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Introduction

This book is designed as a text for the ECU unit MPE3108 and is the third one in a series. The first
two books are as follows:

Swan, P. & Sparrow, L. (1996). Teaching and Learning Mathematics K-7, Book 1. Second edition.
Perth: MASTEC, Edith Cowan University; and

Gleeson, R. & Farrell, B. (1997). Teaching and Learning Mathematics K-7, Book 2. Perth:
MASTEC, Edith Cowan University.

In Book 2 there was an emphasis on preparing you for the classroom. There was a major focus on
numeration and number computation in all its forms. Additional topics included further studies in

space, measurement, data and graphical representation.

This text has a major emphasis on planning and assessment with particular attention to the EDWA
Student Outcome Statements and associated pupil worksamples. Also included is further work on the
major strands of Working Mathematically, Number, Measurement, Space and Chance and Data.



Chapter 1: Student Outcome Statements

As a result of studying this chapter and completing the set tasks you will:

e obtain an initial understanding of the WA documents related to the Mathematics Leaming Area;

¢ have an understanding of the relationships among these documents, and between them and earlier
EDWA curriculum documents including the K-7 Mathematics Syllabus;

e be aware of the meaning and implications of OBE (Outcomes Based Education); and

e begin to come to grips with implications of these documents for planning, teaching and assessing

primary students in mathematics.

The Change

You will already be aware of a fundamental change affecting the curriculum for all schools in Western
Australia. The heart of this change is a move from prescribing what is to be taught to prescribing
what is to be leamed. OBE (Outcomes Based Education), as it is often called, is quite new to Western
Australia, and the move to full implementation in all leaming areas is planned to take place from the
beginning of 1999 to the end of 2003.

Everyone is feeling their way in this new situation and you must expect it to take you a great deal of
time and study before you feel comfortable and knowledgeable within the system. Remember that
everyone else from teachers in schools to university staff is in the same situation. You cannot expect
to find ready-made solutions based on long experience to be always at hand.

This chapter is intended to do no more than start you on the road by ensuring that you are aware of,
and have initial familiarity with, the various documents which have been introduced in their final form
since the middle of 1998.

Relevant Documents

You will need access to the following documents — at least one between two. Locate. them and
distinguish between them.

e Curriculum Framework

e Qutcomes and Standards Framework: Student Outcome Statements —QOverview (not essential)
e Qutcomes and Standards Framework: Student Outcome Statements —Mathematics (SOS)

e Qutcomes and Standards Framework: Work Samples —Mathematics

e Learning Mathematics: K-7 Mathematics Syllabus (not essential)



Note the Internet locations below for the essential documents:

The W A Curriculum Council Curriculum Framework document is available at
http:/fwww.curriculum.wa.edu.au/

The EDW A Outcomes and Standards Framework mathematics SOS and worksamples documents are
at http.://www.eddept.wa.edu.au/centoff/outcomes/maths/mathmenu.htm

Activities
Spend a few minutes looking through the documents. Try to establish the relationship between

them. Mathematics is one of the eight learning areas. Name all eight before referring to the
documents

We will now spend some time looking at each of the main documents.

The Curriculum Framework

1. Read the purpose of the Curriculum Framework on page 6.

2. The Curriculum Framework consists (p. 15) of an Overarching Statement and eight Learning Area
Statements (including one for Mathematics). The Overarching Statement (p.11) outlines seven key
principles which underpin the Curriculum Framework. Find and list them:




The Overarching Statement also describes the Overarching Leaming Outcomes to which all leaming
areas contribute. There are thirteen of them and they are listed below:

1. Students use language to understand, develop and communicate ideas and information
and interact with others.

2. Students select, integrate and apply numerical and spatial concepts and techniques.

3. Students recognise when and what information is needed, locate and obtain it from a
range of sources and evaluate, use and share it with others.

4. Students select, use and adapt technologies.

5. Students describe and reason about patterns, structures and relationships in order to
understand, interpret, justify and make predictions.

6. Students visualise consequences, think laterally, recognise opportunity and potential and
are prepared to test options.

7. Students understand and appreciate the physical, biological and technological world and
have the knowledge and skills to make decisions in relation to it.

8. Students understand their cultural, geographic and historical contexts and have the
knowledge, skills and values necessary for active participation in life in
Australia.

9. Students interact with people and cultures other than their own and are equipped to
contribute to the global community.

10. Students participate in creative activity of their own and understand and engage with the
artistic, cultural and intellectual work of others.

11. Students value and implement practices that promote personal growth and well-being.

12. Students are self-motivated and confident in their approach to learning and are able to
work individually and collaboratively.

13. Student recognise that everyone has the right to feel valued and be safe, and, inthis
regard, understand their rights and obligations and behave responsibly.

(Curriculum Council, 1998, pp. 18-19)

3. (a) List below the numbers of the Overarching Learning Outcomes to which you think the

mathematics learning area can significantly contribute and say why:




(b) List below the numbers of the Overarching Learning Outcomes to which you think the

mathematics learning area can make some, though not significant, contribution and say why:

The Mathematics Learning Area Statement begins on page 177. Locate the following sections of

the Mathematics Learning Area Statement, which are common to all the learning area statements:

Definition and Rationale
Leamning Area Outcomes (Read all of these)
Scope of the Curriculum
Leamning, Teaching and Assessment
Links Across the Curriculum
. to the Overarching Statement
o to other learning areas

. Consider the relationship between the Overarching Learning Outcomes (pp. 18-19) and the
Mathematics Learning Area Outcomes (pp. 180-181).

The Overarching Learning Outcomes are meant to be achieved through the eight leaming areas,
including of course mathematics. Look at each of the first five Overarching Learning Outcomes
and decide which of the Mathematics Learning Area Outcomes link directly with each. List them
below. One example is given:

OLO MLAO

1 3, 4,5




6. Now compare your entries with those on pages 42-45 of the Curriculum Framework.
7. Note the section on assessment (pp. 210-212). We will consider this section in more detail later.

It should be noted that the Curriculum Council's Curriculum Framework to be phased in over the
1999-2003 five-year period is mandatory for all schools and school systems in Western Australia.
However, the Outcomes and Standards Framework and the associated Student Outcome Statements
are and initiative of EDWA and will apply to EDWA schools. Non-EDWA schools can decide

whether or not to use these.
EDWA Student Outcome Statements — Mathematics

1. The Student Outcome Statements in Mathematics are clustered under six strands. Name them.

2. Note that these strands correspond exactly to six of the seven clusters of the Mathematics
Learning Area Outcomes in the Curriculum Framework (pp. 180-181). Find which is missing

and find a reason given for its omission.

3. Look at the table on pages 6-7 of the Student Outcome Statements — Mathematics. Determine
what each of the three columns represents (and where else in the documents each appears).

(a) What is the significance of the numbers in bold type in the centre column?




(b) What is the significance of the arrows between Columns 2 and 3?

The descriptions of sub-strands, levels and pointers are set out in the same way for each of the
strands. As an example we will look at the structure of the Working Mathematically Strand which

appears on pages 11-50.

First there is a three-page fold-out on pages 12-13 which describes outcomes for each of the four
sub-strands of the Working Mathematically Strand at each of eight levels. Before Level 1 is a row
labelled FOS. Find what this means.

The right hand column (the part folded out) gives the strand outcome statements for each level of
Working Mathematically. They summarise the outcomes of all four substrands at each level. It is this
column which provides the focus for assessment of children. When the teacher assesses a child as
being at Level 3 in the Working Mathematically strand, it means that the child has achieved the
outcome described in the right hand column of the row labelled Level 3.

On pages 14-22, each of those strand outcome statements for each level of Working Mathematically is
described more fully.

4. Locate the strand outcome statement for Level 3 of Working Mathematically on the fold-out page

and then compare it with the fuller description given on page 17.

Pages 24-47 now take each of the level descriptors for each substrand of Working Mathematically,

and provide pointers, or examples of actions which would indicate achievement at that level.

5. Find the pointers for Level 3 of each of the four substrands and compare them with the
description you read on page 17. Do you find that the two complement each other, or do you find

discrepancies between them? Discuss.




EDWA Student Outcome Statements — Work Samples

This book provides some annotated work samples showing children performing at levels indicated in
each strand. You should be able to find your way around it and recognise its links to the Student
Outcome Statements — Mathematics.

1. Find the four pages of examples of work of children performing at Level 3 of the Working
Mathematically strand. Consider them carefully and see whether you can see the relation of the
children’s work and the annotated comments to the descriptions and pointers which you read

earlier.

2. At what Year levels would you normally expect students to perform at Level 3 on these tasks?

Explain.

Learning Mathematics: K-7 Mathematics Syllabus

The 1989 K-7 syllabus gives considerable detail on the mathematical content for all those levels. For
example, an entry in the number strand for Stage 7, corresponding approximately to Year 7, states:
Record and interpret data using
(a) standard tally;
(b) standard tally, with grouped data.

Other information is then provided for the teacher under the headings of related syllabus entries,
background, focus ideas and skills, focus questions, suggested materials, suggested activities,

resources, and extensions. This format is typical of all entries at all levels.

1. Discuss how the syllabus differs from the current frameworks structure.




2. Is the 'old' syllabus material still useful? Why?

Note that the emphasis in all school syllabuses has been on content. while the new emphasis is on
performance. Thus, materials such as syllabus documents, textbooks, multimedia and so on are

simply resources as means to achieving the stated outcomes for students.

References

Curriculum Branch, Ministry of Education. (1989). Learning mathematics: Pre-primary to Stage 7
mathematics syllabus. Perth: Author

Curriculum Council. (1998). Curriculum framework for Kindergarten to Year 12 in Western
Australia. Perth: Author.

Education Department of Western Australia. (1998a). Outcomes and standards framework: Student
outcome statements — Mathematics. Perth: Author.

Education Department of Western Australia. (1998b). Outcomes and standards framework: Student

outcome statements — Overview. Perth: Author.

Education Department of Western Australia. (1998c). Outcomes and standards framework:
Worksamples — Mathematics. Perth: Author.

Websites:
http://www. curriculum.wa.edu.auw/

http://www. eddept.wa.edu. au/centoff/outcomes/maths/mathmenu.htm
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Chapter 2: The Measurement Strand and
Student Outcome Statements

As a result of studying this chapter and completing the set tasks you will:

* have a greater understanding of the Student Outcome Statements with respect to measurement;

» reflect on the various substrands in the measurement section;

e be able to compare and contrast the Student Outcome Statements with the W A K-7 Mathematics
Syllabus; and

» successfully conduct some measurement activities.

The Measurement Strand

A brief summary of the nature and content of each strand in the Mathematics Learning Area is
provided in the Student Outcomes Statements book. The description of the Measurement strand is as
follows:

The Measurement strand focuses on the choice and use of suitable units, tools and

formulas for measurement, and the direct estimation and measurement of physical attributes

and time. As a result of their leaming, students are expected to make better and more skilful

use of direct and indirect measurement and estimation to describe, compare, evaluate, plan

and construct. Progression through the levels indicates that the student increasingly:

e decides what needs to be measured and carries out measurements of length,

capacity/volume, mass, area, time and angle to needed levels of accuracy;

* selects, interprets and combines measurements, measurement relationships and

formulas to determine other measures indirectly; and

¢ makes sensible direct and in direct estimates of quantities and is alert to the

reasonableness of measurements and results.
(EDWA, 1998a, p-4)

Some Tasks

All of the following tasks should be carried out in groups of two or three.

1. Select two different containers. Find a way to determine "Which one holds more?'. Draw a picture

below to illustrate your result.

11



2. By using simple illustrations, sequence six activities you carried out in a day. Write the time for

each activity beneath each drawing.

1. 2. 3.

3. Estimate the length and width of this room.

Estimates: length ____ width
Explain how you arrived at your estimates.

4. Find the mass of a grain of rice. Use the materials provided. Illustrate your method below, then

explain it briefly in writing. Mass of grain of rice is: ______

12



5. How could you measure the surface area of an orange (or other spherical object)? Illustrate and

describe the process.

6. Investigate shapes with an area of 36 square centimetres. Use the one-cm grid below to help you
if necessary. Explain your processes and result below.

13



Student Work Samples

Obtain a copy of the Mathematics Work Samples publication. On pages 64, 70, 73, 74, 80, and 83
are student work samples of tasks that are identical or similar to those that you have completed above.

1. With a colleague, study and discuss the -
* background,
¢ child's work,
¢ relevant outcome, and
* summary comment, as provided for each of the above tasks.

2. For each example of a student's work, several comments are provided. Working with a
colleague, see if you can justify these comments for the mass of a grain of rice (p. 80) by using

the pointers from the Student Outcome Statements.

3. Examine your group's attempts and comment on them in comparison to the work samples.

Provide assessment comments for your own work.

Task 1;

Task 2;

Task 3:

14



Task 4:

Task 5:

Task 1:

The Substrands

The Measurement strand of the Student Outcome Statements consists of four substrands as follows.

Understanding Units Students select what attributes to measure and what units to

use.

Direct Measure Students measure length, capacity/volume, mass, area, time

and angle to needed levels of accuracy.

Estimate Students make sensible direct and indirect estimates of
quantities and are alert to the reasonableness of measurements

and results.

Indirect Measure Students select, interpret and combine measurements,
measurement relationships and formulas to determine other

measures indirectly.
(EDWA, 1998a, pp. 92-93)

1. For the substrand Understanding Units provide an activity which could be used to assess whether
or not students are performing at Level 2.

15



2. For the substrand Direct Measure provide an activity which could be used to assess whether or not

students are performing at Level 3.

3. For the substrand Estimate provide an activity which could be used to assess whether or not

students are performing at Level 4.

4. For the substrand Indirect Measure provide an activity which could be used to assess whether or

not students are performing at Level 5.

The K-7 Mathematics Syllabus

Many teachers would be familiar with the WA K-7 Mathematics Syllabus (Curriculum Branch,
1989). This is the document used by primary schools for the past 10 years to guide their mathematics
curriculum. In the past the curricular emphasis has been on the mathematical content to be taught
across the various stages or year levels. The focus now, via the SOS, is shifting to the outcomes.

Thus the syllabus is now one of the resources which can be used to attain the outcomes.

1. Examine the measurement section of the syllabus and compare this with the Measurement Strand

in the Student Outcome Statements.

(a) Write comments on the different substrands.

16



(b) Write comments on the different emphases and layout.

(c) Suggest reasons for the different organisation of the measurement strand in the Student

Outcome Statements.

(d) How could you use the WA K-7 Mathematics Syllabus in your planning of measurement

activities?

More Tasks

Below is another set of tasks suitable for various primary school levels. Many of these can be
compared with similar examples in the Student Work Samples. Complete the tasks as you would
expect a primary student to do so. Then, for each one, provide assessment comments on your
efforts.

1. Compare your height to someone else in your group. The tallest person is

Draw a picture to illustrate your finding.

2. Use 'handspans' to measure -

the length of the cupboard about _______ handspans
the length of the table about _____ handspans
the width of the door about ________ handspans
the width of a blackboard about____ _ _ handspans

Which object is the longest?

3. Compare your 'stride’ length with three other people.
If you all took 20 paces who would walk the furthest?
would walk the furthest.

Explain your conclusion.

17



. Choose four or five objects and estimate their order of mass.

1 2 3 4 5
(lightest) (heaviest)

By balancing them against each other on a balance beam put them in order and compare the result

with your estimation.

1 2 3 4 5
(lightest) (heaviest)

. List some objects which have a mass of about -

* akilogram

* less than a kilogram

* more than a kilogram.

. Find two objects of the same volume but of different mass.

. Investigate shapes with a perimeter of 48 centimetres and explain your findings.

. Investigate the surface area of prisms made from 64 unit cubes and explain your findings.

References

Curriculum Branch, Ministry of Education. (1989). Learning mathematics: Pre-primary to Stage 7

mathematics syllabus. Perth: Author.

Education Department of Western Australia. (1998a). Outcomes and standards framework: Student

outcome statements — Mathematics. Perth: Author.

Education Department of Western Australia. (1998b). Outcomes and standards framework:

Worksamples — Mathematics. Perth: Author.
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Chapter 3: Assessment and the Student
Outcome Statements

As aresult of studying this chapter and completing the set tasks you will:

e be aware of guidelines regarding assessment contained in the Curriculum Framework;
e be aware of a range of strategies for assessing children’s levels and progress in mathematics; and
e be able to use the Student Outcome Statements to assess students’ performance levels in

mathematics.

Assessment and the Curriculum Framework

1. Read the section on assessment (pp. 210-212) of the Curriculum Framework, carefully analysing
what is said about the relevance of each of the assessment items given in the margins of the pages.

(a) Which assessment item (from [a] to [j]) do you think is particularly good? Say why.

(b) Detail some doubts or query you have about one of the assessment items.

Assessment and the Student Outcome Statements

Assessing students’ outcome levels of achievement and planning appropriate experiences based on
these assessments is a complex process. At this stage we will confine ourselves to two goals — first,
to understand the structure of the Student Outcome Statements (Mathematics) and what it is that we
are assessing; and second, to have some practice in aligning examples of children performing
practical tasks and also examples of children's work to levels of achievement or performance
described in the Student Outcome Statements.

19



Assessment Requirements

All pupils must be assessed to determine the level they have achieved in each of the six Strands of the
Student Outcome Statements (Mathematics). They are not necessarily assessed for each substrand.
For primary children this means that each child is assessed in each of five strands: Working
Mathematically, Space, Measurement, Chance and Data, and Number.

1. Which is the sixth strand, on which primary children are generally not assessed? Explain why not
(Page 212 of the SOS may help).

2. Would there ever be a need to assess this strand for primary students? Explain.

3. What is the strand that has no assessable levels? Explain the reason.

Achievement Levels

There are eight achievement levels covering kindergarten to Year 12 in the SOS. A rough unofficial
but helpful guide is that most primary children will achieve up to Level 4. Some implications of this
are that:

(a) children can be at the same level for eighteen months or so on average,

(b) children in Year 1 may well not have achieved any level, and

(c) you can expect that the children in any classroom may cover, for any strand, at least three levels.

Two things are important to remember here: first, levels have nothing to do with Year level; second, a
child is not ‘at’ Level 2. Either the child has achieved Level 2, and is therefore working towards
Level 3, or he/she is working towards Level 2, having achieved Level 1. A child will also very likely
have achieved differing levels in different strands.

Structure of the Student Outcome Statements

We will take the Working Mathematically strand to illustrate the structure of each strand in the Student
Outcome Statements (Mathematics).

20



1. There are three aspects to consider. Locate each of these in the Student Outcome Statements
(Mathematics).
(a) Pages 12-13 (and the foldout) contain an overview of each of the four substrands (pages 12-
13) and of the strand as a whole (foldout). This foldout contains the level statements against which
the student is assessed.
(b) Pages 14-22 contain an elaboration of the strand outcome statement for each level. You will
notice that each level (except Level 1) is described in four paragraphs.
(c) Pages 24-47 contain pointers for each level of each substrand. These pointers give detail
actions on the part of children which would indicate that the child had achieved that level. These
pointers are intended as examples only, and there is intentionally room left for schools and
teachers to add further pointers.

2. Complete the table below, giving the page numbers for the elements for each of the strands.

Strand Overview Strand Outcome Pointers Pointers
Statement (Levels 1-2) (Levels 3-5)

Working Mathematically 12-13 14-22 24-31 32-39
Space
Measurement
Chance and Data
Number
(Algebra)

3. Why was a column for pointers for Levels 6- 8 not included in this table?

Student Work Samples

A separate book contains annotated Work Samples which provide examples of children’s work with
indications of the level shown by the piece of work. The following activities will ask you to use your
observation and judgment to align examples of children’s performance on particular tasks to
achievement levels on particular sub-strands of the SOS (M). While you should find these activities
valuable in familiarising yourself with structure of the SOS (M) and with the process of assessing
against levels, it is important to remember two things:

(a) You should never in practice make formal assessments based on only one piece of work. Teachers
will make judgments about levels based on experience and observation of children’s performance on
a wide variety of tasks over a prolonged period of time.

(b) Levels of achievement are assigned based on performance over all substrands of a strand, not on

performance on an individual strand.

21



1. Turn to page 69 of the book of Work Samples (Mathematics). Look carefully at the various parts

of the page and write answers to the following:

(a) Write down the four sub-strands of the Measurement strand and tick those which you think

might be relevant to this activity:

(b) Two relevant outcomes for the activity are given at the top right hand side of the page. What
does each symbol in the code M2.3 mean?
The M means

The 2 means

The 3 means

(c) On which page of the SOS (M) does each of these outcomes appear?
M 2.2 is on page . M 2.3 is on page

(d) For each of these two outcomes, decide which pointer(s) is(are) relevant to the activity and

write these below:

M2.2

M2.3

(e) For each of these two outcomes, look at the description for the level immediately above and
below that given. Write your reasons for either agreeing or disagreeing with the suggested level

for each outcome.

M2.2

M2.3




2. The following task is modified from the book of Work Samples (Mathematics), but there is no
information about it. Consider the task and result and write below what you judge to be the

missing elements, including your own assessment of the level of achievement.

Task: Working in pairs make and test a spinner that you think is most likely to stop on red,
least likely to stop on green and have the same chance of stopping on yellow and blue. In

your report, say what you did and what you found.

-
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Assessing Student Performance

Watch each of the following video clips of children being interviewed as they perform a range of
practical tasks. Relevant pages of the SOS (M) are given from each. After you have watched each
video clip, look at the references to the SOS (M) and write your assessment of the levels of some of

the children’s performances, giving your reasons.

Video Clip 1
Year 3 Strand: Space
Incident: Plans of classroom Substrands:
Timing: 15:30 - 26:00 1. Represent Location
Length: 10:30 2. Represent Space
3. Represent Transformation
4. Reason Geometrically

Strand Outcome Statements:  pages 55-57

Student Outcome Statements:  S1.1, S2.1, S3.1 (pp- 65, 72)
S1.2,S2.2,83.2,54.2 (pp. 67, 74-75)
also M3.4b (p. 118)

Your comments and assessments of Video Clip 1:
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Video Clip 2

Year 3 Strand: Measurement
Incident: Weight of Frogs Substrands:
Timing: 1:50 - 10:10 1. Understand Units
Length: 8:20 2. Direct Measure

3. Estimate

4, Indirect Measure

Strand Outcome Statements:  pages 95-98

Student Outcome Statements: M1.1, M2.1, M3.1, M4.1
Ml1.2, M2.2, M3.2, M4.2

(pp. 104-105, 112-113)
(pp. 106-107, 114-115)

Your comments and assessments of Video Clip 2:

Video Clip 3
Year 3 Strand: Number
Incident: ‘9 take 8” Substrands
Timing: 6:45 - 11:02 1. Understand Number
Length: 4:17 2. Understand Operations
3. Calculate
4. Reason About Number Patterns

Strand Outcome Statements:  pages 174-178

Student Outcome Statements: N1.2, N2.2, N3.2, N4.2
N1.3, N2.3, N3.3, N4.3

(pp. 187, 192-193)
(pp. 189, 194-195)

Your comments and assessments of Video Clip 3:
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Video Clip 4

Year 5 Strand: Space
Incident: Properties of Prisms Substrands:
Timing: 12:40 - 15:00 1. Represent Location
Length: 2:20 2. Represent Space

3. Represent Transformation

4. Reason Geometrically

Strand Outcome Statements:  pages 55-58

Student Outcome Statements: S1.4,S2.4, S3.4 (pp. 70-71, 78-79)

Your comments and assessments of Video Clip 4:

Video Clip 5
Year 5 Strand: Measurement
Incident: Comparing Two Glasses Substrands:
Timing: 19:25 - 21:18 1. Understand Units
Length: 1:53 2. Direct Measure
3. Estimate
4. Indirect Measure

Strand Outcome Statements:  pages 95-98

Student Outcome Statements: M1.1, M2.1, M3.1, M4.1 (pp- 104-105, 112-113)
M1.2, M2.2, M3.2, M4.2 (pp- 106-107, 114-115)

Your comments and assessments of Video Clip 5:
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Video Clip 6

Year 5 Strand: Number
Incident: Plans of classroom Substrands
Timing: 15:30 - 26:00 1. Understand Number
Length: 10:30 2. Understand Operations

3. Calculate
4. Reason About Number Patterns

Strand Outcome Statements:  pages 174-178

Student Outcome Statements: N1.2, N2.2, N3.2, N4.2 (pp- 187, 192-193)
N1.3,N2.3, N3.3, N4.3 (pp. 189, 194-195)

Your comments and assessments of Video Clip 6:
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Chapter 4: Assessment in the Classroom

As a result of studying this chapter and completing the set tasks you will:

* identify different reasons for and purposes of assessment and evaluation;
* identify and evaluate a variety of assessment strategies for the primary classroom; and
» appreciate the role of assessment in the learning process.

Assessment and Evaluation: Is there a Difference?
Webb and Welsch (1993) draw the following distinction between the two.

Evaluation is using standardised tests, surveys, demographic analyses, and other means to
determine the value of a program. Assessment is using classroom tests, observations,
questioning, projects, portfolios, and other means to determine what a student knows, can

do, feels, and believes.
(Webb and Welsch, 1993, p. 299)

In simple terms, assessment is focussed more on the individual child rather than to the broader goals
of evaluation. In this chapter we will mainly be concerned with assessment strategies as they apply to

the classroom.

Purposes of Assessment

Before detailing some of the many different assessment strategies it is important that we consider the

major reasons for assessing student progress in the classroom.

1. Discuss this issue with a colleague. List some of the purposes of assessment below, then share
your ideas with your group.
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Webb and Welsch (1993) suggest the following as some of the reasons for evaluation and

assessment:-
(i) To direct student learning.

Teachers use a variety of formal and informal techniques such as questioning, testing, observing,
marking work etc to determine children'’s understanding of different aspects of mathematics. This
is the most important purpose of assessment. The Student Outcome Statements are designed to

give direction to student learning as well as guiding assessment.
(i1) To place students into groups or programs.

Rightly or wrongly students can be placed into groups or classes on the basis of results of tests
and/or teacher observations. This may be to select students for a remedial program, for an
enrichment program, for the formation of classes with more than one year group, or for the

formation of groups within a class.
(iii) To grade students.

Students are given grades that will be used in reporting to parents and later employers and
institutions. More significant grades are based on assessments that are either norm-referenced
(e.g., grades for your core units of study) or criterion-referenced (e.g. grades for your teaching
practice). As indicated in Chapter 3, the Student Outcome Statements are designed to validate and

make more uniform the grades given to students.
(iv) To motivate students.

Some children will be extrinsically motivated by tests and assignments and the desire to do well.
% Webb and Welsch however, suggest that "informal assessment that explores student knowledge
~ and that creates interesting and perplexing situations can build on intrinsic motivation that will lead

to deeper understanding of mathematics". (Webb and Welsch, 1993. p. 302)
(v) To identify student attitudes.

A number of assessment strategies can be employed to give an indication of children'’s feelings
and perceptions of mathematics. These include attitude tests using techniques such as a Likert

scale, and student journal writing.

Assessment Strategies

In their CD-ROM package Herrington et al (1997) list the following strategies:-

Observing Checklists

Anecdotal records



Questioning Higher order questioning
Factual questioning

Open-ended questioning

Interviewing Structured interviews
Open interviews

Parent interviews

Testing Diagnosis
Performance-based
Pencil and paper
Multiple choice tests
Problem solving
Attitude

Reporting Oral report
Written report
Portfolio
Investigation

Modelling

Self-Assessment Journal writing
Reflective prompts
Self-questioning

Peer assessment

1. Consider the list of strategies above and check those you would assume most teachers would use.
Place a question mark next to those that you are unfamiliar with. Compare your results with others
in the group or class. Peruse several of the unfamiliar ones on the CD-ROM. Write a sentence or

two to indicate what you found out.

2. The list of assessment strategies exemplified by Herrington et al (1997) is not meant to be an
exhaustive one. Can you think of any others? Discuss with colleagues and list them below.
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In reference to the Question 2 above, did you include concept maps, for example, as an assessment
strategy? We will now consider some of the strategies listed above in a little more detail, so that you

may explore them further.
The Structured Interview

In Chapter 3 the structured interviews examined in with the videoclips were used as a strategy for
assessing children’s understanding in space, measurement and number. In the classroom the teacher
should take opportunities to question and discuss with children both formally and informally
regarding their understanding of mathematics. This is a very fruitful strategy for determining the
individual student's thinking.

1. What are the advantages/disadvantages of this assessment strategy?

2. What demands does it place on the teacher?

Paper and Pencil Tests

The paper and pencil or written test is an assessment strategy used by most teachers whether it be
written work collected at the end of a lesson, a teacher-constructed test or a standardised test from a
testing agency like ACER. The most important function of a test is not so much to give children a
mark or grade but to gain some insight into children’s understanding of that area of mathematics. The
Curriculum Framework emphasises the importance of the educative value of assessment:
“Assessment should make a positive contribution to students learning”

(Curriculum Council, 1998, p. 211)

The written test often suffers from two problems, as follows:

(1) Work is often marked right or wrong resulting in children gaining no reward for the knowledge
demonstrated through the processes used.

(i1) There is little follow-up of test items with individual children; though this is of less concern if the

purpose of the test is the evaluate a program or a group of students as a whole, as many of the

standardised tests do.

1. Mark the sample “test paper” provided, assigning marks for each question in a way that better
reflects the “student’s” performance. The total mark allocation for the test is to be 25. To a
colleague, explain your marking criteria, the major deficiencies noted re concepts and skills, and
the order in which you would try to remediate these.
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Student Test Sample

1. (a) Write in digits, seventy five thousand and thirty three. 75 Q’ 3
(b) Now write the number that is one thousand more. 7'63 3
2. Write in ascending order: 28, 15, 8, 6, 3, 2. ,Zf/ /S ¢6 6, 3) 2/

3. Add the numbers 16, 378, and 4273 /6
378

+§(Z73

W
oz —

4. Find the difference between 3.142 and 6. é

— 342
S 42

5. What is the area of a tunnel's roadway that is 36.5 m long and 4.3 m wide?
—
36 S
X 43
7O9 5
/Y600
N—
/5675
6. A cricketer scored these runs in five innings: 16, 15, 20, 37, 12. What was her average score?

f6 # 1S5 #20 +37+/2 P

< o ? = /f
7. There are 32 children in a class. One quarter of them are boys. How many are girls?
L x 2%
/}( / = ?

8. Ron has 1/4 metre of string and halves it. How long is each piece?

9. What time is shown on the clock faces?

10. A 12 metre piece of string is used to mark out a rectangular garden plot which is twice as long as it is

wide. What is its area? [ 5 I A =L XB = ECo x 44%-‘1"— 3lem
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2. Indicate how would you follow up each test item below with individual children in a way that

enables the item to be the medium for a learning experience.

() Write the decimal that shows the part that has been shaded.

O’O
OOOOOOO

Answer: 3.7

(ii) Calculate the area of the rectangle below.

60 cm

30 cm

Answer: 1800 cm
(iii) Place either >, < or = between the fractions below to make a true statement.
Answer: /3 < /40
Writing as an Assessment Strategy

The use of children’s writing as both an assessment tool and a learning experience is very well
documented in the NCTM Standards:-

Middle school students should have many opportunities to use language to communicate
their mathematical ideas . . . Opportunities to explain, conjecture, and defend one’s ideas
orally and in writing can stimulate deeper understandings of concepts and principles . . .
Writing and talking about their thinking clarifies students’ ideas and gives the teacher

valuable information from which to make instructional decisions.
(NCTM, 1989, pp. 78-79)

The students' writing tasks can take many different forms, such as -

* observations about a graph,
* an explanation of how they solved a problem,
e astory problem for a simple number operation, and

* explaining their understanding of a concept (e.g., symmetry, capacity, area).

1. Write an explanation of what you understand by one of the following:
area, capacity, symmetry.

Then share your explanation with your group.
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Explanation of area, capacity or symmetry:

Another useful activity is to select a concept, such as multiplication, and ask students to list all the
concepts, ideas, activities, applications associated with the concept.

2. Read the following solutions/explanations for the given problem. What does it tell you about each
student’s level of understanding? Use the Student Outcomes publication to guide you.

A man has three bags containing a mixture of black and white balls to choose from, wearing a
blindfold. To win a $5 000 prize he has to draw a black ball from one of the bags. Which bag

should he choose to draw from to give himself the best chance of winning the $5 0007 Justify
your choice mathematically.

BagA contains:- 4 black balls 2 white balls
BagB contains:- 5black balls 3 white balls
BagC contains:- 6blackballs 4 white balls

wen1: g4 Bagb B g o dtgrem o
Student 1: i ;V‘;:ZZ%WAM

.ﬂ . . % whke fallo mﬂa’&ww
g,ymby C/Wﬂww&wﬂy chance

Zy{ 7 Gl & E;,zﬂzaw,&czﬁ

b floih Golls Vivbnid co rvove MLar/ 4 & F.
Comments:

Student 2 Etatly, 48, AN = 4
S o SR SN ;%
10 Yot 68, 44 = 3¢
A= 0'333
B = 0.625%
C O -6



Comments:

Student 3:

a/fs'aw/b«'g,b

Comments:

Affective Issues

Assessment is too often concerned with cognitive leaming outcomes ignoring the affective outcomes
of a lesson or program. Affective outcomes relate to attitudes, interests, feelings, values, and beliefs.
Many children (and adults) have a negative attitude towards and often a fear of mathematics. Some
common complaints are maths is boring, I'm no good at maths, I don’t understand maths, maths is
meaningless, and so on. As teachers we have to be aware of the importance of creating positive
attitudes towards mathematics. Factors such as confidence, persistence, perceived usefulness and
motivation to learn are important in leamning.

What students believe about mathematics, what they believe about themselves doing
mathematics, how they get excited about doing mathematics, and how they value
mathematics all play a central role in mathematics learning and instruction and should be
assessed. The NCTM Curriculum and Evaluation Standards provides seven areas to consider
when assessing disposition toward mathematics: (a) confidence in using mathematics; (b)
flexibility in exploring mathematical ideas; (c) willingness to persevere in mathematical tasks;
(d) interest, curiosity and inventiveness in doing mathematics ; (e) inclination to monitor and
reflect on their own thinking and performance; (f) valuing of the application of mathematics;
and (g) appreciation of the role of mathematics in our culture . . . Systematically observing
students, talking with students, and recording information using checklists based on the

above seven areas are means for assessing mathematical disposition.
(Webb and Welsch, 1993, pp. 306-307)

You may recall an attitude scale that you completed in the early phase of the MPE1 108 unit.
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Journal Writing

A less common assessment strategy is journal writing.

Asking children to keep a journal or a diary of their mathematical experiences can
provide teachers with an opportunity to directly assess students’ achievements, as
well as enabling students to make judgements about their own capabilities.
Journals can also give insights into the way students feel, about their learning, their
beliefs and the difficulties they are experiencing. Journals can be used regularly
after each lesson or less frequently to reflect upon a topic of work.

(Herrington et al, 1993, p. 35)

Burns (1995, p.52) suggests the following structure for journal writing:

e Write about what you did.
e Write about what you learned.

e  Write about what you're not sure about or wondering about.

Teachers can structure the writing to more specifically reflect the content of the lesson. The success or

otherwise of journal writing depends on whether teachers have the time and inclination to monitor and
respond to children’s writings.

Self-directed learning

View the video on assessment by Clarke (Herrington & Herrington, 1998) and answer the questions
below.

1. Explain in your own words what Clarke means by the following purposes of assessment: to
model, to monitor, to inform.

2. Clarke suggests that many assessment items are focussed on what the teacher wants to know
rather than encouraging children to show what they know. He uses a question based on a hexagon

to explain this point. Give another example of a typical teacher-centred question and transform it to
a leammer-centred question.
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3. Make notes on the “tool” analogy he used for mathematical knowledge.

4. Clarke lists five strategies that teachers can add to their class assessment strategies which he claims
will give optimum results for teacher effort. What are the stated advantages of these methods?

5. Explore the Herrington et al (1997) CD-ROM and write notes on the following assessment
strategies highlighted in the Clarke video

(a) Anecdotal notes.

(b) Peer assessment

(c) Portfolios

(d) Performance or practical tasks
(e) Self-assessment

6. What does the CD ROM say about -

(a) Journal writing? and
(b) Attitude tests?

References

Burns, M. (1995). Writing in math class. New York: Math Solutions Publications.

Curriculum Council. (1998). Curriculum framework for Kindergarten to Year 12 in Western
Australia. Perth: Author.

Education Department of Western Australia. (1998). Outcomes and standards framework: Student
outcome statements — Mathematics. Perth: Author.

Herrington, T. & Herrington, J. (Eds). (1998). Assessment in mathematics education. Perth:
MASTEC, Edith Cowan University. [video].

Herrington, T., Sparrow, L., Herrington, J. & Oliver, R. (1997). Investigating assessment
strategies in mathematics classrooms. Perth: MASTEC, Edith Cowan University. [CD-ROM].

Webb, N. & Welsch, C. (1993). Assessment and evaluation for middle grades. In D. T. Owens
(Ed.), Research ideas for the classroom. Middle grade mathematics. New York: Macmillan.



Chapter 5: Planning the Mathematics Program

As a result of studying this chapter and completing the set tasks you will:

 identify the major planning principles and develop planning rationales;
* identify and evaluate a variety of planning strategies for the primary mathematics classroom; and
* be aware of the significant resource documents to be used in the planning process.

Programming is a source of concern for most teachers on ATP and in the early years of their
teaching. In recent times, the programming demands on experienced teachers has diminished, often
only being a brief summary or outline. The need for programs is often at the discretion of the school
principal. However, detailed programs are usually expected of and are desirable for beginning
teachers Planning in the past was based on the content of the WA Syllabus and many teachers used
syllabus-related text books and worksheets as the basis of their teaching. With the introduction of
Student Outcome Statements, the syllabus will be used more as a resource. Teachers will select from
the syllabus objectives and activities that suit the outcomes they wish their children to work towards.
No doubt the text book writers will now model their materials more on the outcomes.

Planning Principles

Study the planning model in Figure 1 below, then complete the activities that follow:

Figure 1: Factors influencing planning for mathematics teaching and learning

Student School
Policy Texts & Resources ]
Outcome

Statements
[K-? Syllabus 1
Community ]

Student
Pupils Performance
: > PROGRAM Data
Classroom National
Design Curriculum Statement

Framework
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1. Add any further factors that you feel might impinge on the planning process and give one or two
reasons for each.

2. For each of the factors in Figure 1, discuss with a colleague the rationale for its inclusion and

write some explanatory notes below.

School Policy:

Student Outcome Statements:

Community:

Pupils:

Equipment:

Classroom Design:

Curriculum Framework:
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National Statement;

Teacher:

Student Performance Data: K-7 Syllabus:

Texts & Resources:

3. Review the list above (from Figure 1), together with other factors you have added, and categorise
and label their importance in the planning process as very important (V), of medium importance
(M), or not so important (N).

4. Which factor do you think is the most important? Give reasons.

Planning Approaches

Stone et al (1995, p.86) present a continuum to indicate teachers' rationales for planning or

programming in mathematics. Their model is represented below in Figure 2.

Figure 2: Planning Continuum

Begin with rich mathematical Begin with learning objectives,
activities, then identify <---------------- > then find suitable rich
learning objectives mathematical activities

1. Discuss with your colleague and indicate at least one advantage and one disadvantage of each
extreme of the continuum in Figure 2.
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2. Mark the continuum in Figure 2 to show your personal position. Give reasons for your stance in a
sentence or two.

Replacement Units

So-called replacement units are based on a set of problem solving or investigative tasks which are
packaged and marketed by the Curriculum Corporation — a national body based in Melbourne (and
not to be confused with the Western Australian Curriculum Council). You may like to visit their
website at http://www.srl.rmit.edu.au/mar/PSTC/cc/index.html. There are several interesting places
to visit at this site, and in addition you can also obtain more information about replacement units at
http://www.srl.rmit.edu.au/mar/PSTC/index.html.

It should be noted that the replacement unit structure is fairly new and somewhat radical so student
teachers and new teachers may find this approach a little difficult to manage. Teachers wishing to
adapt the replacement unit idea could easily do so by grouping together problem solving tasks of a
similar nature. You should already have a bank of useful tasks as a result of having completed the
MPE1108 and MPE2107 units. You will become acquainted with further tasks during this unit.

Replacement units have a three-week structure with the assumption that teachers have arranged a
Week Zero to familiarise themselves with the material and plan how they will adapt activities to local
conditions. The structure suggested is detailed below.

Week 1 — Introduction:
Exploration of a collection of short investigations. Pupils choose the tasks they tackle and the order
in which they tackle them from the menu. Their menu is signed off on satisfactory completion of the

task. Informal assessment by observation, to inform Week 2.

Week 2 — Formalisation:

A series of formal lessons identifying key concepts, formal language and rules which, during the
previous week, the teacher had noted as needing review, including

» teaching the Working Mathematically process,

* teaching report writing,

* teaching content, and

* making use of other resources.

Here assessment is more formal, perhaps with topic tests depending on the lessons that teachers plan.
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Week 3 — Investigation

At least one in-depth investigation selected by the pupil from the menu. Assessment is by a portfolio:

* Pupils write initial project reports as drafts,

» Drafts are discussed with the teacher and other pupils and checked against expected performance

standards, and

* Reports are re-drafted and the final product goes into the student's portfolio for semester

assessment.

A Topic Approach

Another approach to planning is based on a 'topic approach'. Teachers adopting this approach would

choose a topic such as 'time' from the Measurement strand and program around that topic. A two-

page sample from a topic program on mental mathematics is included in the appendices of this chapter

(pp. 58-59). It should be noted, however, that some ongoing practise of basic number facts and

revision of previously taught concepts should also be included in the plan if adopting this approach.

Below is another example of a topic approach as shown in Figure 3. A template for this format is also

included in the appendices to this chapter (p. 55).

Figure 3: Example of a topic approach to planning

Possible Sequence of Learning Activities

Other Learning Contexts

Initial n Tas

This task should relate to the topic being studied so that children
become focussed on the topic. Children of all abilities should be able
to complete the task to some point. By looking at the children's work,
you should be able to gain some insight into the their ability and
identify areas that require more work. The data gathered from the
children should help the teacher to determine children's levels of
performance.

Early Tasks / Activities
Activities pitched at the appropriate level and may be sourced from the

syllabus, teacher texts, commercial student texts, etc.

Continuing Activities
Reference may be made to specific books and page numbers.

Extension Activities
Teachers should plan to challenge more able students in the group.

Mathematics
Relate to other mathematics

topics.

Other Learning Areas
Look for ways to integrate with

other learning areas.
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The above approach is based on gathering information about what level the children are at, and hence
relies on the choice of an appropriate open-ended task which will allow children to demonstrate their
understanding at various levels. Beginning teachers will need to take considerable care in choosing

good, open-ended tasks.

3. What are some of the advantages and disadvantages of a topic approach?

4. With a colleague, select a topic, then design an initial open assessment task, suitable for level of
your choice, which will cater for the demonstration of student performance at more than one level.

Justify your choice, and give a follow-up task.

A Thematic Approach

As discussed earlier in this text, there are eight specified learning areas. This categorisation is one of
convenience rather than absolute necessity. Ideally all learning should take place in an integrated way,
but this proves to be rather difficult. Nevertheless, thematic approaches are quite popular and can be
very successful at the primary school level. Such approaches are ideal for integrating learning in
meaningful contexts. Examples could be the zoo, aeroplanes, or other such topics.

5. Working in twos or threes, select the school year level of your recent practice (or one close to that)
and choose a suitable theme which could occupy the class for the major part of each school day for

at least two weeks. Briefly indicate the following:

(a) Content and processes:




(b) The mathematics to be covered:

(c) Work in the other leaming areas:

6. List some of the major advantages and disadvantages of a thematic approach to teaching and
leaming mathematics.

Post Programming

This method of programming, as the name implies, is done after a period of teaching. This approach
would not be suitable for beginning teachers. However, it does suit the new trend towards the use of
student outcome statements. You may see an example of this technique in Hammond, Vincent, and

Williams (1995).

7. Discuss and list some of the major advantages and disadvantages of a post-programming method.
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Planning Rationales

There are many factors that need to be taken into account before planning a program. At the beginning

of any program, schools may require teachers to prepare a rationale that summarises the philosophy

and planning behind their program. The rationale should indicate the aspects of mathematics and the

learning of mathematics that the teacher sees as being important. It may include some of the

following:

nature and importance of mathematics;

general aims or broad teaching emphases; e.g., problem solving, attitudes, real-life relevance, use
of calculators, emphasis on mental mathematics, etc;

teaching and leaming strategies; e.g., activity based, investigation orientated, use of materials, etc.
main resources; e.g., text book, work cards, etc;

organisation, e.g., seating, time allocation; and

evaluation.

Examine the extract of a mathematics program rationale below.

Mathematics is a science of space and number. A body of knowledge and skills that provides
a powerful, precise and concise means of communication. Further, it is a creative activity that
triggers a search for patterns and relationships within the environment.

Mathematical learning is facilitated in situations where children are able to explore and
manipulate their environment. That is, understandings are gained when children are actively,
rather than passively, involved in their learning environment. Therefore, this program is

based on a hands-on material centred approach so that children will learn by doing.

It is intended that the teacher will maximise the understandings gained by acting as a guide to
the children's discoveries; questioning, directing and focussing their attention on relevant

detail as they manipulate the materials.

Language is a tool that allows children to make meaning from their experiences and to
communicate the extent of these understandings to others. As a result, this program aims to
provide the children with numerous opportunities to discuss and describe what they have
discovered. The teacher will provide a model of suitably formal language that children can

adopt as their need and ability allow.

A major reason for the inclusion of mathematics in the curriculum is to equip children skills to
solve real life problems. This program aims to develop problem solving skills by including

word problems that involve new concepts in real life situations.

A positive attitude towards mathematics and a confidence in his/her ability to succeed are

important factors which influence the effectiveness of a mathematics program. This
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* monitoring children's work,
e records,
» clarifying expectations,
» opportunities for feedback,
* opportunities for sharing, and
e assessment
(Linke, 1990, pp. 91-95)

While Linke's article has a literacy focus and is not based on an outcomes approach to planning, it
does clearly outline the process the author goes through when programming for mathematics and thus
provides a useful summary.

9. Examine the Curriculum Framework document (Curriculum Council, 1998, pp. 178-182) and
also A National Statement on Mathematics for Australian Schools. (Australian Education Council,
1991, pp. 1-24). Then write your own rationale (about a page).

Planning Periods and Formats

In this section we will consider issues such as the length of the planning period, the planning format,
and the selection of content.

The Planning Period

The learning period to be covered by a plan will usually range from as little as one lesson to as much
as a one-year program. The K-7 Syllabus (EDWA, 1989) is a useful source of activities. A sample
page from that document is included in the appendices to this chapter (p. 54). Several short-term
approaches to planning have already been considered, and again, you are referred to the appendices.
The planning period will depend on many factors. For example if it is dependent on a theme it may
only last, say, four weeks. Planning for a school term of 10 weeks is very common. Also included in
the appendices is a one-year long-term planner sample. The length of the planning period will
significantly affect the amount of detail in the document.

Content Selection

For the ATP most student teachers will (or should be) guided by their classroom teacher in content
selection. Students are usually given some topics to cover and occasionally are free to select some
areas of their own. You may be given some broad task such as "problem solving" to cover. Or, you
may be directed to follow a text book which will dictate your content selection. As already mentioned,
the syllabus is a good source of material. Other sources include various texts, computer software and
other multimedia material, and many useful Internet sites.
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What is MEOW?

The authors and other mathematics educators are preparing a set of mathematical tasks for K-12 and
these are being placed on a website at http://www.cowan.edu.au/ses/education/meow/meow.html.
What is MEOW? Mathematics Education On the Web.

Sequencing Content

Some beginning teachers find it difficult to decide what order in which to teach various topics. This is
not an easy task. However, in mathematics, there are some commonsense principles regarding the
sequencing of topics. Firstly, however, it is essential to always follow the well-established

teaching/leaming sequence of Concrete ---> Pictorial ---> Abstract.

1. For each of the substrands listed, discuss with a colleague and indicate some of the sequences of
development that need to be observed.

(a) Number:

(b) Measurement:

(c) Chance & Data:

(d) Space: U
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Format of Plan

There is no one way of setting out your program. This is your choice, in consultation with the
school, and it needs to be a format that you are comfortable with and can use effectively. One
technique is to use the format of the sample program already provided. Several formats may be found
in the appendices. Here is another example:

Outcomes ‘ Syllabus Activities

Learning \ Resources

Evidence ' Reference

The Outcomes will be drawn from the Student Outcome Statements.
The Leamning Activities will include each significant task associated with the objectives.
Resources will include the teaching aids to be used as well as text and other references.

The Evidence column will include any specific forms of assessment associated with the activities.

This format is usually structured according to syllabus entries and gives a broad overview of what
has to be taught. When segments are completed they are checked off and comments can be included
on areas that need re-teaching, etc. Each week the teacher needs to select what he or she will cover.

If this format is used then it is useful to have a brief outline of what will be covered week by week.

A common method of "programming" is the week-by-week lesson-by-lesson format. This can
almost become a daily work pad. Many student teachers find it easier to plan like this. Headings
similar to the above can be used. The main difficulties with this type of program are the amount of
work needed initially and the fact that lessons may need to be repeated, as interruptions will occur
from time to time.

Amount of Detail

This is the 64 thousand dollar question. Many practising, experienced teachers have contracted their
programming to brief outlines. This is made possible by the use of Syllabus references or text book
pages. This is again a question of choice, tempered by the school requirements.

2. Discuss, then list some of the factors you consider will affect the extent of detail in a mathematics
planning document.

3. Examine the appendices and design a planning format that you could use for the six-week period
during ATP.
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4. Working in twos or threes, select the school year level of your recent practice (or one close to
that) and write a six-week mathematics program (as for ATP).
The following documents will be provided to assist you:
Curriculum Framework
Student Outcomes Statements
Student Work Samples
Leaming Mathematics K-7 Syllabus
National Statement
Calculators and Computers Policy Document

Self Directed Learning

The following websites may be of use when developing a mathematics program.

1. Take time to look at these sites and search for others, as it may save you time in the long term.

Some innovative assessment tasks -
http://www.educ.msu.edu/MARS/ or a mirror site http://www.nottingham. ac.uk/education/MARS

A good starting point when looking for resources -
http://www.anglia.co.uk/education/mathsnet/intro.html

hitp:/fexplorer.scrtec.org/explorer/
http:/fwww.col-ed/cur/math.html#mathl
http:/fwww./uc.edu/schools/education/csimath/csitext.htm
hitp:/fwww.learner/org/K12/sami/

http:/fwww.ex.ac.uk/cmit/

2. Add at least two useful URLSs to the list above by searching the WWW.
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Appendices

The appendices listed below are included in the following pages of this chapter.

» EDWA K-7 Syllabus — Overview of Stage 5;

» Sample page from EDWA K-7 Syllabus;

* Sample short-term mathematics outcomes planner
* Sample long-term yearly planner;

* A sample program framework; and

 Initial section of a topic program (Mental Mathematics).
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EDWA K-7 Syllabus Entry
[Stage 6 Space Strand (EDWA, 1989, p. 17)]

ENTRY 5

Carry out activities in which the features and functions of objects and structures in the
environment are investigated.

Related Entries

S6:P1:2 S6:P1:4 S6:P2:1 S6:P2:2 S6:P2:3 S6:P2:4
S6:P3:5

Background

An understanding of how, why and where shapes are used in the environment gives
children an enhanced appreciation and awareness of the role of shape in their surroundings.

Focus ldeas and Skills

Properties of three-dimensional shapes Relationship of shapes to lines, points
and planes of symmetry
Discussing Investigating Constructing

Focus Questions

« What is the purpose of ball-bearings inside wheels?
» How is a building designed to minimise damage from cyclones?

Suggested Materials
Three-dimensional shapes, familiar objects which are symmetrical. Straws and pins.

Suggested Activities

« Discuss objects in the environment which have planes of symmetry (buildings,
tents, people ...)

« Make models of local features and familiar places.
- Build houses from cardboard (or use cardboard boxes) and construct a roof using straws
and pins. Investigate the shapes that are strongest. Introduce the concept of interior

diagonals if required.

- Investigate the operation of cranes, pulleys, syphons, etc. (Integrate with Science
program.)

- Investigate the changing shape of racing cars, rockets, yachts, safety helmets...

Resources

Language, Recording and Representation
Discuss as appropriate.
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SG

Mathematics Outcomes Planner

Outcome Level A: Outcome Level B: ____
A =The level chn have reached B = The level chn working towards

Outcome Level C: _ __
C = The next level, which afew chn may reach

Time period: Enter number of teaching sessions covered by the plan.

Key Teaching Points:
Specify the focus of the activities and the key concepts to be developed

Sequence of Learning Activities

Introductory Activity:

A rich mathematical task should be used to motivate the children and to gather evidence of ‘where the
children are at’; e.g., at Level ‘A’

Initial Tasks:

Either give a brief description of the task(s) or refer to the syllabus, text or other resource. When
choosing tasks, try to choose those that will cater for the wide range of abilities in your class.

Extension Tasks:

Provide these for chn who have succeeded at the tasks above. remember that some chn will be
moving towards Level 'C'

Other Learning Contexts:
Integration of two or more strands

Other Learning Areas:
Integration across any of these

Assessment Procedures:
Indicate the strategies of assessment to be used

Evidence:
Results of Assessments to show SOS attainment




Sample Yearly Planner

10
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Program Framework

Content

Processes

Attitudes

Assessment

* movement and position in the environment

e spatial concepts

e transformation of two- and 3D shapes

* measurement concepts of length, area,
volume and capacity, and mass and time

* relationships among the measures

* accurate use of measuring instruments

* the relationship of the metric system of
measurement to the number system

* number concepts and relationships in the
number system

* probability concepts

e competence in the fundamental
mathematical operations

e appropriate use of aids such as calculators
and computers

* application of mathematical skills in practical
situations

e comprehension of mathematical
information given in oral and/or written
forms

* selection of appropriate strategies

e purposeful use of materials

* selection of appropriate operations to
solve problems

» reflection on actions to formulate ideas

» expression of mathematical ideas in
words, pictures and symbols

e construction of lists, tables and graphs

e estimation in number and measurement
activities

* identification of patterns and
relationships

* classification, ordering and preparing

* analysis and interpretation of information

« formulation of hypotheses

» justification of conclusions and
inferences

* enjoyment of mathematics

« satisfaction and fulfilment in
mathematical achievement

« confidence to experiment and
solve problems

¢ willingness to express ideas and
hypotheses

* appreciation of the relevance of
mathematics in life

* Chance meeting

¢ Teacher-initiated conversions
¢ Student self-assessment
¢ Investigations

* Questionnaires

e Observations

¢ Schedules

* Projects / assignments

¢ Published attitude tests

¢ Classroom tests

¢ Checklists

¢ Practical work

¢ Published diagnostic tests
¢ Examinations

e Standardised tests

Class Organisation

Teaching Approaches

Resources

Time Allocation

Program Evaluation
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Mental Mathematics Program

Rationale

Mental computation is a practical life skill used in at least 75% of all
computations. Mental computation is a very efficient means of calculation and
is necessary for effective estimation and use of calculators. Mental
computation is a creative process in which students may use different
methods to solve problems. It requires understanding of number properties
and mathematical processes.

Goals

¢ To develop students’ knowledge of number properties and relationships
useful for calculating purposes.

¢ To develop students’ network of connections between number facts and
relationships.
To develop students’ range of calculating strategies.

e To develop students’ confidence in mathematics

Implementation

Mental maths is timetabled daily for 15 minutes per day.
Emphasis is on learning and sharing ideas and strategies, not ‘testing’.
Problems will be presented in oral and written form, but answers will be

Evaluation

Students’ progress will be monitored by:

e observations

mostly oral. ¢ questioning
¢ Calculators, dice, playing cards and other materials will be used wherever | e student self assessment
appropriate.
Objectives Learning Activities Resources Evaluation
1. Recall the basic sums to 18. (K-7 | Card Activities; Ref: Think Mathematically, Use observation of selected students to
Syllabus, N5:P1:4, N4:P1:7) “Tally Ho!” p. 52 determine:
2. Addanumber less than 10 to any . e Each student will need A, .
number (N4:P1:1) 1. Organise pairs 2,3,4,56,7,8,9,10 1. Could students recall basic sums to 18?
2. Demonstrate game from a pack of cards. 2. Could students add any number less than 10
3. Distribute cards R gi heet f o to any number?
. ecording sheet for eac
g' ggc):(ga?/vn;?/ student 9 Record on checklist
Identify the relationship between Dice Activities: Ref. Dice Dilemmas, Use observation of selected students to
place value and value in the base ten | “Dice Digits” pp. 12-14. determine: Could student identify the

system for whole numbers to 1000
(Syllabus, N4/5:P2:4)

* ten-sided dice base ten system for whole numbers to 1000?

Record on checklist.

1. State that simple number
problems are best solved
mentally.

2. State that more complex
problems are better solved using
a calculator. (Process : selection
of appropriate strategies)

Calculator Activities:
“Beat the calculator”

Divide class into two groups
Explain game procedure

Play game

Discuss which method is “best”
and under what circumstances
this method is useful

BN

Ref: Kids Calculators and
Classrooms pp. 17-18

Use questioning of selected students to
determine:

1. Did student state that simple number
problems are best solved mentally?
2. Did student state that more complex

Record on mathematical processes checklist
(selection of appropriate strategies)

relationship between place value and value in the

problems are better solved using a calculator?
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Objectives

Learning Activities

Resources

Evaluation

Select appropriate operation to solve
problems. (Process)

“Today’s Numberis...” - 12

1. Write number on board, ask
students to make up calculation
for that number. Write them up
as suggested, using columns for
each type of calculation. After 8
or 10 responses, focus on a
particular type of response.

Ref: Think Mathematically,
p. 23

¢ whiteboard/blackboard

Use observation and questioning of selected
students to determine:

Was student able to select appropriate operation
to solve problems? (Process)

Record on mathematical processes sheet.

Select appropriate strategies to solve
mental calculations. (Process)

“How did you do it? "

Focus: 15 + 11.

Introductory lesson for this strategy
emphasising that there are many
different ways to do mental arithmetic

Ref: Think Mathematically,
p. 27.

¢ whiteboard/blackboard

Use questioning of selected students to
determine: Could student select appropriate
strategies to solve mental calculations? (Process)

Record on mathematical processes sheet.

Recall basic facts (N4:P3:12;
N4:P1:7; N5:P1:4, N5:P3:13)

Card Activities:
“Discard”

1. Distribute cards
2. Explain game
3. Play game

4. Pack away

¢ One set of “Discard!”
cards per pair of
students.

Use observation of selected students to
determine: Could student recall basic facts to
successfully play the game?

Record on checklist

1. Recall the basic sums to 18
(N5:P1:4, N4:P1:7)

2. Add a number less than 10 to any
number (N4:P1:1)

3. Show a willingness to express
ideas and hypotheses

Dice Activities:
“ Pig ”

1. Demonstrate game

2. Distribute dice

3. Students play game in pairs
4. Discuss strategies used

Ref: Think Mathematically

p. 66

e 2dice per pair of
students

¢ pencil and paper to
maintain score

Also see Dice Dilemmas, Go
for Broke, p. 21

Use observation of selected students to
determine:

1. Could student recall basic sums to 18?

2. Could student add any number less than 10
to any number?

3. Was student willing to express ideas and
hypotheses?

Record on Checklist

Carry out place value game
(N4&5:P2:3)

Calculator Activities:
“Wipe-out’

Demonstrate game using OHP
Distribute calculators

Give first number and talk
students through steps
Student practice

N

Ref. Kids Calculators and
Classrooms, p. 19

e one calculator per pair of
students
one overhead calculator
overhead projector

Use observation to determine: Could student
play game which involved place value?

Record on checklist




Notes:
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Chapter 6: Working Mathematically and
Problem Solving

As a result of studying this chapter and completing the set tasks you will be able to:

e explain the meaning and role of 'working mathematically' in the mathematics curriculum;
e detail the heuristics and strategies of problem solving; and

¢ demonstrate greater confidence in personally solving mathematical problems
The Working Mathematically Strand

The Working Mathematically strand is the most important strand of all, since it pervades all the other
strands. It is not a content-based strand such as Space or Chance and Data, but is one that is generic
in nature and applies to all mathematics teaching and learning, irrespective of the content being
covered. It is concerned with the process or approach rather than with the content of the mathematics

curriculum.

You may recall that the first chapter in the text for the unit MPE1108 was devoted to this strand so as
to "set the scene" for the significant change being promoted for mathematics classrooms. Check
pages 12-13 in the Student Outcomes book (EDWA, 1998) for the WM strand and read the Level

statements for each substrand.

1. Write the four substrand titles for WM below.
(i)
(i)
(iii)
(iv)

2. How does the topic of problem solving fit into the WM strand? Discuss with a colleague and list

some points below.

'School Maths' and 'Real Maths'

The mathematics of the classroom is often very different from that of the real world. Thus the terms

"school maths" and "real maths". Classroom mathematics can too often consist of a diet of contrived
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problems based on artificial contexts, together with standard written algorithms. Lesh and Zawojeski
(1992) make some interesting comments on this issue. A comparison of school and “real world” or

everyday mathematical problem solving reveals a number of self-evident contrasts:

School mathematics and problem solving | Real world mathematics and prol;lem solving
formal (algorithmic) approach used informal, ad-hoc techniques used

mathematics is decontextualised mathematics is contextualised

data is often artificially clear data is “noisy” with many distractors

Lesh and Zawojeski (1992) summarise these and other differentials in a little more detail as follows:

The characteristics of problems in the classroom should be similar to the characteristics of
real-world situations in which students will be required to use mathematics in their everyday
and work worlds . . . the “informal mathematics” used in everyday life captures the flavour of
the types of problem-solving experiences we should be providing for students. In everyday
situations mathematics is embedded in a task rather than abstract. The mathematical
processes needed in everyday situations are not explicitly apparent . . . The data in realistic
situations is often ill defined and “noisy” rather than well defined and presented neatly. The
level of accuracy required in real-world problems is defined by the situation rather than given
or assumed, and the language of problems in a real-world context is imprecise and
responsive to the setting rather than carefully worded to elicit precisely the correct
response. The more experiences we provide for students that have characteristics similar
to those encountered in the outside world, the more students will be able to readily use
their school-learned mathematics on substantive problems both inside and outside the
classroom environment.
(p- 72)
Maier (1991) discussed extensive contrasts between school mathematics and what he called “folk
mathematics”. He too saw a corresponding dichotomy in terms of the problem solving/posing

children experienced inside and outside school.

In school almost all problems are presented to students pre-formulated and accompanied by
the requisite data. For folk outside school, problems are seldom clearly defined to begin
with and the information necessary for solving them must be actively sought from a variety of
sources.
(p- 65)
1. Should most of the mathematics undertaken in the classroom be "real maths"? Why/Why not?

Give examples. Discuss with a colleague and report to the class.
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2. Devise two different real-world contexts for each of the following computations:
(@) 12-5

(@)

(i)

(b) 77+5
(i)

(ii)

(c) 50-(3x4.76)
(i)

(ii)

3. What benefits do you see in children determining a variety of ‘real world’ contexts for calculations
as in the above exercise?

. Note the following two problems, then answer the questions below:

Problem 1:

I am thinking of a number. It is between 10 and 30. It is not 29. It is odd. It is less than 24. It is
prime. Itis not 17. It is greater than 15. Its digits add up to an even number. What is my number?
Problem 2

I had $25 dollars in my purse when I went out. I only bought a pizza and some apples. The apples
were $4 and the pizza was $9.50. Do I have the right amount left in my purse?
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(a) How do these two problems relate to the 'real maths' and 'school maths' labels described
above?

(b) Discuss the significant aspects of each problem with a colleague, and jot these down below.

Problem 1:

Problem 2:

S. Find or create three real-world problems that would be useful for primary school classrooms as
indicated below, and that would occupy the pupils for approximately 20 minutes.

Years |-3:

Years 3-5:

Years 5-7:

The daily newspaper is a very rich source for "real world" mathematical problem posing and solving.
The content is relevant and topical, and therefore generally very motivating for students. The
newspaper is an ideal vehicle for contextualising mathematics — one of the substrands of the
Working Mathematically strand. Moreover, any one daily newspaper can provide countless activities
in the number, and in the chance and data strands; and to a slightly lesser extent in the space and
measurement strands. Below are two extracts from The West Australian (February 13, 1999) which
can provide examples of the richness of such material for real-life problem posing and problem
solving.



6. Study the extract below from the stock market report then answer the questions that follow.
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(a) Note that the previous 12-month ‘'high' and 'low' prices are given for each stock listed.
Hindsight is a wonderful thing, but suppose you were able to predict these highs and lows 12
months ago, which would have been the most profitable share to buy and sell in that period?

Which would have been the next best? Use estimation first, then check with a calculator.

(i) Estimate — Best: Next Best:
(ii) Calculation — Best: Next Best:

Does the solution above depend on the amount of money you had to invest? Give reasons.

(b) Pose two different problems related to the extract above.

(i)

(ii)
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7. Use the advertisement below to generate three different problems.

We have 12 above ground pools left from our
summer stock, so the prices are slashed to clear!

»ﬂ25XI5(7.6mx4.5m) ] . £ 33 sOLD Q!‘-

FROM

201 2340
wa 4650 NOW $3150 LINERS.................. $250

ACK IN STOCK!

v B !.i--L.B.u-L W 3.

(1)

(ii)

(111)

Now, share these examples with the group.

Problem Solving Steps and Strategies

The classic book by Polya (1957) on problem solving — How to Solve it — was originally
published in 1945. The well-known heuristics of problem solving are embodied in Polya’s four-step
approach:

1. Understand the problem,

2. Devise a plan,

3. Carry out the plan, and

4. Look back.

These steps may be expressed in simpler terms for primary school students as:
Look
Plan
Do
Check
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Following are some brief explanations/examples of each strategy.

Understand the problem

* Explain the problem in your own words
* Relate to similar problems

* Ask questions

e Highlight important parts

* Draw a diagram

Devise a plan

* Consider various strategies

* Compare to similar problems
* Determine subgoals

Carry out the plan

¢ Make estimates

* Make adjustments as necessary
* Write the solution

Look Back

e Check that all important information has been utilised
* Check each step

* Check computations

* Consider the reasonableness of the solution

¢ Look for alternative solutions

1. For each of the four steps, indicate at least one more act that would be helpful.

Look:

Plan:

Do:

Check:

2. There is considerable evidence that problem solvers — both children and adults— tend not to

follow these essential steps. What is the typical behaviour?

Following is an example of the four steps in operation, using a 'guess and check' (or trial and error)
strategy.
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Problem Example

Problem
Place the digits 1, 2, 3, 4, 5, 6 in the circles in the diagram so that the sum of the three numbers on

each side of the triangle is 12.

@,

Understand the Problem

e one circle for each digit

e use each digit once

e each line of three digits adds to 12

This indicates that the problem is understood.

Devise a plan

* Try guess and test

This particular strategy can be used in three different ways ;
e random,
* systematic, and
* inferential.

Use six counters numbered 1-6.

Carry out the plan
The planning and "doing" is summarised in the tables below for the three different "guess and test"

techniques.

Devise a plan Carry out the plan

Random Arrange counters randomly Carry out the plan as described. Unless random tests
checking each new combination | are recorded in some way you will probably
until one works. inadvertently duplicate some guesses a number of

times.

Systematic Guess cormner numbers are 1, 2, | With 1, 2, 3 in the corners, the side sums are too
3; if that does not work try 2, 4, 6; | small. Try larger corner numbers until a solution is

and so on. found. This technique reduces the number of

combinations we need to try.
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Devise a plan

Carry out the plan

Inferential - Start by assuming 1 is in a comer ! If 1 is placed in a corner we must find two pairs from
and explore the consequences. . the remaining digits (2, 3, 4, 5, 6) whose sumis 11 as -
shown.
11 11
()
A
Can't be done. Only 6+5=11
If 2 is tried in a corner we need two pairs totalling 10 -
this can not be done.
If 3 is tried in a comer we need two pairs totalling 9 -
this also can not be done.
Thus if there is a solution, 4, 5 and 6 must be in the
corners:
. Placing 1, 2, 3 as shown, we have a solution.
Look back

The solution satisfies all the requirements. Some comments on these three techniques may be useful:

Random Guess and Test — very useful for getting started but you can lose track of your various

trials if a large number of options are available.

Systematic Guess and Test — this ensures all possibilities are canvassed, but is inefficient if a large

number of options exist.

Inferential Guess and Test — this is generally superior to both of the previous techniques, as it saves

time and provides information which was not given.

Solve the two problems below by following the steps in the above example. The diagrams are on the

following page.

1. Place the digits 1, 2, 3, 4, 5, 6 in the circles in the diagram in the previous problem so that the
sum of the three numbers on each side of the triangle is 10.

2. Using numbered counters place the digits 1 to 5 into the 5 circles so that any three numbers in a
line through the centre will give the same sum. Find all three solutions.
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Y
(1) / )

Problem Solving Strategies

The heuristics of problem solving outlined above need to be implemented in conjunction with
appropriate strategies. One such strategy — Guess and Test — has already been exemplified. Below
is a list of useful strategies (not necessarily exhaustive) which can be used by primary school

students. You would have met and used most of these before.

Think of a similar problem
Guess and Test

Simplify the problem
Construct a table

Look for a pattern

Act out the problem
Construct a Model

Draw a diagram
Investigate all possibilities
Identify the subgoals
Work backwards

We will now illustrate these strategies with several problem examples. One problem that you would

already have met is as follows.

Problem
There are 30 people in this class. If everyone in the class shakes hands with everyone else, how

many handshakes will there be? Consider what strategies could be used.

Think of a Similar Problem
If you can think of a similar problem and recall the method of solution then this would provide the

starting point here.

Guess and Test
This has been illustrated above, but is not appropriate for this problem.
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Simplify the Problem
It is often very useful to take the simplest case where possible — in this instance, two people, which

results in one handshake, which provides the basis for starting a table.

Construct a Table
A table for this situation is shown below:

People Handshakes Increase Pattern
2 1 1 1
3 3 2 1+2
4 6 3 1+2+3
5 10 4 1+2+3+4
29 . 28 1+2+3+ ... +28
30 . 29 14243+ ... +29

Look for a Pattern
It is clear from the table that there is a pattern. Note that this had to be derived in order to avoid listing

all the instances. It also allows us to generalise for any number of people.

Act out the Problem
The problem could be solved by everyone in the class actually shaking hands with everyone else,

which could take considerable time. However, acting out the first few simple cases with, say, two,

three, and four people would provide the path to a solution.

Construct a Model
This strategy is inappropriate for this problem.

Draw a Diagram
This is of some help here, but such a strategy should always be used whenever possible in order to

provide a visual image.

.- A X

1 person 2 people 3 people 4 people 5 people
0 handshakes | handshake 3 handshakes 6 handshakes 10 handshakes
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Investigate all Possibilities ;
The table shown above generated a pattern which rendered this strategy unnecessary. Nevertheless, it

would have been possible to list the numbers of handshakes for all cases from 2-30.

Identify the Subgoals
This could be to determine what happens for a small number of people (in this instance, a simpler

case of the same problem)

Work Backwards
Not appropriate here.

The handshakes problem above lends itself to the use of many of the standard strategies. Try the

problems below using the strategies indicated.

1. How many diagonals in a centagon? [Use strategies as for the handshakes problem] _

2. Construct a 3 x 3 magic square by using the digits 1 to 9 so that each row, column and diagonal

add to the same total. [Identify subgoals]

3. Two barrels, A and B, contain unspecified amounts of liquid, A more than B. From A pour into B
as much liquid as B already contains. Now pour from B into A as much liquid as A now contains.
Finally pour from A to B as much liquid as B now contains. At the end of this, each barrel finally

has 64 litres. How many litres did each barrel contain at the start?

More Problems

Solve each of the following problems and indicate the strategies used. Also state other strategies that

could have been used in each case.

1. The Green Tomatoes rock group has four members: Bob, Denny, Gil and Pete. They play bass,
drums, guitar and piano. No one plays an instrument that begins with the same letter as his first
name. Bob hates the piano player. Pete and the drummer are best friends. Gill plays the bass,

which he borrowed from Bob. Which instrument does each person play?
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Bob Denny Gil Pete

Bass No Yes

Drums No

Guitar

Piano

Strategies:

2. By zig-zagging vertically and horizontally through the arrangement how many “triangles” can you

see?
TRIANGLE
RIANGLE
IANGLE
ANGLE
NGLE
GLE
LE
E

Strategies:

3. Make a 3 x 3 square array of 9 blocks or tiles. Can you keep the perimeter constant by removing
1tile?___ 2tiles? __ 3tiles? ___ 4tiles?___ Stiles?___ 6tiles?___ 7tiles?____

Strategies:

4. The farmer’s will said, “My wife is to have the house in the corner of my square shaped farm
together with a quarter of the land in the shape of a square which includes the house. Each of my 4
sons must share the remainder equally so that each of their 4 farms are the same size and shape”.
Draw this.

Strategies:

5. Place the numbers from 1 to 12 in the circles below in such a way that the sum in the outer ring is

twice the sum in the inner ring.
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Strategies:

6. Mr E Nigma looked at the photograph of a man and stated: Brothers and sisters I have none but

the man’s father is my father’s son. Whose photo was it?

Strategies:

7. Three friends went to a restaurant for a meal and were charged $10 each. They paid this to the
waitress, but she realised that she had overcharged them a total of $5 so she brought that amount

back to the table. They gave her $2 as a tip and kept $1 each, resulting in a cost of $9 each.
But 3 x $9 = $27 and $27 + $2 = $29. What happened to the other $1?

Strategies:

8. How many squares in a 10 x 10 array of square tiles? __ What is the rule for solving this

type of problem?

Strategies:

9. A man wants to plant five shrubs along each side of his triangular garden. What is the minimum

number of shrubs he will need to purchase?

Strategies:
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10. In the example below, find a digit to replace each letter. ___ . Is there is more than one

possible answer? ___

FIVE
- FOUR_

ONE

Planning for Problem Solving/Posing

Lesson planning formats are dependent on the particular problem solving/posing pedagogy being
employed, the respective teacher/student roles, and the scope of the problem. For this reason it is
difficult to nominate a single format suitable for all situations. One rather common misconception
about mathematical problems is that they should generally be able to be solved very quickly. This is
not the case. A simple classification of problems in terms of their scope could be as stated below.

1. Discuss with a colleague and give an example of each.

(i) Short Problems — Can be solved in about five minutes

Example:

(ii) Medium Problems — Can take a class maths period to solve

Example:

(iii) Long Problems — Can take a week or more to solve

Example:
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The following structure described by Kroll and Miller (1993) identifies teaching actions and purposes

before, during, and after problem solving, and provides valuable assistance for teachers.

Teaching Action

Purpose

Before

1. Read the problem to the class or have a
student read the problem. Discuss words or

phrases students may not understand.

lllustrate the importance of reading problems
carefully and focus on words that have special

intempretations in mathematics.

2. Use a whole-class discussion about under-

standing the problem.

Focus attention on important data in the problem

and clarify parts of the problem.

3. (Optional) Use a whole-class discussion about

possible solution strategies.

Elicit ideas for possible ways to solve the problem.

During

4. Observe and question students to determine

where they are in the problem-solving process.

Diagnose students’ strengths and weaknesses

related to problem solving.

5. Provide hints as needed.

Help students past blockages in solving a problem.

6. Provide problem extensions as needed.

solution strateqy to a similar problem.

Challenge the early finishers to generalise their

7. Require students who obtain a solution to

‘answer the question.”

Require students to look over their work and make

sure it makes sense.

After

8. Show and discuss solutions.

Show and name different strategies used

successfully to find a solution.

9. Relate the problem to previously-solved
problems and discuss or have students solve

extensions of the problem.

Demonstrate that problem-solving strategies are not
problem-specific and that they help students
recognise different kinds of situations in which

particular strategies may be useful.

10. Discuss special features of the problem,
such as a picture accompanying the problem

statement.

Show how the special features of a problem may

influence how one thinks about a problem.

(Kroll & Miller, 1993, p. 69)

Depending on teacher experience the above sequence might need to be preceded by intended

outcomes, materials possibly needed, and organisational options. Reference to intended evaluation

specifics (outcomes and recording formats) might also be necessary. Missing from the teaching action

list is any reference to motivation. When the problem is provided by the teacher, this aspect needs to

be explicitly addressed. Unless the problem has contextual relevance, intrinsic appeal, or amusement

value, simply presenting it to the class/group is unlikely to serve this purpose. Student problem-

posing on the other hand can be expected to impact more effectively in this respect.
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2. With a colleague, discuss the use of the above "teaching action" sequence to plan a lesson based

on each of the following problems, then share with others.

(a).If you ride exactly one kilometre on your bicycle, how many times do the wheels go round?

How many times do you have to push the pedals round?

(b).In a family the girls have twice as many sisters as brothers and the boys have five time as

many sisters as brothers. How many boys and girls are there in the family?
Assessing the Problem Solving/Posing

Suitable long-term assessment strategies should be selected to monitor student progress in the above
areas. Herrington, Sparrow, Herrington and Oliver (1997) identified many strategies appropriate for
these particular applications; with some of the most relevant being portfolios, written and oral reports
on investigations and problem solving, checklists, journal writing, modelling, and interviews; as well
as conventional paper and pencil tests. Itis essential that all of these strategies be employed to profile
both individual and class achievements, and the success or otherwise of the problem solving/posing

program.
Additionally:
Rather than relying on approaches that provide assessment solely for the purposes of
grading, ranking, and credentialling, assessment practices are needed that integrate with

learning activities, that support students’ construction of knowledge, and that reflect the

diversity found in the curriculum and in the learners themselves.
(Herrington et al, 1997, p. 2)

1. Select three of the assessment strategies from the CD-ROM Investigating assessment strategies in
the classroom (Herrington et al, 1997) which would be particularly appropriate in assessing

problem-solving activities. Describe briefly why you have chosen each.

(i)

(ii)

(i)




Attitude Inventory Items

Pretend your class has been given some math story problems to solve. Mark true or false depending
on how the statement describes you.

. | will put down any answer just to finish problem
. It is no fun to try to solve problems
. | will try almost any problem

. When | do not get the right answer right away | give up

1
2

3

4

5. | like to try hard problems
6. My ideas about how to solve problems are not as good as other students' ideas
7. 1 can only do problems everyone else can do

8. | will not stop working on a problem until | get an answer

9. | am sure | can solve most problems

10. | will work a long time on a problem

11. | am better than many students at solving problems

12. I need someone to help me work on problems

13. | can solve most hard problems

14. There are some problems | will just not try

15.1 do not like to try problems that are hard to understand

16. | will keep working on a problem until | get it right

17. | like to try to solve problems

18. | give up on problems right away

19. Most problems are too hard for me to solve

20. | am a good problem solver

Scoring is as follows:

Willingness to engage in problem solving (2,3,5,14,15,17)
Perseverance during problem solving process (1,4,8,10,16,18)
Self-confidence with respect to problem solving (6,7,9,11,12,13,19,20)
Positive (3,5,8-11,13,15,17,20) — O for false, 1 for true

Negative (1,2,4,6,7,12,14,15,18,19) — O for true, 1 for false

Analytic Scoring Scale

Cruikshank and Sheffield (1992) describe an analytic scoring scale developed by Charles, Lester, and
O’Daffer (1987) where all written evidence produced by a student in solving a problem is considered.
The focus of holistic scoring is the process of solving (or attempting to solve) a problem — not just
the solution. Analytic scoring requires the teacher to assign points to selected aspects of the problem
solving process, and apply specified criteria to assess the student’s work. Charles, Lester, and
O’Daffer (1987) (cited in Cruikshank & Sheffield, 1992, p. 49) provided the following example:
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Analytic Scoring Scale

Understanding the problem 0: Complete misunderstanding of the problem
1: Part of the problem misunderstood or misinterpreted
2. Complete understanding of the problem
Planning a Solution 0: No attempt, or totally inappropriate plan
l: Partially correct plan based on part of the problem being
interpreted correctly
2: Plan could have led to a correct solution if implemented
properly
Getting an Answer 0: No answer, or wrong answer based on an inappropriate plan
l: Copying error; computational error; partial answer for a

problem with multiple answer

2 Correct answer and correct label for the answer

The correspondence with Polya’s stages is evident, and the criteria specify what the teacher should
look for. While the marks can be added to give a single score, the intention is that the part-by-part

analysis indicates student developmental priorities.

2. One omission from the Analytic Scoring Scale given above is that it does not include criteria for
judging the ability of the student to communicate. In the box below describe criteria for assessing

the ability to communicate.

Communicating 0:

Investigations

A mathematical investigation is usually a more extensive type of problem solving exercise. However,
it is usually more open-ended and can be interpreted or extended by the learner in many different
ways. A major use of the investigation process is to enable students to explore important
mathematical concepts and relationships in their own way. Students are thus able to make important
mathematical discoveries. In most instance such discoveries will already have been made before
them, but in some cases new discoveries are made. Investigations provide a useful medium for the

student to work mathematically.
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The main stages of investigations are:

» data gathering

* analysis of data for findings, conclusions
* explanation and justification

* extension

Being open ended, most mathematical investigations lend themselves to extended inquiry over long
periods of time if the student so desires.

1. One useful source of material for mathematical investigations is provided by Bastow, Hughes,
Kissane and Mortlock (c1983). Undertake the following investigations from their collection.

(a) The country of Funnymoney can mint only two denominations of coin and no paper money.
Investigate the amounts of money that can be made. Investigate.

(b) Investigate the number of rectangles in rectangles drawn on grid paper.

(c) On what day of the week would your 100th birthday fall? Investigate this and other days of
interest.

2. Investigations are not only for middle and upper primary years. There are possibilities at the junior
primary levels as well. For instance, the "Hundreds Chart" is a rich source for investigation of

patterns and relationships for all primary year levels.

(a) Give an example of a stimulus you could give to encourage investigation of the "Hundreds
Chart" (see next page) at each of the levels indicated.

Years 1-3:

Years 3-5:

Years 5-7:
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(b) Investigate what happens if you use a different Hundreds Chart.

3. (a) A large cube is constructed of smaller cubes and is painted blue. When the paint is dry, the
cube is dismantled into the original smaller cubes. With a colleague, investigate the number of

blue-painted faces on the smaller cubes. Write a brief report.

(b) Check pp. 26-27 of the Student Work Sample and rate your performance.

4. In a Square town, street blocks are square. Patrolling policemen can effectively see for a distance
of one length of a block in any direction. Investigate the number of policemen needed to

effectively patrol city areas of various sizes.

P P

6 police needed to patrol
this city area.

P P

Self Directed Activity

1. Find four resources — such as books, journals, CD-ROMs, Internet sites — that you would find
useful as sources of a variety of problems for the primary school classroom. Reference each

resource correctly below, and add a brief annotation of its contents and relevance:

Resource 1:

Comment:

Resource 2:

Comment:
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Resource 3:

Comment:

Resource 3:

Comment:
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Chapter 7: Space — Scale and Similarity

As a result of studying this chapter and completing the set tasks you will:

understand the concept of similarity in the context of geometry;

* identify real-world situations where scaled enlargements and reductions are relevant;

 determine the relationships between similar shapes in terms of length, area and volume;

* be able to use a variety of strategies to make scaled enlargements and reductions of two- and three-
dimensional shapes; and

» appreciate the importance of scale and similarity in developing and reinforcing a variety of

mathematical processes and content.

Syllabus and SOS References

Mathematically if one shape is a scaled enlargement or reduction of another, we say that they are
geometrically similar. Note that in everyday use the word "similar" does not have this precise
meaning. This is common problem associated with language in mathematics. The study of similarity
and scale is a valuable part of the mathematics program because it gives scope for the treatment of
most of the areas of Working Mathematically. Children will certainly get many opportunities to
contextualise mathematics because scale enlargements and reductions are very much part of a child’s
world. This is well typified by examples such as —

* model cars and planes;

* adolls house;

» enlargements of photographs;

* maps ‘in an atlas; and

* viewing through a magnifying glass.

Part Four of the Space Strand of the WA K-7 Syllabus (Ministry of Education, 1989) is entitled
Transforming Shapes. One aspect of this section of the Syllabus is involved with the scaled
enlargement or reduction of shapes. It is part of a child’s experience from Stage 1 onwards,
becoming more formal from Stage 4 onwards. Remember that the so-called stages in the syllabus

correspond approximately to school year levels.

The Student Outcome Statements (EDWA, 1998) indicate students should attain this concept in the
Space strand at Level 5. The entries are given below.

Substrand: Represents Transformations

Students visualise and show the effect of transformations on shapes and arrangements.



Level S 5.3
Visualises and sketches the effect of straightforward translations, reflections, rotations and

enlargements of figures and objects using suitable grids.
(EDWA, 1998, p. 53)

Pointers
Consult the SOS book (p. 77) to check the pointers for Level S 5.3.

Activities

As you perform the tasks below keep in mind the ways you may be Working Mathematically by -
* Contextualising Mathematics;

* Using Mathematical Strategies;

* Reasoning Mathematically; and

* Applying and Verifying.

1. List three other examples of scale enlargements.

N

. Are the following examples of scale enlargements/reductions? Explain.

(a) A 300 mL, a 500 mL, and a litre coke bottle.

(b) A Barbie Doll.

3. A toy truck is made on a scale of 1: 80; i.e., its linear dimensions are one eightieth of the original.

(a) In what way is the body of a model car or truck not an accurate scaled reduction?

(b) If the toy truck's mass is 55 grams, determine the mass if the scale model is enlarged to the
original size. At the end of this chapter you should be able to answer this question.




Integration of Content

In the activities that follow, try to identify the different content areas of space, measurement and

number that are incorporated in the tasks.

4. On the grid paper supplied, construct a double scale model of each shape below.

f'-\;
(
]\
J
(a) Complete the table below.
Shape Perimeter Perimeter Area Area
original double scale original double scale

-—

(62 I B~ (CVR [\ ]
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(b) How do the perimeters of the originals compare with those of the double scale? Explain why.

(c) How do the areas of the originals compare with those of the double scale? Explain why.

(d) With shapes 1 to 4 try to fill the double-scale shape with copies of the original shape. Explain
your findings.

(e) Suggest a more “user friendly" method of enlarging Shape 5.

(f) Predict the area and perimeter of Shape 2 if enlarged by a scale factor of three. Verify your
result. What if the scale factor was 100:1?

. Another method of enlarging (or reducing) shapes is the centre-of-enlargement technique. Copy
this diagram onto a sheet of paper in the lower left-hand corner, then follow the directions below.

A

O

From O, lines are drawn through A, B, and C.

For a double scale enlargement, we extend OA to A' so that OA' is twice OA,
OB to B’ so that OB' is twice OB, and
OC to C' so that OC' is twice OC.

Triangle A'B'C' will be a double-scale enlargement of triangle ABC.

Note that the centre of enlargement can be inside, outside or on the shape. Verify that the resulting
shape is a double scale enlargement of the original. Investigate with different places for the centre

and scale factors other than 2:1.
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6. Using two of the cubes provided, construct the following model.

(a) In turn, construct a double, triple, and quadruple scale model of this shape and complete the
first four rows of the table below. Without constructing the 5:1 and 6:1 scale models, complete the
table by the identification of number patterns.

Scale Height Surface Area Volume surface area
factor (units) (squares) (cubes) volume

1 2 10 2 102 =5

(b) What happens to the surface area in relation to the volume as the shape gets larger?

(c) Suggest a “real life” application of this relationship.

87



7. This page is an A4 size. When two A4 sheets are put together they make an A3 sheet. When two
A3 sheets are put together they make an A2 sheet, and so on as illustrated below (not drawn to

scale).
A2
A3
A4
A4 A3
A4
A3

(a) Complete the table below, starting with the dimensions of an A4 sheet.

Paper length width area lw

A6

A5

A4 29.7cm 21.0cm 623.7 cm 1.41

A3

A2

A1

A0

(b) What information on the table indicates that the sheets are geometrically similar?

(c) What is the significance of the area of the AO sheet?

(d) What is the inverse of 1.41 and how are these two numbers important on a photocopier?
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8. Below is a map of Rottnest Island on a one-centimetre grid. The scale of the map is 1 cm : 0.8 km.
Determine the approximate area of the map of the island in square centimetres. Use the scale factor

to determine an estimate of the area of Rottnest in square kilometres.
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9. In groups of four, construct a 3 : 1 scale model of a matchbox and match. Each person constructs

one of the following:
the outer section, the label, the inside container, a match.

10.Select an object in the classroom and construct a half-scale or quarter-scale model of that object

using cardex.

Reflection
After completing some or all of these activities make a list of

» the mathematical content in the activities;
» the mathematical processes used; and
* ways in which you consider you were working mathematically.

References

Curriculum Branch, Ministry of Education. (1989). Learning mathematics: Pre-primary to Stage 7

mathematics syllabus. Perth: Author.

Education Department of Western Australia. (1998). Outcomes and standards framework: Student

outcome statements — Mathematics. Perth: Author.
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Chapter 8: Space — Tessellations

On completing this chapter you will be able to:

* describe a tessellation;

* identify common shapes that will tessellate;

» explain why some shapes will tessellate and others will not;
* identify examples of tessellations in the real world;

» create tessellating patterns using a variety of methods; and

* Jocate Internet websites related to tessellations.
Background Information

Below is a dictionary definition of tessellation from the Illustrated Maths Dictionary for Australian
Schools

A tessellation is a complete covering of a surface by one or more figures in a repeating
pattern with no overlapping of or gaps between the figures. Certain shapes will cover a
surface completely; for example squares, rectangle and triangles. These are said to

tessellate. A circle is not a tessellating shape.

Tessellating shapes can be a useful source of enrichment in the primary mathematics program. As
well as leading to a simple but effective art form, they offer us a vehicle for the investigation of shape
and angle properties that can be adapted to a wide range of mathematical abilities. Studies in this area
can directly relate to Curriculum Framework Overarching Learning Outcomes numbers 2, 4, 10 and
indirectly to several others. This will also involve most of the sub-strands of the Working
Mathematically Student Outcome Statements. In the Space Strand the sub-strand Represent
Transformations embraces this topic from Level 2 onwards. The Level 2 Space SOS is as follows:

S 2.3 The student uses multiple copies of shapes to construct repetitive patterns and

follows and describes simple movement rules for generating such patterns.
(EDWA, 1998, p. 69)

As with most teaching areas we should try to begin with the child's experiences in the real world.

1. What are some of the situations where a child will see tessellating patterns ?
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Some tessellation patterns use just one shape, as shown below.

Others use two shapes to form the tessellating pattern.

There are many curved shapes that tessellate, and these are often features of designs on wall paper

and floor coverings.

Children's first experiences should be with concrete materials that they can handle and explore.
Activities

1. Make patterns with the tessellation kit supplied.
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2. Using the pattern blocks make a list of shapes that will tessellate.

In later activities children can be given some experiences tessellating shapes on grid paper; i.e., they

progress to pictorial representations.

3. On the grid paper supplied draw three different patterns for brick paving, using 2 by 1 bricks.

4. Using grid paper show that each of the following shapes tessellates.

\VZ|

N

5. You are to set up a factory to make ceramic floor and wall tiles. What different shapes could you

make so that the tiles will tessellate?

After exploring both concrete and pictorial examples of tessellations, children in the upper grades can
explore the mathematics behind the concept of tessellation. It is obvious that shapes such as
rectangles and parallelograms will tessellate as the property is easy to visualise with those shapes.
You can verify intuitively that triangles and trapeziums will tessellate because in pairs they will form
parallelograms. To explore mathematically whether or not a shape will tessellate requires an
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investigation of the angle properties of the shape. Clearly for shapes to tessellate, it is necessary for
them to make complete joins (no gaps) where they meet; i.e., it must be possible to use the angles of
the shape to make up 3609 joins.

Triangles will tessellate because the angle sum is 1809.

Squares and rectangles will tessellate because their 900 angles will also form 360° joins. The

following activity looks at quadrilaterals in general.

6. Verify that the sum of the angles of a quadrilateral is 3600, and show that this shape tessellates by
folding a sheet of paper three times and cutting out 8 copies of the quadrilateral.

7. Investigate the angle sizes of regular polygons to determine which of the shapes below will
tessellate. Use the strategy developed in MPE1108. Note that the diagrams are not accurate.

Regular Pentagon Regular Hexagon Regular Octagon

OO0

What can be concluded from the angle sizes?

94



Having explored real-world, concrete, pictorial and abstract aspects of tessellations we now return to
the real world for applications of tessellation in the area of art and design. Mathematical concepts

often begin and end with the real world representations.

Escher-Type Drawings

Dutch artist Maurits Escher extended the mathematics of tessellations to an intricate art form. His
simple technique was to begin with a basic shape that tessellates and to transform it into a more
interesting design that preserves the tessellating property of the shape. Identical changes are made to

the opposite pairs of sides, the combination producing a new shape.

~ ~
™S

You can this method to create your own tessellating pattern.

8. A more concrete approach to creating a tessellating pattern is as follows. Start with a small square
or rectangular piece of cardboard. Make a curved cut from a point A on one side to the point B
below, then rearrange the shape by sliding one piece horizontally as below. The join should then
be taped. This process can be continued by cutting from one point on the curved side to a point
horizontally opposite, then rearranging by sliding one piece vertically. The new shape can be

tessellated on a piece of newspaper using a texta to trace around it. Make such a "tile".

.

1. Investigate the computer software package Tesselmania. This enables children in the upper

A

B

Self-Directed Learning

primary year levels to create their own colourful tessellations.

2. Explore the Internet to see what you can find out about tessellations. There are a number of good
web-sites that can be accessed by using the word tessellation using one of the more common

search engines. Also, investigate the web-site, Tantalising Tessellations at

http://mathcentral.uregina.ca/RR/database/RR.09.96/archamb 1. .html
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Chapter 9: Number Sense

As a result of studying this chapter and completing the set tasks you will be able to:

° explain the meaning of number sense and its relation to the mathematics curriculum;
° describe some components of number sense;

° discuss some research into the number sense of school students; and

J evaluate activities intended to develop the number sense of primary school students.

Relationship to Previous Study

In your two previous mathematics education units you have met a number of ideas which can be
grouped under the general heading of ‘number sense’.

In your first year unit (MPE1108) one of the topics you studied was Rational Number: Fractions. In
this you leammed the following about fraction concepts:

¢ that fractions represent parts of wholes and subsets of a set, and later ratios,

¢ that different fractions can represent the same amount (for example 3/4 and 6/8),

o that fractions, decimals, percentages and ratios are all different ways of representing the same
number (for example 1/5,0.5, 50%, 1:2), and

e that children often have misconceptions about fractions as a result of wrongly applying
knowledge of whole numbers (for example 1/3 is bigger than 1/7 because 3 is bigger than 2).

In your second year unit (MPE2107) you studied Early Number Concepts and Concepts and
Properties of the Four Operations. You also studied Mental Computation, Pencil and Paper
Computation and Calculator Computation. One chapter, Computation, considered the relationship

among these three computational methods and the importance of estimation.

In this chapter we will

e draw together the threads of number sense so that we can consider it as a whole,
¢ look at some recent research into the number sense of primary children, and

e consider a range of activities designed to help children develop number sense.

Revision Activities

Before we start, here are a number of quick challenges to remind you of earlier work. You may want

to discuss them in pairs, or you may prefer to work on them on your own.

1. Explain why 1/3 is smaller than 1/2.
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. Represent, with reasons, 2/5 as a decimal, a percentage and a ratio.

. Suggest some ways of classifying numbers.

. Why might a child say that 0.3 is smaller than 0.21?

. Using place value ideas I can re-write 314 as 200, 11 tens, and 4 units. Give two other ways of

re-writing 314.

. Subtraction can arise from three quite different situations: ‘take away’, ‘difference between’,
‘complementary addition’. Give an example of each and explain why they are all different.

. Mentally calculate 25 + 89. Describe your strategy to a friend and compare it with theirs. How
many different strategies can you think of for mentally calculating 25 + 89?

. What is meant by a ‘formal written algorithm’? What are some of the reasons why it is suggested

that less attention is paid to the development of formal written algorithms in school?
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9. What are some of the reasons why calculator use is encouraged in primary schools?

10. Estimate the answer to 12/13 + 7/3. Which of the answers 1, 2, 19, 21 do you think is the best
estimate? Why?

11. Why do you think being able to estimate the answer to this fraction addition might be considered
by some a better indicator of number sense than being able to calculate the answer exactly?

What Number Sense is and What it isn’t

To take the second part first:, Number Sense isn’t the same as skill in written computation. Here are
two examples which illustrate the point. Discuss each in turn. Explain why each might be considered
by some to make the point that Number Sense isn’t the same as skill in written computation, and then

state your own opinion with reasons.

1. The Cost of Two Diaries (A True Story)

One of the authors went into a newsagent shortly after Christmas one year to buy two identical
diaries. Each was marked "$2.50 but above the pile was the sign "Diaries half marked price". He
took them to the counter and handed them to the assistant. "How much?" he asked. The assistant
took one diary, wrote the marked price on a piece of paper, performed a written calculation and
obtained the answer ‘$1.25° She then picked up the other (identical) diary, wrote down the
marked price, performed a second written calculation and again obtained the answer ‘$1.25°. She
then wrote these two answers as an addition sum and obtained the answer. With no trace of
recognition she handed the diaries to him with the remark, "that will be two dollars fifty".

Comments:
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2. Calculating versus Estimating (extract from account of research from Taiwan)

A twenty-item Written Computation Test (WCT) was constructed by the researcher for Year 7 and
Year 9. All of the test items were displayed in the native language of Taiwanese students. The
WCT items were open-ended and consistent with the Taiwanese national mathematics curriculum.
A forty-item Number Sense Test (NST) was also constructed by the researcher. The same test was
used for both year levels. The first 20 items of the NST were developed to parallel the WCT
items. That is, the same numbers were involved but the format of the items was different. Some
examples show a sharp difference between their written computation performance and number

sense ability. For example, Table 1 shows the percentage of the same cohorts of students giving

each response on two parallel items from the WCT and the NST respectively.

Table 1: Percentages of Taiwanese student respondents for NST & WCT items (N=115Yr7, 119 Yr 9)

NST Item:

Without calculating an exact answer, circle the

best estimate for 12/13 + 7/g

WCT Item:

Calculate 12/13 + 7/g

Al

B.2*

C. 19

D. 21

E. I don't know
F. No response

Yr7
10
25
36
16
10

3

Yro
20
38
14
12
16

0

Correct

Incorrect

Yr7
61
39

63
37

Comments:

Reys, Reys, Mclntosh, Bana & Farrell (1997, p. 49)

What then is number sense? The following is a recent description:

Number sense refers to a person’s general understanding of number and operations along
with the ability and inclination to use this understanding in flexible ways to make mathematical
judgments and to develop useful and efficient strategies for managing numerical situations. It is
characterised by a desire to make sense of numerical situations, by looking for links between
new information and previously acquired knowledge, and by an innate drive within the learner
to make the forming of these connections a priority. Those with well-developed number sense
have strongly connected knowledge and in learning they appreciate the importance of making
links between new and previously acquired knowledge. They approach problems involving
number by seeking to make sense of the whole situation and by using the multiple

representations and connected knowledge that they have...Various “indicators” of number
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sense have been hypothesised. These include: well-understood number meanings,
existence of and reliance on multiple numerical relationships, recognition of relative magnitude
of numbers, awareness of the relative effect of operating on numbers; and use of referents for
measures of common objects and situations in their environments offers additional indicators:
using the decimal structure of the number system to decompose and recompose numbers to
simplify calculations, tending to want to “make sense” of situations involving number and
quantity, and using “benchmark” information/data to derive new information (such as using a
known number fact to calculate an unknown fact).
(Adapted from Reys, Reys, McIntosh, Bana, & Farrell, 1997)

3. Do you find any parts of this description difficult to follow? If so, discuss these and decide what

each means.

Comments:

4. Write in your own words a short description which you think conveys the essential meaning of

number sense.

Comments:

Six Strands of Number Sense

On the following pages we consider six components or strands of number sense. For each strand a
sample assessment item is given, together with some data on the results of giving that item to school
students in Western Australia (Reys, Reys, MclIntosh, Bana, & Farrell; 1997). In each case:

(a) Write what the results show and write a comment on these findings; and

(b) Write another question which you think would assess some aspect of the same number sense

strand.

Understanding the Meaning and Size of Numbers (Number Concepts)

Description
Understanding of the base 10 number system (whole numbers, fractions, and decimals), including
patterns and place value which provide clues to the meaning/size of a number (e.g., /¢ is a fraction

less than one, it is close to one because of the relationship between the numerator and denominator;
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OR 1000 is a large number if you are referring to the population of a school but a small number if
you are referring to the population of a town). Could involve relating and/or comparing numbers to
standard or personal benchmarks. Includes comparing the relative size of numbers within a single

representational form.

Sample Item (Years 7, 9)

How many different fractions are there between 2/sand 2/s? { A None. Why?

Circle your answer and then fill in the blanks.

B One. Whatisit?

C Afew.

Give two: and

D Lots. Give two.
and

Results

Response % AusYr7 | AusYr9
A 57 29

B 29 21

C 4 7

D & examples* 7 40
Other 3 3

* Correct response

Summary Comments:

Another Item:

Understanding and Using Equivalent Forms and Representations of
Numbers (Multiple Representations)

Description

Recognition that numbers take many different numerical and representational forms (e.g., a fraction
as a decimal, a whole number in expanded form, or a decimal on a number line) and can be thought
about and manipulated in many ways to benefit a particular purpose. Ability to identify and/or
reformulate numbers to produce an equivalent form. Use of decomposition and recomposition to
reformulate numbers for ease of processing. Relating and/or comparing sizes of numbers to a
physical referent (e.g. collection of items, shaded region, or position on a number line). Includes

crossing among various representational forms.
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Sample Item (Years 5, 7)

You are going to walk once around a square-shaped field. S

You start at the corner marked S and move in the direction
shown by the arrow. Mark with an X where you will be
after 1/3 of your walk.

Results
Response % Aus Yr 5 Aus Yr7
In range* 25 51
| Right edge 19 19
Other 56 30

Summary Comments:

Another Item:

Understanding the Meaning and Effect of Operations (Effect of Operations)

Description
Understanding the meaning and effect of an operation either generally or as it relates to a certain set

of numbers (e.g., division means breaking a number into a specified number of equivalent sub-
groups; OR multiplying by a number less than one produces a product less than the other factor).
Includes judging the reasonableness of a result based on understanding the numbers and operations

being employed.

Sample Item (Years 5, 7)

When a 3-digit number is added to a 3-digit always a 3-digit number

number the result is: always a 4-digit number
always a 5-digit number

either a 3, 4 or 5-digit number

m O O W »

either a 3 or 4 digit number
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Results

Response % Aus Yr5 Aus Yr7
A 16 10

B 3

C 3 4

D 43 29
E* 32 52
No Response 3 0

Summary Comments:

Another Item:

Understanding and Use of Equivalent Expressions (Equivalent Expressions)

Description

Translation of expressions to equivalent forms. Generally used to re-evaluate and/or more efficiently
process computation. Includes understanding and use of arithmetic properties (commutativity,
associativity, distributivity) to simplify expressions and develop solution strategies (e.g., use of
distributive property to multiply 7 x 52).

Sample Item (Years 7, 9)

0.5 x 840 is the same as: A 840+2
B 5x840
C 5x8400
D 840-+5
E 050x84

Results

Response % AusYr7 Aus Yr9

A* 32 65

B 18 2

C 14 19

D 7 6

E 30 9
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Summary Comments:

Another Item:

Computing and Counting Strategies

Description

Applying various number sense components previously described in the formulation and
implementation of a solution process to a counting or computational (estimation, mental computation,
paper/pencil, calculator) situation (e.g., Is 29 x 38 more or less than 400? OR How many birds are
in the sky?)

Sample Item (Years 3, 5, 7)

About how many days have you lived? A 300
(Circle the nearest answer.) B 3000
C 30000
D 300000
Results
Response % Aus Yr 3 Aus Yr5 Aus Yr7
A 31 7 1
B* 34 35 38
C 24 37 48
D 11 21 13

Summary Comments:

Another Item:

Measurement Benchmarks

Description
Applying various number sense components previously described in the formulation and
implementation of a solution process to a measuring situation. Requires an understanding and use of

standard, non-standard and/or personal benchmark units of measure (e.g., a textbook weighs about a
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kilogram or 5 oranges make a pound, or the angle is slightly less than a right angle so it must be
about 85 degrees). Involves measuring attributes such as mass, length, area, capacity, volume, time,
angles.

Sample Item (Year 5, 6)

What is the weight of a man who is 180 cm tall? A. 10kg
Ring the best answer. B. 40 kg
C. 80kg
D. 180 kg

Results (Not available)

Another Item:

Activities to Develop Number Sense

The following pages provide activities which can be used to focus on some aspect(s) of number
sense. When using them with children it is important to allow time for discussion and for individual
children to explain their thinking. These activities are designed for use by a teacher with a whole

class, and the activity can be put on an overhead projector or each child can be given a copy.

For each activity answer the following questions:

What is the purpose or focus of the activity? How might you use the stimulus given?
. For what age group(s) is the activity suitable? Why?

To which of the six number sense strands does the activity relate? Why?

Suggest some possible responses of children to the activity.

Suggest some possible follow-up whole-class activity.

Suggest an extension activity for individual children.

A LW DN~

Suggest a form of assessment for the activity.
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Appendix

The appendix which follows includes copies of several pages from Mclntosh, Reys, Reys, & Hope
(19964, 1996b, 1996c¢).
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-ToL EDITH COWAN UNIVERSITY
4.2
EXPERIENCE 33 / Activity 1 AAS5245052B
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Find a Connection

Choose any three numbers. and show how they are related.

35 7 21

9

DO Sseyimen s bl ardani®

Number SENSE / Grades 4-6

EXPERIENCE 28/ Activity 2

P L R R R R R R R R KRR AR AR R R

How Much?

Money Raised by Pinecrest School
$1000

Month

Pinecrest School is raising money to buy new computers. They raised
$1000 in 10 months. The bars show how much money they had at the
end of each month.

Put the bars in order. About how much money did Pinecrest School have
at the end of each month?
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EXPERIENCE 37 / Activity 1
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Name a Fraction

Working in your team. make up one answer to fit each statement.

Possible Answers

A fraction between :l‘ and

o=

A fraction greater than ;

A fraction less than %

A fraction that is a little more than |

A fraction between 2 and 3

A fraction near 0

A fraction that is almost |

A fraction that is almost

o) —

A fraction between % and ‘l;

A fraction that is nearly 3
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EXPERIENCE 40/ Activity ]

Estimate the value of each blank number card.

209

Number SENSE / Grades 3-4






A MASTEC Publication
Mathematics, Science and Technology Education Centre
Edith Cowan University, Perth, Western Australia




	Learning and teaching mathematics K-7: Book 3
	Authors

	Page 1

