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ABSTRACT 

 

The worldwide impact of the Global Financial Crisis on stock markets, investors and fund 

managers has lead to a renewed interest in tools for robust risk management. Quantile 

regression is a suitable candidate and deserves the interest of financial decision makers given 

its remarkable capabilities for capturing and explaining the behaviour of financial return 

series more effectively than the ordinary least squares regression methods which are the 

standard tool. In this paper we present quantile regression estimation as an attractive 

additional investment tool, which is more efficient than Ordinary Least Square in analyzing 

information across the quantiles of a distribution. This translates into the more accurate 

calibration of asset pricing models and subsequent informational gains in portfolio 

formation. We present empirical evidence of the effectiveness of quantile regression based 

techniques as applied across the quantiles of return distributions to derive information for 

portfolio formation. We show, via stocks in Dow Jones Industrial Index, that at times of 

financial setbacks such as the Global Financial Crisis, a portfolio of stocks formed using 

quantile regression in the context of the Fama-French three factor model, performs better 

than the one formed using traditional OLS. 

 

Keywords: Factor models; Portfolio optimization; Quantile regression 
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1. INTRODUCTION 

 

From the introduction of Modern Portfolio Theory (MPT) by Markowitz, (1952), the 

analysis of historical series of stock returns has been extensively used as the basis of 

investment decisions. Diversification, as proposed by MPT, has been used for minimizing 

risk, which works on the analysis of the covariance matrix of the chosen universe of stock 

returns. Prior to the development of modern computing technology, this was 

computationally demanding and short cuts were developed, such as Sharpe’s single index 

model (1963). A heuristic which focuses on the empirical estimation of systematic risk, 

which has a parallel focus in the modern finance’s central paradigm: the capital asset 

pricing model (CAPM).  Independently developed by Jack Treynor (1961, 1962), William 

Sharpe (1964), John Lintner (1965) and Jan Mossin (1966).  

 

Fama and French (1992, 1993) extended the basic CAPM to include two additional factors; 

size and book-to-market as explanatory variables in explaining the cross-section of stock 

returns. SMB, which stands for Small Minus Big, is designed to measure the additional 

return investors have historically received from investing in stocks of companies with 

relatively small market capitalizations. This additional return is often referred to as the 

"size premium." HML, which is short for High Minus Low, has been constructed to 

measure the "value premium" provided to investors for investing in companies with high 

book-to-market values (essentially, the book value of the company’s assets as a ratio 

relative to the market value reflecting investor’s valuation of the company, commonly 

expressed as B/M). 

 

Ordinary Least Squares regression analysis, has been the work-horse for all the regression 

forecasting estimates used to model CAPM and its variations; such as the Fama-French 

three factor model or other asset pricing models. With the introduction of alternative robust 

risk measures such as Value at Risk (VaR) or Conditional Value at Risk (CVaR), which 

are now standard in risk management, more emphasis has been laid on the lower tails of 

the return distributions. The way in which OLS is constructed requires it to focus on the 

means of the covariates. It is unable to account for the boundary values, or to explore 

values across the quantiles of the distribution. It is also a Gaussian technique, with an 

assumption of normality of the covariates, which does not sit well with the abundant 

evidence of fat tails and skewness encountered in financial asset return distributions. This 
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feature of asset returns is even more acute in times of severe financial distress like the 

Global Financial Crisis (GFC). Quantile Regression, as introduced by Koenker and Basset 

(1978), has gained popularity recently in finance as an alternative to OLS, as this robust 

regression technique can account for the lower and also the upper tails of the return 

distribution and automatically accounts for outliers, or extreme events in the distribution,  

and hence quantifies more efficiently for risk. 

 

In this paper, we introduce quantile regression as a tool for investment decision making 

and also show the applicability of this technique to robust risk management. We show the 

effectiveness of quantile regression in capturing the risk involved in the tails of the 

distributions which is not possible with OLS. We also use a basic portfolio construction 

exercise using the Fama-French three factor model, on the components of the Dow Jones 

Industrial 30 stocks index from a period running from 2005-2008 and show how quantile 

regression based risk estimates can reduce the losses which we can incur when using OLS 

based methods as portfolio construction tools. 

  

2.  QUANTILE REGRESSION 

 

Linear regression represents the dependent variable, as a linear function of one or more 

independent variables, subject to a random ‘disturbance’ or ‘error’ term. It estimates the 

mean value of the dependent variable for given levels of the independent variables. For this 

type of regression, where we want to understand the central tendency in a dataset, OLS is a 

very effective method. OLS loses its effectiveness when we try to go beyond the mean 

value or towards the extremes of a data set by exploring the quantiles. 

 

Quantile regression as introduced in Koenker and Bassett (1978) is an extension of 

classical least squares estimation of conditional mean models to the estimation of an 

ensemble of models for conditional quantile functions. The central special case is the 

median regression estimator that minimizes a sum of absolute errors. The remaining 

conditional quantile functions are estimated by minimizing an asymmetrically weighted 

sum of absolute errors. Taken together the ensemble of estimated conditional quantile 

functions offers a much more complete view of the effect of covariates on the location, 

scale and shape of the distribution of the response variable. 
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In linear regression, the regression coefficient represents the change in the response 

variable produced by a one unit change in the predictor variable associated with that 

coefficient. The quantile regression parameter estimates the change in a specified quantile 

of the response variable produced by a one unit change in the predictor variable. 

 

The quantiles, or percentiles, or occasionally fractiles, refer to the general case of dividing 

a dataset into parts. Quantile regression seeks to extend these ideas to the estimation of 

conditional quantile functions - models in which quantiles of the conditional distribution of 

the response variable are expressed as functions of observed covariates. 

 

In quantile regression, the median estimator minimizes the symmetrically weighted sum of 

absolute errors (where the weight is equal to 0.5) to estimate the conditional median 

function, other conditional quantile functions are estimated by minimizing an 

asymmetrically weighted sum of absolute errors, where the weights are functions of the 

quantile of interest. This makes quantile regression robust to the presence of outliers.  

 

We can define the quantiles through a simple alternative expedient as an optimization 

problem. Just as we can define the sample mean as the solution to the problem of 

minimizing a sum of squared residuals, we can define the median as the solution to the 

problem of minimizing a sum of absolute residuals. The symmetry of the piecewise linear 

absolute value function implies that the minimization of the sum of absolute residuals must 

equate the number of positive and negative residuals, thus assuring that there are the same 

number of observations above and below the median. 

 

The other quantile values can be obtained by minimizing a sum of asymmetrically 

weighted absolute residuals, (giving different weights to positive and negative residuals). 

Solving 

 

min��ℛ ∑�	(�� − �)                                                           (1) 

 

where �	(∙) is the tilted absolute value function as shown in Figure 1, this gives the �th 

sample quantile with its solution. To see that this problem yields the sample quantiles as its 



 

4 

 

solutions, it is only necessary to compute the directional derivative of the objective 

function with respect to �, taken from the left and from the right. 

 

 
Figure 1: Quantile Regression � Function 

 

After defining the unconditional quantiles as an optimization problem, it is easy to define 

conditional quantiles in an analogous fashion. Least squares regression offers a model for 

how to proceed. If, we have a random sample,���, ��, … , ���, we solve 

 

min��ℛ  ∑ (�� − �)��
���                                                     (2) 

 

we obtain the sample mean, an estimate of the unconditional population mean, EY. If we 

now replace the scalar  � by a parametric function �( , !) and solve 

 

min��ℛ"  ∑ (�� − �( �, !))��
���                                         (3) 

 

we obtain an estimate of the conditional expectation function #($| ). 

 

We proceed exactly the same way in quantile regression. To obtain an estimate of the 

conditional median function, we simply replace the scalar � in the first equation by the 

parametric function �( &, !) and set � to 
�

�
 . To obtain estimates of the other conditional 

quantile functions, we replace absolute values by �	(∙) and solve 
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min��ℛ" ∑�	(�� − �( �, !))                                                    (4) 

 

The resulting minimization problem, when �( , !) is formulated as a linear function of 

parameters, can be solved very efficiently by linear programming methods. 

 

This technique has been used widely in the past decade in many areas of applied 

econometrics; applications include investigations of wage structure (Buchinsky and Leslie 

1997), earnings mobility (Eide and Showalter 1999; Buchinsky and Hunt 1996), and 

educational attainment (Eide and Showalter 1998). Financial applications include Engle 

and Manganelli (1999) and Morillo (2000) to the problems of Value at Risk and option 

pricing respectively. Barnes, Hughes (2002), applied quantile regression to study CAPM, 

in their work on the cross section of stock market returns. 

 

3. THE FAMA-FRENCH THREE FACTOR MODEL 

 

Volatility is widely accepted measure of risk, which is the amount an asset's return varies 

through successive time periods. Volatility is most commonly quoted in terms of the 

standard deviation of returns. There is a greater risk involved for asset whose return 

fluctuates more dramatically than another other. The familiar beta from the CAPM 

equation is a widely accepted measure of systematic risk; whilst unsystematic risk is 

captured by the error term of the OLS application of CAPM. Beta is a measure of the risk 

contribution of an individual security to a well diversified portfolio as measured below; 

 

    !' =
)*+(,-, ,.)

/.
0

                                                              (5)  

 

where 

rA is the return of the asset 

rM is the return of the market 

12
� is the variance of the return of the market, and 

cov(rA, rM ) is covariance between the return of the market and the return of the asset. 
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Jack Treynor (1961, 1962), William Sharpe (1964), John Lintner (1965) and Jan Mossin 

(1966) independently, proposed Capital Asset Pricing Theory, (CAPM), to quantify the 

relationship between beta of an asset and its corresponding return. CAPM stands on a 

broad assumption that, that only one risk factor is common to a broad-based market 

portfolio, which is beta. Modelling of CAPM using OLS assumes that the relationship 

between return and beta is linear, as given in equation (2). 

 

3' =  34 + !'(32 − 36) +  7 + 8     (6) 

 

where 

rA is the return of the asset 

rM is the return of the market 

rf is the risk free rate of return 

7 is the intercept of regression 

e is the standard error of regression 

 

Fama and French (1992, 1993) extended the basic CAPM to include size and book-to-

market as explanatory factors in explaining the cross-section of stock returns. SMB, which 

stands for Small Minus Big, is designed to measure the additional return investors have 

historically received from investing in stocks of companies with relatively small market 

capitalization. This additional return is often referred to as the "size premium." HML, 

which is short for High Minus Low, has been constructed to measure the "value premium" 

provided to investors for investing in companies with high book-to-market values 

(essentially, the value placed on the company by accountants as a ratio relative to the value 

the public markets placed on the company, commonly expressed as B/M). 

 

SMB is a measure of "size risk", and reflects the view that, small companies logically, 

should be expected to be more sensitive to many risk factors as a result of their relatively 

undiversified nature and their reduced ability to absorb negative financial events. On the 

other hand, the HML factor suggests higher risk exposure for typical "value" stocks (high 

B/M) versus "growth" stocks (low B/M). This makes sense intuitively because companies 

need to reach a minimum size in order to execute an Initial Public Offering; and if we later 

observe them in the bucket of high B/M, this is usually an indication that their public 

market value has plummeted because of hard times or doubt regarding future earnings. 
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The three factor Fama-French model is written as; 

 

    3' =  34 + !'(32 − 36) +  9':;< + ℎ'>;? +  7 + 8    (7)  

 

where  sA and hA capture the security's sensitivity to these two additional factors. 

 

Portfolio formation using this model requires the historical analysis of returns based on the 

three factors using regression measures, which quantifies estimates of the three risk 

variables involved in the model, i.e. !' , sA, hA , and the usual regression analysis using 

OLS gives us the estimates around the means of the distributions of the historical returns 

and hence doesn’t efficiently quantify the behaviour around the tails. Modelling the 

behaviour of factor models using quantile regression gives us the added advantage of 

capturing the tail values as well as efficiently analysing the median values. 

 

4.  DATA & METHODOLOGY 

 

The study uses daily prices of the 30 Dow Jones Industrial Average Stocks, for a period 

from January 2005-December 2008, along with the Fama-French factors for the same 

period, obtained from French’s website to calculate the Fama-French coefficients.
1
 Table 

1, gives the 30 stocks traded in the Dow Jones Industrial Average and used in this study. 

 

Table 1 : Dow Jones Industrial 30 Stocks used in the study. 

3M EI DU PONT DE NEMOURS KRAFT FOODS 

ALCOA EXXON MOBILE MCDONALDS 

AMERICAN EXPRESS GENERAL ELECTRIC MERCK & CO. 

AT&T GENERAL MOTORS MICROSOFT 

BANK OF AMERICA HEWLETT-PACKARD PFIZER 

BOEING HOME DEPOT PROCTER&GAMBLE 

CATERPILLAR INTEL UNITED TECHNOLOGIES 

CHEVRON INTERNATIONAL 

BUS.MCHS. 

VERIZON 

COMMUNICATIONS 

CITIGROUP JOHNSON & JOHNSON WAL MART STORES 

COCA COLA JP MORGAN CHASE & CO. WALT DISNEY 
 

  

                                                 
1
 (Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#International) 
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The approach here is to study the behaviour of the return distribution along the quantiles, 

using quantile regression. The coefficients for all the three factors of the model are 

calculated both by virtue of their means using OLS and in their quantiles applying quantile 

regressions. While OLS calculates the coefficients around the mean, quantile regression 

calculates the values for the .05, .25, .50, .75 and .95 quantiles, at 95 percentile confidence 

levels.
2
 After studying the behaviour of the returns along the quantiles of the distribution, 

we use the three factor model for portfolio formation. We use a simple Sequential 

Quadratic Programming routine with the help of MATLAB, to minimize risk and 

mazimise return for portfolio formation. A hold out period of one year is taken to roll over 

the weights calculated from the previous year’s returns to the stock returns of next year to 

explore the outcomes of portfolios selected using this method and to compare their 

effectiveness with portfolios formed using OLS. 

 

5.  QUANTILE ANALYSIS OF FAMA-FRENCH FACTORS 

 

We use OLS regression analysis and quantile regression analysis to calculate the three 

Fama-French coefficients.  Figure 2, gives an example of the Bank of America stock’s 

actual and fitted values obtained from the two regression methods for the year 2008. 

Exhibit-a from Figure 2 shows how the actual and fitted values run through the mean of the 

distribution for OLS and the next two exhibits, b and c shows the use of quantile 

regressions in efficiently capturing the lower and upper tails of the return distribution.  

 

Figure-3, Figure-4, and Figure-5 provide a three dimensional area plot for the quantile 

estimates for all the stocks for the year 2007, these figures show how the values are non 

uniform across the quantiles and the effect can increase in the lower and upper quantiles, a 

feature that is ignored by OLS. The figures present the quantile estimates of beta, the size 

effect and the value or book to market effect respectively. 

 

This analysis shows that the three-factor model can provide even more useful risk 

information, if it is used in combination with quantile regressions, as we display in the next 

stage of our analysis in which we form portfolios. 

 

                                                 
2
 GRETL an open source software is used for OLS and Quantile Regression estimates plus STATA. 

 



 

Figure 2 : OLS and Quantile

 

Figure 3 : Beta for stocks across quantiles

 

: OLS and Quantile Regression Fitted Versus Actual Values

: Beta for stocks across quantiles 
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Regression Fitted Versus Actual Values 

 



 

 
 

Figure 4: Size effect for stocks across quantiles

 

Figure 5: Value(HML) effect for stock

 

: Size effect for stocks across quantiles 

: Value(HML) effect for stocks across quantiles 

10 
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6.  PORTFOLIO FORMATION USING THE FAMA-FRENCH THREE 

FACTOR MODEL 

 

We now proceed to portfolio analysis using the three factor model and OLS and quantile 

regression estimates. As stated earlier; quantile regression provides better estimates along 

the tails of the distribution and hence accounts for risk more efficiently than OLS. We now 

introduce an additional advantage of quantile regression whereby its estimated coefficients 

can be combined by certain weighting schemes to yield more robust measurements of 

sensitivity to the factors across the quantiles, as opposed to OLS estimates around the 

mean. This approach was originally proposed by Chan and Lakonishok (1992) in a paper 

which featured simulations to establish the facility of quantile regressions in equity beta 

estimations. Their results show that the weighted average of quantile beta coefficients is 

more robust than the OLS beta estimates. We will test two weighting schemes for robust 

measurement of size and book to market effects based on the quantile regression 

coefficients. The resulting estimators have weights which are the linear combination of 

quantile regression coefficients. 

 

We will use Tukey’s trimean as our first estimator: 

 

!& = 0.25!D.�E,& +  0.5!D.E,& + 0.25!D.FE,&,     (8) 

9& = 0.259D.�E,& +  0.59D.E,& + 0.259D.FE,&,     (9) 

ℎ& = 0.25ℎD.�E,& +  0.5ℎD.E,& + 0.25ℎD.FE,&,     (10) 

7& = 0.257D.�E,& +  0.57D.E,& + 0.257D.FE,&,     (11) 

 

These are the weighted average of the three quantile estimates. We will test this along with 

another robust estimator with symmetric weights covering all the quantile estimates, i.e. 

0.05, 0.25, 0.5, 0.75, 0.95. 

 

!& = 0.05!D.DE,& + 0.2!D.�E,& +  0.5!D.E,& + 0.2!D.FE,& +  0.05!D.GE,&  (12) 

9& = 0.059D.DE,& + 0.29D.�E,& +  0.59D.E,& + 0.29D.FE,& +  0.059D.GE,&   (13) 

ℎ& = 0.05ℎD.DE,& + 0.2ℎD.�E,& +  0.5ℎD.E,& + 0.2ℎD.FE,& +  0.05ℎD.GE,&  (14) 

7& = 0.057D.DE,& + 0.27D.�E,& +  0.57D.E,& + 0.27D.FE,& +  0.057D.GE,&  (15) 
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The portfolio problem using the Fama-French three factor model, requires a solution for 

minimum risk and maximum return. The return and risk of the portfolio is as presented in 

equations 16 and equation 17. 

 

H8IJ3KL = ∑ !�MNO(32 − 36)P� +  9�MNO(:;<)P� + ℎ�(>;?)P� + 7�P�
�
���   (16) 

 

HQ9RL = ∑ !�
�

�
��� ST3(32 − 36)P�

� +  9�
�ST3(:;<)P�

� + ℎ�
�ST3(>;?)P�

�  (17) 

 

This forms a classical portfolio optimization problem of minimizing risk (equation 17) and 

maximising the return (equation 16). We apply here sequential quadratic programming 

which is also referred to as recursive quadratic programming and is used for solving 

general non linear programming problems. (For details refer to Robust portfolio 

optimization and management, Frank J. Fabozzi, Petter N. Kolm, Dessislava 

Pachamanova, page 284-285). We leave the mathematical details of the algorithm for the 

sake of brevity. MATLAB’s optimization toolbox is used to execute the algorithm, with, 

additional constrain of maximum 10% weight per asset for well diversified portfolio and 

minimum of 0% daily return on the portfolio formed (to prevent optimization from 

generating optimized weights for negative portfolio returns).  

 

We generate portfolios using historical data for three consecutive years, 2005, 2006 and 

2007 with a following hold out period of one year in each case. We use OLS and quantile 

risk measures with Tukey’s trimean and symmetric weights to generate three different 

portfolios. We then roll over the weights as calculated by these respective routines to the 

next year and calculate the realized return and risk for the next year for each of the three 

portfolios. Risk for the rolled over period used as a hold-out sample is the actual 

diversifiable risk calculated using the covariance of the daily returns of the stocks and the 

weights of the selected portfolios. 

 

We then compare the realized return and risk for the next year obtained from maintaining 

the portfolio through the hold out period using the Sharpe Index so as to analyse which 

portfolio performs better in times of severe financial distress. 
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Table 2, Table 3, and Table 4, give the weights generated from the historical data of the 

years 2005, 2006 and 2007 respectively. W1, W2, W3 represent the weights for quantile 

regression coefficients using Tukey’s trimean, the quantile regression coefficients with 

symmetric weights and the OLS coefficients respectively. 

 

Table 2: Portfolio Weights from Year 2005 Data 
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Table 3: Portfolio Weights from Year 2006 Data 
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Table 4: Portfolio Weights from Year 2007 Data 
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Table 5: Final Risk and Return for all the three types of weights after a roll over 

period of a year 
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Quantile Regression (Trimean) Quantile Regression (Symmetric Weights 

) 

OLS 

Return Risk  Return Risk Return Risk 

0.17707517 0.00623073 0.17178290 0.00613572 0.17189773 0.00603117 

Sharpe Ratio 25.20975199 24.73760491 25.18545442 

2007 

Quantile Regression (Trimean) Quantile Regression (Symmetric Weights 

) 

OLS 

Return Risk Return Risk Return Risk 

0.02816570 0.00880364 0.02651735 0.00883844 0.03048237 0.00886899 
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Sharpe Ratio 1.72266282 1.52938198 1.97117930 

2008 

Quantile Regression (Trimean) Quantile Regression (Symmetric Weights 

) 

OLS 

Return Risk Return Risk Return Risk 

-0.35877338 0.02189977 -0.28532662 0.02118938 -0.35993622 0.02202203 

Sharpe Ratio -16.56516722 -13.65431927 -16.52600367 

 

 

Table 5, provides the final risk and returns after a hold out period of a year. The risk 

(standard deviation), is the total portfolio risk calculated using the covariance of daily 

returns of the stocks and the relevant weights. Return is calculated using the first and the 

last day’s prices for the stocks for the particular year; the annualized rate of return. The 

Sharpe ratio values indicate the efficiency of the portfolios formed through the three 

different regression estimates. We can quickly analyse the effectiveness of the portfolios 

based on the Sharpe ratio, which is the excess return of a portfolio divided by its risk.  

 

We analyse the return and risk profiles of the portfolios based on the Sharpe Index and also 

on the basis of their risk. For the years 2006, and 2007 we can see that the portfolios 

formed using OLS do well, as these periods coincide with at time when market was stable 

and there were no major losses of the scale that occurred in the year 2008 as a result of the 

GFC, yet even so, during these periods the portfolios formed using quantile regressions 

performed reasonably well. 

 

Figure 6 shows the returns for all three portfolios for the three observation years, (the 

return lines for portfolio 1 and portfolio 3 are almost overlapping due to similar returns). 

These years range in period from pre GFC to the onset and establishment of the GFC. The 

returns of the portfolios present a rational picture consistent with these varying 

circumstances. We can see from Figure 6 that the three test portfolios performed almost 

equally well in the year 2006, as the distribution of the returns in the prior historical 

analysis period, in which the weights were formed, i.e. the year 2005 were less skewed 

towards the lower tails; as they were in years prior to the financial crisis period. We can 

further conclude from Figure 6 that as we approach closer to the financial crisis period, our 

symmetrically weighted quantile regression coefficient portfolio begins to perform better 

than the other two methods; given that during the time of financial distress the return 

distributions are more skewed towards the lower tails and portfolio selection methods 



 

based on OLS and the Tukey’s trimean quantiles are unable to capture these extreme 

characteristics of the return distributions, and hence unable to give a proper measure of the 

risks involved. Our portfolio analyses show the usefu

analysis, as a tool for the quantification of the tail risks involved with the return 

distributions of financial assets.

 

Figure 6: Portfolio Returns across Years

 

 

based on OLS and the Tukey’s trimean quantiles are unable to capture these extreme 

characteristics of the return distributions, and hence unable to give a proper measure of the 

risks involved. Our portfolio analyses show the useful applicability of quantile regression 

analysis, as a tool for the quantification of the tail risks involved with the return 

distributions of financial assets. 
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Our main focus is the period of immense financial distress and downturn in equity markets. 

We are testing here, whether quantile regression was able to predict the heavy risks and 

whether its application helps to reduce the losses that occurred during this particularly 

extreme hold out period. The analysis of portfolios held during the year 2008 clearly shows 

that the portfolio formed with symmetric weights from the quantile regression coefficients, 

which automatically covered both the extreme lower and upper bounds of the return 

distributions performed better than the other two methods. This portfolio saved around 2% 

of the relative potential losses to the investor. 

 

The analysis shows that a well distributed quantile regression analysis of historical returns 

can give better estimates of the inherent risks than standard OLS analysis. We also show 

that the weighting scheme tested here proves more effective in capturing information from 

the extreme quantile coefficients that receive more emphasis than that given in the other 

two methods considered. 

 

7.  CONCLUSION 

 

In this paper we have introduced quantile regression as a tool for investment analysis and 

portfolio management. Our study shows that quantile regression can provide more 

effective use of information in the entire distribution than is the case with estimates from 

the customarily used OLS. We can achieve more efficient risk measures using this robust 

regression technique. The technique becomes particularly useful when we want to analyse 

the behaviour in the tails of the distributions of returns or to capture a more complete 

picture of the risk of a financial instrument. Our analysis suggests that further research 

using quantile regression in the context of the application of linear asset pricing models 

and their empirical effectiveness in extreme market conditions for portfolio formation is 

likely to be fruitful. 
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