were either adult Banksia trees (in 

the field) or two years old Banksia seedlings (in the glasshouse). Survival, growth, 

stomatal conductance rates and soil water content were recorded during summer 

months; approximately, 5-8 months after seeds were sown. I also applied δ2H enriched 

water to roots of donor plants to track water movement within and between plants. In 

the field, seedlings of B. attenuata that were isolated from the donor tree had the highest 

survival, growth and stomatal conductance rates. Seedlings of G. tomentosum survived 

and grew better with a donor tree with no access to the water table. In the glasshouse 

experiment, stomatal conductance rates were higher when growing with a donor tree 

(regardless of water table access) than when growing without a donor tree over the first 

summer months, but this relationship reversed towards the end of summer. Field 

seedlings from both treatments had a similar increase in leaf δ2H, indicating that were 
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able to absorb hydraulically lifted water. Moreover, access to the water table by donor 

plants caused a slight increase in leaf δ2H of glasshouse seedlings. Donor plants were 

able to perform hydraulic redistribution and seedlings were able to absorb the 

hydraulically redistributed water. In the field, it is possible that root interactions 

occurred in deeper layers, but this needs further testing. Soil water content was higher 

on the side where the seedlings were interacting with a donor tree (field), and in 

seedlings interacting with donor plants that had access to the water table (glasshouse). 

However, seedlings performed better in the other treatments, suggesting that donor 

plants and seedlings could have been competing for a resource other than water. These 

results support recent findings from other studies where competition was more 

prominent than facilitation in extremely stressful conditions, such as the severe summer 

water deficits of Mediterranean-type climates. In this context, using Banksia attenuata 

trees as potential facilitators of water availability for neighbouring seedlings in 

rehabilitation projects might not be recommended during the driest periods of the year.  

 

Keywords: facilitation, competition, hydraulic redistribution, water availability, 

ecological intervention, and Mediterranean- ecosystems 
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6.2 INTRODUCTION 

 

Facilitation plays an important role in community assembly in many plant communities 

(Callaway and Walker, 1997b), as it reduces the negative influences of stressful 

environments by providing shade, increasing nutrient and water availability, and/or by 

ameliorating extreme temperatures. A typical example is nurse/donor plants with 

established canopies, beneath which germination and survival are much more likely. 

Facilitation can also result in altered species distribution patterns, greater species 

coexistence and enhanced diversity and productivity, all of which greatly influence 

ecosystem structure and function (Callaway, 1995). It was initially suggested that 

facilitation would play an important role in highly stressed environments, whereas 

competition would dominate in less-stressed ecosystems (Bertness and Callaway, 1993; 

Callaway, 2007). However, although facilitation may extend the range of conditions 

where an organism can occur, under very stressful conditions it might be insufficient to 

support the growth of all individuals involved. Therefore, facilitation is now generally 

assumed to enhance plant performance under moderate conditions only (Holmgren and 

Scheffer, 2010). 

There is evidence that water can be facilitated by deep-rooted plants to 

neighbouring plants through “hydraulic lift” (Caldwell et al., 1998; Pang et al., 2013; 

Yu and D’Odorico, 2015) and hydraulic redistribution (Burgess et al., 1998; Caldwell et 

al., 1998). Hydraulic lift is the movement of water upward from deep wet layers to 

shallow drier layers within plant root systems (Richards and Caldwell, 1987), and 

hydraulic redistribution refers to the movement of water through plant root systems 

from moist to dry soil layers, at any depth, driven by a water potential gradient (Burgess 

et al., 1998; Caldwell et al., 1998). Hydraulic redistribution is a main mechanism of 

facilitation, and it has been shown to account for up to 80% of the water lost through 

stomatal conductance (Emerman and Dawson, 1996; Neumann and Cardon, 2012; 

Scholz et al., 2010). Moreover, this mechanism supports the maintenance of fine root 

function (Bauerle et al., 2008; Caldwell et al., 1998), prolongs the lifespan of 

mycorrhizal fungal hyphae in dry soils (Querejeta et al., 2007), and delays the onset of 

water stress (Caldwell et al., 1998; Meinzer et al., 2004). Hydraulic redistribution has 

been reported for a large number of taxa (Caldwell et al., 1998), across many 
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ecosystems and environments (Emerman and Dawson, 1996; Prieto et al., 2009; Scholz 

et al., 2008), and it is thought to be important in the structure and functioning of many 

plant communities (Katul and Siqueira, 2010). Of particular interest is the role that this 

facilitation mechanism plays in community assembly in systems where the surface of 

the soil is very dry but there is adequate deep water, which would allow significant lift 

and redistribution of water. 

In order to predict the future effects of current human activities on ecosystems, 

and to improve the conservation and management of natural resources, we must 

understand and acknowledge the potential effects of facilitation or competition on 

community assembly. Studying such interactions helps establishing the role of key 

species, which is needed to restore the functional characteristics of ecosystems (Bruno 

et al., 2003). Unfortunately however, to the best of my knowledge, intervention efforts 

have seldom accounted for the potentially important role of facilitation through 

hydraulic redistribution. 

The Banksia woodlands of Southwest Australia have been heavily cleared and 

modified across their range, with many local attempts now in place to rehabilitate 

degraded areas and their ecological functions. Banksia trees are the dominant overstorey 

species in these formations, and many areas have remnant Banksia trees that can 

potentially facilitate the process of rehabilitation of such areas. This is due to the fact 

that they may positively influence the recruitment and survival of understorey of 

conspecific and other plants and seedlings by increasing shallow water availability. 

Hydraulic redistribution is known to occur in Banksia species (B. prionotes), and most 

species have dimorphic roots consisting of a deep tap-root that accesses groundwater 

and shallow lateral roots, that facilitate the uptake of nutrients and recent precipitation 

(Burgess et al., 2000; Dawson and Pate, 1996).  

Due to the importance of Banksia in restoration of the fragile and highly impacted 

ecosystems of Southwest Australia, the aim of this study was to investigate the 

occurrence of facilitation through water redistribution between seedlings of two native 

plants and neighbouring adult Banksia trees. I predicted that seedlings of both deep-

rooted (B. attenuata) and relatively shallow-rooted (G. tomentosum) species would 

absorb hydraulically redistributed water from a deep-rooted donor tree (B. attenuata), 

known to be capable of hydraulic redistribution, which would result in improved 

survival and growth, at least for shallow-rooted species. To address this hypothesis, I 



 

 
87 

conducted two experiments, in which seedlings were grown in the field and the 

glasshouse with or without the presence of a putative donor tree. In the glasshouse 

experiment, the donor plants were manipulated so that some had access to deep water, 

whereas the others were solely reliant on shallow soil water. In all experiments, I 

measured the survival, growth and stomatal conductance rates of seedlings at the 

beginning, middle and end of the summer stress period. At the end of the experiment, I 

used δ2H labelled water to track the water movement within and between plants to 

determine whether seedlings could absorb shallow water that was previously 

hydraulically lifted by the donor tree. 

 

6.3 MATERIALS AND METHODS 

 

Field experiment 

 

The study site was situated approximately 38 km north of Perth, Southwest Australia on 

the Gnangara groundwater mound, a shallow unconfined aquifer. This area has a 

Mediterranean-type climate with mild, wet winters and hot, dry summers; mean annual 

rainfall of 797.7 mm, from which approximately 56% falls during winter months, 

whereas only nearest 5% falls during summer months (Bureau of Meteorology; 

Aschmann, 1973; Gentilli, 1972). Sites were located on the Bassendean Dune System 

which consists of highly leached quartz sand with negligible silt and clay, and hence the 

soils have a very low water holding capacity (McArthur, 1991; McArthur and Bettenay, 

1960). There is also a wide range (3 to 30 m) in depth to the groundwater water table 

across the dunal landscape (Thackway and Cresswell, 1995), which causes differences 

in the availability of water to the plants. As a result of this gradient and these 

differences in water availability, there are differences in species assembly and plant 

tolerance to water deficits (Beard, 1990; Froend and Sommer, 2010; Sommer and 

Froend, 2014). The field site (31º42’30’’S and 115º54’30’E) was located in the mid-

slope of the gradient of water availability, and is under a restoration program (Maher et 

al., 2008).  
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In April 2013, eight well-established (150 to 300 cm height) adult individuals of 

Banksia attenuata were selected, and the sparse surrounding vegetation was removed to 

plant seedlings to simulate an ecological intervention program and to reduce possible 

effects of roots from neighbouring plants on these seedlings. Three 60 cm deep barriers, 

made of impermeable plastic (polyethylene dampcourse), were buried in the soil at the 

edges of the donor trees’ canopies (Fig. 6.1). The lengths of the barriers were also based 

on the lengths of the donor trees’ canopies; for example, a 5 m length barrier was used 

when the donor plant’s canopy was of 5 m (Fig. 6.1). Thirty seeds of each species were 

planted external to the barrier and therefore were isolated from the donor-tree, whereas 

another set of thirty seeds was planted in the internal side of the barrier allowing for 

possible interaction with the donor tree. These groups are refereed as “without barrier” 

(-B) and “with barrier” (+B). The third barrier was placed to limit the area of the +B 

group of seedlings similarly to the -B group (Fig. 6.1). I acknowledge that this design 

does not stop interactions between these seedlings and roots of neighbouring plants, but 

if these interactions exist, effects should be similar for both groups (+B and -B). After 

the barriers were installed, I calibrated volumetric soil moisture sensors (5TM and EC-

TM, Decagon) for use in sandy soils, as by manufacturer protocol, and installed them at 

depths of 20 and 50 cm on each side of four donor plants, adjacent to where seeds were 

to be planted. Soil water content was recorded hourly by these sensors for 11 months 

until March 2014.  

In July 2013, which was the wettest period of the year, 30 seeds of Banksia 

attenuata (R.Br) and 30 seeds Gompholobium tomentosum (Labill) species were planted 

on both sides of donor plants and protected with mesh fencing. These species were 

selected since they are abundant in undisturbed vegetation stands in the area and are 

known to form deep roots (B. attenuata) and shallow roots (G. tomentosum). Therefore 

each of the eight blocks consisted of one donor tree, three underground barriers (Fig. 

6.1), and the two groups (+B and –B) of up to 30 seedlings. The groups of seedlings 

were equally oriented east west, so that both groups received similar amount of sunlight. 

To avoid seedling death they were watered once every two weeks with 1l of water, until 

the end of October, when the experimental treatment was applied. 

Seedling survival was recorded every two weeks in November, December, 

January and February. From December to February, I also measured the stem length of 

all seedlings and the stomatal conductance rates for two seedlings of each species 
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growing on each side of all eight donor plants, every two hours from 0530 to 1930 h 

with an AP4 Leaf Porometer (Delta T devices, Cambridge, UK). 

At the end of the experiment in March 2014, leaf water potential was determined 

on one healthy mature leaf from each seedling previously used for stomatal conductance 

measurements and on two leaves of each donor tree. Predawn water potential 

measurements were made between 0400 and 0600 h and midday measurements between 

1100 and 1300 h using a Scholander-type pressure chamber (PMS Instruments, Oregon, 

USA, Model 3005). Few G. tomentosum seedlings survived the summer drought so 

water potentials, isotope composition and dry mass of this species were not determined.  

Leaf isotope composition was investigated in the donor trees to check whether the 

methodology worked and water got injected in the vessels of the plant, being 

transported to the leaves as expected, and in B. attenuata seedlings. There were not 

enough seedlings of G. tomentosum for this last part of the experiment. Leaf material of 

B. attenuata seedlings and donor plants was collected and rapidly sealed in two plastic 

bags and frozen at -20ºC for later analysis of δ2H isotope signatures. On the following 

day, the top 40 cm of soil at the base of each donor tree was excavated and taproots 

exposed were injected with 20 ml of a solution of 25% deuterium and reburied. Leaf 

material of all seedlings and donor plants was collected again at 12, 24 and 48 hours 

after the injections and was prepared and stored as described above. Aboveground 

shoots of all surviving seedlings were harvested and returned to the laboratory for 

drying and weighing. Water extractions were performed at Edith Cowan University 

using cryogenic vacuum distillation following methods outlined in West et al., (2006) 

and then analysed for δ2H at the University of Western Australia with a Picarro Liquid 

Water Isotope Analyser. Samples were corrected for possible organic contaminations 

based on ChemCorrect algorithm. Normalization was done based on three laboratory 

standards, each repeated twice, calibrated against international standards provided by 

IAEA: VSMOW2, SLAP2 and GISP (Coplen and B., 1996). The external error for non-

enriched water samples (one standard deviation) is of 0.10 ‰ for δ18O and of 1.0 ‰ for 

δ2H. Technical details of the instrument and used procedure can be found in Skrzypek 

and Ford (2014). 

 

Glasshouse experiment 
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In the glasshouse experiment, I set up three treatments: 1) seedlings growing by 

themselves (no donor plant), referred to as “NoD”; 2) seedlings growing with donor 

plants able to access a water table, “D+w”; and 3) seedlings growing with donor plants 

deprived of a water table, “D-w”. To achieve this, I used 33 planter bags of 100 l, 23 of 

which were individually connected at the base to a 90 cm pipe that was placed inside a 

bucket of water (Fig. 6.1). Donor plants were established by placing plastic tubing 

inside the pipes going from the surface all the way to the bucket to make sure donor 

plants would grow deep roots through the pipe and reach the water in the bucket. All 

bags and plastic tubing were filled with white washed sand. I also placed volumetric soil 

moisture sensors (5TM and EC-TM, Decagon) at 20 cm depth in three bags from the 

“D-w”, eight from “D+w” and five from “NoD” and recorded soil moisture hourly until 

the end of the experiment. In June 2013, a single one-year old B. attenuata seedling was 

planted in each plastic tube and, with approximately 8 g of Osmocote© fertilizer for 

native plants added. Sand was kept moist by automatic irrigation system set to 5 

minutes three times a week. In March 2014, plastic tubes were removed to allow lateral 

roots to grow throughout the bag.  

In	 June	 2014,	 I	 started	 germinating	 the	 “receiver”	 seedlings	 by	 planting	 10	

seeds	of	B.	attenuata	and	10	of	G.	 tomentosum	 in	each	bag,	 including	the	10	bags	

without	donor	plants	(NoD).	I	also	added	another	16	g	of	Osmocote©	fertilizer	for	

native	plants	in	each	set	to	minimize	nutrient	limitations	and	to	isolate	the	effect	of	

water.	Plants	were	then	allowed	to	germinate	and	grow	under	similar	conditions,	

being	watered	three	times	a	week	for	5	minutes	through	the	automatic	irrigation	

system.	In	September	2014,	to	investigate	whether	all	donor	plants	were	accessing	

the	water	table	after	approximately	17	months	of	growth,	I	added	a	solution	of	LiCl	

(10	 ml	 of	 0.3	 M)	 to	 the	 water	 in	 the	 buckets.	 Two	 small	 leaves	 were	 collected	

before	 and	 after	 the	 LiCl	 addition	 for	 the	 LiCl	 analyses	 that	 were	 performed	 at	

Edith	 Cowan	 University,	 through	 an	 initial	 sample	 digestion,	 with	 nitric	 and	

perchloric	 acids;	 followed	 by	 readings	 in	 an	 inductively	 coupled	 plasma	 optical	

emission	 spectroscopy	 (ICP–OES).	 Donor	 plants	 that	 had	 a	 clear	 increase	 in	 leaf	

LiCl	were	assigned	to	treatment	“D+w”,	whereas	donor	plants	with	no	increase	in	

leaf	LiCl	were	assigned	to	treatment	“D-w”.	Buckets	from	donor	plants	in	treatment	

“D-w”	 were	 emptied	 of	 water	 and	 kept	 this	 way	 for	 the	 remainder	 of	 the	

experiment.	Also,	excess	seedlings	were	removed	from	all	bags	to	make	sure	I	had	
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a	 similar	 number	 of	 plants	 in	 each	 bag	 (2	 to	 4	 B.	 attenuata	 and	 3	 to	 6	 G.	

tomentosum	seedlings	per	bag)	and	irrigation	system	was	turned	off.		

The experiment was initiated in October 2014 when I progressively reduced 

watering. Towards the end of the experiment, in April 2015, I drilled a hole in the pipes 

of five bags from treatment “D+w” and five from “D-w”, approximately 40 cm from the 

floor and injected 20 ml of a solution of 25% deuterium. I followed the same approach 

used in the field experiment to collect samples, but I only harvested plants from the 

bags that had δ2H isotope added, plus five bags from the “NoD” treatment. The 

remaining bags were left intact but remained unwatered until the end of May so that 

survival of seedlings and donor plants could be monitored for a longer period.  In 

November, January and April-May, I measured plant heights, as well as stomatal 

conductance rates every two hours from sunrise to sunset on all plants with a AP4 Leaf 

Porometer (Delta T devices, Cambridge, UK). 

 
Figure 6. Experiment designs of the field and glasshouse studies. In the field experiment, 
seedlings were planted either without a barrier allowing for possible interactions with the donor 
plant or partially isolated because of a physical water-resistant plastic barrier positioned 
underground between the donor plant and receiver seedlings. In the glasshouse experiment, 
seedlings were growing without a donor plant, or were growing with a donor plant that was 
accessing a water table, or with a donor plant that was deprived of a water table. 
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Data analysis 

 

Field and glasshouse experiments were analysed using R (version 3.0.2), as described 

below. For the field experiment, “treatment” refers to whether seedlings were isolated or 

not of a donor tree. In the glasshouse experiment, “treatment” referred to whether 

seedlings interacted (D) or not (NoD) with a donor tree, and additionally whether this 

donor tree had access (D+w) to the water table or not (D-w). “Month” refers to the three 

periods when the length and stomatal conductance measurements were made 

(November-December, January and February-May); although for soil moisture data, 

“month” represents each of the measured months (“Oct”, ‘Sep”, “Nov”, “Dec”, Jan”, 

Feb” and “Mar”). “Time” refers to the time of the day when stomatal conductance rates 

were measured (5:30-7:30, 7:30-9:30, 9:30-11:30, 11:30-13:30, 13:30-15:30, 15:30-

17:30 and 17:30-19:30). “Period” refers to the time of the day when water potential 

measurements were made (pre-dawn and mid-day). “Hour” refers to the hourly 

measurement of soil moisture. “Collection” refers to the collection time before and 12, 

24 and 48 hours after the isotope injections (initial, h12, h24 and h48). “Species” refers 

to the two species used, B. attenuata (BA) and G. tomentosum (GT). Also, the identities 

of the donor tree and of the individual seedlings measured were included as random 

effects. The random effect of donor was necessary because certain seedlings (up to 10) 

shared the donor tree they were interacting with. On the other hand, individual was 

included as a random effect when individual plants were measured more than once, 

which means that these observations were not independent. I also added neighbour as a 

covariate (fixed effect) in all models to account for the number of seedlings growing on 

each side of the donor tree (field experiment) or in each bag (glasshouse experiment). 

I applied the function “survdiff ()” from the package ‘survival’ (Therneau, 2015; 

Therneau and Grambsch, 2000) to investigate the differences in survival of seedlings 

between the treatments for each species separately. I used the function “survfit()”, from 

the same ‘survival’ package to plot the curves. The number at risk is compared to the 

number of events at each unique death time and this information is used to generate the 

survival curves. Next, I used linear mixed modelling, function “lmer()’ (lme4 package; 

Bates et al., 2015) to investigate differences between the treatments in growth (seedling 

length) and stomatal conductance rates over three periods of the year, for each species 

independently. In this analysis, I included “month”, “treatment” and “time” (“time” 
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being only applied for stomatal conductance analysis) as fixed factors. Then, with same 

analysis approach, I investigated differences in shoot dry mass and leaf water potentials, 

in which “treatment” was used as a fixed factor for both analyses, whereas “period” was 

used as a second fixed factor for the water potential analysis only. 

Glasshouse data of leaf water isotope composition was log transformed to better 

visualization, as donor trees presented very high concentrations of δ2H (varying 

between 1000 and 15000 ‰) and seedlings presented lower concentrations (varying 

between 25 to 125 ‰); and outliers detected were excluded from the analysis. Both 

field and the corrected glasshouse isotope data were analysed with linear mixed effects 

models, in which “treatment” and “collection” were included as fixed factors. Lastly, 

soil moisture data was analysed with “treatment”, “month” and “hour” included as fixed 

factors. I also repeated the soil moisture analysis changing the covariate “neighbour” for 

an estimate of total stomatal conductance per bag; since the results were similar, I kept 

the simplest version of the models with “neighbour” as a covariate. For all linear mixed 

effects models, the Akaike information criterion corrected for low sample sizes (AICc) 

was used to select the most parsimonious model (the model with the lowest AICc), 

where and differences >2 in AICc values are considered meaningful (Burnham and 

Anderson, 2004, 2002). 

 

6.4 RESULTS 

 

Field experiment 

 

There was an increase in δ2H in the leaves of the donor plants and B. attenuata 

seedlings from both treatments after the injections (Appendix 6; Fig. 6.2). Soil water 

content variation was best explained by the model that included “month”, “treatment” 

and their interaction (Appendix 6). The sensors positioned at 20 cm depth recorded 

similar amount of soil moisture, and this amount was higher than the sensors positioned 

at 50 cm (Fig. 6.3). Overall, soil water content measured with all sensors decreased over 

summer months (Fig. 6.3) and increased in April and May. 
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Figure 6.2: Leaf water isotope composition (‰VSMOW) measured at the end of the field 
experiment of initial and 12, 24 and 48 hours after injections of a deuterium enriched solution 
into taproots of donor plants. Measurements were made on: a) donor plants and b) B. attenuata 
seedlings from both treatments, with a barrier to isolate seedlings (+B) and without the barrier (-
B). For the boxplot graphs, boxes represent the interquartile range of the distributions, 
horizontal dark lines inside them represent the medians, whiskers represent approximately 2 
SDs of the distributions, and open circles represent outliers. 
 

 

 

 
Figure 6.3: Daily average of soil volumetric water content that was measured hourly from 
November 2013 to May 2014 with dielectric sensors placed in 3-4 blocks in both sides of the 
donor tree (at the depth of 20 cm and 50 cm) and in both treatments (with a barrier to isolate 
seedlings, +B, and without the barrier, -B). 
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B. attenuata seedlings survival was similar for both treatments, despite of 

seedlings from -B appeared to have marginally higher mortality than seedlings from +B 

(chisq = 3.4, df = 1, p = 0.065, Fig. 6.4). There were no differences in the survival 

curves of G. tomentosum seedlings between groups (+B and -B; chisq =0 .2, df = 1, p = 

0.695, Fig. 6.4) with both groups showing very high mortality (Fig. 6.4).  

 

 
Figure 6.4: Survival data collected from the field experiment and analysed with the function 
“survdiff()” (R verison 3.0.2). Survival probability is shown for B. attenuata and G. tomentosum 
seedlings from both groups –isolated from the donor plant (+B) and potentially interacting with 
it (-B). 
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of the day and the interactions between these two factors (Appendix 6 and Fig. 6.6). B. 

attenuata seedlings had the highest stomatal conductance rates early in the day and in 
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February, respectively (Appendix 6 and Fig. 6.6). Conversely, stomatal conductance 

rates of G. tomentosum were affected by time, month and treatment and the interaction 

between treatment and month and between treatment and time (Appendix 6 and Fig. 

6.6). In December and January, individuals of G. tomentosum from +B had higher 

stomatal conductances rates, averages of 108.57 and 61,57 mmol m-2 s-1 respectively, 

than individuals from –B, averages of 65.51 and 38.59 mmol m-2 s-1 respectively, and 

this trend appeared to reverse in February. However, for this last period, there were not 

enough replicates to test it (Fig. 6.6). Banksia attenuata seedlings had greater growth in 

shoot and in shoot dry mass in the +B treatment (Appendix 6; Figs. 6.6 and 6.5). G. 

tomentosum seedlings from the +B also had higher growth rates than the ones from -B 

(Appendix 6; Fig. 6.6). Seedlings of B. attenuata from -B had similar leaf water 

potential values to the seedlings from +B, although values were different for pre-dawn 

and mid-day measurements (Appendix 6; Fig. 6.5). 

 

 
Figure 6.5: Measurements performed at the end of the field experiment of: a) Dry mass of 
Banksia attenuata seedlings from both treatments; b) Pre-dawn and mid-day leaf water potential 
measured in the donor plants and in B. attenuata seedlings from both treatments, with a barrier 
to isolate seedlings (+B) and without the barrier (-B). For the boxplot graphs, boxes represent 
the interquartile range of the distributions, horizontal dark lines inside them represent the 
medians, whiskers represent approximately 2 SDs of the distributions, and open circles 
represent outliers. 
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Figure 6.6: Field measurements performed in December, January and February of stomatal 
conductance measured in: a) Banksia attenuata (BA); and b) Gompholobium tomentosum (GT). 
c) Growth rates measured in the same three periods of BA and GT. Means and standard errors 
are shown for all line graphs, with the exception for GT measured in February, due to the small 
number of replicates (n= 5-30, depending of the month). Measurements were made in both 
treatments: with a barrier (+B) and without the barrier (-B). For the boxplot graphs, boxes 
represent the interquartile range of the distributions, horizontal dark lines inside them represent 
the medians, whiskers represent approximately 2 SDs of the distributions, and open circles 
represent outliers. 
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Glasshouse experiment 

 

Banksia attenuata and G. tomentosum seedlings grown with donor plants all showed an 

increase in leaf δ2H in both treatments. This increase was higher for seedlings from the 

D+w treatment than for the D-w treatment (appendix 7 and Fig. 6.7). Soil moisture was 

affected by month, treatment and their interaction (appendix 7), with the treatment D+w 

showing the highest soil water content (Fig. 6.8). 
 

 
Figure 6.7: Glasshouse measurements of leaf water isotope composition (‰VSMOW) of donor 
plants and seedlings of Banksia attenuata and of Gompholobium tomentosum for both 
treatments: with donor trees accessing water table (D+w) and with donor trees deprived of a 
water table (D-w). Collections were made before (initial) and 12, 24 and 48 hours after 
injections of a deuterium enriched solution adjacent to the deep roots of donor plants. Data was 
log transformed to better visualization, as scales were very different for donor trees and 
seedlings. For the boxplot graphs, boxes represent the interquartile range of the distributions, 
horizontal dark lines inside them represent the medians, whiskers represent approximately 2 
SDs of the distributions, and open circles represent outliers. 
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Figure 6.8: Daily average of soil volumetric water content measured in the glasshouse 
experiment hourly from October 2014 to March 2015. Dielectric sensors were placed 10 cm 
deep in 8 bags from the treatment with donor trees accessing water table “D+w”, 5 from the 
treatment without a donor tree “NoD” and 3 from the treatment with donor trees deprived of a 
water table “D-w” treatments. 
 

Banksia attenuata seedlings survived best in the D+w treatment, approximately 

58%, and in the NoD treatment, approximately 53%, than when growing in the D-w 

treatment, in which only approximately 29% survived,  (chisq = 10.5, df = 2, p = 0.005, 

Fig. 6.9). Conversely, G. tomentosum seedlings survived more in the “D-w” treatment, 

approximately 90%, compared to the treatments D+w, which approximately 53% of the 

seedlings survived, and to “NoD”, which approximately 61% of the seedlings survived 

(chisq = 17.8, df = 2, p = 0.0001, Fig. 6.9).  
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Figure 6.9: Survival data collected from the glasshouse experiment and analysed with the 
function “survdiff()” (R verison 3.0.2). Survival probability is shown for Banksia attenuata and 
Gompholobium tomentosum seedlings from all groups –growing without a donor plat (NoD), 
growing with a donor plat accessing water table (D+w), and growing with a donor plant 
deprived from a water table (D-w). 
 

Stomatal conductance rates of both B. attenuata and G. tomentosum were affected 

by month, time, treatment and the interactions between month and treatment and month 

and time (Appendix 7 and Fig. 6.10). The highest stomatal conductance rates recorded 

for the B. attenuata seedlings were in November and they progressively decreased over 

the following months (Fig. 6.10). B. attenuata seedlings growing in the NoD treatment 

had the highest stomatal conductance rates, followed by seedlings in the D+w treatment, 

and the seedlings from D-w had the lowest rates. By May, there was no discernible 

difference in stomatal conductance from B. attenuata seedlings between treatments 

(Fig. 6.10). Seedlings of G. tomentosum had higher stomatal conductance rates over the 

first two periods (November to January) than later in the experiment (April-May; 

(Appendix 7 and Fig. 6.10). Individuals growing in both D+w and D-w treatments had 
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higher stomatal conductance rates in the first period, but this relationship changed over 

the next two periods (Appendix 7 and Fig. 6.10). In the second period, seedlings 

growing in the NoD treatment and in the D+w had similarly high stomatal conductance 

rates, with the exception of mid-day measurements, in which seedlings from NoD 

showed a higher peak (Appendix 7 and Fig. 6.10). In the last period, stomatal 

conductance rates were higher in the seedlings from the NoD treatment, followed by the 

seedlings from the D-w and then those from the D+w treatment (Appendix 7 and Fig. 

6.10). 

The growth of B. attenuata and G. tomentosum seedlings were influenced by 

month, treatment and their interaction (appendix 7). Seedlings of B. attenuata from the 

NoD treatment recorded similar growth to the other treatments in the first two periods 

of measurement but had the highest growth during the third (driest) period (Fig. 6.10). 

In the first period of measurement, G. tomentosum seedlings from the D-w treatment 

had higher growth than the other seedlings. During the second period, seedlings from D-

w grew more than seedlings from NoD. In the third period, seedlings from all 

treatments had similar growth (Fig. 6.10). Seedlings of B. attenuata from the NoD 

treatment had the highest dry mass, whereas seedlings from the other two treatments 

had similar dry mass values (Appendix 7 and Fig. 6.11). G. tomentosum seedlings, had 

similar dry mass values in all treatments (Appendix 7 and Fig. 6.11). 

  



 

  
102 

 
Figure 6.10: Glasshouse measurements performed in November-December, January-February 
and March-April of stomatal conductance measured in a) Banksia attenuata and in b) 
Gompholobium tomentosum. c) Growth rates measured in the same three periods of B. attenuata 
(BA) and G. tomentosum (GT). Measurements were made in all treatments: with donor trees 
accessing water table (D+w), with donor trees deprived of a water table (D-w) and without a 
donor tree “NoD”. For the boxplot graphs, boxes represent the interquartile range of the 
distributions, horizontal dark lines inside them represent the medians, whiskers represent 
approximately 2 SDs of the distributions, and open circles represent outliers. 
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For donor plants and B. attenuata seedlings, leaf water potential values showed 

the expected pattern of pre-dawn values close to zero and mid-day values ranging from -

1 to -2 (MPa, Appendix 7 and Fig. 6.11). However, there were no differences between 

treatments (Appendix 7 and Fig. 6.11). For G. tomentosum, leaf water potential 

measurements of pre-dawn and mid-day were more negative for “NoD” and “D-w” 

treatments, whereas for “D+w”, pre-dawn values were closer to zero (Appendix 7 and 

Fig. 6.11). 

 
Figure 6.11: Glasshouse measurements performed at the end of the experiment of: a) Pre-dawn 
and mid-day leaf water potential measured in the donor tree, in Banksia attenuata and 
Gompholobium tomentosum seedlings from all treatments, with donor trees accessing water 
table (D+w), with donor trees deprived of a water table (D-w) and without a donor tree “NoD”. 
b) Dry mass of B. attenuata and G. tomentosum seedlings from all treatments. For the boxplot 
graphs, boxes represent the interquartile range of the distributions, horizontal dark lines inside 
them represent the medians, whiskers represent approximately 2 SDs of the distributions, and 
open circles represent outliers. 
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6.5 DISCUSSION 
 
Hydraulic redistribution and water uptake by seedlings 
 

I found strong evidence that donor plants are able to redistribute water and that recipient 

B. attenuata seedlings are able to absorb the hydraulically redistributed water in my 

field and glasshouse experiments. The experiment setup in the glasshouse was 

constructed in a way to prevent, or at least reduce, recipient seedlings of B. attenuata 

reaching the water table. Thus, the increased leaf δ2H of recipient seedlings of B. 

attenuata in both experiments is evidence of the use of hydraulically redistributed water 

by these recipient seedlings. For G. tomentosum seedlings, the increase of δ2H in the 

leaves was entirely attributed to hydraulic redistribution from an adjacent donor tree in 

the glasshouse experiment since, in addition to the experiment setup, all roots in the 

pipes were inspected at harvest time and no G. tomentosum roots were found in the 

pipes (B. attenuata and G. tomentosum form roots that are distinguished by colour). 

These results support recent findings on the absorption of hydraulically lifted water by 

neighbouring plants (Egerton-Warburton et al., 2007; Liste and White, 2008; Ludwig et 

al., 2004; Pang et al., 2013). 

Seedlings of B. attenuata are able to grow roots at least to 1-1.5 m deep in the first 

six months of growth (Canham, 2011; Groom, 2004; Chapter 5 of this thesis). So, they 

are probably investing in early growth of deep roots and thus may access water from 

deep layers within their first summer drought. Therefore, seedlings of deep-root species 

such as B. attenuata are then less likely to rely in hydraulically redistributed water from 

a donor tree to survive summer drought, despite being able to absorb it. Seedlings of G. 

tomentosum, on the other hand, have shallow-medium roots, being able to grow roots to 

approximately 70cm within first six months (Groom et al., 2000; Chapter 5 of this 

thesis; Pate and Bell, 1999). Soil water availability at such depth can be lower than 1% 

(Zencich et al., 2002) during summer months in some areas of Southwest Australia and, 

therefore, the absorption of hydraulically redistributed water by shallow-medium 

species might be crucial for survival over first summer drought. 

Although impermeable barriers were placed in the field experiment (55 cm deep) 

to control interaction between donor plants and seedlings (Fig. 6.1), it appears that the 

barriers were not effective in preventing donor-seedling root interaction, as suggested 

by the increase in concentration of deuterium in the recipient seedlings in both the +B 
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and -B. It is possible that donor plants used in the experiment may have had deeper 

lateral roots than the barriers, which interacted with deep roots of the recipient seedlings 

that were likely reaching 1-1.5 m depth at that stage (Canham, 2011; Groom, 2004; 

Chapter 5 of this thesis). Surprisingly, soil water content measured in the field through 

the sensors was higher at 20 cm than at 50 cm. This result suggests that hydraulic lift 

could have been affecting soil moisture at shallower layers of both treatments. Such 

differences in soil moisture could also be resulted from differences in the 

hydrophobicity of soils at the two depths, being higher (more hydrophobic) at shallower 

layers and hence little water could drain to deeper layers. 

In the glasshouse experiment, the increased of δ2H in the leaves of seedlings from 

the D-w treatment, suggests that donor plants of the D-w treatment could have been 

accessing residual deep water near the bottom of pipes, including the δ2H spiked water, 

despite the water tables from D-w having been removed at the beginning of the 

experiment (October 2014). It also suggests that under drier conditions there maybe still 

hydraulic redistribution. On the other hand, the D+w treatment had the highest soil 

water content, which is consistent with the slighter higher values for leaf δ2H from 

seedlings growing in this treatment. Donor plants from the D-w treatment showed a 

delayed response in taking up the deuterium-enriched water in relation to the ones 

growing in the D+w treatment and as a result the seedlings had slightly lower values of 

leaf δ2H. Therefore, it is possible that the magnitude of hydraulic lift in the D+w 

treatment was higher than in the D-w. Clearly, soil water content of (D+w) was higher 

than of the other two treatments. This result can be an evidence of hydraulic lift as water 

could have been transported from deeper layers to shallower lawyers through the roots 

of donor plants. It could also mean that donor plants were using water from deeper 

layers and therefore shallower layers continued hydrated for a longer period than D-w 

and NoD did. 

 

Interaction between donor plants and receiver seedlings 

 

Contrary to my hypothesis, the results suggest that although seedlings from G. 

tomentosum and B. attenuata were able to absorb hydraulically redistributed water, the 

interaction with donor plants was not beneficial for the survival and growth of the 

seedlings. These findings are consistent with an updated version of the stress-gradient 
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hypothesis, which currently states that competition is more prominent than facilitation 

when conditions are extremely stressful, with facilitation more evident in moderate 

conditions (Holmgren and Scheffer, 2010). There has also been evidence that supports 

this revised hypothesis, in which donor plants are shown to not affect or negatively 

affect water availability under very dry conditions (Aguiar and Sala, 1994; Kitzberger et 

al., 2000; Tielbörger and Kadmon, 2000). Similarly, a study conducted in the savannah 

of northern Tanzania found that the facilitative effects of hydraulic lift for neighbouring 

species was overwhelmed by competition for water (Ludwig et al., 2004). Indeed, 

summer water deficits in Southwest Australia represent a major recruitment bottleneck 

for seedling in Mediterranean-type ecosystems (Castri, 1973) and conditions are too dry 

to support facilitation between deep-rooted plants and deep-rooted and shallow-rooted 

seedlings. In fact, the impact of competition was greater than the benefits conferred 

from hydraulic redistribution, at least during the driest months studied. Therefore, 

competition could be affecting more intensively this plant community than previously 

considered.  

It is also possible that both facilitation and competition are affecting the 

community in different times of the year. One possible evidence for this is that 

seedlings of G. tomentosum growing with donor plants that were accessing water 

presented higher stomatal conductance rates over first summer months when conditions 

were less dry, and this relationship reversed towards the end of summer, when 

conditions became drier (Fig. 6.10). Wright et al., (2014) has recently found similar 

outcome when testing facilitation and competition between pines and neighbours, as the 

effects of these interactions changed during the year. 

Another possible hypothesis is that seedlings and donor plants were competing for 

resources and maybe water was not the most limiting of them, despite of the initial 

addition of nutrients. It is known that soils from the Bassendean Dune System, where 

the field experiment was conducted, are extremely poor in nutrients with phosphorus, 

nitrogen and manganese being the most scarce (Laliberté et al., 2012; Shane and 

Lambers, 2005b; Twidale and Campbell, 1988). Therefore, plants that interacted less 

with the donor tree in the field could have had access to more nutrients than seedlings 

that grew in the side where interaction with the donor tree was stronger. There is some 

evidence that in arid environments and soils with course texture, maximum lateral roots 

spread is greater and in nutrient patches the overlap zone of root growth increases 
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(Casper et al., 2003). Consequently, lateral roots of donor plants could have limited the 

growth of seedlings’ lateral roots besides the stronger competition in the available 

nutrient patches. Possibly similar competition for nutrients happened in the glasshouse 

experiment, where soils were probably low in nutrients (only small amounts of slow-

release fertiliser were added to pure sand). It has also been shown that some plants 

maximize root length in order to pre-empt nutrient supplies when coming into contact 

with neighbours (Craine and Dybzinski, 2013). Yet, the competition for nutrients 

between donor plants and seedlings hypothesis needs further testing since it was beyond 

the scope of this study.  

6.6 CONCLUSION 

 

This study showed that interaction between deep-rooted plants and surrounding 

seedlings is complex. Despite sharing redistributed water accessed by deep-rooted 

donor plants, seedlings of B. attenuata (deep-rooted species) and G. tomentosum 

(shallow-rooted species) did not benefit in terms of improved survival, growth and 

water relations, at least during their first summer months. The mechanisms behind these 

interactions remain unclear. It is likely that donor plants and seedlings competed for 

water or possibly another resource, most likely nutrients. Therefore, this study does not 

support the idea of using donor plants for improving establishment of seedlings in such 

ecosystems during their first summer drought, at least with these specific species. It is 

possible, however, that different species behave differently, but this needs further 

testing. I suggest that future studies should aim at: (1) unveiling the mechanisms by 

which hydraulically redistributed water is transferred from one plant to the other; (2) 

testing the facilitation hypothesis with better control of other components, such as 

nutrients; and possibly with different combinations of soil water and nutrient levels, and 

(3) establishing whether facilitation is affecting the community in a different period of 

the year and how it could improve survival and growth of seedlings. 



 

  
108 



 

 
109 

CHAPTER SEVEN: GENERAL DISCUSSION 

Over the last few decades the world has changed extensively at faster rate and over 

larger scales than in previous centuries (Steffen et al., 2004). In MTEs, where drought is 

predicted to increase in frequency and intensity (IPCC, 2014; Klausmeyer and Shaw, 

2009), assembling native ecosystems that can withstand drier conditions should be the 

goal for effective management and intervention of such areas. The studies reported in 

this thesis together provided insights into a trait-based approach that restoration 

practitioners might use to achieve effective ecological intervention of MTEs. These 

studies have added to our understanding of plant resistance to water deficits, particularly 

on the different functional strategies that native plants use to survive summer drought in 

Southwest Australia. At a broader scale, the studies provided information on the 

functioning and assembly of a Mediterranean ecosystem, which is relevant when 

planning ecological intervention.  

 

Functional traits and ecological intervention 

The use of functional traits has recently been described to be a powerful tool for 

ecological intervention (Gondard et al., 2003; Laughlin, 2014; Lavorel, 2013), 

providing restoration practitioners with qualitative information and a framework 

whereby suitable species might be selected for intervention efforts. The use of 

functional traits associated with water relations has not been sufficiently explored and 

applied in ecology. Yet, it can be used as an important tool for ecological intervention 

of MTEs, by assisting with the selection of species more suited to drier conditions. The 

identification of “most suitable species” will depend on the specific area to be 

rehabilitated and on its existent functional types. For example, it might be beneficial to 

use species less dependent on deep water for an area where the water table is declining. 

Therefore, knowing the hydraulic functional types present in an ecosystem should be 

the first step for ecological intervention of MTEs. Based on this idea, I used a functional 

approach to assess the different water-use strategies of adult plant species growing on 

the Swan Coastal Plain (SCP) in Southwest Australia. However, before attempting to 

develop the traits based framework a literature review (Chapter 2) was needed to 

identify key functional traits since there are a vast number of plant traits that have been 

employed in ecological intervention (Ostertag et al., 2015; Pywell et al., 2003; Weiher 
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et al., 1999). The seven traits selected for investigation are all associated with carbon 

assimilation and water loss, which together comprise an important trade-off that shapes 

most plant responses to water stress (Farquhar et al., 1980). The key functional traits 

selected included leaf carbon isotope composition, leaf nitrogen and phosphorus 

contents, leaf mass per area, leaf water potential at turgor loss point (πtlp), and anatomy 

of xylem vessels.  

These traits provided theoretical insights into water-use strategies of 

Mediterranean species when analysed in combination. For example, a plant that presents 

high values of leaf [N], [P], Amax, low values of δ13C and of πtlp, and a few large xylem 

vessels is expected to sustain high stomatal conductance rates and high hydraulic 

efficiency during dry conditions. Besides, it was possible to theorise on the different 

hydraulic functional types. Phreatophytes could be included in the group that presents 

high stomatal conductance rates and high hydraulic efficiency during dry conditions 

because these plants can access deep water and therefore sustain such responses. 

Drought tolerant species, on the other hand, are expected to present high stomatal 

conductance rates identified through high values of leaf [N], [P], Amax, high values of 

πtlp, low values of δ13C, and high hydraulic safety, identified by many small xylem 

vessels (Chapter 2, Fig. 2.2). Such knowledge allows for identification of the habitat 

where species can potentially survive. Although there is a continuum in trait values, it 

will be interesting to investigate the range of trait values that characterise each 

functional group as well as possible overlaps in functional responses. For instance, what 

is the range of trait values that characterise phreatophytic species? This is certainly a 

promising avenue to advance the use of functional traits for identification of functional 

types.  

The framework developed from the literature review (Chapter 2) enabled the 

application of the trait-based approach (Chapter 4), since it was possible to identify a 

few traits that matched pre-determined criteria (suitable methodologies for 

Mediterranean species, efficacy of measurement, association with resistance to water 

deficits and with effect traits). Also, the conceptual analysis of these traits provided the 

basis for determining a plant’s response to water deficits that can be used for restoration 

practitioners. An issue that emerged from the literature review was the need to refine the 

osmometry methods used to extract sap for measuring πtlp. The standard methodology 

(pressure-volume curves) is very time-consuming and therefore impractical for 
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restoration practitioners that need to assess a vast number of plant species in 

Mediterranean ecosystems. 

Through an experiment specifically designed to test the accuracy of SE 

osmometry to measure πtlp (Chapter 3), I was able to demonstrate that this alternative 

technique can be used to measure πtlp of small leaved sclerophylls species typical of 

MTEs. This technique proved to be efficient since 30-40 rather than 6-8 samples can be 

analysed in a day and it is suitable for species with small and large leaves. Results 

showed that there were no differences between the rehydration and no rehydration 

treatments, so I support the idea of using SE osmometry technique without prior 

rehydration, as previously suggested in the literature (Kubiske and Abrams, 1991a, 

1991b, 1990; Meinzer et al., 2014). More accurate measures, on the other hand, might 

be obtained during periods of extreme differences in water availability, in which natural 

rehydration (Mediterranean winter) and dehydration (Mediterranean summer) of leaf 

tissue take place. I suggest further experimentation to test this idea, more specifically 

measuring the same individuals during winter and summer for a range of species from 

different taxonomic groups and with a diversity of leaf shapes and sizes. 

In Chapter 4, I measured the seven functional traits selected in the literature 

review and three other traits (water potential at pre-dawn and at mid-day and leaf 

nitrogen isotope composition) in species from the SCP. The six leaf traits — Dmax, Ds, 

LMA, WD, δ13C, and TLP — appeared to be key traits underlying plant strategies in 

relation to water use since they explain trait variation and are easy to measure. With 

simple analyses it was possible to form distinct group of species that present similar 

strategies to cope with water stress, which is valuable information for ecological 

intervention of such ecosystems. Also, it revealed the traits that contributed the most for 

each group and for each site as well as the similarities within and between groups and 

within and between sites, which is a key information when restoring through reassembly 

(Funk et al., 2008). In particular, the similarity found between functional groups and 

“root-type” groups is strong evidence that the analyses of functional traits provided 

accurate information of the functioning of this community. This is due to the fact that 

the SCP is strongly influenced by groundwater and, as a consequence, root depth is an 

important attribute (Zencich et al., 2002); which might not be the case of communities 

less affected by groundwater. This study provided practical and relevant information for 

management and intervention of the SCP, offering a robust approach for species 
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selection. For the SCP example, species can be selected based on their requirements, 

such as connection to a shallow or deep water table. In a broad sense, this knowledge 

adds to our understanding of the dynamics between plant traits and ecological filters, 

which has become extremely important for biodiversity conservation in the face of 

climate change (Chapter 2, Fig.2.1). This approach can be applied to similar 

communities within MTEs, thus enhancing effective ecological intervention. The 

application of the trait-based approach (Chapter 4) supported the use of functional traits 

for efficiently screening species functional types. 

I also discussed some limitations and concerns, which trait-based ecology 

approaches encounter and these need to be taken into account. One concern was the 

amount of plasticity that species may present, i.e. functional traits values can be 

different depending on the plants’ specific habitat. In this study, Banksia attenuata was 

included in two different functional groups because individuals were collected from two 

distinct sites. This is evidence that plasticity should always be considered in functional 

trait approaches. The application of a theory-based approach often presents limitations 

and thus further testing towards refining this method is required, especially in 

determining when plasticity can be disregarded (Shipley et al., 2015). However, there 

has been recent evidence that a functional ecology approach, when used for ecological 

intervention projects, can succeed in catering for different demands, such as increasing 

survival or seedling recruitment of native species (Ostertag et al., 2015), predicting the 

success of particular restoration practices (Sandel et al., 2011), predicting the likely 

performance of species in restored vegetation (Pywell et al., 2003), and providing an 

indication of the potential success of a completed restoration project (Engst et al., 

2016). 

 

Functional traits, plant development and ecosystem properties 

For MTEs, the first summer is critical for seedlings survival (Hallett et al., 2014; Lloret 

et al., 2005; Rokich, 2016) and thus seedling responses to summer drought might play 

an important role in community assembly. To provide a more complete assessment of 

community dynamics and assembly, I investigated the strategies that juveniles employ 

to survive summer drought. However, I acknowledge that the application of the 

functional approach for seedlings is challenging due to the fact that it is difficult to 

identify seedlings under similar stage of development in the field. Moreover, many 
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species are very small in their first year of development, which makes it difficult to 

collect sufficient material for measurements of functional traits. Therefore, it is 

necessary greater control within experiments and a greater number of replicates to 

assess ecological strategies of juveniles or to identify the critical thresholds at each 

stage of development which would make predictions of species functional types more 

accurate.  

Under water limitation, plants can reduce stomatal conductance and rely on their 

stored non-structural carbohydrates to survive periods of water deficits. In contrast they 

might tolerate drought by maintaining high hydraulic and stomatal conductance, 

photosynthesis and growth and by having a hydraulic system robust enough to 

withstand high tensions in the xylem vessels. Other plants have less reliance on stomatal 

control since they grow deep roots to access water stored in deeper layers thus avoiding 

serious water deficits (Eamus et al., 2006; Le Maitre et al., 2000; McDowell et al., 

2008). These are three quite different ways that species from the SCP might use to 

survive drought. To evaluate the significance of each of these mechanisms, two 

experiments were conducted to investigate water relations, stomatal regulation and 

accumulation and use of non-structural carcohydrates (NSC) in seedlings from 

Southwestern Australian species during their first summer drought. Although the 

experiments (Chapter 5) were limited due to high mortality, evidence for at least two 

different ecological strategies were observed: 1) use of water from deep soil layers, 

stomatal regulation and possibly use of NSC (Banksia seedlings); and 2) tolerance to 

water deficits, despite reasonably low stomatal conductance rates (at least for G. 

tomentosum). Whether the two strategies identified in this study can be generalised to 

other species and situations remains unclear. I suggest further investigation on the 

strategies of juveniles to survive summer drought in the SCP, including the 

development of a better and more efficient protocol to assess such drought responding 

strategies for juveniles in MTEs. In particular, it will be interesting to determine which 

functional traits will be more appropriate for measuring small samples since seedlings 

are very small in their first year of development.  

Since functional trait approaches do not take into consideration important 

interactions within an ecosystem, I investigated the facilitation and competition effects 

of a particular phenomenon –hydraulic redistribution– on seedling survival during their 

first summer drought (Chapter 6). I found that “recipient” seedlings grew and transpired 
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more when interacting less with donor plants (field experiment, Chapter 6) or without a 

donor plant (glasshouse experiment, Chapter 6), at least during summer months. These 

results suggested that seedlings and donor plants (known to hydraulically redistribute 

water) were competing. Such findings agree with recent studies testing the “stress-

gradient hypothesis” (Holmgren and Scheffer, 2010). To understand the complexity of 

facilitation and competitive interactions further research is needed for more species 

from MTEs, known to be limited by nutrients and not just by water availability. I predict 

that facilitation could be more or less important in SCP communities in different periods 

of the year, possibly affecting more the community when drought conditions are 

moderate (Holmgren and Scheffer, 2010). Evidence for this emerges from the G. 

tomentosum seedlings growing with donor plants that were accessing water, which 

showed higher stomatal conductance rates during the moist early summer months and 

the relationship reversed at the end of summer, when conditions became drier. 

Therefore, it will be interesting to design experiments able to identify such interactions 

as well as possible shifts from facilitation to competition throughout the year. 

Knowledge of when species compete or benefit from facilitation is critical for the 

establishment of seedlings and hence for ecological intervention of such areas. Also, it 

would be beneficial to have experiments designed to exclude the possibility of nutrients 

limitation (glasshouse) or by understanding seedling and soil nutrient status (field). 

 

Ecological intervention and trait-based ecology 

A new framework has recently been proposed to assist in the selection of the type of 

intervention required for the restoration or rehabilitation of ecosystems (Miller and 

Bestelmeyer, 2016). From this conceptual diagram it is evident that management of 

“novel ecosystems” is an option when restoration does not intend to recover the 

historical state but the altered ecosystem is functional and self-sustaining (Fig.7.1; 

Miller and Bestelmeyer, 2016). On the other hand, “Partial restoration” is more 

appropriate when restoration aims to restore an ecosystem’s historical state, but 

complete recovery is not feasible (Fig.7.1; Miller and Bestelmeyer, 2016). The trait-

based approach proposed in this thesis can specifically assist with species selection 

when “management of novel ecosystems” and “partial restoration of ecosystems” are 

required for MTEs (Fig.7.1). In both scenarios, using species with traits that match 

future environmental and climate conditions can be crucial for success (Prober et al., 
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2015), rather than using fixed assemblages and restoration targets that are frozen in 

time. Another perspective is to achieve an initial target (based on current conditions) 

and then allow the functional traits to self-sort the system after that point, reaching a 

successful restoration state. For these three contexts “management of novel 

ecosystems”, “partial restoration of ecosystems” and “restoration”, I suggest the use of 

the six functional traits– Dmax, Ds, LMA, WD, δ13C, and TLP– to efficiently identify the 

ecological strategies employed by Mediterranean species to resist water deficits. This 

can be achieved when measurements of these traits are examined with multivariate 

analyses and with SIMPER or other types of “cluster analyses”. As a result, it is 

possible to determine functional types, to establish the similarities and dissimilarities 

between and within groups, and to identify the traits that are most associated with each 

functional group.  

 

 

Figure 7.1: Diagram with possible alternatives for ecosystem intervention. The trait-based 
approach (in red) can provide a screening of functional types present in a community, which is 
essential for selecting appropriate species for “partial restoration” and “management” of 
ecosystems under the risk of environmental and climate changes. Also, it can be used for 
“restoration”, first reaching an initial target, and then allowing for the functional traits to self-
sort the system after that point. Figure modified from Miller and Bestelmeyer, (2016). 
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Finally, I conclude that the studies undertaken in this thesis have contributed to 

the identification of functional traits that can provide the basis for screening species’ 

functional profiles in relation to water use, at least for adult plants of MTEs. The 

application of such a framework will accelerate our knowledge of community assembly 

and functioning, which will bring us closer to succeed in restoring ecosystems facing 

climate and other changes. The trait-based approach provides a rigorous first step in 

species selection and can be applied with relatively little effort by restoration 

practitioners. Inclusion of other components might also be required to refine and 

improve the accuracy of any trait-based framework. Components that need 

consideration include an understanding of juvenile vs. adult ecological strategies 

employed to resist summer drought; the role of important interactions, such as 

competition and facilitation; and an ability to determine when plasticity in response to 

the stressor is not important. As much as the trait-based approach to ecological 

intervention has value it should be recognised that there are many practical concerns 

that feed into final species choices including characteristics related to fire resistance, 

pollination type, fruit dispersion, availability of nutrients, culturally important species, 

and seedling cost and availability.  
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A
ppendix 1: Southw

estern A
ustralian species, taxonom

ic fam
ily, and m

ean ± standard error values per species (n=4) for the leaf param
eters: A

rea (A
), 

thickness (T), leaf dry m
ass content (LD

M
C

), specific leaf area (SLA
) and density (D

) (C
hapter 3). 

Species 
Fam

ily 
A

 (m
m

2) 
T

 (m
m

) 
L

D
M

C
 (m

g g
-1) 

SL
A

 (m
2 kg

-1) 
D

 (g cm
-3) 

Adenanthos cygnorum
 D

iels. 
Proteaceae 

76.15 ± 3.62 
0.54 ± 0.03 

406.33 ± 8.66 
4.19 ± 0.44 

0.45 ± 0.02 
Astrolom

a m
acrocalix Sond. 

Ericaceae 
11.44 ± 2.12 

0.20 ± 0.04 
361.67 ± 81.74 

6.18 ± 1.79 
0.99 ± 0.07 

Banksia attenuata R
.B

r. 
Proteaceae 

367.90 ± 45.28 
0.58 ± 0.11 

551.69 ± 26.47 
3.06 ± 0.18 

0.63 ± 0.11 
Banksia ilicifolia R

.B
r. 

Proteaceae 
563.79 ± 34.56 

0.54 ± 0.03 
424.16 ± 13.14 

3.58 ± 0.18 
0.53 ± 0.03 

Banksia m
enziesii R

.B
r. 

Proteaceae 
1716.30 ± 113.49 

0.49 ± 0.04 
574.84 ± 28.35 

2.75 ± 0.12 
0.76 ± 0.08 

Erem
aea pauciflora Endl. 

M
yrtaceae 

3.35 ± 0.64 
0.34 ± 0.03 

302.65 ± 34.00 
4.44 ± 0.70 

0.72 ± 0.12 
G

om
pholobium

 tom
entosum

 Labill. 
Fabaceae 

51.48 ± 4.97 
0.37 ± 0.02 

407.92 ± 50.21 
4.38 ± 0.38 

0.65 ± 0.08 
K

unzea glabrescens Toelken 
M

yrtaceae 
6.11 ± 0.36 

0.30 ± 0.04 
248.74 ± 11.47 

6.26 ± 0.15 
0.56 ± 0.07 

M
elaleuca preissiana Schauer 

M
yrtaceae 

9.81 ± 0.63 
0.30 ± 0.02 

260.93 ± 13.26 
6.34 ± 0.52 

0.54 ± 0.03 
Pultenaea reticulata (Sm

.) B
enth.  

Fabaceae 
18.37 ± 0.86 

0.25 ± 0.01 
244.03 ± 76.11 

4.90 ± 0.24 
0.83 ± 0.03 

Regelia ciliata Schauer  
M

yrtaceae 
5.28 ± 0.56 

0.21 ± 0.01 
212.45 ± 20.69 

5.97 ± 0.48 
0.83 ± 0.12 

 



 

 
141 

A
ppendix 2: Southw

estern A
ustralian species and m

ean ± standard error values per species (n=4) for each of the follow
ing: osm

otic potential at full turgor, 
osm

otic potential at turgor loss point, cell elasticity, apoplastic fraction; and osm
om

eter osm
otic potential at full turgor (C

hapter 3). 

Species 
P-V

 O
sm

otic 
Potential (M

pa) 
T

urgor loss point 
(M

pa) 
E

lasticity 
(M

Pa) 
Sym

plastic 
fraction 

A
poplastic 
fraction 

O
sm

. osm
otic 

potential (M
pa) 

N
on-rehydrated 

  
  

  
  

  
  

Adenanthos cygnorum
 D

iels. 
-0.95 ± 0.13 

-1.37 ± 0.05 
10.06 ± 2.83 

0.64 ± 0.42 
0.36 ± 0.08 

-1.45 ± 0.02 
Astrolom

a m
acrocalix Sond. 

-1.04 ± 0.09 
-1.30 ± 0.08 

9.71 ± 0.80 
0.51 ± 0.32 

0.49 ± 0.18 
-1.36 ± 0.14 

Banksia attenuata R
.B

r. 
-1.35 ± 0.21 

-1.99 ± 0.16 
21.16 ± 3.97 

0.81 ± 0.37 
0.19 ± 0.13 

-1.94 ± 0.18 
Banksia ilicifolia R

.B
r. 

-1.30 ± 0.30 
-1.81 ± 0.21 

22.81 ± 4.74 
0.72 ± 0.43 

0.28 ± 0.07 
-1.73 ± 0.07 

Banksia m
enziesii R

.B
r. 

-1.31 ± 0.26 
-1.93 ± 0.30 

18.16 ± 2.65 
0.79 ± 0.48 

0.21 ± 0.02 
-1.68 ± 0.10 

Erem
aea pauciflora Endl. 

-1.10 ± 0.13 
-1.57 ± 0.13 

15.78 ± 5.39 
0.73 ± 0.38 

0.24 ± 0.12 
-1.53 ± 0.10 

G
om

pholobium
 tom

entosum
 Labill. 

-1.05 ± 0.04 
-1.25 ± 0.08 

10.97 ± 1.55 
0.34 ± 0.10 

0.66 ± 0.40 
-1.05 ± 0.04 

K
unzea glabrescens Toelken 

-1.23 ± 0.13 
-1.79 ± 0.11 

9.30 ± 2.91 
0.40 ± 0.26 

0.47 ± 0.24 
-1.60 ± 0.05 

M
elaleuca preissiana Schauer 

- 
- 

- 
- 

- 
-2.12 ± 0.20 

Pultenaea reticulata (Sm
.) B

enth.  
-0.93 ± 0.11 

-1.13 ± 0.07 
13.96 ± 1.96 

0.56 ± 0.29 
0.31 ± 0.21 

-1.07 ± 0.05 
Regelia ciliata Schauer  

-1.21 ± 0.18 
-1.78 ± 0.25 

9.18 ± 1.36 
0.59 ± 0.26 

0.41 ± 0.24 
-1.80 ± 0.04 

R
ehydrated 

  
  

  
  

  
  

Adenanthos cygnorum
 D

iels. 
-0.96 ± 0.16 

-1.34 ± 0.19 
9.72 ± 2.46 

0.65 ± 0.41 
0.35 ± 0.09 

-1.55 ± 0.07 
Astrolom

a m
acrocalix Sond. 

-0.92 ± 0.05 
-1.24 ± 0.08 

12.66 ± 2.92 
0.68 ± 0.34 

0.32 ± 0.16 
-1.15 ± 0.11 

Banksia attenuata R
.B

r. 
-1.29 ± 0.07 

-1.93 ± 0.08 
20.83 ± 6.56 

0.73 ± 0.35 
0.27 ± 0.15 

-2.01 ± 0.13 
Banksia ilicifolia R

.B
r. 

-1.64 ± 0.19 
-2.11 ± 0.15 

35.71 ± 5.38 
0.75 ± 0.43 

0.25 ± 0.07 
-1.80 ± 0.05 

Banksia m
enziesii R

.B
r. 

-1.15 ± 0.28 
-1.79 ± 0.32 

13.15 ± 4.73 
0.78 ± 0.43 

0.22 ± 0.07 
-1.57 ± 0.16 

Erem
aea pauciflora Endl. 

-1.03 ± 0.09 
-1.48 ± 0.11 

12.28 ± 3.94 
0.71 ± 0.33 

0.29 ± 0.17 
-1.48 ± 0.07 

G
om

pholobium
 tom

entosum
 Labill. 

-0.95 ± 0.03 
-1.19 ± 0.01 

11.40 ± 3.96 
0.52 ± 0.31 

0.48 ± 0.19 
-0.98 ± 0.03 

K
unzea glabrescens Toelken 

-1.06 ± 0.17 
-1.70 ± 0.11 

16.32 ± 6.82 
0.57 ± 0.41 

0.27 ± 0.09 
-1.52 ± 0.05 

M
elaleuca preissiana Schauer 

-1.72 ± 0.35 
-2.27 ± 0.43 

35.83 ± 2.62 
0.81 ± 0.35 

0.19 ± 0.15 
-1.93 ± 0.10 

Pultenaea reticulata (Sm
.) B

enth.  
-0.73 ± 0.06 

-1.01 ± 0.09 
12.55 ± 3.58 

0.49 ± 0.08 
0.51 ± 0.58 

-1.06 ± 0.09 
Regelia ciliata Schauer  

-0.98 ± 0.12 
-1.56 ± 0.16 

10.42 ± 0.98 
0.77 ± 0.34 

0.23 ± 0.16 
-1.06 ± 0.25 
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Appendix 3: Site of occurrence of the fifteen plant species studied (Chapter 4), taxonomic 
family, type of roots, habit and mean ± stand errors (n=5) of the 12 functional traits measured: 
average and maximum diameter of xylem vessel (Dave, Dmax), number of xylem vessels per mm2 
(Ds), leaf mass per area (LMA), wood density (WD), leaf concentration of phosphorus ([P]) and 
of nitrogen ([N]), leaf isotope composition of nitrogen (δ15N) and of carbon (δ13C), water 
potential at turgor loss point (TLP), pre-dawn (PD) and mid-day (MD) water potentials. 

Site Species Family Root type Habit Dave (µm) 

ENHD	

Banksia attenuata R.Br. Proteaceae Deep Tree 22.58 ± 2.22 
Beaufortia elegans Shcauer Myrtaceae Medium Shrub 22.95 ± 2.02 
Banksia hookeriana Meisn. Proteaceae Deep Shrub 26.05 ± 1.46 
Melaleuca leuropoma Craven Myrtaceae Shallow Shrub 23.26 ± 1.15 

ENSW	
Banksia carlinoides Meisn. Proteaceae Shallow Shrub 20.10 ± 1.22 
Beaufortia elegans Schauer Myrtaceae Medium Shrub 22.60 ± 1.54 
Melaleuca leuropoma Craven Myrtaceae Shallow Shrub 22.06 ± 0.71 

GNHD	

Adenanthos cygnorum Diels Proteaceae Medium Shrub 29.45 ± 1.11 
Banksia attenuata R.Br. Proteaceae Deep Tree 21.72 ± 0.83 
Banksia menziesii R.Br. Proteaceae Deep Tree 25.20 ± 0.72 
Sholtzia laxiflora Benth. Myrtaceae Medium Shrub 26.11 ± 1.35 
Verticordia nitens Lindl. Myrtaceae Deep Shrub 24.99 ± 2.36 

GNMD	

Adenanthos cygnorum Diels Proteaceae Medium Shrub 28.45 ± 2.07 
Banksia attenuata R.Br. Proteaceae Deep Tree 22.84 ± 1.10 
Banksia menziesii R.Br. Proteaceae Deep Tree 23.77 ± 1.29 
Eremaea pauciflora Endl. Myrtaceae Medium Shrub 25.74 ± 3.36 
Sholtzia laxiflora Benth Myrtaceae Medium Shrub 24.92 ± 1.22 

GNMS	

Banksia attenuata R.Br. Proteaceae Deep Tree 24.04 ± 1.28 
Banksia ilicifolia R.Br. Proteaceae Deep Tree 21.49 ± 0.74 
Banksia menziesii R.Br. Proteaceae Deep Tree 21.90 ± 1.71 
Hibbertia subvaginata Steud. Dilleniaceae Shallow Shrub 17.52 ± 0.87 
Regelia inops Schauer Myrtaceae Shallow Shrub 31.26 ± 3.21 
Scholtzia involucrata Endl. Myrtaceae Medium Shrub 19.47 ± 0.52 

GNSW	

Adenanthos cygnorum Diels. Proteaceae Medium Shrub 23.82 ± 0.44 
Banksia attenuata R.Br. Proteaceae Deep Tree 24.50 ± 1.91 
Banksia ilicifolia R.Br. Proteaceae Deep Tree 21.13 ± 0.67 
Banksia menziesii R.Br. Proteaceae Deep Tree 22.82 ± 1.57 
Eremaea beaufortioides Benth. Myrtaceae Deep Shrub 30.02 ± 1.01 
Scholtzia involucrata Endl. Myrtaceae Medium Shrub 21.97 ± 0.62 
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Appendix 3 (continued) 
Site Tag Dave (µm) Dmax (µm) Ds (Nº mm-²) LMA (g m-2) 

ENHD	

Ba1 22.58 ± 2.22 35.11 ± 3.30 475.00 ± 53.82 469.40 ± 9.40 
Be1 22.95 ± 2.02 33.70 ± 3.37 491.20 ± 69.96 223.02 ± 11.10 
Bh1 26.05 ± 1.46 39.82 ± 2.21 439.20 ± 34.28 355.36 ± 21.57 
Ml1 23.26 ± 1.15 33.84 ± 3.15 499.20 ± 51.90 461.97 ± 12.95 

ENSW	
Bc2 20.10 ± 1.22 30.60 ± 2.29 419.20 ± 18.91 406.18 ± 14.08 
Be2 22.60 ± 1.54 33.79 ± 2.30 508.80 ± 39.59 267.72 ± 56.12 
Ml2 22.06 ± 0.71 32.52 ± 0.94 508.80 ± 60.27 469.40 ± 22.13 

GNHD	

Ac3 29.45 ± 1.11 48.23 ± 1.30 264.00 ± 14.91 297.59 ± 10.85 
Ba3 21.72 ± 0.83 31.53 ± 2.10 579.00 ± 85.53 359.08 ± 16.49 
Bm3 25.20 ± 0.72 42.94 ± 2.14 564.00 ± 42.61 477.09 ± 23.68 
Sl3 26.11 ± 1.35 39.99 ± 1.64 326.67 ± 9.66 226.01 ± 8.77 
Vn3 24.99 ± 2.36 41.01 ± 4.71 261.00 ± 13.05 461.03 ± 29.78 

GNMD	

Ac4 28.45 ± 2.07 44.29 ± 2.22 330.40 ± 31.86 267.17 ± 8.31 
Ba4 22.84 ± 1.10 35.54 ± 1.65 568.80 ± 43.70 394.99 ± 18.24 
Bm4 23.77 ± 1.29 37.74 ± 2.61 544.00 ± 58.47 475.79 ± 22.97 
Ep4 25.74 ± 3.36 38.39 ± 7.10 332.80 ± 57.15 241.89 ± 25.39 
Sl4 24.92 ± 1.22 37.45 ± 1.95 300.80 ± 28.46 223.84 ± 8.14 

GNMS	

Ba5 24.04 ± 1.28 38.80 ± 1.81 530.40 ± 58.47 368.93 ± 11.59 
Bi5 21.49 ± 0.74 30.76 ± 1.96 591.00 ± 111.53 374.86 ± 9.73 

Bm5 21.90 ± 1.71 32.85 ± 2.99 592.00 ± 96.73 424.54 ± 21.95 
Hs5 17.52 ± 0.87 24.09 ± 1.01 340.00 ± 21.09 183.24 ± 9.05 
Ri5 31.26 ± 3.21 45.97 ± 4.28 374.40 ± 91.22 136.48 ± 7.56 
Si5 19.47 ± 0.52 31.51 ± 1.60 463.00 ± 21.59 177.63 ± 7.67 

GNSW	

Ac6 23.82 ± 0.44 38.06 ± 0.14 308.00 ± 23.43 255.78 ± 65.87 
Ba6 24.50 ± 1.91 36.81 ± 3.14 482.40 ± 59.55 420.12 ± 8.68 
Bi6 21.13 ± 0.67 31.24 ± 1.47 630.40 ± 58.15 409.60 ± 20.90 

Bm6 22.82 ± 1.57 37.04 ± 1.88 507.20 ± 55.89 499.75 ± 36.42 
Eb6 30.02 ± 1.01 46.27 ± 1.88 283.00 ± 20.37 286.40 ± 31.48 
Si6 21.97 ± 0.62 35.37 ± 1.77 390.00 ± 24.08 274.57 ± 14.84 
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Appendix 3 (continued) 
Site Tag WD (g cm-3) [P] (mg g-1) [N] (mg g-1) δ15N 

ENHD	

Ba1 0.65 ± 0.02 0.14 ± 0.01 6.8 ± 0.3 0.43 ± 0.27 
Be1 0.71 ± 0.05 0.15 ± 0.02 9.7 ± 0.4 0.91 ± 0.23 
Bh1 0.59 ± 0.03 0.18 ± 0.02 7.4 ± 0.3 0.44 ± 0.21 
Ml1 0.83 ± 0.05 0.20 ± 0.03 8.2 ± 0.5 -0.60 ± 0.44 

ENSW	
Bc2 0.71 ± 0.18 0.16 ± 0.02 5.7 ± 0.2 1.39 ± 0.18 
Be2 0.94 ± 0.13 0.21 ± 0.03 9.1 ± 0.5 1.21 ± 0.14 
Ml2 0.90 ± 0.04 0.18 ± 0.03 7.6 ± 0.3 0.08 ± 0.28 

GNHD	

Ac3 0.59 ± 0.01 0.16 ± 0.02 7.0 ± 0.4 1.32 ± 0.27 
Ba3 0.56 ± 0.01 0.15 ± 0.01 7.1 ± 0.3 -2.13 ± 0.33 
Bm3 0.51 ± 0.02 0.17 ± 0.02 6.9 ± 0.2 -2.86 ± 0.49 
Sl3 0.92 ± 0.04 0.19 ± 0.01 8.8 ± 0.5 0.21 ± 0.44 
Vn3 0.98 ± 0.02 0.16 ± 0.02 8.8 ± 0.2 -0.78 ± 0.22 

GNMD	

Ac4 0.55 ± 0.02 0.22 ± 0.03 6.0 ± 0.1 1.26 ± 0.31 
Ba4 0.54 ± 0.02 0.21 ± 0.02 7.0 ± 0.3 -2.52 ± 0.20 
Bm4 0.52 ± 0.01 0.18 ± 0.01 7.2 ± 0.3 -2.72 ± 0.17 
Ep4 0.57 ± 0.04 0.25 ± 0.02 8.4 ± 0.3 -0.72 ± 0.39 
Sl4 0.91 ± 0.06 0.27 ± 0.06 8.1 ± 0.2 -0.26 ± 0.26 

GNMS	

Ba5 0.58 ± 0.02 0.20 ± 0.00 8.1 ± 0.4 -0.26 ± 0.09 
Bi5 0.50 ± 0.02 0.18 ± 0.01 6.8 ± 0.3 -0.71 ± 0.38 

Bm5 0.52 ± 0.01 0.19 ± 0.01 8.1 ± 0.3 -0.50 ± 0.48 
Hs5 1.04 ± 0.29 0.34 ± 0.01 11.6 ± 0.7 1.85 ± 0.34 
Ri5 0.55 ± 0.02 0.37 ± 0.03 13.7 ± 0.4 2.19 ± 0.24 
Si5 0.67 ± 0.14 0.46 ± 0.09 12.9 ± 0.7 2.92 ± 0.24 

GNSW	

Ac6 0.68 ± 0.03 0.15 ± 0.01 7.1 ± 0.3 1.11 ± 0.56 
Ba6 0.57 ± 0.03 0.18 ± 0.01 7.7 ± 0.3 -1.16 ± 0.32 
Bi6 0.50 ± 0.02 0.13 ± 0.01 6.6 ± 0.2 -1.63 ± 0.21 

Bm6 0.50 ± 0.03 0.18 ± 0.01 7.5 ± 0.2 -1.90 ± 0.27 
Eb6 0.70 ± 0.04 0.26 ± 0.01 9.9 ± 0.8 0.43 ± 0.18 
Si6 1.03 ± 0.13 0.22 ± 0.03 10.5 ± 0.5 2.78 ± 0.34 
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Appendix 3 (continued) 
Site Tag δ13C TLP (MPa) PD (MPa) MD (MPa) 

ENHD	

Ba1 -25.55 ± 0.29 -2.05 ± 0.16 -1.28 ± 0.09 -2.18 ± 0.10 
Be1 -27.47 ± 0.26 -2.68 ± 0.17 -3.55 ± 0.39 -7.00 ± 0.00 
Bh1 -26.19 ± 0.25 -2.03 ± 0.18 -1.41 ± 0.15 -2.17 ± 0.16 
Ml1 -27.88 ± 0.36 -2.42 ± 0.15 -3.37 ± 0.26 -6.08 ± 0.39 

ENSW	
Bc2 -28.58 ± 0.10 -3.83 ± 0.20 -3.55 ± 0.20 -5.77 ± 0.26 
Be2 -28.00 ± 0.17 -2.92 ± 0.17 -4.70 ± 0.20 -7.00 ± 0.00 
Ml2 -28.25 ± 0.10 -2.43 ± 0.21 -4.50 ± 0.32 -6.92 ± 0.08 

GNHD	

Ac3 -29.23 ± 0.21 -1.73 ± 0.04 -0.38 ± 0.04 -1.26 ± 0.04 
Ba3 -29.09 ± 0.23 -2.05 ± 0.04 -0.65 ± 0.15 -2.03 ± 0.14 
Bm3 -28.58 ± 0.27 -1.89 ± 0.04 -0.45 ± 0.07 -1.63 ± 0.16 
Sl3 -28.88 ± 0.26 -1.67 ± 0.13 -0.96 ± 0.04 -1.62 ± 0.12 
Vn3 -27.80 ± 0.47 -1.79 ± 0.14 -0.84 ± 0.03 -1.93 ± 0.13 

GNMD	

Ac4 -28.88 ± 0.20 -1.64 ± 0.02 -0.34 ± 0.03 -1.27 ± 0.06 
Ba4 -28.46 ± 0.28 -2.30 ± 0.13 -0.29 ± 0.05 -1.75 ± 0.16 
Bm4 -29.32 ± 0.27 -2.15 ± 0.18 -0.28 ± 0.04 -1.40 ± 0.10 
Ep4 -28.81 ± 0.44 -1.90 ± 0.15 -0.53 ± 0.07 -2.37 ± 0.08 
Sl4 -28.87 ± 0.45 -1.91 ± 0.07 -0.84 ± 0.11 -1.81 ± 0.10 

GNMS	

Ba5 -28.18 ± 0.34 -1.95 ± 0.03 -0.13 ± 0.02 -1.19 ± 0.16 
Bi5 -28.59 ± 0.21 -1.90 ± 0.02 -0.09 ± 0.00 -0.89 ± 0.15 

Bm5 -28.43 ± 0.48 -1.80 ± 0.05 -0.26 ± 0.06 -1.17 ± 0.10 
Hs5 -28.95 ± 0.23 -1.60 ± 0.05 -1.04 ± 0.21 2.36 ± 0.16 
Ri5 -27.54 ± 0.56 -1.61 ± 0.08 -0.45 ± 0.13 -1.76 ± 0.06 
Si5 -29.89 ± 0.51 -1.65 ± 0.06 -0.70 ± 0.13 -1.82 ± 0.07 

GNSW	

Ac6 -30.74 ± 0.54 -1.66 ± 0.06 -0.13 ± 0.02 -1.27 ± 0.09 
Ba6 -29.08 ± 0.23 -2.13 ± 0.09 -0.28 ± 0.03 -2.11 ± 0.21 
Bi6 -30.49 ± 0.34 -2.09 ± 0.06 -0.10 ± 0.01 -2.19 ± 0.12 

Bm6 -29.98 ± 0.39 -1.95 ± 0.06 -0.24 ± 0.05 -1.89 ± 0.11 
Eb6 -28.75 ± 0.15 -1.64 ± 0.12 -0.55 ± 0.04 -1.90 ± 0.08 
Si6 -30.32 ± 0.31 -1.90 ± 0.07 -0.58 ± 0.12 -1.82 ± 0.11 
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Appendix 4: Summary of the models created through linear mixed effect modelling and 
selected using the Akaike information criterion (AICc) to investigate whether stomatal 
conductance, shoot length and dry mass, root depth and dry mass, soil water content, and water 
potentials varied between the treatments for each of the 4 species of “Experiment 1” (Chapter 
5). The best four models plus the null of each analysis are represented in this table. Month is 
referred as “MN”, time as “T”, treatment as “TR”, species as “SP”, period as “PR” and depth as 
“DP”. Degree of freedom is referred as “k”, weight as “Wt”, cumulative weight as “Cum.Wt” 
and log-likelihood as “LL”. 
Fixed effects k AICc Δ AICc Wt Cum.Wt LL 
Stomatal conductance rates of B. attenuata  
MN + T + TR + (MN X T) + (MN X 
TR) 30 3141.16 0.00 0.50 0.50 -1536.50 
MN + T + TR + (MN X TR) 18 3142.12 0.95 0.31 0.81 -1551.63 
MN + T + TR + (MN X T) + (MN X 
TR) + (T X TR) 42 3143.98 2.82 0.12 0.93 -1521.63 
MN + T + TR + (MN X TR) + (T X 
TR) 30 3145.07 3.91 0.07 1.00 -1538.46 
Null 4 3261.43 120.26 0.00 1.00 -1626.64 
Stomatal conductance rates of B. littoralis  
MN + T + TR + (MN X T) + (MN X 
TR) 30 2201.54 0.00 0.99 0.99 -1064.57 
MN + T + TR + (MN X TR) 18 2211.30 9.76 0.01 1.00 -1085.54 
MN + T + TR + (MN X T) + (MN X 
TR) + (T X TR) 42 2225.22 23.68 0.00 1.00 -1057.52 
MN + T + TR + (MN X TR) + (T X 
TR) 30 2232.89 31.34 0.00 1.00 -1080.24 
Null 4 2321.10 119.56 0.00 1.00 -1156.44 
Stomatal conductance rates of G. tomentosum 
MN + T + TR + (MN X T) + (MN X 
TR) 30 3397.88 0.00 1.00 1.00 -1665.89 
MN + T + TR + (MN X T) + (MN X 
TR) + (T X TR) 42 3422.78 24.90 0.00 1.00 -1663.23 
MN + T + TR + (MN X TR) 18 3428.21 30.33 0.00 1.00 -1695.03 
MN + T + TR + (MN X TR) + (T X 
TR) 30 3451.26 53.38 0.00 1.00 -1692.58 
Null 4 3701.79 303.91 0.00 1.00 -1846.84 
Stomatal conductance rates of P. reticulata  
MN + T + TR + (MN X T) + (MN X 
TR) 30 2948.27 0.00 1.00 1.00 -1440.59 
MN + T + TR + (MN X T) + (MN X 
TR) + (T X TR) 42 2966.35 18.07 0.00 1.00 -1433.95 
MN + T + TR + (MN X TR) 18 2993.43 45.16 0.00 1.00 -1477.47 
MN + T + TR + (MN X T) 26 2997.10 48.83 0.00 1.00 -1469.91 
Null 4 3213.34 265.06 0.00 1.00 -1602.60 
Stomatal conductance rates with all species for "dry" treatment collected in February 
SP + T 13 1084.98 0.00 0.81 0.81 -527.63 
T 10 1088.28 3.30 0.16 0.96 -533.05 
SP + T + (SP x T) 31 1091.14 6.16 0.04 1.00 -502.17 
SP 7 1117.58 32.60 0.00 1.00 -551.25 
Null 4 1121.19 36.21 0.00 1.00 -556.41 
Growth in length of B. attenuata 
MN 5 163.35 0.00 0.86 0.86 -75.74 
MN + TR 7 167.72 4.37 0.10 0.96 -74.99 
MN + TR + (MN X TR) 11 169.35 6.00 0.04 1.00 -68.60 
Null 3 214.20 50.85 0.00 1.00 -103.75 
TR 5 218.31 54.96 0.00 1.00 -103.22 
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Appendix 4 (continued) 
Fixed effects k AICc Δ AICc Wt Cum.Wt LL 
Growth in length of B. littoralis 
MN 5 104.34 0.00 0.87 0.87 -45.67 
MN + TR 7 108.07 3.73 0.13 1.00 -43.93 
MN + TR + (MN X TR) 11 121.66 17.31 0.00 1.00 -40.40 
Null 3 133.38 29.04 0.00 1.00 -63.15 
TR 5 135.67 31.33 0.00 1.00 -61.33 
Growth in length of G. tomentosum 
MN + TR + (MN X TR) 11 216.46 0.00 1.00 1.00 -93.66 
MN + TR 7 233.02 16.57 0.00 1.00 -108.15 
MN 5 234.77 18.31 0.00 1.00 -111.69 
Null 3 271.62 55.16 0.00 1.00 -132.54 
TR 5 272.67 56.22 0.00 1.00 -130.64 
Growth in length of P. reticulata 
MN + TR + (MN X TR) 11 170.47 0.00 1.00 1.00 -69.84 
MN + TR 7 206.55 36.08 0.00 1.00 -94.63 
MN 5 210.93 40.46 0.00 1.00 -99.63 
TR 5 241.33 70.86 0.00 1.00 -114.83 
Null 3 243.18 72.70 0.00 1.00 -118.27 
Soil water content 
SP +DP + TR + (DP X TR) 35 1652.29 0.00 0.88 0.88 -788.27 
DP + TR +(DP X TR) 31 1656.26 3.97 0.12 1.00 -794.89 
SP +DP + TR + (DP X TR) + (SP X TR) 43 1667.67 15.38 0.00 1.00 -786.43 
SP +DP + TR + (DP X TR) + (SP X DP) 71 1704.09 51.80 0.00 1.00 -768.33 
Null 4 2267.63 615.34 0.00 1.00 -1129.77 
Root depth 
SP 6 464.27 0.00 0.72 0.72 -225.13 
SP +TR 8 466.13 1.86 0.28 1.00 -223.26 
Null 3 481.20 16.93 0.00 1.00 -237.33 
TR 5 483.71 19.45 0.00 1.00 -236.16 
SP + TR + (SP X TR) 14 485.13 20.86 0.00 1.00 -222.39 
Shoot dry mass 
SP +TR 8 48.86 0.00 0.95 0.95 -14.63 
SP + TR + (SP X TR) 14 54.66 5.80 0.05 1.00 -7.15 
SP 6 62.60 13.74 0.00 1.00 -24.30 
TR 5 72.53 23.67 0.00 1.00 -30.57 
Null 3 82.44 33.58 0.00 1.00 -37.95 
Root dry mass 
SP +TR 8 524.55 0.00 0.88 0.88 -253.10 
TR 5 529.76 5.20 0.07 0.94 -259.41 
SP 6 530.31 5.76 0.05 0.99 -258.49 
Null 3 534.38 9.82 0.01 1.00 -264.01 
SP + TR + (SP X TR) 14 537.15 12.59 0.00 1.00 -250.75 
Water potential  
SP + TR + PR 10 137.71 0.00 0.53 0.53 -57.02 
SP + TR + PR + (SP x PR) 12 140.20 2.50 0.15 0.69 -55.41 
SP + TR + PR + (TR x PR) 12 140.81 3.10 0.11 0.80 -55.72 
SP + PR 8 141.69 3.98 0.07 0.87 -61.69 
Null 4 150.80 13.09 0.00 1.00 -71.10 
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Appendix 5: Summary of the models created through linear mixed effect modelling and 
selected using the Akaike information criterion (AICc) to investigate whether non-structural 
carbohydrates, shoot dry mass, stomatal conductance, and water potentials varied between the 
treatments for each of the four species of “Experiment 2” (Chapter 5). All or the best four 
models plus the null of each analysis are represented in this table. Month is referred as “MN”, 
time as “T”, treatment as “TR”, and period as “PR”. Degree of freedom is referred as “k”, 
weight is referred as “Wt”, cumulative weight as “Cum.Wt” and log-likelihood as “LL”. 
Fixed effects k AICc Δ AICc Wt Cum.Wt LL 
Non-structural carbohydrates of B. attenuata  
Null 3 81.14 0.00 0.44 0.44 -36.48 
MN 4 81.16 0.03 0.43 0.88 -34.58 
TR 4 84.95 3.81 0.07 0.94 -36.47 
MN + TR 5 85.83 4.69 0.04 0.98 -34.58 
MN + TR + (MN x TR) 6 87.65 6.52 0.02 1.00 -32.58 
Non-structural carbohydrates of B. littoralis  
MN + TR + (MN x TR) 6 90.66 0.00 0.93 0.93 -33.33 
TR 4 97.99 7.33 0.02 0.96 -42.77 
MN 4 98.65 7.99 0.02 0.97 -43.10 
MN + TR 5 98.89 8.24 0.02 0.99 -40.70 
Null 3 99.62 8.96 0.01 1.00 -45.61 
Non-structural carbohydrates of G. tomentosum 
MN 4 65.12 0.00 0.86 0.86 -26.56 
MN + TR 5 69.10 3.98 0.12 0.98 -26.22 
MN + TR + (MN x TR) 6 72.84 7.71 0.02 1.00 -25.17 
Null 3 76.31 11.19 0.00 1.00 -34.07 
TR 4 78.86 13.73 0.00 1.00 -33.43 
Non-structural carbohydrates of P. reticulata  
Null 3 74.30 0.00 0.75 0.75 -32.95 
MN 4 77.89 3.59 0.12 0.87 -32.72 
TR 4 77.98 3.68 0.12 0.99 -32.77 
MN + TR 5 82.69 8.39 0.01 1.00 -32.60 
MN + TR + (MN x TR) 6 89.01 14.71 0.00 1.00 -32.51 
Shoot dry mass of B. attenuata  
MN + TR + (MN x TR) 6 46.35 0.00 1.00 1.00 -11.92 
MN + TR 5 60.99 14.64 0.00 1.00 -22.16 
MN 4 64.81 18.46 0.00 1.00 -26.41 
TR 4 72.65 26.30 0.00 1.00 -30.33 
Null 3 73.00 26.65 0.00 1.00 -32.41 
Shoot dry mass of B. littoralis  
MN 4 15.52 0.00 0.41 0.41 -1.26 
MN + TR 5 16.81 1.29 0.22 0.63 0.88 
Null 3 16.90 1.38 0.21 0.84 -4.12 
TR 4 17.67 2.15 0.14 0.98 -2.33 
MN + TR + (MN x TR) 6 21.25 5.72 0.02 1.00 2.38 
Shoot dry mass of G. tomentosum 
Null 3 8.49 0.00 0.41 0.41 -0.16 
MN + TR 5 9.66 1.16 0.23 0.65 3.51 
MN 4 9.80 1.30 0.22 0.86 1.10 
TR 4 10.90 2.40 0.12 0.99 0.55 
MN + TR + (MN x TR) 6 15.45 6.96 0.01 1.00 3.52 
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Appendix 5 (continued) 
Fixed effects k AICc Δ AICc Wt Cum.Wt LL 
Shoot dry mass of P. reticulata  
MN 4 41.99 0.00 0.76 0.76 -14.77 
MN + TR 5 45.60 3.62 0.13 0.89 -14.05 
Null 3 47.13 5.14 0.06 0.95 -19.36 
MN + TR + (MN x TR) 6 48.42 6.44 0.03 0.98 -12.21 
TR 4 48.95 6.97 0.02 1.00 -18.25 
Stomatal conductance rates of B. attenuata  
MN + TR 5 54.11 0.00 0.65 0.65 -18.72 
MN + TR + (MN x TR) 6 56.64 2.53 0.18 0.83 -17.07 
MN 4 57.36 3.25 0.13 0.96 -22.68 
TR 4 60.38 6.27 0.03 0.99 -24.19 
Null 3 62.67 8.56 0.01 1.00 -27.25 
Stomatal conductance rates of B. littoralis  
TR 4 40.40 0.00 0.88 0.88 -13.70 
MN + TR 5 45.93 5.54 0.06 0.94 -13.68 
Null 3 45.98 5.58 0.05 0.99 -18.66 
MN 4 50.16 9.77 0.01 1.00 -18.58 
MN + TR + (MN x TR) 6 51.96 11.56 0.00 1.00 -12.98 
Stomatal conductance rates of G. tomentosum 
Null 3 -19.42 0.00 0.67 0.67 13.80 
TR 4 -16.93 2.49 0.19 0.86 14.47 
MN 4 -15.91 3.51 0.12 0.98 13.96 
MN + TR 5 -12.64 6.79 0.02 1.00 14.65 
MN + TR + (MN x TR) 6 -6.81 12.62 0.00 1.00 14.65 
Stomatal conductance rates of P. reticulata  
MN 4 22.35 0.00 0.73 0.73 -4.95 
MN + TR 5 25.05 2.70 0.19 0.92 -3.78 
MN + TR + (MN x TR) 6 27.19 4.84 0.07 0.99 -1.59 
Null 3 30.89 8.54 0.01 1.00 -11.24 
TR 4 32.64 10.29 0.00 1.00 -10.10 
Water potential of B. attenuata  
PR 5 42.99 0.00 0.45 0.45 -15.46 
PR + TR 6 44.59 1.59 0.20 0.66 -14.79 
PR + MN 6 45.76 2.77 0.11 0.77 -15.38 
PR + TR + (PR X TR) 7 46.04 3.05 0.10 0.87 -13.95 
Null 4 74.09 31.10 0.00 1.00 -32.38 
Water potential of B. littoralis  
PR +MN + (PR X MN) 7 -15.80 0.00 0.33 0.33 16.77 
PR +MN + TR + (PR X MN) 8 -15.26 0.54 0.25 0.59 18.11 
PR + TR 6 -13.60 2.20 0.11 0.70 14.15 
PR 5 -12.22 3.58 0.06 0.75 12.05 
Null 4 85.53 101.33 0.00 1.00 -38.16 
Water potential of G. tomentosum 
PR + MN + TR + (PR X MN) + (PR X 
TR) + (TR x MN) + (MN X PR X TR) 11 -22.54 0.00 0.61 0.61 25.41 
PR + MN + TR + (PR X MN) + (MN X 
TR) 9 -20.70 1.84 0.24 0.85 21.40 
PR +MN + TR + (PR X MN) + (PR X 
TR) + (TR + MN) 10 -18.11 4.43 0.07 0.92 21.61 
PR + MN + (PR X MN) 7 -17.54 5.00 0.05 0.97 16.99 
Null 4 76.80 99.34 0.00 1.00 -33.99 
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Appendix 5 (continued) 
Fixed effects k AICc Δ AICc Wt Cum.Wt LL 
Water potential of P. reticulata  
PR + MN + TR + (PR X MN) + (PR X 
TR) 9 -36.54 0.00 0.37 0.37 30.37 
PR + MN + TR + (PR X MN) 8 -35.37 1.17 0.21 0.57 28.09 
PR +MN + TR + (PR X MN) + (PR X 
TR) + (TR x MN) 10 -31.44 2.10 0.13 0.70 31.15 
PR +MN + TR + (PR X MN) + (TR x 
MN) 9 -33.29 3.25 0.07 0.78 28.75 
Null 4 41.18 77.72 0.00 1.00 -16.00 
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Appendix 6: Summary of the models created through linear mixed effect modelling and 
selected using the Akaike information criterion corrected for low sample size (AICc) to 
investigate whether growth, stomata conductance, water potentials, leaf δ2H and soil water 
content varied between the treatments of field experiment (Chapter 6). All or the best four 
models plus the null of each analysis are represented in this table. Month is represented as 
“MN”, treatment as “TR”, time as “TI”, period as “PR”, Hour as “H”, and collection as “COL”. 
In the first row, Degree of freedom is referred as “k”, “Wt” is the weight, “Cum.Wt” is the 
cumulative weight, and “LL” is the log-likelihood. 
Fixed effects k AICc Δ AICc Wt Cum.Wt LL 
Growth in length of B. attenuata 
MN + TR 8 88.44 0.00 0.75 0.75 -35.68 
MN + TR + (MN x TR) 10 91.69 3.25 0.15 0.89 -35.00 
MN 7 92.38 3.94 0.10 1.00 -38.77 
TR 6 99.80 11.36 0.00 1.00 -43.59 
Null 5 102.47 14.03 0.00 1.00 -46.01 
Growth in length of G. tomentosum 
MN + TR + (MN x TR) 10 -27.44 0.00 0.71 0.71 27.39 
TR 6 -24.43 3.01 0.16 0.87 19.45 
MN + TR 8 -23.15 4.30 0.08 0.95 21.82 
Null 5 -20.90 6.54 0.03 0.98 16.31 
MN 7 -20.57 6.88 0.02 1.00 18.98 
Stomata conductance of B. attenuata 
TI + MN + TR + (MN x TI) 9 2936.0 0.00 0.39 0.39 -1458.7 
TI + MN + (MN x TI)  8 2937.4 1.41 0.19 0.58 -1460.4 
TI + MN + TR + (TR x TI) + (MN x 
TI) 10 2937.6 1.56 0.18 0.76 -1458.4 
TI + MN + TR + MN x TI + MN x TR  10 2938.1 2.04 0.14 0.90 -1458.6 
Null 5 3059.1 123.06 0.00 1.00 -1524.4 
Stomata conductance of G. tomentosum 
TI + MN + TR + (MN x TR) + (TR x 
TI)  10 1519.1 0.00 0.60 0.60 -748.8 
TI + MN + TR + (MN x TR) + (MN x 
TI) + (TR x TI) 11 1520.8 1.75 1.75 0.85 -748.5 
TI + MN + TR + (MN x TR) + (MN x 
TI) + (TR x TI) + (MN x TI x TR) 12 1522.2 3.10 0.13 0.98 -748.0 
TI + TR + MN + MN x TR 9 1526.3 7.26 0.02 0.99 -753.5 
Null 5 1576.9 57.85 0.00 1.00 -783.3 
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Appendix 6 (continued) 
Fixed effects k AICc Δ AICc Wt Cum.Wt LL 
Water potential of  B. attenuata 
PR  6 38.2 0.00 0.50 0.50 -10.64 
PR + TR 7 38.7 0.50 0.39 0.88 -8.86 
PR + TR + (PR x TR)  8 41.2 2.99 0.11 0.99 -7.81 
Null 5 47.1 8.89 0.01 1.00 -16.89 
TR 6 49.3 11.05 0.00 1.00 -16.17 
Dry mass B. attenuata 
TR 5 562.1 0.00 0.97 0.97 -275.07 
Null 4 569.4 7.31 0.03 1.00 -280.08 
Leaf δ2H of B. attenuata 
TI 8 343.0 0.00 0.81 0.81 -161.51 
TI + TR 9 346.0 2.93 0.19 1.00 -161.40 
TI + TR + (TI x  TR) 12 354.7 11.68 0.00 1.00 -160.47 
Null 5 371.2 28.20 0.00 1.00 -179.84 
TR 6 373.4 30.35 0.00 1.00 -179.58 
Leaf δ2H of Donor 
COL 7 339.04 0.00 0.56 0.56 -159.41 
Null 4 339.54 0.50 0.44 1.00 -164.82 
Soil moisture 
MN + TR + (MN x TR) 17 -395551.9 0.00 1.00 1.00 197793.0 
MN + H +TR + MN:TR 40 -395527.5 24.38 0.00 1.00 197803.8 
MN + H +TR + MN:TR + H:TR 63 -395482.3 69.59 0.00 1.00 197804.2 
MN + H +TR + MN:TR +  MN:H 178 -395263.4 288.48 0.00 1.00 197810.7 
Null 4 -382965.6 12586.32 0.00 1.00 191486.8 
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Appendix 7 Summary of the models created through linear mixed effect modelling and selected 
using the Akaike information criterion (AICc) to investigate whether growth, stomata 
conductance, water potentials, leaf δ2H and soil water content varied between the treatments of 
glasshouse experiment (Chapter 6). All or the best four models plus the null of each analysis are 
represented in this table. Month is represented as “MN”, treatment as “TR”, time as “TI”, period 
as “PR”, and collection as “COL”. In the first row, Degree of freedom is referred as “k”, “Wt” is 
the weight, “Cum.Wt” is the cumulative weight, and “LL” is the log-likelihood. 

Fixed effects k AICc 
Δ 

AICc 
Wt Cum.Wt LL 

Growth in length of B. attenuata  
MN + TR + (MN x TR) 13 444.9 0.00 0.87 0.87 -208.92 
MN + TR 9 448.7 3.78 0.13 1.00 -215.09 
MN 7 455.8 10.91 0.00 1.00 -220.76 
TR 7 545.8 100.50 0.00 1.00 -265.55 
Null 5 551.8 106.86 0.00 1.00 -270.81 
Growth in length of G. tomentosum  
MN + TR + (MN x TR) 13 2032.4 0.00 0.90 0.90 -1002.8 
MN 7 2037.2 4.76 0.08 0.98 -1011.5 
MN + TR 9 2040.0 7.54 0.02 1.00 -1010.8 
Null 5 2096.9 64.52 0.00 1.00 -1043.4 
TR 7 2099.5 67.05 0.00 1.00 -1042.6 
Stomata conductance of B. attenuata  
TI + MN + TR + (MN x TR) + (MN x TI) 28 25761.4 0.00 0.73 0.73 -12852.3 
TI + MN + TR + MN x TI 24 25763.6 2.21 0.24 0.97 -12857.5 
TI + MN + TR + MN x TR + MN x TI + TI 
x TR 40 25768.7 7.32 0.02 0.99 -12843.5 
TI + MN + TI x MN 22 25770.3 8.95 0.01 1.00 -12862.9 
Null 5 26510.2 748.86 0.00 1.00 -13250.1 
Stomata conductance of G. tomentosum  
TI + MN + TR + (MN x TR) + (MN x TI) 28 32635.3 0.0 1.0 1.0 -16289.3 
TI + MN + TR + (MN x TR) + (MN x TI) + 
(TI x TR)  40 32647.6 12.3 0.0 1.0 -16283.2 
TI + MN + TR + (MN x TR) + (MN x TI) + 
(TI x TR) + (TI x TR x MN) 58 32663.4 28.16 0.00 1.00 -16272.4 
TI + MN + TI x MN 22 32710.2 74.95 0.00 1.00 -16332.9 
Null 5 33311.8 676.51 0.00 1.00 -16650.9 
Water potential of  B. attenuata  
TI 6 36.75 0.00 0.92 0.92 -11.71 
PR + TR 8 41.75 5.00 0.08 0.99 -11.69 
PR + TR + (PR x TR) 10 46.56 9.81 0.01 1.00 -11.42 
Null 5 131.36 94.61 0.00 1.00 -60.21 
TR 7 135.94 99.19 0.00 1.00 -60.06 
Water potential of Donor  
PR  6 15.92 0.00 0.91 0.91 1.27 
PR + TR 7 20.69 4.78 0.08 0.99 1.32 
PR + TR + (PR x TR) 8 24.87 8.95 0.01 1.00 2.11 
Null 5 42.39 26.47 0.00 1.00 -14.05 
TR 6 46.54 30.62 0.00 1.00 -14.04 
Water potential of G. tomentosum  
PR  + TR 8 21.13 0.00 0.54 0.54 -0.32 
PR  6 22.61 1.48 0.26 0.80 -4.07 
PR  + TR + (PR x TR) 10 23.16 2.02 0.20 1.00 2.09 
Null 5 53.38 32.25 0.00 1.00 -20.83 
TR 2 54.63 33.50 0.00 1.00 -18.62 
       



 

  
154 

Appendix 7 (continued) 

Fixed effects k AICc Δ AICc Wt Cum.Wt LL 
Dry mass B. attenuata  
TR 6 2177.1 0.00 0.90 0.90 -1082.2 
Null 4 2181.5 4.35 0.00 1.00 -1086.6 
Dry mass G. tomentosum   
Null 4 2234.4 0.00 0.70 0.70 -1113.1 
TR 6 2236.1 1.68 0.30 1.00 -1111.7 
Leaf δ2H of B. attenuata  
COL + TR  8 -43.78 0.00 0.94 0.94 32.21 
COL + TR + (COL x TR) 11 -37.86 5.92 0.05 0.98 34.64 
COL 7 -35.68 8.10 0.02 1.00 26.59 
TR 5 -26.15 17.63 0.00 1.00 18.96 
Null 4 -21.67 22.11 0.00 1.00 15.41 
Leaf δ2H of G. tomentosum  
COL 7 24.75 0.00 0.87 0.87 -2.43 
COL + TR 8 28.74 3.99 0.12 0.99 -2.37 
Null 4 33.73 8.98 0.01 1.00 -11.96 
TR 5 36.18 11.43 0.00 1.00 -11.66 
COL + TR + (COL x TR) 11 43.24 18.49 0.00 1.00 -1.82 
Leaf δ2H of Donor  
COL + TR + (COL x TR) 11 135.91 0.00 1.00 1.00 -51.88 
COL + TR 8 155.95 20.04 0.00 1.00 -67.49 
COL 7 159.95 23.82 0.00 1.00 -71.00 
TR 5 171.88 35.96 0.00 1.00 -80.00 
Null 4 176.36 40.45 0.00 1.00 -83.58 
Soil moisture  
MN + TR + (MN x TR) 36 -19522.8 0.00 1.00 1.00 9797.7 
MN + TR + HR + (MN x TR) 59 -19490.4 32.39 0.00 1.00 9805.2 
MN + TR + HR + (MN x TR) + 
(TR x HR) 105 -19397.1 125.65 0.00 1.00 9806.7 
MN 14 -19239.8 282.93 0.00 1.00 9634.0 
Null 4 -19259.7 1011.36 0.00 1.00 9259.7 
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