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ABSTRACT 

 

Value-at-Risk (VaR) has become the universally accepted metric adopted internationally 
under the Basel Accords for banking industry internal control and for regulatory reporting. 
This has focused attention on methods of measuring, estimating and forecasting lower tail 
risk. One promising technique is Quantile Regression which holds the promise of 
efficiently calculating (VAR). To this end, Engle and Manganelli in (2004) developed their 
CAViaR model (Conditional Autoregressive Value at Risk). In this paper we apply their 
model to Australian Stock Market indices and a sample of stocks, and test the efficacy of 
four different specifications of the model in a set of in and out of sample tests. We also 
contrast the results with those obtained from a GARCH(1,1) model, the RiskMetricsTM 
model and an APARCH model 

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1.  Introduction 

Value at risk (VaR) remains the standard measure of market risk used by financial institutions 

and their regulators since it was first promoted by J.P. Morgan and RiskMetrics and 

subsequently adopted in the Basel Accords, beginning in 1988. VaR is used globally by 

financial institutions and their regulators and Australia has also adopted the Basel Accords. In 

June 2003, APRA announced its decision to implement Basel II in its totality. The 

International Monetary Fund (2009) under-took an analysis of Basel 11 implementation in 

Australia and was largely complementary, but noted that: “It will be important for APRA to 

continue to undertake increasingly complex work (drill down reviews for advanced banks, 

stress testing, assessment of Pillar 2 risks, and economic capital models, etc.) to assure itself 

that banks remain well capitalized relative to their risks”.  

Despite the importance of this topic, very little research has been undertaken on the uses and 

applications of VaR or related metrics at all in Australia. A search of the Australian 

Prudential Regulatory Authority’s (APRA) website revealed Sy (2006),  Engel and Gizycki 

(1999) and  Gizycki and Hereford (1999) as being the only papers considering aspects of 

VaR. More recently Allen and Powell (2009) have contrasted VaR and CVaR (Conditional 

Value at Risk) as alternative risk metrics in an Australian context. This paper seeks to further 

address this gap in Australian empirical work by assessing the relative performance of the 

recently developed CAViaR model (Conditional Autoregressive Value at Risk by regression 

quantiles model of Engle and Manganelli (2004) with more customary approaches. 

VaR is a measure of how much a certain portfolio can lose within a given time period, for a 

given confidence level. Despite its apparent simplicity in summarizing the downside risk of a 

portfolio it is not an easy number to calculate. To summarise: Value-at-Risk (VaR) is 

probably the most used measure of risk since the 1996 amendment to the Basel Capital 

Accord which proposed that commercial banks with significant trade activity could use their 

own VaR measure to define how much capital they should set aside to cover their market risk 

exposure, and typically bank regulatory agencies audit the VaR methodology employed by 

the banks. (See the APRA website; http://www.apra.gov.au/ADI/Prudential-Standards-and-

Guidance-Notes-for-ADIs.cfm). 

Its application has also been fostered by the enormous body of work on volatility modelling, 

such as the time series models nested in the ARCH/GARCH family.  For surveys of the latter 

see Li, Ling and McAleer (2002), the survey of ARCH models by Bollerslev, Engle and 
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Nelson (2003), whilst Jorion (2006) reviews the concept and applications of VaR. (See 

Holton (2003) also). Subsequently, there have been parallel developments in the stochastic 

volatility and realised volatility literature. 

The empirical literature on modelling VaR contains three different categories of methods: 

parametric, nonparametric and semi-parametric. 

1.  Parametric approaches involve a parameterisation of the behaviour of prices. Quantiles 

are estimated using a volatility forecast with an assumption about the type of the 

distribution utilised; e.g.  Gaussian. Typically, exponential smoothing or a GARCH 

model is used to forecast the volatility. 

2.  The most widely used nonparametric method is historical simulation, which requires no 

distributional assumptions and estimates the VaR as the quantile of the empirical 

distribution of historical returns from a moving window drawn from recent periods. 

3. An alternative approach is to use a quantile regression based methods as in Engle and 

Manganelli (2004) who consider an autoregression of the estimated VaRs. Thus, whilst 

statistical volatility models rely on the assumption that the shape of the conditional 

distribution is fixed over time and that it is only the volatility that varies. The recently 

proposed Conditional Autoregressive Value at Risk (CAViaR) model requires no such 

assumption, and allows quantiles to be modelled directly in an autoregressive 

framework. 

 

The development of quantile regressions techniques was by Basset and Koenker (1978). (For 

a comprehensive account of these recent developments see Koenker (2005)). Koekner (2005) 

notes that: “Quantile regression is gradually emerging as a unified statistical methodology for 

estimating models of conditional quantile functions. By complementing the exclusive focus 

of classical least-squares regression on the conditional mean, quantile regression offers a 

systematic strategy for examining how covariates influence the location, scale, and shape of 

the entire response distribution”. This approach had been directly foreshadowed by 

Boscovitch and Laplace in the 18th Century and in the next by Edgeworth (1888). 

Applications of quantile regressions in the time series domain have been slowly developing. 

Davis and Dunsmuir (1997) were some of the first with a very general treatment of the 

asymptotics of the median regression estimator for regression models with autoregressive 

moving average (ARMA) errors, obtaining an asymptotically normal theory under quite 

general conditions. Koenker and Zhao (1996) began work on developing a type of ARCH 








framework for applications of quantile regressions. Recently, Engle and Manganelli (2004) 

have developed the CAViaR model. Taylor (2008) has extended the model to include double 

kernel quantile regressions in the context of an exponentially weighted framework. Taylor 

(2008) points out that estimating the VaR amounts to forecasting, conditional on current 

information, the tail quantiles of the distribution of a series of financial returns. Although a 

variety of approaches have been proposed for forecasting conditional tail quantiles, there is 

no established method. Quantile regression is very promising technique because of its 

strength in exploring relationships with covariates through the quantiles. 

In this article we apply Engle and Manganelli’s (2004) CAViaR model to an Australian index 

and a sample of Australian stocks and compare the value at risk forecasts with one day ahead 

Var forecasts obtained by means of Gaussian GARCH(1,1) VaR, RiskMetricsTM and Skewed 

student-t APARCH(1,1). The paper is divided into four sections; the following section two 

introduces quantile regressions, the CAViaR model with the other VaR models used for the 

study and the data and research design implemented in the paper, section three presents the 

results and a short conclusion follows in section four. 

 

2.  Quantile Regression ,the CAViaR model and the Research Design. 

2.1 QUANTILE REGRESSION 

CAViaR uses quantile regression for estimation of its parameters; first introduced by 

Koenker and Bassett (1978), as an extension of classical ordinary least squares (OLS) 

estimation of conditional mean models to the estimation of a group of models for conditional 

quantile functions for a data distribution. The central special case is the median regression 

estimator that minimizes a sum of absolute errors. The remaining conditional quantile 

functions are predicted by minimizing an asymmetrically weighted sum of absolute errors, 

weights being the function of quantile of interest. This makes quantile regression a robust 

technique even in presence of outliers. Taken together the group of estimated conditional 

quantile functions offer a more complete view of the effect of covariates on the location, 

scale and shape of the distribution of the response variable. 

Quantiles refer to the generalized case of dividing an unconditional distribution into parts. 

The technique of quantile regression extends this idea to build models which express the 

quantile of conditional distribution of the response variable as function of observed 
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covariates. Linear regression coefficient represents the change in the response variable 

produced by a one unit change in the predictor variable associated with that coefficient. 

Quantile regression coefficients gives the change in a specified quantile of the response 

variable produced by a one unit change in the predictor variable.  

Consider a series of observations on random variables generated by the following model 

                       (1) 

Where   is a p-vector of regressors and       is the quantile of  
conditional on xt.  

Koenker and Bassett (1978) show that  regression quantile is defined as any  that solves 

the following generalized objective function 

 
               (2) 

Let   , rewriting the above expression in terms of indicator function ( ) gives 

the equivalent objective function  

 
     

       (3) 

To simplify, Quantiles as proposed by Koenkar and Bassett (1978) can be defined through an 

optimization problem. Similar to the problem of defining sample mean as the solution of the 

problem of minimizing the sum of squared residuals (as done in OLS regression), the median 

quantile (0.5) is defined through the minimization of sum of absolute residuals. The 

symmetrical piecewise linear absolute value function assures same number of observations 

above and below the median of the distribution. 

We will not discuss further the mathematical details of the regression technique, please refer 

to Koenker’s (2005) monograph for a comprehensive discussion.  

2.2 CAViaR 

The problem in estimating VaR is that it is a particular quantile of potential future portfolio 

values, conditioned on current available information. However, portfolio returns and risk 

change over time, so a time-varying forecasting procedure is required. Essentially this 

involves forecasting a value each period that will be exceeded with a probability of (1-) by 
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the current portfolio value. In this case  ( )1,0∈ are representative of the confidence level 

attached to the VaR.  

CAViaR, uses quantile regressions and instead of modelling the whole return distribution for 

calculation of VaR, it models the required quantiles of the return distribution directly. To 

predict the value at risk by modelling the lower quantiles, the model uses a conditional 

autoregressive specification, inspired by the fact that the distribution of volatilities over time 

is auto-correlated, hence the model. Engle and Manganelli (2004) propose four different 

specification processes for the calculation of value at risk viz: an Adaptive model, a 

Symmetric Absolute Value, an Asymmetric Slope and an Indirect GARCH model. We follow 

suit and test the relative suitability of all the four models on our Australian sample data set in 

the calculation of VaR and contrast the results with those of more standard approaches.   

The first model; an Adaptive model, is a smoothed version of a step function (for finite G), is 

given by 

        ,    (4) 

Adaptive model as the name suggests changes itself depending on whether VaR is exceeded 

or not, it takes a higher value when VaR is exceeded but decreases slightly otherwise. Engle 

and Manganelli (2004) note that the structure of the Adaptive CAViaR model is such that the 

estimator increases the VaR uniformly regardless of the extent the returns exceed the VaR.  

A second model which features symmetric absolute values is set out below: 

            (5) 

A third has an asymmetric Slope: 

          (6) 

where, notation (x)+=max(x,0), (x)-=-min(x,0). 

Whilst the fourth is an indirect GARCH (1,1): 

          (7) 

These last three models are similar to GARCH models in structure, the second and the fourth 

model are symmetrical and hence responds symmetrically to past returns. The third model 
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responds asymmetrically to returns and captures the asymmetric leverage effect.  The fourth 

model is same as GARCH(1,1) model in form but with a difference of estimation technique 

used, this model estimated by directly using quantile regressions against the maximum 

likelihood in usual GARCH. 

Taylor (1986) and Schwert (1988), first introduced VaR models based on symmetric and 

asymmetric quantile specification, and it was subsequently analysed by Engle (2002). A merit 

of  the CAViaR specification, as suggested by Engle and Manganelli (2004), is that it is more 

general than these GARCH models.  

2.3 OTHER VAR MODELS 

2.3.1 Garch (1,1)  

A very widely used method of VaR forecast is using Gaussian or normal Garch(1,1) 

forecasts, which is given by  

          (8) 

This model assume normality of the return distribution and uses maximum likelihood for 

estimation of the model as opposed to the proposed indirect GARCH(1,1) which used 

quantile regressions to model the specific quantile of interest directly.  

2.3.2 RiskMetricsTM 

In simplest of its forms the basic RiskMetrics (Morgan, 1996) is equivalent to a normal 

Integrated GARCH model (IGARCH), where the autoregressive and decay parameters are 

predefined to 0.94 and 0.06 respectively.  RiskMetrics is the most simple and still the most 

used VaR  model available.  The model is given by: 

              (9) 

Where    and  is usually set to 0.94 for daily data and 0.97 for weekly data.  There are 

many extensions to this basic RiskMetrics model which are freely available at RiskMetrics 

Group website. 

2.3.3 APARCH (1,1) with Skewed Student-t  

Ding, Granger, and Engle (1993), introduced the Asymmetric power ARCH, or APARCH 

model as an extension to GARCH model. The APARCH(p,q) model can be described as 
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        
  

     (10) 

where , , ,  and  are the parameters to be estimated, also    and    
     . 

Here gives the Box-Cox transformation of  , while  reflects the impact of negative and 

positive returns on volatility, or the leverage effect.  

Fernández and Steel (1998), proposed to extend the Student distribution by adding a 

skewness parameter to account for the excess skewness and kurtosis in the return series. The 

main drawback with this procedure is that it is modelled in terms of mode and the dispersion 

of the distribution, which is checked by Lambert and Laurent (2001) who re-expressed the 

skewed student density in terms of the mean and the variance. This innovation process has 

zero mean and unit variance.   

The innovation process z is said to be (standardized) skewed-Student distributed if:  

     



     





     


    (11) 

where    is the symmetric or unit variance Student density and  is the asymmetry 

coefficient.  and   are respectively the mean and the variance of the non-standardized 

skewed-Student.  

To summarize,  models the asymmetry, while  expresses the tail thickness. See Lambert 

and Laurent (2000, 2001) for detailed explanation. 

The VaR results from the four CAViaR methods and the other VaR models, viz., Gaussian 

Garch (1,1), RiskMetricsTM and Skewed student-t APARCH are tested using a dynamic 

quantile test, as proposed by Engle and Manganelli (2004). We will omit further details of the 

methods for the sake of brevity,  as further insights can be obtained from their original paper.  

2.4 Data and Methodology 








We apply the four CAViaR methods to Australian stock market data, viz. Two indices: the 

ASX-200, and the ASX-50 plus two stocks: NAB and ANZ, from ASX-200 for a period of 

15 years (September 1994-September 2009). As this period includes the period of Global 

Financial Crisis, we do the empirical investigation in two steps. First, we include the GFC 

period, and then we exclude it (roughly last two years daily data). A 500 day out of sample 

period is chosen here which amounts to approximately two years of daily returns. We make 

use of percentage daily returns calculated in logarithms. Our total data set amounts to 3869 

observations (including the GFC period) and 3167 observations (excluding the GFC period). 

We will use 1000 returns with a 250 days forward moving window to forecast one day ahead 

1% and 5% VaR using Gaussian (normal) Garch(1,1), RiskMetricsTM and Skewed Student-t 

APARCH (1,1)  VaR models, we start with estimating the models with first 250 days and 

forecasting the one day ahead VaR, then moving the window a day ahead and re-estimating 

the model for forecast. This is done to forecast 750 daily VaR values,  for a period including 

the GFC and excluding it and then compare it with CaViAR model based on the Dynamic 

Quantile test.  The R code from Lima and Neri (2007), is modified and used to calculate these 

three VaR models.  

2.5 Backtest 

The performance of the VaR models is assessed by computing their failure rate for the return 

series. Failure rate can be defined number of times the return on a specific day exceeds (in 

absolute value) the forecasted VaR for that day. As the computation of failure rate follows a 

binomial distribution (a sequence of yes and no observations), it is possible to test     

against     , where f is the failure rate.  

Kupiec (1995) proposed this test as the unconditional coverage test, in which the hypothesis 

is tested using a likelihood ratio test. The likelihood ratio test is given as 

   


     (12) 

where N is the number of VaR violations, T is the total number of observations and  is the 

theoretical failure rate.  is defined as   
 .   under the null hypothesis that    . 

A relevant VaR model should also feature a sequence of VaR violations which are not 

serially correlated. Engle and Manganelli (2004), suggest the Dynamic Quantile or DQ test 
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with new Hit variable;        . DQ test suggest testing jointly 

the hypothesis that    and  is uncorrelated with the variables included 

in the information set.  

Engle and Manganelli (2004), suggests that both tests can be done using the following 

artificial regression 

          
   

   (13) 

Where X is  a Txk matrix whose first column is a column of ones the next p columns are Hitt-

1,…,Hitt-p and the k - p - 1 remaining columns are additional independent variables (including 

the VaR itself). 

The DQ test statistics is given by 


  

 

     (14) 

Where  is the OLS estimate of . 

Engle and Manganelli (2004) explain that the in-sample test, or DQ test is a specification test 

for the particular CAViaR process under study and it can be very useful for model selection 

purposes. They suggest the parallel DQ out of sample tests could be used by regulators to 

check that the VaR estimates submitted by a financial institution satisfy some basic model 

specification requirements such as unbiasedness, independent hits and independence of the 

quantile estimates. We utilise their tests and Matlab code in this paper. (We are thankful to 

Simone Manganelli for making available his MATLAB code for the exercise).  

 

3.  RESULTS 

To apply the models we first had to extract our daily index and stock price series from 

Datastream and convert the series into continuously compounded daily return series which 

are scaled by 100. We then estimate the 1% and 5% VaRs using the four models previously 

introduced. In the case of the first adaptive model, we follow Engle and Manganelli (2004) 

and set G equal to 10. This permits a direct comparison with their sets of results. 
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The results for 1% and 5% VaRs for the four models are presented in Table 1 and Table 2 

which presents the results as obtained for the whole data which includes the financial crisis 

period. The tables include the values of the estimated parameters, and their associated 

standard errors and (one-sided) p values. It also shows the value of the regression quantile 

objective function (equation-3), the percentage of times the VaR is exceeded, plus the p value 

of the DQ tests for both in and out of sample cases.We follow Engle and Manganelli (2004) 

and compute the VaR series for CAViaR models by initialising   to the sample   

quantile using the first 300 observations. In the out of sample DQ tests the instruments used 

were a constant, the VaR forecast and the first four lagged hits. The algorithm for computing 

in the in-sample DQ test is explained in Engle and Manganelli (2004). 

The results for 1% and 5% VaRs presented in Tables 1 and 2 for this Australian data set share 

many common characteristics with those presented by Engle and Manganelli (2004) for their 

US data set which featured General Motors, IBM and the S&P 500 index. One notable result 

is that the autoregressive term (2) is always very significant. This matches their results and 

implies that volatility clustering is also important in the tails of the distributions, in these 

cases, in these extreme quantiles. All the models appear to be highly precise, as measured by 

the in sample hits. In Table 1 for the 1% VaR all values are very close to 1, the weakest being 

the adaptive model, which has a value of 0.83 in the case of NAB. A similar picture emerges 

for the 5% VaR presented in Table 2. The weakest case is again the adaptive model which 

has a value of 4.42 for the ASX200 but all its percentage hits are less accurate than the other 

three models. This finding, which exactly parallels Engle and Manganelli (2004) adds weight 

to their observation that a focus on the number of exceptions, or breaches of the VaR, as 

suggested by the Basle Committee on Banking Supervision (1996) is likely to be a sub-

optimal way of evaluating a VaR model. This finding, which exactly parallels Engle and 

Manganelli (2004) adds weight to their observation that a focus on the number of exceptions, 

or breaches of the VaR, as suggested by the Basle Committee on Banking Supervision (1996) 

is likely to be a sub-optimal way of evaluating a VaR model.  

In the out of sample tests none of the models work well for either 1% or 5% VaRs. They all 

show excessive breaches of VaR, sometimes double the number targeted. The DQ tests for 

the in-sample cases suggest no rejection of the asymmetric slope model which appears to 

have the optimum performance. Once again, the adaptive model is the weakest and it is 

rejected at the 5% level for 3 of the 4 series with the exception being ANZ.  
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The results from the out of sample, DQ test shows that the technique loses its effectiveness at 

the time of financial distress (all values are lower than 1%). Also the in sample statistics 

show that only the Asymmetric Slope specification is efficient for all the sample data for both 

1% and 5% VAR. Figure 1 and Figure 2 provide the graphs of the estimated 1% and 5% 

CAViaR specifications for the ASX-200. The spike at the end indicates the increasing 

volatility due to the effects of global financial crisis. Figure 3 shows the news impact curve, 

(calculated from the effects of one day lag data) for ASX-200, which shows the effect on 

VaR from the previous day’s portfolio return when considered as the effect of news or 

changes in fundamentals. It is notable that the best-performing model, the asymmetric slope 

model, suggests that negative returns are likely to have a much stronger effect on the VaR 

estimate than positive returns. This is a finding supported by Allen, McAleer and Scharth 

(2009) in their work on modelling volatility. 

As a comparison test, when compared to the one day ahead 1% and 5% VaR forecasts 

obtained from Gaussian GARCH (1,1), RiskMetrics and Skewed student-t APARCH(1,1) 

(figure 4, figure 5). Table 3, gives the DQ test results for 1% VaR, which shows that DQ test 

rejects the GARCH(1,1) and RiskMetrics for all the sample time series returns while it 

slightly improves in case of APARCH(1,1) but it still doesn’t give significant p-values for all 

the time series. Table 4, gives the DQ test results for 5% VaR, the p-values in this case are 

significant for few cases, while RiskMetrics is the best performing model in this case 

GARCH(1,1) and APARCH (1,1) improves slightly. These results shows that according to 

DQ test none of  the model is able to give highly significant VaR results for all the four time 

series. 
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Table 1: Estimates for Four CAVIAR Specifications (1% Level) 
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Table 2 : Estimates for Four CAVIAR Specifications (5% Level) 
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Figure 1: Estimated CAViaR Graph 1% 

 

Figure 2: Estimated CAViaR Graph 5% 
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Figure 3: News Impact Curve for 1% CAVIAR specifications 
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Figure 4: Normal GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 1% VaR 
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Figure 5: Normal GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 5% VaR 
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Table 3: DQ Test Results for GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 1% VaR 

VaR  (1%) GARCH(1,1) RiskMetrics APARCH(1,1) 

 ASX-
200 

ASX-
50 

ANZ NAB ASX-
200 

ASX-
50 

ANZ NAB ASX-
200 

ASX-
50 

ANZ NAB 

DQ Hits 98.889 68.180 22.755 18.308 92.824 93.140 18.593 15.188 19.479 10.262 11.012 12.601 

DQ (p 
Value) 

0 0 0.001 0.006 0 0 0.005 0.019 0.003 0.114 0.088 0.050 

             





Table 4: DQ Test Results for GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 5% VaR 

VaR  (5%) GARCH(1,1) RiskMetrics APARCH(1,1) 

 ASX-
200 

ASX-
50 

ANZ NAB ASX-
200 

ASX-
50 

ANZ NAB ASX-
200 

ASX-
50 

ANZ NAB 

DQ Hits 15.263 20.917 8.826 5.602 16.277 11.575 8.750 5.955 12.293 12.334 16.728 16.444 

DQ (p 
Value) 

0.018 0.002 0.184 0.469 0.012 0.072 0.188 0.428 0.056 0.055 0.010 0.012 


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 Table 5: Estimates for Four CAVIAR Specifications (1% Level) with excluding the GFC period 
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Table 6 DQ test results for pre GFC period GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 1% VaR 

VaR  
(1%) 

GARCH(1,1) RiskMetrics APARCH(1,1) 

 ASX-200 ASX-
50 

ANZ NAB ASX-
200 

ASX-
50 

ANZ NAB ASX-
200 

ASX-
50 

ANZ NAB 

DQ Hits 46.882 50.637 38.336 20.868 55.025 77.312 2.113 11.147 42.756 39.599 17.375 8.735 

DQ (p 
Value) 

0 0 0 0.002 0 0 0.909 0.084 0 0 0.008 0.189 



 

The significant DQ test results for the out of sample period, as indicated in Table 1 and Table 

2 suggest rejection of all the models in this period. This was most likely due to the impact of 

the GFC. We test this justification by excluding the period of the market turmoil from our 

sample data and then testing the specifications as proposed with other settings kept the same.  

Table -5 presents the results of the 1% CAViaR specifications with the period of the GFC 

removed. The results prove that this interpretation is correct and the out of sample estimates 

become significant when the period of turmoil is removed from the empirical investigation. 

In this case again the specification which works the best for the Australian market is the 

Asymmetric Slope Model. Here again it is interesting to see how the other models performs 

in normal market conditions. DQ test results as shown in Table 6 suggest that these methods 

don’t improve after removing the GFC period either. The analysis shows the usual regression 

modelling of GARCH based and similar models for Value at Risk forecast is not efficient 

enough when compared to CAViaR. 

 

4.  Conclusion 

In this paper we have applied the robust method of quantile regression to predict VaR using 

Engle and Manganelli’s (2004) CAViaR model applied to a sample of company and index 

returns from the Australian Market. As a primary objective we have done a comparative 

analysis of CAViaR with normal GARCH (1,1), GARCH(1,1), RiskMetrics and Skewed 

student-t APARCH(1,1) one day ahead forecast, which clearly shows the efficiency of 

CAViaR over the later methods. modelling. Our findings closely parallel those of Engle and 

Manganelli (2004) from their original paper featuring US data sets. Their new class of 

CAViaR models, which specify the evolution of quantiles over time using a special type of 

autoregressive process appear to work well on this Australian data set apart from during the 
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period coloured by the GFC. The findings also suggest that behaviour in the tails may well be 

different from the rest of the distribution. The GFC produced more extreme returns and all 

our models produce an excessive number of violations of the VaR in this period and the DQ 

tests reject the models for this out of sample period. This suggests we still have a long way to 

travel before we can achieve satisfactory VaR models for periods of extreme stress 
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